
Towards practical use of Bloom Filter based IP lookup

in operational network

Tong Yang, Gaogang Xie, Ruian Duan, Xianda Sun, Kavé Salamatian

To cite this version:

Tong Yang, Gaogang Xie, Ruian Duan, Xianda Sun, Kavé Salamatian. Towards practi-
cal use of Bloom Filter based IP lookup in operational network. Network Operations and
Management Symposium (NOMS), 2014 IEEE, May 2014, Krakow, Poland. pp.1-4, 2014,
<10.1109/NOMS.2014.6838341>. <hal-01054040>

HAL Id: hal-01054040

https://hal.archives-ouvertes.fr/hal-01054040

Submitted on 19 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47276621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01054040

Towards Practical Use of Bloom Filter based IP

Lookup in Operational Network

Tong Yang, Gaogang Xie

Institute of Computing Technology,

Chinese Academy of Sciences (CAS), China.

yangtongemail@gmail.com, xie@ict.ac.cn.

Xianda Sun

David R. Cheriton School of Computer Science,

University of Waterloo, Canada

x6sun@uwaterloo.ca

Ruian Duan

College of Computing,

Georgia Institute of Technology, USA.

ruian@gatech.edu.

Kavé Salamatian

University of Savoie, France.

kave.salamatian@univ-savoie.fr

Abstract—Bloom Filter is a widely used data structure in

computer science. It enables memory efficient and fast set

membership queries. Bloom filter-based solutions have been

proposed in the past decade for lookup in forwarding tables of

backbone routers [2]. However, the main shortcomings of using

Bloom Filters for lookup lie in the absence of support for deletion

operations that are needed to update the forwarding tables.

Counting Bloom Filter supporting deletion has therefore to be

used, increasing significantly the memory requirement.

Moreover, Counting Bloom Filter suffers from both false positive

and false negative. In this paper, we propose to solve the issue

with deletion of Bloom Filters by using a Withdrawal To

annOuncement (WTO) mapping that replaces withdrawal with

announcements, transforming deletions into additions or record

changes. Moreover, as nowadays routing updates are becoming

more and more frequent, and back routers routing tables are

inflating, the number of entries in a Bloom filters increases,

increasing the risk to saturate them, especially during bursty

updates. In order to limit the worst case false positive rate, the

size of Bloom filters should be dynamicly adjusted. We address

this issue by an algorithm to Dynamicly Increase the Size of

Bloom Filters (DISBF). Experimental evaluation show that the

proposed techniques improve largely the performance of Bloom

Filter used for forwarding lookup and open way for the use of

Bloom Filters in real operational settings.

I. INTRODUCTION

Bloom Filter (BF) data structures have been applied to a
large set of applications in computer science [5][6][7]. Bloom
Filters are used for fast and memory efficient set membership
queries. In the past decade, applications of these structures to
networking problems have been proposed.

In order to increase lookup speed and reduce its cost and
power consumption, Dharmapurikar et al. [2] proposed the
Prefix Bloom Filter (PBF) structure that uses on-chip Bloom
Filter to represent the trie1 used to find the longest matched
prefix. The evaluation shows that in average about 1.003 off-
chip memory accesses is needed for any single lookup, faster
than TCAM in average but with larger worst case complexity.

1 Trie is a tree-like data structure allowing the organization of prefixes on a

digital basis by using the bits of prefixes to direct the branching, an excellent

survey of trie-based lookup solutions are provided in [1].

PBF only uses SRAM and achieved therefore lower cost and
lower power consumption. However, any lookup solution has
to deal with updates that are frequent in the current operational
network. Unfortunately, Bloom Filter cannot support deletion
operations that are needed to do updates. Therefore, they have
to be replaced with Counting Bloom Filter (CBF) that uses a k
bits counter to replace each bit of Bloom Filter array, i.e.,
supporting deletion operations CBFes entails k times more
memory. This can prevent CBFs to be stored in on-chip FPGA
memory. Moreover, in addition to false positive that is
common in BFs, CBF can suffer from false negatives
happening when a counter overflows [4]. False negative results
in wrong lookups that are not acceptable for ISPs.

Nonetheless, while deletion operations are problematic for
Bloom Filters, insertion operations are natural. We propose in
this paper the Withdrawal To annOuncement (WTO) mapping
that transforms withdrawal messages to announcement
messages, that have the same effect on the forwarding
behaviour of the routing table. The technique is motivated by
the fact that when a prefix is withdrawn in a forwarding or
routing table, it always has a shorter less specific prefix that
has a default next-hop. The idea of WTO mapping is therefore
to transform a prefix deletion message into a prefix insertion
(or change) with the next-hop set to the next-hop of the closest
ancestor prefix node. We present the details of WTO mapping
in Section IV. As most of update and withdrawals happen in
the leaves, WTO mapping achieves excellent performances.

During the past decade, backbone routers have witnessed a
steady growth of their routing tables size. This implies Bloom
Filters that should be used for forwarding lookup have to
integrate an increasing number of entries. This results in
increased false positive rate and eventual saturation of the
Bloom Filter (when most bit in the bitmap are set). This
increasing false positive rate means more hash probes in off-
chip memory for PBF algorithm, and ultimately degrades the
system performance. In order to limit the worst case false
alarm rate, the on-chip BFs should be dynamicly adjusted with
the number of elements stored in the BF. Several approaches
have been proposed to deal with this. Yu et al. [8] proposed to
partition the forwarding table according to the outgoing port
(outgoing link), and to build a specific BF for each outgoing

2

port. This BF is periodically reconstructed with the aid of a
CBF and its size is increased accordingly. However, during the
process of reconstructing BFs, packet forwarding should be
suspended and arriving packets are inserted into a queue. This
increases the risk of packet dropping and this is highly
undesirable for ISPs. To address this issue, we propose a
scheme that can dynamicly increase the size of BF, named
DISBF algorithm. The core idea of DISBF algorithm is to
assign additional memory to ensure that the false positive does
not increase during the insertion updates. The cost of this
dynamic adaption is a few additional memory accesses. The
details are provided in Section IV.

The rest of the paper is organized as follows. Section II
introduces the background, including IP lookup, forwarding
table, and the principle of Bloom Filters. Section III details the
WTO mapping and Section IV describes the DISBF algorithm.
Performance evaluation is provided in Section V, and finally
we conclude our paper in Section VI.

II. BACKGROUND

A. Bloom Filter Theory

Bloom Filter is a space–efficient data structure used for set
membership queries. A Bloom Filter has two main components
an m bits array, and k hash functions. When a new entry is to
be added to the BF, it is hashed by each one of the k hashes to a
value from 1 to m and the corresponding value is set to in the m
bits vector.

1) Initialization

0 1 1 0 1 0 … 0 1 0

1 2 3 m...

Figure 1. The initial state of Bloom Filter.

In the beginning, as shown in Figure 1, the Bloom Filter is
an m-bit array, every bit of which is 0. There are k mutually
independent hash functions to map every element to k positions
with a uniform random distribution.

2) Insertion

As shown in Figure 2, given a set 𝑋 = 𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑚 ,

for each element 𝑥𝑖 in 𝑋, each hash function will compute an
array position, which will be set to 1. Therefore, each element
causes k bits in the m-bit array to be set to 1. Note that if the
position of a hash value is already set to 1, no change is needed
for standard Bloom Filter2.

After the insertion of all the elements of the set 𝑋 , the
construction of Bloom Filter is complete, and then membership
query3 can be performed.

0 1 1 0 1 1 0 1 0

1 2 3 m...

xi xj

…

Figure 2. The insertion of Bloom Filter.

2 For Counting Bloom Filter, the position will increase by one.
3 For convenience, the process of determining whether or not an element is a

member of a set is called membership query in this paper.

3) Membership Query

0 1 1 0 1 0 … 0 1 0

1 2 3 m...

y

Figure 3. Membership query of Bloom Filter.

As shown in Figure 3, given an element y, the same k hash
functions compute k positions in the array. If all the k bits
corresponding to the k hash values are 1, the element is judged
to be an element of the set 𝑋 with a probability of false
judgment; otherwise, it is definitely not a member of the set 𝑋.

Figure 4. The relationship between t and k given the value of f. Given a set

with n elements, the memory occupation is tn bits. We need to choose the

optimal k and t to achieve the expected possibility of false positive.

However, even if an element z is indeed not a member of
the set 𝑋, the k hash positions might be all 1, this is called false
positive. The probability of false positive has been well
researched [3][4], thus we only present the important
conclusions below:

Suppose m is the size of the filter (the length of bit-vector),
k is the number of hash functions, and n is the size of the
element set. f represents the false positive probability, and it is
given by:

𝑓 = 1 − 1 −
1

𝑚

𝑛𝑘

𝑘

When m is large, the above equation can be simplified to:

𝑓 ≈ 1 − 𝑒
−𝑛𝑘

𝑚
𝑘

Given the value of f, the following relationship can be
concluded:

𝑚 ≈ −
𝑘

𝑙𝑛 1 − 𝑓
1

𝑘
𝑛

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

k=1:50

t=
m

/n

f=10
-9

f=10
-8

f=10
-7

f=10
-6

f=10
-5

f=10
-4

f=10
-3

3

𝑡 =
𝑚

𝑛
= −

𝑘

𝑙𝑛 1 − 𝑓
1

𝑘

The false positive probability is minimized when satisfying

𝑘 =
𝑚

𝑛
𝑙𝑛2 (1)

and

𝑓 =
1

2

𝑘

 (2)

Given the value of the possibility of false positive, we can
compute the optimal values of m and k according to equation (1)
and (2).

To simplify the description of the memory requirement of
Bloom Filter, we define t=m/n, i.e., given a set with n elements
to insert into a Bloom filter, the needed memory is tn bits. The
optimal k and t to achieve an expected probability of false
positive is given by the above relations. Figure 4 shows the
relationship between t and k when the value of the possibility
of false positive is given. For example, if f is required to be 10-8,
k should be 21, and t should be 39.05, i.e., m=39.05n. For
another example, if f is required to be 10-4, k should be 13, and
t should be 19.17, i.e., m=19.17n.

B. Bloom Filter applications for IP lookup

The initial paper that proposed to use Bloom Filter for
packet forwarding in IP networks proposed Prefix Bloom
Filters (PBF) lookup algorithm [2]. This algorithm first builds
a trie structure for the routing table. It regroups after the
prefixes in each level with the same prefix length as a prefix set.
PBF consists of two steps: on-chip 4 Bloom Filter query
determining the matched trie level (the longest matched prefix
length5) and off-chip hash probes looking-up the next-hop, i.e.,
a Bloom Filter is built in the FPGA on-chip memory for each
prefix set and an off-chip hash table for each level of the trie.
This results in 32 Bloom Filters and 32 hash tables. Given an
incoming IP address, we first query its high 1bit, 2bits,
3bits, …, 32bits prefixes in the corresponding 32 Bloom filters.
Due to prefixes overlap, several Bloom Filters can report a
match. According to the Longest Prefix Matching (LPM) rule,
PBF checks the longest matched level in the corresponding off-
chip hash table and returns the corresponding egress port.
When the longest Bloom Filter returns a false positive, the
search in the hash table will not find any corresponding record
and PBF has to check the hash table for the second longest
prefix. This process continues until a match is found in hash
table.

Membership query of Bloom Filter is so fast that it is
considered to be able to be ignored compared with off-chip
operations, and thereby the off-chip hash probes become its
bottleneck. Indeed above-described PBF can achieve fast
lookup with low cost, but there are two main shortcomings:
updates, and routing table growth.

Nowadays, networks have to deal with an increasing
number of update and routing table changes. Therefore, the
performance of incremental update has become a very

4 For FPGA [10] and ASIC, there are on-chip and off-chip memory: on-chip

memory is fast but scarce, while off-chip memory is slow but abundant.
5 The routing table can be stored in a binary trie, and the prefixes with the

same length will be stored in the same level of the trie.

important metric for routing lookup. Solutions that suspend
lookup too long during routing table updates are highly
undesirable. PBF authors have proposed to use Counting
Bloom Filters in place of Bloom Filter to deal with this issue.
In CBF, each bit of the membership array of Bloom Filter is
replaced by a k bits counter that is incremented every time, and
the corresponding position is set by the insertion of a new
element in the CBF. This enables to delete one element from
the CBF by simply decrementing the counters set by the
insertion of the deleted element. However, the ability to delete
elements from a CBF comes at the cost of k fold memory
requirements. Therefore, for a given memory footprint the false
positive rate of a CBF becomes larger than the false positive
rate of a BF. Moreover, the counters of a CBF can overflow
(when the number of elements setting a position goes higher
than 2k-1). This leads to false negative, i.e., claiming that an
element is not in the Bloom Filter when it is in it. The false
negative has more serous impact on routing than false positive
as when they occur, there are two error cases: 1) The longest
matched level is missed and the packet is forwarded to the
wrong next-hop; or 2) no Bloom Filter reports match and the
next-hop remains unknown. These points make PBF unsuitable
for real routers.

A second issue is relative to handling fast inflating routing
tables. With routing table keeping a rapid growth during recent
years, the on-chip Bloom Filters have to hold an increasing
number of prefixes. With fix memory size this incurs an
increase of the false positive rate, and a resulting increase of
costly off-chip hash lookups, ultimately decreasing the lookup
speed. To keep the system throughput one should manage to
limit the false positive rate while the number of entries in the
Bloom Filter increases by dynamicly adjusting the size of the
Bloom Filter. Unfortunately, there has been no solution to
dynamicly increase the size of Bloom Filters.

III. WTO ALGORITHM

First we give some conclusions of Bloom Filter and
Counting Bloom Filter:

 Bloom Filter supports insertion operations and

membership query, but cannot support deletion operations.

 Bloom Filter has false positive, but no false negative.

 Counting Bloom Filter uses a counter in place of a bit of

Bloom Filter, hence can support deletion operations.

 Counting Bloom Filter has both false positive and false

negative.

In order to support incremental update, PBF adopts
Counting Bloom Filter, then two problems arise:

 If a counter in the Counting Bloom Filter costs x bits, then

x times memory is needed as compared with Bloom Filter.

Therefore, Counting Bloom Filter is probably too large to

be held in on-chip memory.

 Counting Bloom Filter has false negative. When false

negative occurs, PBF algorithm probably returns a

mistaken next-hop.

Actually, the above two problems can be solved if there is
no withdrawal message, but we cannot just ignore the
withdrawal messages.

Deletions are needed when withdrawal messages happen. A
withdrawal message means that the announced prefix and its

4

next-hop should be deleted from routing table, e.g., let’s
assume that the prefix1011*:4 has to withdraw. Now, if a
packet with destination address IP 10110* arrives, to which
egress should it be forwarded? In practice, there are always
shorter prefixes matching the IP, like 101*, 10* and *, in the
routing table. So in this example, the withdrawal message just
changes the longest matched prefix from 1011* to 101*.
Therefore, in place of deleting the prefix 1011*, one can just
change its next-hop to the next-hop of prefix 101*. By doing
this the forwarding behavior of the routing table will change.
Nonetheless, we have just transformed the withdrawal
messages into an announcement messages and suppress the
need for a deletion operation in Bloom Filters. This example
illustrates the rationale of Withdrawal To annOuncement
(WTO) mapping algorithm. WTO algorithm aims at changing
withdrawal message into announcement one while keeping the
forwarding behavior of routers unchanged.

By eliminating the need for deletion, WTO algorithm
enables to simply use a Bloom Filter instead of the Counting
Bloom Filter.

The WTO mapping algorithm works as follows. It seeks a
way to convert withdrawal messages to announcement
messages by changing the next-hop of the prefix to be deleted
to its nearest ancestor’s next-hop in the trie. For instance, as
shown in Figure 5, node A, B, C, D and R are 4 prefix nodes in
a trie and the circles represent that the egress port of these
nodes is 1, while the rectangles represent port 2. When a
withdrawal message: withdraw 101*, arrives instead of
removing node D and updating the Bloom Filter, WTO
algorithm changes the next-hop of node D to port 1 (the next-
hop of node C), suppressing the need to apply an operation on
the Bloom Filter.

(a) step I. (b) step II.

Figure 5. The scheme of WTO algorithm. Node A, B, C, D and R are 4

prefix nodes in a trie and the circles represent that the port of such nodes are 1,

while the rectangles represent port 2. Given a withdrawal message: withdraw

101*, instead of simply removing node D and updating the Bloom Filter,

WTO algorithm changes the next-hop of node D to port 1 (the next-hop of

node C), thus no operation on Bloom Filter is needed. When deleting node C

after node D is deleted, WTO algorithm needs to change the port of node C to

port 2, and the port of node D should be changed as well.

It is noteworthy that WTO algorithm may cause domino
effect. In the example shown in Figure 5, when deleting node C
after node D being deleted, WTO algorithm needs to change
both the egress port of node C and D to port 2. To address this
potential problem, a simple solution consists in checking the
sub-trie rooted at the updated node. However, this entails a
longer time and larger memory. To accelerate WTO mapping,
we assign a flag to each node. When during deletion operation,
the updated node is not really deleted but changed, just like the
node D in step I of Figure 5, the flag of the nearest ancestor
node (node C in Figure 5) should be set to true. During next

deletion, WTO algorithm finds that the flag of a node is true, it
continues to traverse the sub-trie to change the corresponding
nodes. This happens in the example of Figure 5, when node C
is deleted after node D.

However, getting the nearest ancestor and its flag needs a
pointer in each node to point back to its parent node. To avoid
this back pointer, we record the flag of the nearest ancestor
node in the next node during the traversal process needed to
find the updated node. This further reduces the additional
memory accesses resulting from back pointers..

The above technique reduces strongly in practice the
needed sub-trie traversals. We give in Algorithm 1 the pseudo
code of WTO algorithm.

Nonetheless, when the domino effect happens, it needs
more time to apply an update than the common situations. The
rate of domino effect depends on the update messages. In other
words, the performance of WTO algorithm depends on the
characteristics of update messages, in particular the withdrawal
update messages. According to our previous experimental
results in [12], the update messages happen mainly in Leaves
nodes. This suggests that even when the domino effect happens,
only a few levels of the prefixes are affected.

Algorithm 1 Update(operationType, prefix, next-hop)

1: insertNode = trie.root

2: next-hopAncestor = insertNode.newPort

3: for {i = 0 to prefix.length-1}

4: if {prefix[i] == 0} THEN

5: if {insertNode.leftChild == NULL} then

6: if {operationType == WITHDRAW}

7: return;

8: endif

9: create insertNode.leftChild

10: endif

11: next-hopAncestor = insertNode.newPort

12: insertNode = insertNode.leftChild

13: else

14: if {insertNode.rightChild == NULL} then

15: if {operationType == WITHDRAW}

16: return;

17: endif

18: create insertNode.rightChild

19: endif

20: next-hopAncestor = insertNode.newPort

21: insertNode = insertNode.rightChild

22: endif

23: endfor

24: if {operationType == ANNOUNCE} then

24: insertNode.oldPort = next-hopAncestor = next-hop

26: [Bloom Filter Operations]

27: else

28: insertNode.oldPort = 0

29: endif

30:if{flag==true} then

30: traversalUpdate(insertNode, next-hopAncestor)

In addition to this, we have also carried out large-scale
experiments and find that withdrawal messages are much fewer

R

BA

C

D

0 1

0

1

 D’ D’’

R

BA

C

0 1

0

1

D’

C’

5

than announcement messages (see Figure 8 in Section V). This
phenomenon indicates that WTO algorithm is applicable for
real routers. As explained above, the WTO mapping can fix the
of the major problems that lead authors of [2] to use CBFs in
place of BF, controlling therefore the memory increase.
Moreover, the increase in the number of memory accesses
induced by domino effect of the WTO algorithm is not too
large to result in performance loss (see Figure 10 in Section
VI).

IV. DYNAMICLY ADJUSTING THE SIZE OF BLOOM FILTERS

A. DISBF Algorithm

Routing table size has taken a large increase in recent years,
e.g., the Autonomous System 6447 routing table had only
about 70K prefixes in 2000, but exceeded 450K prefixes at the
beginning of 2013 [14]. One issue that such an explosive
increase can generate for Bloom Filter based lookup is that the
number of entries to add into the Bloom Filter increases and
the false positive rate consequently increases. In order to
control the false positive rate we need to adapt the size of the
Bloom Filter dynamically.

This issue has already been analysed. Yu et al. proposed in
[8] to re-construct periodically the Bloom Filter with the aid of
Counting Bloom filters. Unfortunately, re-constructing the
Bloom Filters interrupt the lookup of forwarding table, and
might incurs packet loss. It is therefore not applicable in
practice.

We propose an algorithm to Dynamically Increase the Size
of Bloom Filter (DISBF) that do not need to reconstruct the BF
and avoid blocking the lookup process. Note that we also aim
at keeping the false positive rate almost unchanged with
increasing the number of elements inserted into the BF.

Let’s assume that in Figure 6, xi is an element of to add to a
Bloom Filter. The original BF membership array is the bits
ranging from 0 to m, while the memory (the purple part)
ranging from m+1 to m’ is the additional memory. hs is one of
the k hash functions.

Now, let’s define Bloom Filter to be ‘full’ when the number
of inserted entries becomes larger than a threshold defined by
the maximal acceptable false positive rate. Now let’s assume
the BF becoming ‘full’. The DISBF algorithm consists of 4
steps (see Figure 6):

1) We compute a new size m' for the Bloom filter, and
'malloc' additional m'-m memory for it.

2) When inserting a new element, we still compute the k
hash functions, and check the corresponding bit ℎ𝑠(𝑥𝑖). If the
bit is set (is 1), nothing needs to be done. However, if the value
is 0, we do not set it, but compute the ℎ𝑠 𝑥𝑖 𝑚𝑜𝑑 (𝑚−𝑚′),
and set the corresponding bit in the additional memory to 1.

3) When querying an element x, check the original k hash
position: if all 1, report true; otherwise, if position indicated by
the hash function i is 0, go to step 4).

4) We check the positions ℎ𝑖 𝑥 𝑚𝑜𝑑 (𝑚 −𝑚′) in the
additional memory, if it is 1, we report true, otherwise, if there
is a further round of added memory we apply the same
approach. If in the last memory region the value is 0, we report
a false.

It is noteworthy that the above method does not add false
negative, and the false positive rate is not increasing due to the
addition of memory. Moreover we do not need any additional

hash computations but only additional modulo operations.

In conclusion, our scheme can dynamically increase the
size of Bloom Filter, avoiding Bloom Filter reconstruction
without adding false negative, and keeping the false positive
below limit. No additional hash function and hash computation
is needed. The additional modulo operations and corresponding
memory accesses are also very rare (happening only for entries
added after the Bloom Filter becoming ‘full’).

Figure 6. DISBF algorithm. xi is an element of the set. The memory ranging

from 0 to m is the original Bloom Filter, while the memory (the purple part)

ranging from m+1 to m’ is the additional memory. hs is one of the k hash

functions.

B. The False Positive of DISBF

As mentioned before, the false positive probability of
Bloom Filters stays bounded by using DISBF. In this section,
we analyze formally the false positive probability of DISBF.

Let’s suppose that before adding additional memory, n
elements are inserted into the Bloom Filter that is using k hash
functions, and a membership array of size m. When m is large,
the false positive probability f is given by :

𝑓 ≈ 1 − 𝑒
−𝑛𝑘

𝑚
𝑘

As explained in section II.A, the optimal value of false
positive is

𝑓𝑜𝑝𝑡 =
1

2

𝑘

and the values k,m and n are related by the below relation:

𝑘𝑜𝑝𝑡 =
𝑚

𝑛
𝑙𝑛2

When k is fixed, 1 − 𝑒
−𝑛𝑘

𝑚
𝑘

 and f increase with n. We

will assume that the Bloom Filter is becoming ‘full’ when the
number of inserted elements exceeds nmax, resulting in a false
positive probability less than

𝑓𝑚𝑎𝑥 ≈ 1 − 𝑒
−𝑛𝑚𝑎𝑥 𝑘

𝑚
𝑘

Now if we keep k unchanged, and

𝑚𝑐

𝑛𝑐
=
𝑚

𝑛

1 3 5 m

xi

hs

1 0 1

m'

hs(xi)%(m'-m)

111 1 0

x1, x2, x3, …,

xi…, xn

Set X

additional memory

6

The false positive probability still remains:

𝑓𝑐 =
1

2

𝑚𝑐
𝑛𝑐

𝑙𝑛2

=
1

2

𝑚

𝑛
𝑙𝑛2

= 𝑓𝑜𝑝𝑡

When nc>nmax, the DISBF algorithm 'malloc' m'-m
additional memory. We use f' to represent the probability of
false positive using DISBF algorithm. When nc = nmax, all the
bits in the additional memory are 0, thus

𝑓 ′ = 𝑓 ≈ 1 − 𝑒
−𝑛𝑘

𝑚
𝑘

When the probability of false positive reaches the
predefined threshold 𝑓𝑚𝑎𝑥 , DISBF is activated, and the number
of 1s in the original Bloom Filter array is not anymore
increased by additional insertion. The rationale of DISBF
scheme is to transfer the newly inserted 1s to additional
memory. Now let’s suppose that after inserting x additional
elements into the Bloom Filter, the 1s are evenly distributed in
the added bits, and

𝑚

𝑛
𝑙𝑛2 =

𝑚′

𝑥 + 𝑛𝑚𝑎𝑥
𝑙𝑛2 = 𝑘𝑜𝑝𝑡

The false alarm probability f for a bloom filter not using the
DISBF algorithm will become:

𝑓 ≈ 1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚
𝑘

Now the DISBF, has larger size and fewer 1s, compared
with BF, thus

𝑓 ′ ≈ 1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚 ′
𝑘

< 1 − 𝑒
−(𝑛𝑚𝑎𝑥 +𝑥)𝑘

𝑚
𝑘

= 𝑓

The same argument is valid when after adding more entries,
the new Bloom Filter becomes ‘full’, i.e., the probability of
false positive reaches the predefined threshold 𝑓𝑚𝑎𝑥 . In this
case, new additional memory is assigned and the four steps of
DISBF algorithm are executed again.

V. EXPERIMENTAL RESULT

In this section, we will validate using empirical experiment
the proposed techniques to implement Bloom Filter based IP
lookup.

A. Experimental Settings

1) Data Set

The data set is taken from RIPE NCC [11] at www.ripe.net,
which collects routing updates from peers. In order to
objectively evaluate the performance of WTO algorithm, we
extracted the RIB on 2012/6/1 at 8:00 AM from 10 backbone
routers, and all corresponding update messages happening
during a full day are downloaded and parsed.

2) Computer Configuration

Our experiments have been conducted on a windows XP
sp3 machine with Pentium (R) Dual-Core CPU
5500@2.80GHz and 4G memory.

B. Experiments on WTO Algorithm

The x-axis of Figure 7~12 represents the update time of
update messages. For instance, '201210231945' means the time
2012-10-10 23:19:45. The labels, rrc00, rrc01, etc. are the
router ID defined by RIPE Network Coordination Centre [11].

As the WTO algorithm is executed for any withdrawal

messages, so we study the number of withdrawal messages.
We show in Figure 7 the number of withdrawal messages for
the 10 routing tables. The maximum value is around 927496
for one day (for rrc00). This number of withdrawal means in
average 927496/24/3600≈10.73 updates per second. Moreover
this number is small compared with the number of total updates:
16956829 that means in average 196.26 update messages per
second.

Figure 7. The number of updates in one day over 12 routers. The maximum

value is around 927496 (rrc00) for one day. It is actually very tiny compared

with the number of total updates: 16956829. The maximum 927496

withdrawal updates mean that 927496/24/3600≈10.73 withdrawal updates per

second in average. For the most frequent updating router RRC00, there are

196.26 update messages per second in average.

Figure 8. The ratio of the number of withdrawal update messages to that of

total update messages. It can be observed that the ratio ranges from 0.03 to

0.16 with a mean of 0.1. This suggests that only 1/10 update messages are

withdrawal. That means WTO is performed with the possibility of 1/10 in

average.

As mentioned in Section I, the relative rarity of 'withdrawal
messages' makes WTO algorithm work well. To validate this,
we plot the ratio of the number of withdrawal messages to the
total update messages in Figure 8. It can be observed that the
ratio ranges from 0.03 to 0.16 with a mean of 0.1. This

2
0
1
2
0
6
0
1
0
8
5
0

2
0
1
2
0
6
0
1
0
9
4
5

2
0
1
2
0
6
0
1
1
0
3
5

2
0
1
2
0
6
0
1
1
1
2
5

2
0
1
2
0
6
0
1
1
2
1
5

2
0
1
2
0
6
0
1
1
3
0
5

2
0
1
2
0
6
0
1
1
3
5
5

2
0
1
2
0
6
0
1
1
4
4
5

2
0
1
2
0
6
0
1
1
5
3
5

2
0
1
2
0
6
0
1
1
6
2
5

2
0
1
2
0
6
0
1
1
7
1
5

2
0
1
2
0
6
0
1
1
8
0
5

2
0
1
2
0
6
0
1
1
8
5
5

2
0
1
2
0
6
0
1
1
9
4
5

2
0
1
2
0
6
0
1
2
0
3
5

2
0
1
2
0
6
0
1
2
1
2
5

2
0
1
2
0
6
0
1
2
2
1
5

2
0
1
2
0
6
0
1
2
3
0
5

2
0
1
2
0
6
0
1
2
3
5
5

2
0
1
2
0
6
0
2
0
0
4
5

2
0
1
2
0
6
0
2
0
1
3
5

2
0
1
2
0
6
0
2
0
2
2
5

2
0
1
2
0
6
0
2
0
3
1
5

2
0
1
2
0
6
0
2
0
4
0
5

2
0
1
2
0
6
0
2
0
4
5
5

2
0
1
2
0
6
0
2
0
5
4
5

2
0
1
2
0
6
0
2
0
6
3
5

2
0
1
2
0
6
0
2
0
7
2
5
 0

100k

200k

300k

400k

500k

600k

700k

800k

900k

1M

#
 o

f
w

it
h

d
ra

w
a

l
m

e
s
s
a

g
e

s

Time

 rrc00

 rrc01

 rrc04

 rrc05

 rrc07

 rrc11

 rrc12

 rrc13

 rrc14

 rrc15

2
0
1
2
0
6
0
1
0
8
5
0

2
0
1
2
0
6
0
1
0
9
4
5

2
0
1
2
0
6
0
1
1
0
3
5

2
0
1
2
0
6
0
1
1
1
2
5

2
0
1
2
0
6
0
1
1
2
1
5

2
0
1
2
0
6
0
1
1
3
0
5

2
0
1
2
0
6
0
1
1
3
5
5

2
0
1
2
0
6
0
1
1
4
4
5

2
0
1
2
0
6
0
1
1
5
3
5

2
0
1
2
0
6
0
1
1
6
2
5

2
0
1
2
0
6
0
1
1
7
1
5

2
0
1
2
0
6
0
1
1
8
0
5

2
0
1
2
0
6
0
1
1
8
5
5

2
0
1
2
0
6
0
1
1
9
4
5

2
0
1
2
0
6
0
1
2
0
3
5

2
0
1
2
0
6
0
1
2
1
2
5

2
0
1
2
0
6
0
1
2
2
1
5

2
0
1
2
0
6
0
1
2
3
0
5

2
0
1
2
0
6
0
1
2
3
5
5

2
0
1
2
0
6
0
2
0
0
4
5

2
0
1
2
0
6
0
2
0
1
3
5

2
0
1
2
0
6
0
2
0
2
2
5

2
0
1
2
0
6
0
2
0
3
1
5

2
0
1
2
0
6
0
2
0
4
0
5

2
0
1
2
0
6
0
2
0
4
5
5

2
0
1
2
0
6
0
2
0
5
4
5

2
0
1
2
0
6
0
2
0
6
3
5

2
0
1
2
0
6
0
2
0
7
2
5
 0.00

0.05

0.10

0.15

0.20

0.25

ra
ti
o
 o

f
w

it
h
d
ra

w
a
l
m

e
s
s
a
g
e
s

Time

 rrc00 rrc01

 rrc04 rrc05

 rrc07 rrc11

 rrc12 rrc13

 rrc14 rrc15

7

suggests that only 1/10 update messages are withdrawal. That
means WTO is performed in average 1/10 of time.

As mentioned in Section III, WTO algorithm may cause
domino effect. When the flag of updating node or the nearest
ancestor node is true, WTO algorithm must traverse the sub-
trie rooted at the updating node, then additional memory
accesses are needed. Actually, because update messages are
generally happening in 'Leaves' [12], additional memory
accesses are very low. We plot in Figure 9 the number of
additional memory accesses,. Results show that the maximum
number of additional memory accesses is 3620 over one day.
Given a common DRAM working at 333MHz, 3620 additional
memory accesses only need 3620/333000000=10.9us that is
negligible.

Figure 9. The number of additional memory accesses using WTO algorithm

for 10 routing tables over one day. Because update messages have 'Leaves

Characteristic', the additional memory accesses are very few, and increases

slower and slower. Results show that the maximum number of additional

memory accesses is 3620 over one day.

To make a comparison, we plot the total memory accesses
for updates including announcement and withdrawal messages
over one day in Figure 10. The number of memory access
number is about 0.4 billion, 110497 times of the additional
3620 memory accesses. That’s to say, the negative effect of
time overhead brought by WTO algorithm is only around 10-6
of the original update time.

We show in Figure 11, the number of additional memory
accesses for each withdrawal after using WTO algorithm. It
can be observed that in average only 0.001 additional memory
accesses are needed.

The other negative effect of WTO algorithm is the
introduction of additional prefixes. As WTO algorithm
changes the withdrawal messages to announcement messages,
there will be more prefixes after using WTO algorithm. The
number of additional prefixes is an important metrics for WTO
algorithm, as too many additional prefixes means larger routing
table size, that might make WTO algorithm not practical.

According to Figure 7, there are 927496 update messages at
most. One might think that the number of additional prefixes
will be 927496. However, in practice the number is much
smaller as only a small fraction of prefixes are frequently
updated. We show in Figure 12 and 13, the number of

additional prefixes observed after applying WTO.

The ratio of the number of additional prefixes to the total
prefixes is shown in Figure 12. It shows that the ratio ranges
from 0.002 to 0.04 with a mean of 0.01. This means that WTO
algorithm results in average in only 0.01 additional prefixes
produced for each withdrawal message.

As shown in Figure 13, the number of additional prefixes
ranges from 979 to 13215 with a mean of 4050. This is much
smaller than the number withdrawal messages (927496). If the
router has enough memory, WTO algorithm can always work
well. If the memory becomes insufficient, we can periodically
perform a refresh, when the router is idle.

Figure 10. The number of memory accesses for update messages over one day.

The maximum memory access number is about 0.4 billion, 110497 times of

the additional 3620 memory accesses. That’s to say, the negative effect of

time overhead brought by WTO algorithm is only around 10-6 of the original

update time.

Figure 11. The number of additional memory accesses in average for each

withdrawal message.

2
0
1
2
0
6
0
1
0
8
5
0

2
0
1
2
0
6
0
1
0
9
4
5

2
0
1
2
0
6
0
1
1
0
3
5

2
0
1
2
0
6
0
1
1
1
2
5

2
0
1
2
0
6
0
1
1
2
1
5

2
0
1
2
0
6
0
1
1
3
0
5

2
0
1
2
0
6
0
1
1
3
5
5

2
0
1
2
0
6
0
1
1
4
4
5

2
0
1
2
0
6
0
1
1
5
3
5

2
0
1
2
0
6
0
1
1
6
2
5

2
0
1
2
0
6
0
1
1
7
1
5

2
0
1
2
0
6
0
1
1
8
0
5

2
0
1
2
0
6
0
1
1
8
5
5

2
0
1
2
0
6
0
1
1
9
4
5

2
0
1
2
0
6
0
1
2
0
3
5

2
0
1
2
0
6
0
1
2
1
2
5

2
0
1
2
0
6
0
1
2
2
1
5

2
0
1
2
0
6
0
1
2
3
0
5

2
0
1
2
0
6
0
1
2
3
5
5

2
0
1
2
0
6
0
2
0
0
4
5

2
0
1
2
0
6
0
2
0
1
3
5

2
0
1
2
0
6
0
2
0
2
2
5

2
0
1
2
0
6
0
2
0
3
1
5

2
0
1
2
0
6
0
2
0
4
0
5

2
0
1
2
0
6
0
2
0
4
5
5

2
0
1
2
0
6
0
2
0
5
4
5

2
0
1
2
0
6
0
2
0
6
3
5

2
0
1
2
0
6
0
2
0
7
2
5
 0

500

1000

1500

2000

2500

3000

3500

4000

#
 o

f
a
d

d
it
io

n
a

l
m

e
m

o
ry

 a
c
c
e

s
s
e

s

Time

 rrc00 rrc01

 rrc04 rrc05

 rrc07 rrc11

 rrc12 rrc13

 rrc14 rrc15

2
0
1
2
0
6
0
1
0
8
5
0

2
0
1
2
0
6
0
1
0
9
4
5

2
0
1
2
0
6
0
1
1
0
3
5

2
0
1
2
0
6
0
1
1
1
2
5

2
0
1
2
0
6
0
1
1
2
1
5

2
0
1
2
0
6
0
1
1
3
0
5

2
0
1
2
0
6
0
1
1
3
5
5

2
0
1
2
0
6
0
1
1
4
4
5

2
0
1
2
0
6
0
1
1
5
3
5

2
0
1
2
0
6
0
1
1
6
2
5

2
0
1
2
0
6
0
1
1
7
1
5

2
0
1
2
0
6
0
1
1
8
0
5

2
0
1
2
0
6
0
1
1
8
5
5

2
0
1
2
0
6
0
1
1
9
4
5

2
0
1
2
0
6
0
1
2
0
3
5

2
0
1
2
0
6
0
1
2
1
2
5

2
0
1
2
0
6
0
1
2
2
1
5

2
0
1
2
0
6
0
1
2
3
0
5

2
0
1
2
0
6
0
1
2
3
5
5

2
0
1
2
0
6
0
2
0
0
4
5

2
0
1
2
0
6
0
2
0
1
3
5

2
0
1
2
0
6
0
2
0
2
2
5

2
0
1
2
0
6
0
2
0
3
1
5

2
0
1
2
0
6
0
2
0
4
0
5

2
0
1
2
0
6
0
2
0
4
5
5

2
0
1
2
0
6
0
2
0
5
4
5

2
0
1
2
0
6
0
2
0
6
3
5

2
0
1
2
0
6
0
2
0
7
2
5
 0.0

5.0x10
7

1.0x10
8

1.5x10
8

2.0x10
8

2.5x10
8

3.0x10
8

3.5x10
8

4.0x10
8

#
 o

f
to

ta
l
m

e
m

o
ry

 a
c
c
e

s
s
e

s
 f

o
r

u
p
d

a
te

s

Time

 rrc00

 rrc01

 rrc04

 rrc05

 rrc07

 rrc11

 rrc12

 rrc13

 rrc14

 rrc15

2
0
1
2
0
6
0
1
0
8
5
0

2
0
1
2
0
6
0
1
0
9
4
5

2
0
1
2
0
6
0
1
1
0
3
5

2
0
1
2
0
6
0
1
1
1
2
5

2
0
1
2
0
6
0
1
1
2
1
5

2
0
1
2
0
6
0
1
1
3
0
5

2
0
1
2
0
6
0
1
1
3
5
5

2
0
1
2
0
6
0
1
1
4
4
5

2
0
1
2
0
6
0
1
1
5
3
5

2
0
1
2
0
6
0
1
1
6
2
5

2
0
1
2
0
6
0
1
1
7
1
5

2
0
1
2
0
6
0
1
1
8
0
5

2
0
1
2
0
6
0
1
1
8
5
5

2
0
1
2
0
6
0
1
1
9
4
5

2
0
1
2
0
6
0
1
2
0
3
5

2
0
1
2
0
6
0
1
2
1
2
5

2
0
1
2
0
6
0
1
2
2
1
5

2
0
1
2
0
6
0
1
2
3
0
5

2
0
1
2
0
6
0
1
2
3
5
5

2
0
1
2
0
6
0
2
0
0
4
5

2
0
1
2
0
6
0
2
0
1
3
5

2
0
1
2
0
6
0
2
0
2
2
5

2
0
1
2
0
6
0
2
0
3
1
5

2
0
1
2
0
6
0
2
0
4
0
5

2
0
1
2
0
6
0
2
0
4
5
5

2
0
1
2
0
6
0
2
0
5
4
5

2
0
1
2
0
6
0
2
0
6
3
5

2
0
1
2
0
6
0
2
0
7
2
5
 -0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

#
 o

f
a
d
d
it
io

n
a
l
m

e
m

o
ry

 a
c
c
e
s
s
e
s

p
e
r

w
it
h
d
ra

w
a
l
u
p
d
a
te

Time

 rrc00

 rrc01

 rrc04

 rrc05

 rrc07

 rrc11

 rrc12

 rrc13

 rrc14

 rrc15

8

Figure 12. The ratio of the number of additional prefixes to that of total

prefixes on 10 routing tables over one day. Results show that the ratio ranges

from 0.002 to 0.04 with a mean of 0.01.

Figure 13. The number of additional prefixes on 10 routers over one day. The

number of additional prefixes ranges from 979 to 13215 with a mean of 4050.

This is much smaller than the number withdrawal messages (927496).

VI. CONCLUSION

In order to solve the issue raised by the usage of Bloom
Filter based techniques for IP lookup, we propose WTO
algorithm to solve the update problem for Longest Prefix
Matching; In order to limit the worst case false alarm rate, we
proposed DISBF algorithm to dynamically increase the size of
Bloom Filters. We carried out experiments to evaluate the
performance of WTO algorithm, and results show that they can
overcome the shortcomings of Bloom filter-based solutions at
the cost of negligible overhead. Note that DISBF algorithm can
be applied to all situations using Bloom Filters, especially the
frequently updating Bloom Filters. In our next work, we plan to
apply DISBF algorithm to the Bloom Filter-based solutions for
Exact Matching [8][9].

REFERENCES

[1] Ruiz-Sánchez M Á, Biersack E W, Dabbous W. Survey and taxonomy
of IP address lookup algorithms. Network, IEEE, 2001, 15(2): 8-23.

[2] Sarang Dharmapurikar, Praveen Krishnamurthy David E. Taylor.
Longest Prefix Matching Using Bloom Filters. In ACM SIGCOMM,
2003.

[3] Bloom B H. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 1970, 13(7): 422-426.

[4] Deke Guo, Yunhao Liu, Xiangyang Li, and Panlong Yang. False
Negative Problem of Counting Bloom Filter. Knowledge and Data
Engineering, IEEE Transactions on, 2010, 22(5): 651-664.

[5] Haoyu Song, Fang Hao, Murali Kodialam, T.V. Lakshman. IPv6
Lookups using Distributed and Load Balanced Bloom Filters for
100Gbps Core Router Line Cards. In Proc. IEEE INFOCOM 2009:
2518-2526.

[6] Song H, Dharmapurikar S, Turner J, et al. Fast hash table lookup using
extended bloom filter: an aid to network processing. ACM SIGCOMM
Computer Communication Review. ACM, 2005, 35(4): 181-192.

[7] Yan Qiao, Tao Li, Shigang Chen. One Memory Access Bloom Filters
and Their Generalization. INFOCOM, 2011 Proceedings IEEE. IEEE,
2011: 1745-1753.

[8] Yu M, Fabrikant A, Rexford J. BUFFALO: bloom filter forwarding
architecture for large organizations. Proceedings of the 5th international
conference on Emerging networking experiments and technologies.
ACM, 2009: 313-324.

[9] Dan Li, Henggang Cui, Yan Hu, Yong Xia, Xin Wang. Scalable data
center multicast using multi-class bloom filter. Network Protocols
(ICNP), 2011 19th IEEE International Conference on. IEEE, 2011: 266-
275.

[10] FPGA Data Sheet.

http://www.xilinx.com/support/documentation/data_sheets/ds180_7Serie
s_Overview.pdf.

[11] RIPE Network Coordination Centre.

http://www.ripe.net/data-tools/stats/ris/ris-raw-data.

[12] Tong Yang, Zhian Mi, Ruian Duan, Xiaoyu Guo, Jianyuan Lu,
Shenjiang Zhang, Xianda Sun and Bin Liu. An Ultra-fast Universal
Incremental Update Algorithm for Trie-based Routing Lookup. Network
Protocols (ICNP), 2012 20th IEEE International Conference on. IEEE,
2012: 1-10.

[13] A. Broder and M. Mitzenmacher. Network applications of Bloom filters:
A survey. Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2005.

[14] AS6447 BGP Routing Table Analysis Report.
http://bgp.potaroo.net/as6447/.

2
0
1
2
0
6
0
1
0
8
4
9

2
0
1
2
0
6
0
1
0
9
4
2

2
0
1
2
0
6
0
1
1
0
3
4

2
0
1
2
0
6
0
1
1
1
2
4

2
0
1
2
0
6
0
1
1
2
1
4

2
0
1
2
0
6
0
1
1
3
0
4

2
0
1
2
0
6
0
1
1
3
5
4

2
0
1
2
0
6
0
1
1
4
4
4

2
0
1
2
0
6
0
1
1
5
3
4

2
0
1
2
0
6
0
1
1
6
2
4

2
0
1
2
0
6
0
1
1
7
1
4

2
0
1
2
0
6
0
1
1
8
0
4

2
0
1
2
0
6
0
1
1
8
5
4

2
0
1
2
0
6
0
1
1
9
4
4

2
0
1
2
0
6
0
1
2
0
3
4

2
0
1
2
0
6
0
1
2
1
2
4

2
0
1
2
0
6
0
1
2
2
1
4

2
0
1
2
0
6
0
1
2
3
0
4

2
0
1
2
0
6
0
1
2
3
5
4

2
0
1
2
0
6
0
2
0
0
4
4

2
0
1
2
0
6
0
2
0
1
3
4

2
0
1
2
0
6
0
2
0
2
2
4

2
0
1
2
0
6
0
2
0
3
1
4

2
0
1
2
0
6
0
2
0
4
0
4

2
0
1
2
0
6
0
2
0
4
5
4

2
0
1
2
0
6
0
2
0
5
4
4

2
0
1
2
0
6
0
2
0
6
3
4

2
0
1
2
0
6
0
2
0
7
2
4
 0.00

0.01

0.02

0.03

0.04

ra

ti
o

 o
f

a
d

d
it
io

n
a

l
p

re
fi
x
e

s

Time

 rrc0

 rrc1

 rrc4

 rrc5

 rrc7

 rrc11

 rrc12

 rrc13

 rrc14

 rrc15

rrc00 rrc01 rrc04 rrc05 rrc07 rrc11 rrc12 rrc13 rrc14 rrc15
0

2000

4000

6000

8000

10000

12000

14000

#
 o

f
a
d
d
it
io

n
a
l
p
re

fi
x
e
s

Router ID

 # of additional prefixes

