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LITERATURE REVIEW 

 

Fatigue can be categorized in many ways and generally refers to a decrement in measureable 

performance. Physical fatigue may present as decreased maximal voluntary force (Merton, 

1954; Hakkinen, 1994) or decreased maximal power (Beelen & Sargeant, 1991), and in 

extreme cases complete exercise cessation. This is referred to as task failure. For an athlete, 

this can be recognized by changes such as a reduction in running speed, jump height or 

endurance time. Fatigue has also been identified as a primary symptom in a large number of 

diseases, particularly neuromuscular disorders (Feasson et al., 2006) and their impact in 

clinical populations can be enormous. Decrements in physical performance as determined by 

objective or self-reported feelings of fatigue or weakness can have an important impact on 

daily living and quality of life. Individuals may be unable to perform activities of daily living 

at the requisite level such as domestic chores, work responsibilities or child care. It may also 

impair the ability to have an active social life, for example, to participate in leisure activities 

and take holidays. 

As fatigue develops, the energy cost of performing physical activity increases 

regardless of whether this is during short (Candau et al., 1998; Borrani et al., 2003) or long 

(Gimenez et al., 2013) duration exercise bouts. Fatigue during physical activity is also 

associated with higher subjective feelings of effort, or ratings of perceived exertion (RPE) 

(Borg, 1970). RPE incorporates a variety of factors including physical and mental 

components (Millet, 2011). As exercise duration at a given intensity increases, RPE increases 

in parallel until the exercise can no longer be maintained. This may result in decreased 

exercise intensity (e.g. (Martin et al., 2010), or exercise cessation if speed/work is not self-

selected (Presland et al., 2005; Pires et al., 2011). Mental fatigue has also been shown to 

influence physical performance, resulting in decreased time to task failure as higher initial 

RPE reaches a maximal value sooner (Marcora et al., 2009) or the production of a lower 

power output at a given RPE (Brownsberger et al., 2013). It has been suggested that higher 

RPE during a given task may be indicative of the greater cognitive effort required to plan the 

on-going activity (Berchicci et al., 2013), thus highlighting the importance of the brain and all 

related inputs and outputs. 
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CENTRAL FATIGUE AND CEREBRAL PERTURBATIONS WITH 
EXERCISE 
 

CENTRAL FATIGUE 

 

The concept of fatigue has been of interest to researchers for many years. The precise 

meaning of fatigue however has undergone tremendous change. The idea of fatigue began as a 

very vague concept that meant something different to everyone. Originally, fatigue was 

characterized as an inability to continue working at a given intensity or maintain a required 

force; however this definition implied that fatigue only occurred at task failure. The fact that 

the capacity to produce maximal force is impaired almost from the time exercise begins, has 

led to a more accepted definition of fatigue in the neuromuscular research domain that fatigue 

is any decrease in the ability to apply muscular force or power caused by exercise whether or 

not the task can be sustained (Bigland-Ritchie & Woods, 1984).  

Until the 1800s, it was not possible to qualify fatigue since there were no accurate 

methods of assessment. In 1890, Prof Alessandro Mosso investigated the effects of university 

lecturing on performance of finger movement with a weight (Mosso, 1904). Mosso concluded 

that the decreased exercise performance, or fatigue, after either prior physical (exercise) or 

mental (lecturing) activity was due to central nervous system deficiencies. Subsequently, 

Bainbridge (1919) proposed that there were both central nervous system and muscular 

components to fatigue, having been influenced both by the work of Mosso and A.V. Hill. 

Unlike Mosso, Hill supported the widely-held belief that young athletes were able to go all 

out in their exercise endeavours, implying that fatigue in this group should not have a central 

component. As such Hill focused his research on the role of carbohydrate and lactic acid on 

muscular activity (Hill, 1924). The understanding that fatigue is caused by both the central 

nervous system and muscular factors was furthered by Reid (1928), who observed that 

mechanical responses to peripheral stimulation of the muscle or its innervating nerve were 

unaffected after voluntary task failure at some voluntary contraction frequencies (12-80 

contractions·min -1) but not others (120-160 contractions·min -1). This suggested that at the 

lower contraction frequencies, fatigue was exclusively of central nervous system origin but at 

higher contraction frequencies, there was an additional muscular component. 

These two components have become categorized as central and peripheral (Figure 1).  
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Figure 1. Principal potential sites of fatigue, as first described by Bigland-Ritchie (1984). The central 

components are (1) excitatory input to higher motor centres; (2) excitatory drive to lower motoneurons; 

(3) motoneuron excitability; and (4) neuromuscular transmission. The peripheral factors within the 

muscle include (5) sarcolemmal excitability; (6) excitation‐contraction coupling, including T‐tubular and 

sarcoplasmic reticulum Ca2+ release and reuptake; (7) contractile mechanisms; and (8) metabolic 

energy supply and metabolic accumulation. Adapted from Fitts (2011). 

 

The peripheral component is now interpreted to be everything distal to the neuromuscular 

junction while the central component is everything proximal to the neuromuscular junction. 

Thus, the central component includes everything that happens in the brain and both the upper 

and lower motoneurons. This includes decrements to both cognitive performance and motor 

control and increased RPE (see above). Motor control studies have demonstrated that in a 

fatigued state subjects employ compensatory systems to try to achieve the same levels of 

competence or efficiency as in an unfatigued state (Forestier & Nougier, 1998; Berger et al., 

2010). While exercise, including maximal exercise, induces benefits in cognitive performance 

at all exercise intensities (Chang et al., 2012), this benefit may be short-lived. Any benefit is 

mitigated the longer the exercise continues and eventually cognitive impairments may 

develop. For example, Grego et al. (2005) observed the disappearance of exercise-induced 

cognitive benefits in the third hour of a 3-h exercise bout and this decline may translate into 
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functional performance impairment during ultra-endurance events such as adventure racing 

(Lucas et al., 2009). It is now accepted that both central and peripheral factors have roles in 

the development of fatigue. Research indicates that they are also interrelated since 

motoneuronal recruitment depends on the descending drive from supraspinal sites in the brain 

and central drive is controlled by various factors including excitatory and inhibitory afferents 

(Amann, 2011). 

A major advancement in the evaluation of the central component of fatigue occurred 

when Merton (1954) demonstrated that the increment in supplementary force provided by 

electrical neural stimulation during voluntary contraction decreased as the contraction 

intensity increased, until at maximal voluntary force there was no supplementary increment in 

force. Merton (1954) concluded that at maximal voluntary effort, muscles are in fact 

contracting maximally, a finding corroborated by Bigland and Lippold (1954). Merton (1954) 

also concluded that the linear relationship between supplementary electrically-induced force 

and voluntary force permits the determination of the theoretical maximal voluntary force by 

extrapolating this linear relationship. 

 The potential of twitch interpolation was unfulfilled until Belanger and McComas 

(1981). Since then, the use of twitch interpolation to assess the ability to voluntarily contract 

the muscle maximally, voluntary activation (VA), has been extensively employed. Two 

principal methods have been used; central activation ratio (CAR) and the interpolated twitch 

technique (ITT) (Figure 2). CAR is evaluated by comparing maximal voluntary force with 

the force produced by tetanic stimuli delivered to the peripheral nerve at maximal force and 

calculated by the following equation:  

CAR = (maximal voluntary force · maximal force-1) x 100 

With ITT, a stimulus (single-, paired- or quadruple-pulse) is delivered to the peripheral nerve 

at maximal voluntary force and immediately after while the muscle is in the relaxed state. The 

evoked force increment (superimposed twitch, SIT) at maximal force and the evoked 

potentiated twitch amplitude are compared by the following equation: 

ITT = (1-(superimposed twitch amplitude · potentiated resting twitch amplitude-1)) x 

100 

Both CAR and ITT may also be evaluated by directly stimulating the muscle. At present, the 

ITT is the most common method of investigating VA. This method operates on the 

presumption that descending drive from the motor cortex is the most important factor 

determining the strength and timing of voluntary contractions. Although both CAR and ITT 

are expressed as percentages, it is incorrect to interpret these percentages as being a precise or 
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accurate assessment of the maximal capability of the brain to drive a muscle or group of 

muscles to make a movement. Instead, VA is a qualitative or semi-quantitative measure 

indicating motoneuronal drive to the muscle and the (in)ability for this to be converted to 

force. It does not quantify the source of the motoneuronal drive, motoneuronal firing rates, or 

motoneuronal input or output. It also cannot account for changing VA of other muscles 

contributing to a movement or of antagonists. The benefits and limitations of this widely used 

method have been extensively debated (de Haan et al., 2009; Taylor, 2009). Other methods of 

evaluating central fatigue include measuring changes in the ratio of maximal voluntary force 

to induced tetanic force (Bigland-Ritchie et al., 1978) or the ratio of root mean square (RMS) 

EMG to M-wave amplitude (e.g. (Boerio et al., 2005; Garrandes et al., 2007)) or the presence 

of increase SIT during maximal contractions (Bigland-Ritchie et al., 1983; Gandevia et al., 

1996). 

 

 
Figure 2. The central activation ratio (CAR) and interpolated twitch technique (ITT). Panel A) A high-

frequency tetanic stimulation is delivered once the force plateaus during a maximal voluntary 

contraction (MVC). Panel B) A stimulus (i.e. usually a single or high-frequency paired pulse) is 

delivered once the force plateaus during a MVC. A second identical stimulus is delivered when the 

muscle is in the relaxed and potentiated state immediately after the MVC. 
 

Central fatigue has been observed during and after a variety of exercise protocols. It 

has been observed after intermittent (Goodall et al., 2010) and sustained (Sogaard et al., 2006; 

Smith et al., 2007) submaximal and intermittent (Nordlund et al., 2004) and sustained 
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(Gandevia et al., 1996) maximal isometric voluntary contractions (MVCs). Central fatigue 

has also been observed after running (Millet et al., 2002; Millet et al., 2003a; Place et al., 

2004; Martin et al., 2010; Ross et al., 2010a; Millet et al., 2011c) and cycling (Lepers et al., 

2002; Ross et al., 2010b; Decorte et al., 2012). It has been observed more consistently after 

running than cycling or cross-country skiing of similar duration/intensity (Lepers et al., 2002; 

Millet et al., 2003a; Millet et al., 2003b; Place et al., 2004), indicating that exercise mode is 

important in the development of central fatigue. 

 More recently, attempts have been made to divide the central component of fatigue 

into several sections to better understand where and how fatigue manifests itself. In addition 

to stimulation of the lower motoneuron innervating a muscle, stimuli can be delivered to the 

motor cortex (transcranial stimulation), at the cervicomedullary junction (cervicomedullary 

stimulation) and at the spinal nerve roots. The stimulation techniques can all be conducted 

with magnetic stimulation. Before detailing these techniques, methods to investigate 

motoneuron excitability and other techniques employed to examine central alterations will be 

described. 

Three methods have principally been employed to investigate motoneuronal 

excitability. These are the H-reflex (Hoffmann reflex), F-waves and V-waves (Figure 3).  

The H-reflex is a reflex response elicited by a low-intensity stimulus delivered to the 

peripheral nerve when the muscle is in the relaxed state, or occasionally during weak 

voluntary contraction. This weak stimulus evokes a single volley from large-diameter muscle 

Ia afferents that is be modified by pre-synaptic inhibition before recruiting motoneurons 

according to the Henneman size principle (from small to large). The amplitude of the H-reflex 

increases with increasing stimulus intensity until maximal excitatory input to the motoneuron 

is reached. At higher stimulus intensities, the H-reflex response decreases due to increasing 

collisions with antidromic volleys as the M-wave amplitude increases.  

The F-wave is a late response to a supramaximal stimulus delivered to the peripheral 

nerve in response to motoneurons reactivated by antidromic impulses. When the antidromic 

impulse reaches the motoneuron body, a small number of normally large motoneurons 

backfire, initiating an orthodromic pulse that presents as an F-wave. The F-wave is normally 

evaluated at rest since collisions between antidromic pulses and voluntary orthodromic pulses 

will permit transmission of an H-reflex and conceal the F-wave. At higher contraction 

intensities, the resultant response would likely be a V-wave.  

The V-wave is a response to a supramaximal stimulus delivered to the peripheral nerve 

during a maximal or near-maximal voluntary contraction. Collisions between the evoked 
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antidromic and voluntary orthodromic pulses allow motor axons to conduct a reflex response 

that can be measured from EMG recordings. Only motor axons actively involved in the 

contraction contribute to the V-wave because in other motor axons the reflex will either 

collide with the antidromic pulse or arrive after the antidromic pulse, during which time these 

motoneurons are refractory. The strength of the voluntary contraction and maximal firing 

rates within the motoneuron pool are important determinants of V-wave amplitude. Although 

proposed to be indicative of the amount of descending motoneuronal voluntary drive, 

motoneuron discharge rate is a reflection of all inputs to the motoneuron, including 

supraspinal inputs, making it difficult to isolate changes to V-wave amplitude. 

 

 
 

Figure 3. The mechanisms of the H-reflex, F-wave and V-wave. Panel A) The H-reflex is elicited by a 

submaximal neural stimulus (1) that evokes a single afferent volley that recruits motoneurons. The 

response is modified by presynaptic inhibition (2). Panel B) The F-wave is elicited by the reactivation of 

a limited number of motoneurons in response to antidromic pulses evoked by a supramaximal neural 

stimulus (1). Reflex activation of small motoneurons and their collision with the antidromic volley at rest 

results in F-waves limited to large motoneurons (2). Panel C) The V-wave is elicited by an antridromic 

pulse from a supramaximal neural stimulus colliding with orthodromic voluntary drive (1) and the 

subsequent reflex response along this pathway (2). The response is modified by presynaptic inhibition 
(3). Adapted from McNeil et al. (2013). 
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TECHNIQUES OTHER THAN NEURAL STIMULATION TO INVESTIGATE 
MECHANISMS OF CENTRAL FATIGUE  
 

The presence or absence of central fatigue and the development of central fatigue as evaluated 

by stimulation of the nerves and muscles are among the most commonly discussed effects of 

exercise on the brain. However, there are other techniques frequently employed to investigate 

central perturbations associated with acute exercise bouts. This section provides an 

introduction to these techniques. 

 

Electromyography 

 

Electromyography (EMG) is a technique used to record the electrical activity in muscles. This 

activity is the propagation of action potentials along the sarcolemma in individual muscle 

fibers. The recorded signal represents the sum of all the propagating action potentials in the 

area. Fine wire electrodes only record electrical activity from several muscle fibers while 

surface electrodes record from many muscle fibers. This signal is influenced by the number of 

muscle fibers recruited and their firing rates in addition to other physiological (e.g. fibre 

membrane and motor unit properties, muscle temperature), anatomical (e.g. thickness of 

subcutaneous tissue, pennation angle) and technical (e.g. skin-electrode contact, filter, 

amplification) parameters (Farina et al., 2004). 

Central motor command can be evaluated during voluntary muscular contractions 

from the EMG activity. During constant power output submaximal exercise, raw EMG 

activity has been observed to increase (Amann et al., 2006; Amann & Dempsey, 2008; 

Decorte et al., 2012). While raw EMG has been presented as an index of central drive 

(Viitasalo et al., 1982; Nicol et al., 1991), this may not reflect the reality and numerous 

methodological limitations must be considered (Dimitrova & Dimitrov, 2003). When 

normalized to the response to a supramaximal stimulus of the peripheral nerve (i.e. maximal 

M-wave, Mmax), EMG activity provides an indication of central motor drive, including in a 

fatigued state (Millet et al., 2011b). During isometric MVCs compared before and after a ski 

marathon (Millet et al., 2003b) and in young adults during series of maximal concentric and 

eccentric contractions (Baudry et al., 2007), differences in EMG normalized to maximal M-

wave were not observed despite decreased EMG activity.  
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Near-infrared spectroscopy 

 

Near-infrared spectroscopy involves observation of the changes in emitted light of 

wavelengths within the near-infrared region (800-2500 nm) of the electromagnetic spectrum. 

Near-infrared light transmits through tissue and it can be used as a non-invasive method to 

identify local hemodynamic changes. This method employs measurement of radiation 

intensity and any change indicates hemodynamic (i.e. combined myoglobin and hemoglobin) 

oxygenation changes. Despite the limited penetration of near-infrared light, its inability to 

differentiate between venous and arterial changes and the influence of bones (skull) and other 

non-brain tissues on near-infrared signals, this technique is capable of identifying changes in 

cerebral oxygenation. 

Changes in cerebral oxygenation due to exercise can be identified by near-infrared 

spectroscopy because of the correspondence between brain activity and blood flow within the 

brain (Rupp & Perrey, 2008). It has been shown that oxygenation of the prefrontal cortex 

changes as a function of exercise intensity and/or duration (Ide et al., 1999; Rupp & Perrey, 

2008). During a maximal incremental cycling test, cerebral oxygenation increased during the 

first minutes of exercise before plateauing. At exercise intensities near maximum, cerebral 

deoxygenation occurs just prior to task failure (Rupp & Perrey, 2008; Timinkul et al., 2008). 

This may occur because of changes in local cerebral blood flow and increased cerebral 

oxygen consumption and metabolic rate, and thus neither activation nor inhibition can be 

differentiated.  

 

Doppler ultrasound 

 

Doppler ultrasound is an imaging technique based on the principles of ultrasound, employing 

oscillating sound pressure waves at a frequency above 20 kHz. In research and diagnostic 

settings, these waves are generally emitted at frequencies from 2 to 18 MHz. The emitted 

sound waves are partially reflected and partially transmitted at the limit of two different 

tissues. The reflected return signal is sampled repeatedly because the time to the return of the 

signal is related to the depth of the reflecting tissue. Due to the scattering of the signal, tissues 

perpendicular to the sound waves will better reflect the signal and be easier to identify. This 

technique permits the visualisation of subcutaneous tissues including blood vessels, muscles, 

tendons and internal organs. 
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Cerebral blood flow has generally been assessed by transcranial Doppler. This method 

measures the velocity of blood flow in proximal intracranial arteries or arteries in the neck. 

Cerebral blood flow changes are a function of blood flow velocity and blood vessel diameter. 

Therefore, because of the relative stability of the middle cerebral artery diameter (Secher et 

al., 2008), this artery is most frequently used to represent changes throughout the brain under 

a variety of conditions. Blood velocity in the medial cerebral artery increases from rest to 

submaximal intensities in whole-body exercise (Madsen et al., 1993; Ide et al., 1999). 

Conversely, cerebral blood flow decreases during high-intensity exercise just prior to task 

failure (Gonzalez-Alonso et al., 2004). Mechanisms responsible for increased cerebral blood 

flow during exercise include cerebral autoregulation, the physiological mechanisms 

maintaining appropriate cerebral blood flow despite changes in perfusion pressure, and carbon 

dioxide reactivity (Secher et al., 2008). 

Cerebral blood flow and arterio-venous differences can be used to estimate 

mitochondrial oxygenation and metabolic brain responses to exercise (Rasmussen et al., 

2007). Reductions in mitochondrial oxygenation have been proposed to be indicative of 

deficient cerebral aerobic metabolism from a combination of decreased cerebral flow and 

decreased arterial oxygenation. It is only during high-intensity and maximal exercise that 

cerebral mitochondrial oxygen tension and metabolism are affected. Maximal exercise could 

induce decreased cerebral mitochondrial oxygen tension (Rasmussen et al., 2010) and 

cerebral metabolic substrate preferences could be affected by the marked increase in cerebral 

lactate (Volianitis et al., 2008). 

 

Magnetic resonance imaging 

 

Magnetic resonance imaging (MRI) is a technique that permits the visualization of internal 

body structures. The premise of this technique is that a magnetic field causes magnetization of 

the nuclei of atoms. Radio frequency magnetic fields can be applied to change the alignment 

of magnetization that causes rotating magnetic fields to be produced by atomic nuclei. The 

gradients in the magnetic field cause differential nucleic rotational speeds and through Fourier 

analysis their spatial information can be converted into an image 

Functional magnetic resonance imaging can be used to detect the blood oxygenation 

level dependent (BOLD) signal. The BOLD signal can be used to determine changes in blood 

oxygenation, flow and/or volume because of the difference in spin states of haemoglobin with 

and without bound oxygen. Simple exercises such as finger-tapping and sustained 
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submaximal hand-grip contractions showed increases in the BOLD signal during exercise 

(Kastrup et al., 2002; Liu et al., 2003; Sander et al., 2010). Although use of MRI to evaluate 

central changes during whole-body exercise is not feasible, the BOLD signal may open up 

opportunities to evaluate more types of exercise (Mehta et al., 2009). 

 

Electroencephalography 

 

Electroencephalography (EEG) is a technique employed to record the electrical activity in the 

brain. Electrodes placed on the scalp are used to record fluctuations in voltage resulting from 

cerebral intra-neuronal ionic current flow. Rhythmic EEG signals fall into one of six wave 

patterns; delta, theta, alpha, beta, gamma and mu. Transient EEG signals may appear for a 

variety of reasons. Electroencephalographic investigations may also include the use of evoked 

or event-related potentials. The former technique averages electroencephalographic activity 

time-locked to the presentation of a stimulus while the latter is time-locked to stimuli 

processing. 

Initial investigations into EEG changes and exercise compared pre- to post-

intervention changes. Generally, increased post-exercise electroencephalographic activity was 

observed after moderate- to high-intensity exercise with differences related to exercise 

familiarity and preference. Interestingly, athletes experienced reduced frontal beta activity 

after high-intensity exercise in their chosen sport, indicating deactivation of emotional brain 

regions (Brummer et al., 2011). Recently, EEG has begun to be measured during exercise. 

Across the spectrum increased EEG activity was observed in incremental cycling exercise at 

high intensities and task failure (Bailey et al., 2008). Increased theta activity, even at low 

exercise intensites suggests that differential EEG increases may be related to exercise 

intensity. Post-exercise EEG activity returned to baseline by 10 min post-exercise. Further 

evidence for a link between exercise intensity and EEG comes from the correlation between 

EMG and EEG at higher cycling power outputs (Schneider et al., 2013). A recent study 

reported high prefrontal cortex activity in subjects experiencing fatigue that correlated to 

increased RPE, suggesting that increased RPE may lead to detriments in attentional focus and 

abstract planning, and thus play a role in central fatigue (Berchicci et al., 2013). 
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NEUROMUSCULAR STIMULATION 
 

ELECTRICAL STIMULATION 

 

In electrical circuits, there is a flow of electrons from the anode to the cathode. This flow of 

electric current, as with electrical stimulation of peripheral nerves, must sufficiently alter the 

flow of current within the axon of the nerve to induce stimulation. Transmembrane current 

flow is essential to change the electric field along the axon, and thus for there to be a change 

in the current flowing through the axon. The ability to induce a response, or stimulate the 

nerve, is proportional to the rate of electric field change, or spatial derivative. The spatial 

derivative of the electric field along nerve cannot be zero for stimulation to occur. In electrical 

stimulation, peripheral stimulation occurs easily once a certain threshold is reached because 

the current passes through the body/limb and bisects the nerve. Figure 4 illustrates the 

mechanism of electrical stimulation through transmembrane current flow. 

 

 
Figure 4. The mechanism of neural stimulation. Panel A) Stimulation of the axon cannot occur 

regardless of current intensity because the induced current does not cross the axon (i.e. no 

transmembrane current flow). Panel B) The axon will be stimulated if the induced transmembrane 

current flow is of sufficient intensity to alter the current flow along the axon. Adapted from (Barker, 

1999). 
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MAGNETIC STIMULATION 

 

In 1985 the first magnetic stimulation of the human motor cortex (Barker et al., 1985) was 

documented. This represented a coming of age of magnetic stimulation. Modern magnetic 

stimulation is actually a simple feat extended from the basic principles of magnetic induction. 

In 1831, Michael Faraday took an iron ring and wound a coil of wire on opposite sides of the 

ring. When current to one of the coils was turned on or off, there was a brief flow of current in 

the other coil. Although facilitating the magnetic field between coils, the iron ring was 

quickly observed to be unnecessary since the air between the coils can act as the medium for 

magnetic field conduction. Prior to the demonstration of Barker et al. (1985), others had 

touched upon the potential of magnetic stimulation. Initial observations were that crude direct 

stimulation of the retina affected vision more than 100 years ago (d'Arsonval, 1896; 

Thompson, 1910). Developments then led to the stimulation of frog preparations of nerve and 

muscle (Oberg, 1973) and then recording of the first human M-waves elicited by peripheral 

nerve stimulation (Polson et al., 1982). 

 Magnetic stimulation is based upon the rate of change of the magnetic field emitted 

from a coil. The differential rate of change of the magnetic field creates virtual anodes and 

cathodes, areas of depolarization and hyperpolarization, respectively. The rate of change of 

the induced magnetic field is the means by which an electric current is induced in the tissues 

of the body. This electric current, not the induced magnetic fields, if sufficiently strong, 

causes depolarization of cell membranes in human tissue and results in stimulation of the 

tissue. 

The strength of the magnetic field decreases rapidly as the distance from the 

stimulating coil increases, thus it is most effective to stimulate with the coil in direct contact 

with the body. The rise time, the maximal energy delivered to the coil and the spatial 

distribution of the magnetic field affect magnetic pulse characteristics. The latter is dependent 

on coil form and the local anatomy at the site of induced electric current flow, while the 

former two depend on the coil and stimulator characteristics. 
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Coils 

 

Circular coils 

 

The first magnetic stimulation coils were circular in shape. These are the least complicated 

and easiest to manufacture; however, the stimulated region is not precise. The area stimulated 

with a circular coil is not below the centre (or hole in the middle). Instead it occurs around the 

coil winding (Figure 5). Any nerve that passes tangentially to the coil has an equal likelihood 

of being stimulated. Circular coils of 70 and 90 mm in diameter are frequently utilized, 

meaning that nerves passing through a large area may be stimulated at once. Decreasing the 

diameter of the coil increases precision (i.e. specificity of a single nerve in peripheral 

stimulation or focus on a certain brain area in transcranial magnetic stimulation, TMS); 

however, small coils have greater difficulty in diffusing the energies produced and thus 

overheat more readily. Furthermore, smaller coils have a reduced depth of penetration, thus 

requiring higher stimulus intensities to reach deep structures and this may cause increased 

discomfort for the subject. The use of circular coils is widespread because they can be placed 

over most areas of the body with relative ease.  

 
Figure 5. Magnetic field produced by a circular coil. Panel A) The lines of force produced as current 

flows through the windings of a circular coil. Panel B) The magnetic field strength from a 90-mm 

circular coil. The magnetic field strength is greatest underneath the coil winding and rapidly decreases 

towards the centre or further away from the coil Adapted from Hovey and Jalinous (2006). 
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Figure-of-eight coils 

 

A major advancement from circular coils was the figure-of-eight coil. This type of coil is 

comprised of two circular coils with current rotating in opposite directions. This coil type 

permits greater precision since the induced electric field change is greatest along the central 

axis at the intersection of the two coil windings (i.e. primary virtual anode and cathode on 

either side of the intersection of the coil windings) (Figure 6). Although stimulation may 

occur at any point tangential to the coil, the likelihood of an induced response at a given 

stimulus intensity is much greater at the intersection point.  

 
Figure 6. Magnetic field produced by a 70-mm figure-of-eight coil. The magnetic field strength is 

greatest where the coil windings meet. Adapted from Hovey and Jalinous (2006). 

 

Double-cone coils 

 

As denoted by Penfield’s homunculus (Penfield & Rasmussen, 1950), the legs are of 

relatively minor importance in the motor cortex and their representation is close to or in the 

central sulcus. The imprecise nature of circular and figure-of-eight coils has limited 

investigations of motor cortical-induced responses in the lower limbs. By changing the 

position of the two coils, from side-by-side on the same plane to side-by-side with an acute 

angle in the middle, the coil conforms to the spherical nature of the head and can stimulate 

with both greater precision and to a greater depth (Figure 7). This facilitates the stimulation 
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of deeper brain structures and more inaccessible parts of the brain, including areas projecting 

to the lower limbs. The double-cone coil also induces greater current at the central axis than 

regular figure-of-eight coils. 

 
Figure 7. The lines of force of the magnetic field produced by a double-cone coil. The magnetic field 

strength is greatest on the underside (i.e. the side in contact with the head) where the coil windings 

meet. Adapted from Hovey and Jalinous (2006). 
 

Stimulator types 

 

Stimulators are capable of emitting two output waveforms. In some cases a stimulator can 

only produce one waveform while other stimulators have the option to produce both types of 

waveforms or polyphasic waveforms (i.e. repeated biphasic waveforms). The waveform 

produced by a stimulator is fundamental to the responses induced because the waveform is a 

function of the rate of change of the induced current, and thus the resulting magnetic field. 

The two commercially available stimulator waveform types are characterized as: 

 

Monophasic 

 

A monophasic waveform is characterized by a rapid rate of change of induced current during 

the initial quarter cycle followed by a gradual return to baseline. Examples of monophasic 

stimulators include MagPro X100 and Magstim 200/200². 
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Biphasic 

 

A biphasic waveform is characterized by a rapid rate of change of induced current throughout 

the waveform. Initially, there is a rapid change and this is followed by an equally rapid 

change in the opposite direction before returning to baseline. Examples of biphasic 

stimulators include MagPro R30, MagPro X100, Magstim Rapid², Nexstim NBS System 4 

and Cadwell MES-10. 

 

Early studies employing magnetic stimulators paid little attention to the type of 

waveform employed. Investigations have since examined the effects of waveform on TMS 

responses since the type of waveform influences TMS-induced responses. In the muscle, TMS 

induces a compound muscle action potential, termed motor-evoked potential (MEP), observed 

in EMG recordings (Figure 8). Resting motor threshold (i.e. the minimum stimulus intensity 

to elicit MEPs in response to at least half the stimuli when the muscle is in the relaxed state, 

RMT) (Kammer et al., 2001; Sommer et al., 2006) is waveform dependent. For example, 

Sommer et al. (2006) observed increased RMT with monophasic waveforms compared to 

biphasic wave forms. Posterior-anterior brain current flow was also observed to result in a 

lower monophasic RMT while with a biphasic waveform, RMT was lower when current 

flowed in the anterior-posterior direction within the brain. A shorter cortical silent period was 

also observed after delivery of monophasic TMS compared to biphasic TMS. Differences in 

response to monophasic and biphasic waveforms have also been identified in repetitive TMS 

(Arai et al., 2005; Hosono et al., 2008) including a greater reduction in corticospinal 

inhibition after repetitive TMS with a monophasic waveform than biphasic waveform 

(Sommer et al., 2002). 

The decision to use magnetic stimulation for research or clinical purposes must first 

consider the advantages and disadvantages of this method in conjunction with the ability for 

magnetic stimulation to assess the required parameters. Compared to electrical stimulation, 

magnetic stimulation causes less discomfort (Barker, 1999). Magnetic stimulation also 

facilitates the use of human brain stimulation in applied environments. Conversely, the 

equipment utilized in magnetic stimulation (i.e. stimulator, coils) is expensive and it is 

impossible to use this technique to stimulate with the same precision as electrical stimulation. 

In addition, certain medical conditions (e.g. epilepsy for TMS) and the presence of ferro-

magnetic implants in the area of stimulation preclude its use. 
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Figure 8. The motor-evoked potential (MEP). MEP amplitude is measured peak-to-peak and MEP 

area is shaded grey. Adapted from Taylor et al. (2000). 
 

Magnetic stimulation, particularly TMS has applications in a variety of fields. TMS 

has been employed in the study of psychiatry (Fitzgerald et al., 2002; Berlim et al., 2013), 

vision (Vesia et al., 2008; de Graaf et al., 2012), language (Papeo et al., 2013), emotion 

(Balconi & Ferrari, 2012), brain plasticity (Stefan et al., 2000; Villamar et al., 2012), mapping 

functions of cortical regions (Paiva et al., 2012) and fatigue (Taylor et al., 1999; Sogaard et 

al., 2006; Sidhu et al., 2009b; Goodall et al., 2012). 

 

MAGNETIC STIMULATION FOR FATIGUE 
 

Magnetic stimulation has been used extensively as a substitute for electrical stimulation in 

research and clinical evaluation of fatigue. The use of magnetic stimulation has been 

employed to stimulate peripheral nerves, the cervicomedullary junction and the motor cortex 

(by TMS). 

 

PERIPHERAL MAGNETIC STIMULATION 

 

Peripheral magnetic stimulation has been used in fatigue evaluation in both healthy and 

clinical populations. To date only a small number of studies have employed peripheral 

magnetic stimulation, with most investigations continuing to opt for electrical stimulation. A 

limiting factor in the use of peripheral magnetic stimulation is the distance between the 

targeted nerve and the coil. In individuals with a substantial layer of adipose tissue over the 

stimulation site, it may be impossible to achieve stimulus intensity supramaximality (Tomazin 

et al., 2011). When supramaximality is achieved, electrically- and magnetically-evoked 
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single- and paired-pulse responses are comparable as demonstrated before and after 30 min of 

downhill running (Verges et al., 2009) (Figure 9). Several lower-limb studies have evaluated 

CAR in the quadriceps femoris with a magnetic pulse train delivered at maximal force 

(Kremenic et al., 2009; Glace et al., 2013) before and after cycling bouts. A restraint to the 

use of magnetic stimulation to evaluate CAR is that there are limits to stimulus frequency and 

intensity and their interaction, thus making the use of supramaximal-intensity stimulus trains 

problematic. Specifically, these studies state that they employed a pulse train at 40 Hz at an 

intensity of 100% maximal stimulator output. This protocol also required 8 booster units, so 

while theoretically possible, it is not practical for most laboratories or hospitals. Most lower-

limb studies employing magnetic stimulation have evaluated VA by ITT. These include 

 
Figure 9. Peak evoked forces elicited in the relaxed muscle by electrical neural stimulation (ENS), 

magnetic neural stimulation (MNS) and electrical muscle stimulation (EMS) before (Pre), immediately 

after (Post), and 30 min after (Post30) exercise. All values are means ± standard deviations and 

presented as a percentage of Pre values. Panel A) Potentiated twitch amplitude (single pulse) and 

Panel B) potentiated doublet amplitude (paired pulse at 100 Hz). Adapted from Verges et al. (2009). 

 

whole-body exercise protocols such as before and after a treadmill running marathon (Ross et 

al., 2007), before, during and after an intermittent cycling protocol (Decorte et al., 2012) and 

before and after a 6-min walk test in chronic obstructive pulmonary disease patients (Mador et 

al., 2001). Peripheral magnetic stimulation has also been used to investigate the effects of 

fatigue before, during and after isometric contraction protocols in both healthy (Bachasson et 

al., 2013b; Decorte et al., 2013) and clinical populations (Bachasson et al., 2013a; Bachasson 

et al., 2013c). 
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CERVICOMEDULLARY JUNCTION MAGNETIC STIMULATION 

 

Cervicomedullary junction stimulation at the level of the foramen magnum and mastoids is 

employed to stimulate the corticospinal axons at the point closest to the brain that is not 

influenced by cortical excitability. Usually conducted by electrical stimulation, this painful 

method (McNeil et al., 2013) evokes single volleys in descending axons of upper 

motoneurons and elicits cervicomedullary-evoked potentials (CMEPs) in the muscle 

(Berardelli et al., 1991). Although it is recognised that ascending pathways and descending 

pathways in addition to the corticospinal tract will be triggered by a stimulus at the 

cervicomedullary junction, existing research suggests that these will have little if any 

influence on the production of CMEPs (Berardelli et al., 1991; Gandevia et al., 1999). The 

cervicomedullary junction can also be stimulated magnetically by placing the coil 

approximately over the inion (Taylor, 2006) although this is relatively rare since the distance 

from the spinal cord to the coil is large (~7-8 cm) causing the induced magnetic current to be 

sub-optimal at this depth. This likely explains why in fatigue studies employing 

cervicomedullary junction stimulation to elicit CMEPs, electrical stimulation of the 

cervicomedullary junction has usually (e.g. (Gandevia et al., 1999; Butler et al., 2003; McNeil 

et al., 2009; McNeil et al., 2011a; McNeil et al., 2011b; Sidhu et al., 2012a)) but not always 

(Levenez et al., 2008; Hoffman et al., 2009; Giesebrecht et al., 2011) been employed. 

 

TRANSCRANIAL MAGNETIC STIMULATION 

 

Transcranial magnetic stimulation is a non-invasive, safe and relatively painless technique to 

investigate the motor cortex. Unlike with peripheral stimulation, there are important 

differences between TMS and transcranial electrical stimulation. Transcranial electrical 

stimulation directly excites pyramidal tract axons at either the initial portion of the neuron or 

at proximal internodes within the subcortical white matter, eliciting descending D-waves. 

Conversely, TMS trans-synaptically excites the pyramidal neurons although direct excitation 

of pyramidal tract axons is believed to occur to various degrees depending on a variety of 

factors such as stimulus intensity (Houlden et al., 1999; Terao et al., 2000), coil orientation 

(Sakai et al., 1997; Terao et al., 2000) and muscle investigated (Day et al., 1989; Awiszus & 

Feistner, 1994; Houlden et al., 1999). The response to TMS is predominantly that of 

descending I-waves. D-waves indicate the degree of direct pyramidal tract stimulation. I-
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waves may also appear at short intervals and this is believed to represent repeated firing of 

pyramidal tract neurons after a cortical stimulus. 

Transcranial magnetic stimulation can elicit both excitatory and inhibitory responses 

that present in EMG. These include both the MEP and cortical silent period (CSP) elicited by 

single-pulse TMS. MEPs are the recorded electrical responses in muscle elicited by TMS 

(Figure 8) and are a direct result of the descending D and I waves. Due to the possibility for 

TMS to cause multiple discharges of a single motoneuron, MEP amplitude/area can exceed 

that of Mmax. Changes in MEP amplitude/area are indicative of changes in cortical 

excitability (i.e. efficiency in motor command generation). Conversely, the CSP is the TMS-

induced period of EMG near-silence after the MEP (Figure 10) and in the evaluation of 

fatigue is generally measured as the duration from TMS delivery to the resumption of 

continuous voluntary EMG (Taylor et al., 2000). Changes to CSP duration are proposed to be 

indicative of changes in intracortical inhibition. Additionally, paired TMS pulses can be used 

to assess changes in cortical facilitation (e.g. intracortical facilitation, ICF) and inhibition (e.g. 

short- (SICI) and long- (LICI) interval intracortical inhibition) (see sections below). 

 
 

Figure 10. The cortical silent period (CSP). CSP is the duration from the delivery of TMS to the 

resumption of continuous voluntary EMG. Adapted from Taylor et al. (2000). 

 

Initial investigations with TMS delivered single and then paired pulses while the 

muscle was in the relaxed state. Unlike peripheral nerve stimulation which stimulates the 

lower motoneurons that are unaffected or only marginally affected by voluntary contraction 

intensity (Todd et al., 2003; Lee & Carroll, 2005), TMS-induced motoneuronal output is 

greatly affected by the rapid increase in corticospinal excitability from rest to weak and 

moderate voluntary muscular contractions (Ugawa et al., 1995). Therefore, the investigation 

of central parameters (e.g. MEP, CSP, SICI, ICF, LICI) measured in contracting muscle 
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before, during and after an exercise intervention permits greater understanding of the origins 

of corticospinal changes with fatigue than SIT alone. In isolation, TMS can only identify 

corticospinal changes. In conjunction with cervicomedullary junction stimulation, TMS can 

be used to partition responses and changes into cortical/supraspinal and spinal components. 

 

Methodological issues 

 

A major difficulty in interpreting the results of different protocols employing TMS is 

that there are many technical and methodological differences. For example, different 

stimulators cannot be compared due to differences in stimulator properties. Kammer et al. 

(2001) showed a difference in RMT between two stimulator systems and also between 

monophasic and biphasic waveforms. Similarly, the differential induced magnetic fields 

created by different coil types (i.e. circular, figure-of-eight, double-cone) and different 

winding diameters may lead to stimulation of different brain structures at the same coil 

position and stimulus intensity. It is unknown whether differences in equipment are capable of 

producing conflicting or contradictory results in the evaluation of fatigue.  

Fortunately, despite numerous companies manufacturing magnetic stimulators, most 

laboratories employing TMS to evaluate fatigue use Magstim stimulators, theoretically 

making comparison of stimulus intensities more feasible. It is also possible to employ two 

stimulators to deliver single TMS pulses at greater than 100% maximal stimulator output (The 

Magstim Co. Ltd., 2013). Furthermore, stimulus intensity is always presented as a percentage 

of maximal stimulator output. Without the use of standardized units, knowledge of the 

relationship between the percentage of maximal stimulator output and the resulting induced 

magnetic field or whether all stimulators of the same model induce identical magnetic fields 

under identical conditions (i.e. same stimulator intensity and same coil), comparison between 

studies remains difficult. 

Determination of optimal coil position has been largely mysterious. Most studies have 

indicated that the optimal coil position was where the largest MEP was elicited. Information 

concerning such details as the stimulus intensity to determine the position, whether this was 

conducted with the muscle relaxed or during voluntary contractions and the number of 

responses considered for each site is generally lacking. Furthermore, the use of posterior-

anterior current in the brain (Davey et al., 1994; Rossini et al., 1994; Kammer et al., 2001; 

Groppa et al., 2012) is standard in many TMS studies, including those investigating fatigue of 

the lower limbs (Goodall et al., 2009; Sidhu et al., 2009b; Goodall et al., 2010; Goodall et al., 
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2012; Iguchi & Shields, 2012; Sidhu et al., 2012a; Sidhu et al., 2013b). This is despite some 

studies suggesting that other coil orientations stimulate different muscles better than others 

(Mills et al., 1992; Werhahn et al., 1994), including differences between upper- and lower-

limb muscles (Rosler et al., 1989). In all cases, the rationale for utilization of a certain coil 

orientation is because studies have shown it to identify the lowest RMT (Davey et al., 1994; 

Balslev et al., 2007). The only apparent rationale for assessing the efficacy of coil orientation 

to minimize the intensity at RMT and not on the size of the elicited responses (e.g. MEP) is 

that this method permits the selection of lower TMS stimulus intensities since many studies 

have used RMT to determine stimulus intensity. 

While most studies have used RMT as a basis to determine TMS intensity, the 

evaluation of fatigue inherently requires muscular contraction. Recently, other methods have 

been employed to determine TMS intensity and these include active motor threshold (i.e. the 

minimum stimulus intensity to elicit a MEP in at least half of responses when the muscle is 

contracted weakly, e.g. 3-10% MVC; AMT) (e.g. (Kalmar & Cafarelli, 2006; Iguchi & 

Shields, 2012)), stimulus-response curves (Rupp et al., 2012) and a stimulus intensity to 

evoke MEP responses of a certain size in the target muscle during voluntary contraction (e.g. 

(Sidhu et al., 2009b; Klass et al., 2012)). The advantages and disadvantages of these methods 

have not yet been elucidated. Table 1 details methodological aspects of TMS investigations in 

the lower limbs that have selected a specific TMS intensity for investigative purposes. These 

include the coil and stimulator used, the methods of determining both coil position and 

stimulator intensity and the stimulator intensity selected. 

The best method of determining TMS intensity remains to be determined. It is 

unknown whether the different methods employed to determine TMS intensity result in 

selection of the same intensity. Furthermore, it is unknown whether selection of TMS 

stimulus intensity should always be conducted in the same manner. Current recommendations 

principally address evaluations for clinical purposes (Groppa et al., 2012) and it remains to be 

determined if these can be applied to the evaluation of fatigue in a healthy population. It also 

remains to be investigated if the manner of approaching a target force influences elicited 

responses, particularly because of the importance of contraction intensity on corticospinal 

excitability.  
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Table 1. A summary of methodological characteristics of lower-limb TMS protocols in healthy populations. 

Reference Stimulator Coil Muscle(s) 
investgated1 Coil position selection TMS intensity selection 

Stimulator 
intensity (% 
maximum) 

Fatigue 
protocol/acute 

exercise 
intervention 

(Beck et al., 
2007) 

Magstim 
200 

90-mm 
circular coil 

TA, SOL, 
gastrocnemius2 motor hotspot for TA 80 (for condition pulse only) 90, 100 

and 120% RMT 
mean RMT 

~60%3 N 

(Fernandez-
del-Olmo et 
al., 2013) 

Magstim 
2002 

70-mm 
figure-of-
eight coil 

VL (BF) largest RF MEP and 
smallest BF MEP4 

elicit RF MEP area of >90% Mmax at 
50% MVC4 75-95% Y 

(Girard et al., 
2013) 

Magstim 
200 

130-mm 
double-cone 

coil 
VL (BF) 

over left motor cortex to 
elicit largest VL MEPs 

and small BF MEPs 
(<20% VL MEP) during 

contractions at 50% 
MVC and 60% maximal 

stimulator output 

140% AMT determined at 50% MVC5 58 ± 13% 
(42-87%) Y 

(Goodall et al., 
2009) 

Magstim 
200 

110-mm 
double-cone 

coil 
VL (BF) 

over left motor cortex to 
elicit large VL MEPs 
and small BF MEPs 

130% RMT 75±11% N 

(Goodall et al., 
2010) 

Magstim 
200 

110-mm 
double-cone 

coil 
VL (BF) 

over left motor cortex to 
elicit large VL MEPs 
and small BF MEPs 

130% RMT 73 ± 7% Y 

(Goodall et al., 
2012) 

Magstim 
200 

110-mm 
double-cone 

coil 
VL (BF) 

over left motor cortex to 
elicit large VL MEPs 
and small BF MEPs 

130% RMT 67 ± 9% Y 

(Griffin & 
Cafarelli, 

2007) 

MES-10 
(Cadwell) 

angled 
figure-of-
eight coil 

TA 

over TA cortical motor 
area to produce the 

largest MEP in response 
to low-intensity TMS 

120% RMT; 120% AMT determined 
at 10% MVC 

means ~65-
66%3,6 N 
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(Hilty et al., 
2011) 

Magstim 
200 

130-mm 
double-cone 

coil 
VM over vertex to elicit 

largest VM MEPs 120% AMT determined at 3% MVC 62 ± 3% Y 

(Hoffman et 
al., 2009) 

Magstim 
200² 

120-mm 
double-cone 

coil 
SOL, MG 

slightly left of vertex; 
determined at 30% 

MVC 

120% SOL AMT determined at 30% 
MVC NR Y 

(Iglesias et al., 
2012) 

Magstim 
200 

double-cone 
coil VL, SOL, TA 

in sagittal plane 0-5 cm 
posterior to the vertex 

with a rotation of 5-30° 
to elicit largest VL 

MEPs 

90% AMT and intensity to elicit 
MEPs of ~10% M-wave amplitude 

(~140 AMT), both determined during 
walking and tonic VL contraction 

means ~27% 
and 42-44% N 

 Magstim 
Rapid 

double-cone 
coil VL, SOL, TA 

in sagittal plane 0-5 cm 
posterior to the vertex 

with a rotation of 5-30° 
to elicit largest VL 

MEPs 

90-95% AMT determined during 
walking and tonic VL contraction 

means ~28-
29% N 

(Iguchi & 
Shields, 2012) 

Magstim 
2002 

110-mm 
double-cone 

coil 
SOL (TA) largest SOL MEP from 

repeated trials via a grid 120% AMT determined at 10% MVC 71 ± 12% Y 

(Kalmar & 
Cafarelli, 

2006) 

MES-10 
(Cadwell) 

angled 
figure-of-
eight coil 

VL 

over left vertex to elicit 
large VL MEPs at 80% 

maximal stimulator 
output 

110% AMT determined at 3% MVC 66 ± 10%3 Y 

(Kamibayashi 
et al., 2009) 

Magstim 
200 

110-mm 
double-cone 

coil 

RF, BF, SOL, 
TA 

over left motor cortex to 
elicit largest TA MEPs 

to produce TA MEP amplitude of ~0.1 
mV during upright standing with 

40% body weight unloading 
41-62% N 

(Klass et al., 
2012) 

Magstim 
200 

130-mm 
double-cone 

coil 
RF, VM (BF) 

1-2 cm to the left of 
vertex to optimally 

stimulate RF and VM 

to elicit large MEP in both RF and 
VM, small MEP in the BF, and 

biggest 
SIT at the different target torques  

in the protocol 

30-60% Y 
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(Krishnan & 
Dhaher, 2012) 

Magstim 
200 

110-mm 
double-cone 

coil 

AL, RF, VL, 
VM 

over left motor cortex to 
elicit largest AL and 

VM MEPs 

to elicit MEPs during 10% MVC hip 
adduction clear and distinguishable 

from background EMG 
NR N 

(Lagerquist et 
al., 2012) 

Magpro 
R30 

figure-of-
eight (MC-
B70) coil 

SOL 

over left and right motor 
cortices at site where 
clear MEPs elicited at 

lowest intensity 

AMT and 120% AMT at 5% maximal 
SOL EMG activity NR N 

(Lentz & 
Nielsen, 2002) 

Magstim 
200 

130-mm 
double-cone 

coil 
TA (SOL) site of lowest threshold 

and shortest latency 120% RMT 55.1 ± 8.6% Y 

(Mang et al., 
2011) 

Magpro 
R30 

parabolic 
(MMC-140) 
or figure-of-
eight (MC-
B70) coil 

TA, VM, SOL optimal stimulus site for 
each muscle 120% RMT NR N 

(McKay et al., 
1995) 

Magstim 
200 

96-mm 
inside 

diameter 
double-cone 

coil (type 
9902) 

quadriceps, 
hamstrings, TA, 

SOL 
centred over the scalp 

indicates 80% maximal stimulator 
output required to elicit repeatable 

MEPs and 45-85% maximal 
stimulator output to elicit MEPs in all 

muscles, both at rest 

NR Y 

(McKay et al., 
1996) 

Magstim 
200 

96-mm 
inside 

diameter 
double-cone 

coil (type 
9902) 

TA centred over the scalp 
vertex 

Paradigm 1: RMT between 40% and 
50% maximal stimulator output. 80% 
maximal stimulator output empirically 

determined to elicit MEPs easily 
differentiated from background EMG 

during MVCs 
Paradigm 2: 110% RMT 

Paradigm 1: 
80% 

Paradigm 2: 
45-55%7 

Y 

(Mileva et al., 
2009) 

Magstim 
Bistim 200 

110° 
double-cone 

coil (P/N 
9902-00) 

SOL, TA centred over scalp in the 
area of vertex 120% RMT NR Y 
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(Mileva et al., 
2012) 

Magstim 
Bistim 200 

110° 
double-cone 

coil (P/N 
9902-00) 

SOL, TA centred over scalp in the 
area of vertex 120% RMT NR Y 

(Racinais & 
Girard, 2012) 

Magstim 
200 

120-mm 
double-cone 

coil 
VL, RF positioned over vertex 140% MT8 68 ± 7% Y 

(Ross et al., 
2007) 

Magstim 
200 

70mm 
figure- 

of-eight coil 
TA 

mapping procedure 
performed for optimal 
TA activation (0–3 cm 

lateral to vertex) 

120% RMT and 100% maximal 
stimulator output NR and 100% Y 

(Ross et al., 
2010b) 

Magstim 
200 

90-mm 
cone figure-
of-eight coil 

VL 

mapping procedure 
performed for optimal 

VL activation (0–15 mm 
contralateral to vertex) 

120% RMT 60 ± 8% Y 

(Ross et al., 
2012) 

Magstim 
200 

90-mm 
cone figure-
of-eight coil 

VL 

mapping procedure 
performed for optimal 

VL activation (0–10 mm 
contralateral to vertex) 

130% RMT 88 ± 10% N 

(Rupp et al., 
2012) 

Magstim 
200 

110-mm 
double-cone 

coil 

VL, RF, VM 
(BF) 

largest RF MEP and 
small BF MEP during 

20% MVC contractions 

lowest intensity to elicit maximal RF 
MEP from 50% MVC stimulus-

response curve at 30, 40, 50, 60, 70, 
80, 90 and 100% maximal stimulator 

output 

60 ± 10% N 

(Sammut et al., 
1995) 

Magstim 
200 

110-mm 
double-cone 

coil 
SOL, TA NR 120% RMT mean ~ 55%3 N 

(Sidhu et al., 
2009a) 

Magstim 
200² 

130-mm 
double-cone 

coil 
RF (BF) 

to elicit RF MEPs 
during weak 
contractions 

largest RF MEP (at least 
50% Mmax) at 50% MVC and small 

BF MEP ( < 10% of raw RF 
MEP amplitude) 

40-60% N 
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(Sidhu et al., 
2009b) 

Magstim 
200² 

130-mm 
double-cone 

coil 
RF (BF) to elicit RF MEPs 

largest RF MEP at 50% MVC 
and small BF MEP (< 10% of raw RF 

MEP amplitude) 
30-60% Y 

(Sidhu et al., 
2013b) 

Magstim 
200² 

130-mm 
double-cone 

coil 
VL, BF, TA 

largest VL MEPs during 
small tonic 

contraction while 
seated on cycle 

ergometer 

10 stimuli at >AMT and sham each 
randomly delivered at selected crank 

angle during 75% MAP cycling. 
Average EMG with respect to stimuli 
for a 100-ms period beginning 20-ms 

before each stimulus overlaid to 
determine effect of TMS on EMG 

amplitude. TMS intensity then 
decreased by ~ 5%, and repeated until 
no facilitation observed in EMG trace 

18.5 ± 0.8% Y 

(Sidhu et al., 
2012a) 

Magstim 
200² 

130-mm 
double-cone 

coil 
VL, RF 

to elicit VL MEPs 
during a submaximal 
contraction at 20% of 
maximal EMG during 

MVC 

to elicit a MEPs of similar size to 
CMEPs (i.e. ~10% of M max) 41.4 ± 0.9% Y 

(Sidhu et al., 
2012b) 

Magstim 
200² 

130-mm 
double-cone 

coil 
VL, RF, VM 

optimal location to elicit 
MEPs in right 

quadriceps muscles 

test pulse at 140% AMT determined at 
50% maximal EMG and conditioning 

pulses at 70, 80, 90 and 95% AMT 

Mean test 
stimulus 39-

42% 
depending on 

condition 

N 

(Stevens-
Lapsley et al., 

2013) 

Magstim 
BiStim 

2002 
NR VL 

largest and most 
consistent MEPs from a 
number of positions on a 

grid 

80 and 120% RMT for paired pulses; 
120% AMT determined at ~20 
maximal EMG for single pulses 

mean ~ 56% N 

(Tallent et al., 
2012) 

Magstim 
2002 

110-mm 
double-cone 

coil 
TA (LG) 

search for hotspot began 
5-10 mm posterior and 
along anteroposterior 

plane of vertex 

120% RMT mean ~55%9 N 
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(Tallent et al., 
2013) 

Magstim 
2002 

110-mm 
double-cone 

coil 
TA 

coil placed over primary 
motor cortex of 

contralateral hemisphere 
corresponding to the 

dominant leg area 

120% RMT mean ~54%3 N 

(Tarkka et al., 
1995) 

Magstim 
200 

96-mm 
diameter 

double-cone 
coil 

SOL, TA, 
hamstring and 

quadriceps 
femoris 

vertex 
lowest of 20, 40, 60, 80 and 100% 

maximal stimulator output above early 
response threshold 

80% for one 
subject; 60% 
for all others 

N 

(Verin et al., 
2004) 

Magstim 
200 

45-mm 
figure-of-
eight cone 

coil 

RF, lowest 
intercostal space 

largest MEPs in 
diaphragm and RF at 
rest at 100% maximal 

stimulator output 

120% RMT for diaphragm 90 ± 12%3 Y 

(Weier et al., 
2012) 

Magstim 
BiStim 

2002 

90-mm 
circular coil RF 

largest 
MEP in area ~ 3–4 cm 

anterior to vertex 

120% AMT determined at 10% MVC 
for single pulses; 70 and 120% AMT 

for paired pulses 
mean ~53%3 N 

AL, adductor longus, AMT, active motor threshold; BF, biceps femoris; CSP, cortical silent period; LG, lateral gastrocnemius; MAP, maximal aerobic power 
output; MEP, motor-evoked potential; MG, medial gastrocnemius; MT, motor threshold; RF, rectus femoris; RMT, resting motor threshold; SOL, soleus; TA, 
tibialis anterior; TMS, transcranial magnetic stimulation; VL, vastus lateralis; VM, vastus medialis. 
 
1 in cases where an agonist-antagonist pair was evaluated, the antagonist is indicated in parentheses 
2 head of the gastrocnemius not specified  
3 calculated from information in methods or results 
4 indicates that RF was used to determine coil position and TMS intensity although EMG was only recorded in VL and BF 
5 AMT determined by the presence of at least 3 of 5 MEPs (>50 µV) at a given stimulus intensity 
6 at 120% AMT only; stimulator intensity at RMT or 120% RMT not  reported  

7 unclear if this is RMT or 110% RMT 
8 not clear whether this is AMT or RMT but appears to be determined during cycling 
9 calculation from RMT determined by article figure
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Table 2. A summary of changes in VA, MEP and CSP with exercise in lower-limb protocols. 

Reference Type of 
effort Protocol Duration 

of effort 

SIT 
change 
(PRE-

POST or 
kinetics) 

ERT (%) 
ERT 

(pooled/ 
by series) 

VA change 
(PRE-

POST or 
kinetics) 

Method of 
evaluation 

MEP 
change 
(PRE-

POST or 
kinetics) 

CSP 

CSP 
change 
(PRE-

POST or 
kinetics) 

ISOMETRIC PROTOCOLS and EVALUATIONS AT REST 

(Lentz & 
Nielsen, 
2002) 

isometric 
dorsiflexion 

sustained contractions 
from 100 to75, 100 to 
50, 100 to 25 and 50 to 

25% MVC 

means of 
21-22 s, 
55-57 s, 

147-159 s, 
204-221 s 

NR N/A N/A N/A rest increased N/A N/A 

(McKay et 
al., 1995) 

isometric 
right 

dorsiflexion 

sustained MVC until 
force decreased below 

50% initial MVC 

80.4 ± 6.6 
s NR N/A N/A N/A rest decreased4 N/A N/A 

ISOMETRIC PROTOCOLS and ISOMETRIC EVALUATIONS 

(Goodall et 
al., 2009) 

isometric 
right knee 
extension 

sustained MVC 2 min 
increased 

MVC 
SIT2 

25-50-75-
80-100% 
or 50-75-
80-100% 

by series decreased 
isometric 
right knee 
extension 

no change N/A N/A 

(Goodall et 
al., 2010) 

isometric 
right knee 
extension 

5 x initial 60% MVC + 1 
MVC (5 s on/5 s off, 15 

s between sets) until 
failure to reach the 60% 
target force 3 times in 

one set 

24.7 ± 5.5 
min 

increased 
MVC 
SIT2 

50-75-
100% pooled decreased 

isometric 
right knee 
extension 

no change 

interval from 
stimulus when 
post-stimulus 

EMG exceeded 
± 2SD of pre-
stimulus EMG 
for ≥100 ms 

no change 
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(Hilty et al., 
2011) 

isometric 
right knee 
extension 

30 s at 3% MVC 
followed by sets of 8 
contractions at ~63% 
MVC and 1 MVC (5 s 
on/5s off, 30 s between 
sets) until TF (<70% 

initial MVC or failure to 
maintain two 

consecutive submaximal 
contractions) and then 

30 s at 3% MVC 

mean 9-10 
min NR N/A N/A N/A 

isometric 
right knee 
extension 

no change 

interval from 
stimulus to 

resumption of 
spontaneous 

EMG 

increased 

(Hoffman et 
al., 2009) 

isometric 
right 

plantar 
flexion 

sustained 30% MVC 
contraction to TF 434 ± 84 s NR N/A N/A N/A 

isometric 
right 

plantar 
flexion 

increased N/A N/A 

(Iguchi & 
Shields, 
2012) 

isometric 
plantar 
flexion 

45 MVCs 
(7 s on/3 s off) in 9 

epochs of five 
contractions followed by 

1 10% initial MVC 
contraction each epoch 

1035 s NR N/A N/A N/A 
isometric 
plantar 
flexion 

no change 
at MVC; 
increased 

at 10% 
MVC 

interval from 
stimulus to the 

return of 
continuous EMG 

no change 

(Kalmar & 
Cafarelli, 

2006) 

isometric 
right knee 
extension 

MVC, 8 contractions at 
50% MVC and MVC (4 

s on 2 s off, sets 
separated by 12 s during 
which a 3% MVC was 
performed for delivery 

of 4 TMS pulses) 

mean 5-6 
min NR3 N/A N/A N/A 

isometric 
right knee 
extension 

decreased N/A N/A 
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(McKay et 
al., 1996) 

isometric 
right knee 
extension 

sustained MVC 2 min NR N/A N/A N/A 

isometric 
right knee 

extension at 
10% MVC 

no change5 

interval from 
MEP latency 
determined in 

relaxation to the 
return of 

recognizable 
EMG 

increased 

 
isometric 
right knee 
extension 

sustained MVC 2 min NR N/A N/A N/A 
isometric 
right knee 
extension 

no change5 

interval from 
MEP latency 
determined in 

relaxation to the 
return of 

recognizable 
EMG 

increased 

(Mileva et 
al., 2012) 

isometric 
right 

dorsiflexion 

repeated MVCs (2 s on/1 
s off) until force 

decreases below 50% 
initial MVC 

368 ± 51 s increased; 
increased6 

50-75-
100% by series decreased 

maximal 
isometric 

right 
dorsiflexion 

decreased; 
increased6,7 

interval from 
stimulus to 

return of EMG 
≥50% 

pre-stimulus 
EMG 

no change; 
increased6,7 

DYNAMIC EXERCISE and EVALUATIONS AT REST or AT REST AND ISOMETRIC CONTRACTIONS 

(Ross et al., 
2007) 

treadmill 
running 

42.2 km treadmill run 
starting at -5% lactate 

threshold velocity 
(permitted to change ± 

10%) 

208 ± 22 
min NR 50-75-

100% pooled decreased rest decreased 
raw MEP 

interval from 
stimulus to 

return of EMG 
≥50% 

pre-stimulus 
EMG 

no change 

(Ross et al., 
2010b) cycling 2007 Tour de France (20 

stages in 22 days) 

165 ± 66 
km·day-1; 
522 ± 111 
min·day-1 

 

NR N/A N/A N/A rest decreased 
raw MEP N/A N/A 
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(Verin et 
al., 2004) 

treadmill 
walking/ 
running 

Bruce protocol 18 ± 4 
min NR N/A N/A N/A rest 

raw MEP 
amplitude 
decreased 

N/A N/A 

DYNAMIC EXERCISE and ISOMETRIC EVALUATION 

(Fernandez-
del-Olmo et 
al., 2013) 

cycling 2 x 30-s Wingate with 
evaluation after each 60 s1 NR 50-75-

100% by series decreased 
isometric 
right knee 
extension 

increased at 
50 and 75% 
MVC; no 
change at 

100% MVC 

interval from 
stimulus to the 

return of 
background 

EMG 

no change 

(Girard et 
al., 2013) cycling 

10 x 6-s sprints 
(30-s recovery), 6-min 
break and then 5 x 6-s 
sprints (30-s recovery) 

 

90 s NR 50-75-
100% by series decreased 

isometric 
right knee 
extension 

no change 

interval from 
stimulus to the 

return of 
background 

EMG 

no change 

(Goodall et 
al., 2012) cycling 77 ± 5% MAP to TF 

8.1 ± 2.9 
min; 3.6 ± 

1.3 min 
NR 50-75-

100% by series decreased 
isometric 
right knee 
extension 

no change 

interval from 
stimulus when 
post-stimulus 

EMG exceeded 
±2SD 

of pre-stimulus 
EMG for ≥100 

ms 

no change 

(Klass et 
al., 2012) cycling 

60 min at 55% MAP 
then TT equivalent to 30 

min at 75% MAP 

60 min + 
30.78 ± 
2.08 min 

NR 50-75-
100% pooled no change 

isometric 
right knee 
extension 

no change 

interval from 
stimulus to the 

return of 
continuous EMG 

no change 

(Sidhu et 
al., 2009b) cycling 8 x 5-min with 1 min 

rest at 80% MAP 47 min NR 50-75-
100% by series decreased 

isometric 
right knee 
extension 

no change 

interval from 
stimulus to the 

return of 
continuous EMG 

no change 
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DYNAMIC EXERCISE and DYNAMIC EVALUATIONS 

(Mileva et 
al., 2009) 

sustained 
squat 

sustained squat at 30° 
knee flexion 330 s NR N/A N/A N/A sustained 

squat no change N/A N/A 

            

(Racinais & 
Girard, 
2012) 

cycling 
20 min cycling at 100 W 
and incremental cycling 

test to TF 

20 min 
and mean 
time 14-
17 min 

N/A N/A N/A N/A 

cycling at 
100 W 

when crank 
was at 45° 

no change N/A N/A 

            

(Sidhu et 
al., 2012a) cycling 

30 min at 75% MAP 
then 105% MAP to task 

failure 

31.3 ± 0.2 
min N/A N/A N/A N/A cycling 

no change 
in MEPs 

normalized 
to Mmax; 
decreased 

MEPs 
normalized 

to EMG 

N/A N/A 

(Sidhu et 
al., 2013b) cycling 75% MAP 30 min N/A N/A N/A N/A cycling N/A 

start and end of 
EMG 

suppression (any 
period EMG 

lower than mean 
EMG for ≥4 ms 
from 20 and 50 
ms for VL/ BF 
and 30–60 ms 

for TA) 
determined and 
amount of EMG 

suppression 
compared8 

increased 
EMG 

inhibition 
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CSP, cortical silent period; ERT, estimated resting twitch; MAP, maximal aerobic power output; MEP, motor-evoked potential; MVC, maximal voluntary force 
contraction; N/A, not applicable (the parameter was not evaluated); POST, measure after the exercise intervention; PRE, measure before the exercise 
intervention; SIT, superimposed twitch; TF, task failure; VAc, cortical voluntary activation; MAP, maximal aerobic power output 
 
1 two times 30 s 
2 only reported for MVCs 
3 only PRE-POST caffeine capsule SIT changes reported 
4 raw MEPs only. M-waves reported to be unchanged by the intervention 
5 raw MEP amplitude increased during MVC 
6 only measured during the first and last MVCs of the fatiguing protocol 
7 raw MEP amplitude 
8 EMG suppression instead of CSP employed to quantify changes in intracortical inhibition 
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Upper limbs 

 

TMS investigations began with muscles of the hand and arms. In the motor cortex, these 

muscles are much better represented than the muscles of the lower limbs. As previously 

described, magnetic stimulation began with circular coils that lacked precision, thus rendering 

TMS only feasible in the upper limbs. 

 

Cortical voluntary activation 

 

As in isometric MVCs with peripheral neural stimulation, the SIT evoked by TMS can 

increase, indicating that supraspinal mechanisms contribute to the observed fatigue (Gandevia 

et al., 1996). While the presence of increased SIT indicates the presence of supraspinal 

fatigue, it does not eliminate the possibility of spinal contributions to central fatigue. The 

increased SIT only means that despite the increasing possibility for improved neural drive 

from the motor cortex, the brain is unable to provide it. Increased TMS-evoked SIT at 

maximal force has been observed in upper-limb muscle groups in both intermittent (Hunter et 

al., 2008) and continuous (Todd et al., 2005) fatiguing exercise protocols. During sustained 

submaximal contractions, there was a gradual development of supraspinal fatigue  that was 

demonstrated by increasing SIT at the submaximal contraction intensity and confirmed during 

brief MVCs at regular intervals during low-intensity sustained elbow-flexor contractions of 

5% (Smith et al., 2007) and 15% (Sogaard et al., 2006) MVC (Figure 11).  

 Cortical voluntary activation (VAc) assessed by TMS is more complicated than ITT 

with peripheral nerve stimulation (Todd et al., 2003) since it is inappropriate to compare SIT 

elicited during MVCs to evoked responses in the relaxed muscle. The large increase in 

corticospinal excitability from rest to even weak voluntary muscular contractions (Ugawa et 

al., 1995) means that TMS-induced motoneuronal output at rest is not representative of that at 

maximal voluntary force. Therefore a potentiated twitch induced by TMS delivered in the 

relaxed muscle would be greatly underestimated, and thus underestimate the cortical drive to 

the muscle. Todd et al. (2003) proposed the extrapolation of the linear relationship between 

SIT and voluntary force between 50 and 100% MVC to estimate the amplitude of the resting 

twitch that would be produced by TMS under comparable conditions of corticospinal 

excitability. Originally applied in the elbow flexors (Todd et al., 2003), the validity and 

reliability of extrapolating the relationship between TMS-evoked SIT and voluntary forces at 

50%, 75% and 100% MVC has also been confirmed in the wrist extensors (Lee et al., 2008).  
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Figure 11. The evolution of SIT during a 43-min sustained isometric contraction at 15% MVC and 

during recovery contractions at 15% MVC. The broken vertical line denotes the end of the 43-min 

sustained contraction. Adapted from Sogaard et al. (2006). 

 

It is acknowledged that VAc can be quantified by this method in fresh and fatigued muscles 

although there are some methodological concerns in addition to those associated with 

peripheral assessment of VA (VAp). The regression of voluntary force and the SIT is almost 

always linear in the unfatigued state, allowing estimation of resting twitch amplitude, and 

therefore VAc (Todd et al., 2003; Hunter et al., 2006; Cahill et al., 2011). This relation may 

frequently be non-linear (r < 0.9) during or after a fatigue protocol (e.g. up to one-third of 

contraction sets in Hunter et al. (2006; 2008)), thus preventing the estimation of the resting 

twitch in some subjects (del Olmo et al., 2006; Hunter et al., 2006; Hunter et al., 2008). To 

obtain a valid linear extrapolation, it is essential that the stimuli activate most of the 

motoneurons, which is possible at high levels of voluntary force (i.e. > 50% MVC in biceps 

brachii and brachioradialis) as demonstrated by MEPs of maximal amplitude (Taylor et al., 

1997; Todd et al., 2003). Indeed, TMS is less effective at activating motoneurons at lower 

contraction intensities because of reduced corticospinal excitability (Todd et al., 2003). This 

is demonstrated by a curvilinear relationship between SIT and voluntary force at contraction 

strengths below 50% MVC (del Olmo et al., 2006; Lee et al., 2008). It may also be 

impossible to obtain a SIT at high contraction intensities (>75% MVC) (del Olmo et al., 

2006), a phenomenon also observed in ITT with peripheral nerve stimulation (discussed in (de 

Haan et al., 2009; Taylor, 2009)). Therefore, if a SIT can be evoked at near-maximal 
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contraction intensities and if the SIT-voluntary force relationship (50-100% MVC) is linear (r 

 0.9), then it is appropriate to estimate resting twitch amplitude and calculate VAc.  

During sustained maximal (Hunter et al., 2006; Szubski et al., 2007) and submaximal 

(Smith et al., 2007) isometric fatiguing contractions, VAc decreases, suggesting that 

supraspinal fatigue develops progressively. The evaluation of VAc with dynamic upper-body 

exercise has never been conducted; therefore it is unknown whether VAc changes with a 

similar time-course during dynamic exercise. 

As with the presence of increased SIT during sustained voluntary contractions, the 

decreased VAc observed in the aforementioned studies and indicating the presence of 

supraspinal fatigue does not eliminate the possibility of spinal contributions to central fatigue. 

Furthermore, the proportion of central fatigue corresponding to each level of the motor 

pathway cannot be completely elucidated without the combination TMS and 

cervicomedullary and spinal nerve root stimulation. Smith et al. (2007) attempted to quantify 

the amount of central fatigue originating solely at the supraspinal level. This was done by 

determining the post-intervention MVC if VAc had remained unchanged. The additional 

decrease in MVC was attributed to a decrease in VAc (i.e. supraspinal fatigue). After a 70-

min 5% MVC sustained elbow flexion, they concluded that 66% of the decrease in MVC was 

due to supraspinal fatigue. It remains to be determined whether this is a valid method of 

quantifying supraspinal fatigue in isolation. 

 

Motor-evoked potentials 

 

Changes in MEP amplitude or area indicate changes in corticospinal excitability. Normalized 

MEP size (i.e. normalized to maximal M-wave) rather than raw MEP amplitude/area should 

be used since normalized MEPs take into account peripheral changes such as any change in 

the rate of action potential propagation along the sarcolemma. In conjunction with changes to 

CMEP amplitude/area, MEPs can be used to identify a change or lack of change at the cortical 

level. For example, similar changes in CMEP·Mmax-1 and MEP·Mmax-1 indicate that most or 

all of the difference observed occurs at the spinal level while differential responses indicate 

changes at the supraspinal level (Figure 12). 
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Figure 12. Motor-evoked potentials (MEPs) and cervicomedullary-evoked potentials (CMEPs) at two 

different stimulus intensities during a 10-min sustained iso-EMG elbow flexion at 25% maximal biceps 

brachii EMG. Panel A) Absolute MEP and CMEP area. Panel B) Normalized MEP and CMEP areas 

as a percentage of pre-exercise (control) values. There were no differences in the evolution of MEP 

and CMEP areas elicited by weak stimuli indicating that the decreased MEP and CMEP amplitude 

from 7-9 min was due to spinal changes. Conversely, in response to strong stimuli, MEP area 

remained unchanged while CMEP area decreased and was significantly smaller than baseline from 8-

10 min, indicating corticospinal changes to compensate for the decreased spinal excitability. Adapted 

from McNeil et al. (2011a). 

 

 
Figure 13. Changes in motor-evoked potential (MEP) area normalized to maximal M-wave (Mmax) in 

the biceps brachii and brachioradialis muscles during a 70-min sustained isometric contraction of the 

elbow flexors at 5% MVC and during recovery contractions at 5% MVC. Adapted from Smith et al. 

(2007). 

 

 During sustained iso-force submaximal isometric contractions, MEP·Mmax-1 has been 

observed to increase in the elbow flexors (Sogaard et al., 2006; Smith et al., 2007; Klass et 
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al., 2008; Levenez et al., 2008; Yoon et al., 2012) (Figure 13). In conjunction with a 

progressive increase in voluntary EMG activity, this has been interpreted as an augmentation 

of central drive to lower motoneurons to maintain a constant force level despite peripheral 

fatigue development (Sogaard et al., 2006; Smith et al., 2007). These observations are 

consistent with increased corticospinal excitability in submaximal fatiguing contractions. 

During a 50% MVC elbow-flexor contraction to task failure, similar MEP·Mmax-1 and 

CMEP·Mmax-1 kinetics were observed (i.e. increasing over the first 40% of the task and then 

a plateau to task failure) (Levenez et al., 2008), suggesting that central changes almost 

entirely occurred at the spinal level. McNeil et al. (2011a) also investigated corticospinal 

changes with a sustained submaximal contraction; however, this was conducted at constant 

EMG activity (i.e. iso-EMG) with both strong and weak stimulus intensities. During a 10-min 

sustained elbow-flexor contraction at 25% of maximal EMG signal, MEP·Mmax-1 area did 

not change while CMEP·Mmax-1 area decreased and was lower than baseline values from 8 

min of exercise in response to strong stimuli (i.e. TMS intensity of 155.8 ± 43.0% RMT, 

actual TMS intensity not reported). These results suggest a compensatory increase in cortical 

excitability to counteract decreased spinal excitability, in contrast with findings from 

investigation of MEP and CMEP kinetics during constant force contractions employing strong 

stimuli (i.e. TMS intensity of 70-90% maximal stimulator output) (Levenez et al., 2008). 

Because voluntary EMG progressively increased during the constant force task in Levenez et 

al. (2008) while in McNeil et al. (2011a) it was unchanged, changes in evoked corticospinal 

responses in this type of protocol should be interpreted in relation to changes in volitional 

EMG since they may intrinsically influence evoked EMG responses. McNeil et al. (2011a) 

also investigated MEP and CMEP changes elicited by weak stimuli (i.e. TMS intensity of 

124.2 ± 24.5% RMT, actual TMS intensity not reported) during another 10-min iso-EMG 

contraction. In this contraction, there were no differences in either MEP or CMEP evolution 

with decreased MEP and CMEP area observed from 7-9 min. These findings suggest the 

stimulus intensity may be an important factor influencing corticospinal excitability and that 

further research needs to be conducted to elucidate the impact stimulus intensity has on MEP 

amplitude/area changes with fatigue and the reasons for any observed differences. 

During a sustained MVC, MEP size has been observed to increase, either progressively 

(Szubski et al., 2007) or during the first seconds before plateauing (Taylor et al., 2000; Hunter 

et al., 2006; Hunter et al., 2008). Concomitant normalization of MEP with an index of 

peripheral transmission (i.e. maximal M-wave) is essential because M-wave amplitude and/or 

area can increase, decrease or remain unchanged during a sustained MVC (Mills & Thomson, 
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1995; McKay et al., 1996; Taylor et al., 1999; Taylor & Gandevia, 2001). Increasing 

MEP·Mmax-1 during a sustained MVC has been observed in the biceps brachii (Taylor et al., 

1999) and first dorsal interosseous (Szubski et al., 2007). Conversely, CMEP·Mmax-1 

decreased in the final 30 s of a sustained 2-min elbow-flexor MVC (Butler et al., 2003). This 

contrasts the increase in MEP·Mmax-1 and suggests increased cortical excitability during 

sustained MVCs. Interestingly, MEP·Mmax-1 assessed during brief MVCs interspersed 

throughout a series of sustained 3-min submaximal isometric contractions of the elbow 

flexors at 20% MVC remained unchanged from baseline to task failure and immediately after 

task failure despite increased MEP·Mmax-1 at 20% MVC (Yoon et al., 2012; Yoon et al., 

2013). It is unknown whether the transient activation of motoneurons not required in the 

maintenance of the submaximal contraction caused this discrepancy.  

 Often MEPs have been measured during brief contractions before and after fatiguing 

(predominantly isometric voluntary contractions) exercise and then compared to evaluate the 

effects of the intervention. Post-exercise MEPs are usually assessed immediately following 

the intervention; thus, they must be interpreted in conjunction with the MEP kinetics during 

the fatiguing intervention. As previously described, MEP and MEP·Mmax-1 generally 

increase during a sustained contraction and are thus larger at task failure than at baseline 

(Sogaard et al., 2006; Smith et al., 2007; Szubski et al., 2007). MEP·Mmax-1 measured 

immediately after exercise is also elevated compared to pre-exercise (Sogaard et al., 2006; 

Smith et al., 2007; Szubski et al., 2007; Klass et al., 2008) and returns completely to baseline 

within several minutes (Sogaard et al., 2006; Smith et al., 2007; Szubski et al., 2007). Any 

delay between exercise cessation and post-exercise evaluations allows MEP recovery and 

masks exercise-induced MEP changes as demonstrated by recovery within the initial ~30 s 

post-exercise (Taylor et al., 1999; Sogaard et al., 2006; Smith et al., 2007; Szubski et al., 

2007). The effect of delayed post-exercise evaluations is much more of a concern in studies 

investigating dynamic or any other exercise that cannot be conducted on the same ergometer 

as neuromuscular evaluations since a delay would be necessary for subject installation.    

 There has been little research evaluating the effect a dynamic upper-body exercise bout 

on MEP amplitude/area. The only published study is one that investigated both submaximal 

isometric and dynamic concentric elbow flexion at 20% MVC interspersed with brief higher 

intensity contractions (Yoon et al., 2013). In both conditions MEP amplitude during brief 

MVCs was unchanged during the fatiguing task and recovery. Additional research remains to 

be conducted to determine MEP dynamics during dynamic upper-body exercise and 

subsequent recovery. 
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Cortical silent period 

 

When single-pulse TMS is delivered during a voluntary contraction, the elicited MEP is 

generally followed by the CSP, a period of near-silence in the EMG signal. This period of 

EMG suppression is believed to be mediated by activation of long-lasting GABAB receptors 

(McDonnell et al., 2006) although it is acknowledged that spinal mechanisms contribute to 

the early part (~50 ms) of the CSP (Inghilleri et al., 1993). Since the EMG interruption 

continues beyond the recovery of motoneuronal excitability, the later part of the CSP is 

understood to be mediated through intracortical inhibitory mechanisms (Inghilleri et al., 

1993). CSP is greatly influenced by stimulus intensity and to a much lesser extent by 

voluntary contraction intensity (Taylor et al., 1997; Saisanen et al., 2008).  

 
 

Figure 14. Changes in cortical silent period duration in the biceps brachii (○) and brachioradialis (●) 

muscles during a 43-min sustained isometric contraction of the elbow flexors at 15% MVC and during 

recovery contractions at 15% MVC. Adapted from Sogaard et al. (2006). 

 

 CSP lengthens during sustained fatiguing isometric contractions and the time to recover 

increases with increasing task duration (Taylor et al., 2000; Sogaard et al., 2006; Smith et al., 

2007) (Figure 14). Because the CSP increase is less after cervicomedullary stimulation-

induced CMEPs than after MEPs, at least part of the increased CSP duration following MEPs 

is believed to result from increased supraspinal inhibition (Taylor et al., 1996; Levenez et al., 

2008). The sustained level of force appears to influence CSP kinetics. During prolonged low-

to-moderate intensity contractions, CSP gradually increases in length (Taylor et al., 1996; 

Sogaard et al., 2006; Smith et al., 2007; Levenez et al., 2008) whereas during sustained 
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MVCs it increases rapidly over the first seconds before plateauing (Taylor et al., 1996; Todd 

et al., 2005). This suggests that exercise intensity is an important factor in the manifestation 

of intracortical inhibition. Increased CSP duration has been found in hand muscles (Szubski et 

al., 2007) and biceps brachii (Hunter et al., 2006; Levenez et al., 2008) although it has not 

been observed in all studies (Ljubisavljevic et al., 1996). These discrepancies may be due to 

the high intra-subject variability in exercise-induced CSP increase (Cerri et al., 2010). Many 

factors can induce CSP variability and thus confound results. These include the instruction set 

given to the subjects (Mathis et al., 1998), the presence of bursts of late EMG activity 

coinciding with the resumption of voluntary EMG at the end of the CSP (Chin et al., 2012) 

and low-level EMG present during the CSP from spinal reflex facilitation by muscle spindle 

afferents (Butler et al., 2012) and the potentially large inter-examiner variability, especially 

when the CSP is defined to exclude the MEP (Reid et al., 2002). 

 The assessment of CSPs during brief contractions before and after fatiguing exercise 

parallels MEP evaluation. Thus, post-exercise CSPs must also be interpreted in conjunction 

with the CSP kinetics during the fatiguing intervention (Sogaard et al., 2006; Smith et al., 

2007; Szubski et al., 2007). Any delay between exercise cessation and post-exercise 

evaluations allows recovery of exercise-induced CSP changes as demonstrated by recovery 

within the initial ~30 s post-exercise (Taylor et al., 2000; Sogaard et al., 2006; Szubski et al., 

2007). 

 The ability of TMS at low intensities to influence the most direct motor cortical 

projections to the spinal motoneurons has also been employed to investigate intracortical 

inhibition during muscular activity (Butler et al., 2007). At very low TMS intensities (i.e. sub-

AMT), a number of different responses can be induced in the EMG signal during voluntary 

muscular contractions. A TMS intensity corresponding to AMT elicits MEPs after the 

delivery of one half of all stimuli. As the TMS intensity is reduced below AMT, the frequency 

and amplitude of MEPs diminishes although there may still be facilitation. Eventually, as 

TMS intensity is decreased, reducing cortical output to descending motoneurons, a 

suppression of voluntary EMG activity is observed (Davey et al., 1994; Petersen et al., 2001; 

Butler et al., 2007). Changes in the amount of EMG suppression during an exercise are 

believed to be indicative of resulting changes in intracortical inhibition. A limitation of this 

method is that EMG suppression is not clearly observed in all motor units (Butler et al., 

2007), at all coil positions (Davey et al., 1994) or in all subjects (Petersen et al., 2001). Seifert 

and Petersen (2010) employed this method to investigate changes in intracortical inhibition 

during a submaximal isometric voluntary contraction to task failure at 30% MVC (Seifert & 
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Petersen, 2010). EMG suppression was greater during the last 2 min than the first 2 min, 

indicating increased intracortical inhibition immediately before task failure. This finding is 

consistent with exercise-induced CSP changes and is a technique that needs further 

investigation due to its potential to evaluate changes to inhibitory cortical mechanisms during 

dynamic exercise. 

 

Paired pulses 

 

Paired TMS pulses have been proposed to investigate both inhibitory and facilitative 

mechanisms and complement MEP and CSP findings. GABAB-mediated intracortical 

inhibition can also be investigated using paired TMS pulses. A conditioning pulse followed 

by a test pulse at an inter-stimulus interval of 50-200 ms causes LICI, where the conditioned 

MEP is smaller than a MEP elicited by single-pulse TMS (Valls-Sole et al., 1992). Similarly, 

GABAA-mediated SICI can be measured by employing shorter inter-stimulus intervals (i.e. 2 

to 5 ms) (Kujirai et al., 1993). Conversely, increasing the inter-stimulus interval to 8 to 25 ms 

causes the conditioned MEP to be larger than that elicited by single-pulse TMS. The 

mechanisms contributing ICF remain to be determined (Reis et al., 2008). 

 Studies that investigated SICI and ICF changes with fatigue are often difficult to 

interpret because most employed paired-pulse TMS only when the muscle was in the relaxed 

state, only before and after exercise or there was a long delay before post-exercise evaluation 

was conducted. In an exception, McCombe Waller et al. (2008) observed increased SICI and 

unchanged ICF during contractions sufficient to overcome the weight of the arm after a 10-

min bout of ipsilateral arm exercise and decreased SICI and increased ICF after similar bouts 

of bilateral and contralateral arm exercise. This suggests that inhibitory and excitatory 

mechanisms may not manifest globally during exercise and instead may be specific to the task 

performed. 

  McNeil et al. (2009) investigated LICI changes during a 2-min elbow-flexor MVC. To 

evaluate the role of spinal and supraspinal mechanisms in LICI, the protocol was conducted 

with both TMS and cervicomedullary test pulses 100 ms after a conditioning pulse. Both 

conditioned MEPs and CMEPs decreased rapidly and were practically eliminated by the 30-s 

mark of the 2-min MVC. The parallel of MEP and CMEP dynamics indicates a major spinal, 

and not cortical, component to LICI during MVCs. Similarly, CSP increased, and unlike for 

LICI, its rapid recovery after exercise cessation suggests a cortical origin of inhibition. 

McNeil et al. (2011a) also observed increasing LICI as demonstrated by decreased 
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conditioned MEP and CMEP areas during a sustained 10-min submaximal elbow-flexor 

contraction at 25% maximal biceps brachii EMG. The similar decrease in conditioned MEP 

and CMEP areas at both strong and weak stimulus intensities reinforces that impaired spinal 

mechanisms (i.e. the responsiveness of the motoneurons) and not intracortical inhibition 

account for the fatigue-related changes to conditioned MEPs. The results of these two studies 

(McNeil et al., 2009; McNeil et al., 2011a) raise a number of questions about inhibitory 

processes observed in the central nervous system. Despite the initial spinal component of the 

CSP, increased CSP during submaximal and maximal voluntary contractions have been 

interpreted to be indicative of changes in intracortical inhibition (see Cortical silent period 

section above). McNeil et al. (2009) observed the customary increase in CSP over the first 

minute of a 2-min MVC and very quick recovery after exercise cessation; however, no 

difference in LICI was observed between stimuli delivered at the cervicomedullary and 

cortical levels, indicating a spinal component was responsible for the increased inhibition. 

While McNeil et al. (2011a) did not report CSP, the increased CSP generally observed during 

submaximal isometric contractions is well-established and at odds with conditioned MEP and 

CMEP changes observed during both submaximal and maximal voluntary contractions. This 

raises the question of whether CSP is a good indicator of intracortical inhibition. Further 

investigations are required to determine the mechanisms responsible for observed inhibitory 

and excitatory responses to TMS and cervicomedullary junction stimulation in order to permit 

identification of spinal and supraspinal changes.  

 

Lower limbs 

 

With the development of more specialized TMS coils (figure-of-eight and double-cone coils), 

TMS investigation of the lower limbs became feasible. As in the upper limbs, initial studies 

focused on isometric voluntary contraction protocols. Investigations employing TMS have 

rapidly shifted focus to locomotor activities (running and cycling) due to the functional 

importance of locomotion. To date investigations have predominantly examined pre- to post-

exercise changes although more recent studies have begun evaluating changes during cycling. 

Table 2 highlights the major findings from lower-limb TMS fatigue investigations, including 

changes to VAc, MEPs and CSPs.  
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Cortical voluntary activation 

 

TMS-evoked SIT has been observed to increase during repeated maximal dorsiflexion 

(Mileva et al., 2012) and from pre- to immediately post- a 2-min sustained MVC of the knee 

extensors (Goodall et al., 2009). SIT during MVC was also observed to increase in repeated 

sets of submaximal contractions and an MVC to task failure (Goodall et al., 2010). The 

increase of SIT during the fatiguing protocols indicates that supraspinal mechanisms 

contribute to the observed fatigue in the lower limbs. This indicates an increasing deficiency 

to fully drive the muscle originating from the supraspinal level although deficits at other 

levels of the corticospinal pathway cannot be excluded. 

The validity and reliability of extrapolating the relationship between TMS-evoked SIT 

and voluntary forces at 50%, 75% and 100% MVC to determine VAc has also been confirmed 

in the quadriceps (Goodall et al., 2009; Sidhu et al., 2009a) and dorsiflexor (Mileva et al., 

2012) muscles. Cortical VA was lower compared to baseline values immediately after 

intermittent submaximal isometric contractions to task failure (Goodall et al., 2010) and a 2-

min MVC (Goodall et al., 2009). In whole-body exercise, VAc of the dorsiflexors was lower 

immediately after a 42.2-km running bout (Ross et al., 2007) and VAc of the quadriceps was 

lower after cycling bouts of various durations (Sidhu et al., 2009b; Goodall et al., 2012; 

Fernandez-del-Olmo et al., 2013), although decreased quadriceps VAc was not observed after 

60 min cycling at 55% of maximal aerobic power output (MAP) followed 1-2 min later by a 

time-trial equivalent to 30 min cycling at 75% MAP (Klass et al., 2012), nor after a series of 

6-s sprints (Girard et al., 2013). These results collectively indicate that both single-joint 

isometric exercise and whole-body dynamic exercise of the lower limbs are capable of 

inducing supraspinal fatigue. Further investigations must evaluate VAc recovery kinetics 

because the delay from exercise cessation to post-exercise assessment may account for the 

equivocal findings. 

 Goodall et al. (2009; 2012) also attempted to quantify the amount of central fatigue 

originating at the supraspinal level as per Smith et al. (2007). They concluded that 38% of the 

MVC decrease after a 2-min MVC (Goodall et al., 2009) and 41% of the MVC decrease after 

8.1 ± 2.9 min cycling at 80% MAP (Goodall et al., 2012) is due to supraspinal fatigue. This is 

much less than the 66% decrease in MVC calculated by Smith et al. (2007) after a 70-min 

isometric contraction at 5% MVC, suggesting that exercise duration and/or muscle groups are 

important factors in the development of supraspinal fatigue. 
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Motor-evoked potentials 

 

During sustained submaximal isometric contractions of the plantar flexors, MEP·Mmax-1 

increased (Hoffman et al., 2009). This is in accordance with the previously detailed upper-

limb studies. Conversely, Hoffman et al. (2009) observed MEP and CMEP kinetic 

interactions that differed from those observed in the elbow flexors (Levenez et al., 2008). 

During a sustained 30% MVC plantar-flexor contraction, a constant increase in MEP·Mmax-1 

in both soleus and medial gastrocnemius muscles was observed. At task failure, MEP·Mmax-1 

was similar to that in a brief control MVC. Significantly increased CMEP·Mmax-1 was only 

observed in the medial gastrocnemius and CMEP·Mmax-1 at task failure was smaller in both 

muscles than during a brief control MVC. These results suggest that there was only a small 

spinal contribution to the increased corticospinal responses to submaximal fatiguing 

contractions. The difference in findings between Levenez et al. (2008) and Hoffman et al. 

(2009) may be due to differences in neural control mechanisms to upper- and some lower-

limb muscles. Corticospinal projections onto soleus are believed to be weaker than those to 

many other muscles including biceps brachii, hand muscles and other lower-limb muscles 

such as tibialis anterior and rectus femoris (de Noordhout et al., 1999; Petersen et al., 2003; 

Martin et al., 2008).  

During a sustained MVC, MEP amplitude/area has been reported to remain stable in the 

soleus (Iguchi & Shields, 2012) and vastus lateralis (Goodall et al., 2009). This differs from 

the increased MEP size reported in upper limbs and reinforces the notion that there may be 

distinct neural control mechanisms for the upper and lower limbs. 

 Due to the difficulties in performing TMS during whole-body dynamic exercise, most 

investigations have compared changes pre- and post-intervention. After whole-body dynamic 

exercise, regardless of exercise duration or intensity, MEP size may be influenced by the 

delay between the end of the exercise bout and the beginning of post-exercise measurements. 

This may be important because MEPs recover within ~30 s in upper-limb studies (Taylor et 

al., 1999; Sogaard et al., 2006; Smith et al., 2007; Szubski et al., 2007). Among lower-limb 

isometric studies, only Iguchi and Shields (2012) have investigated MEP recovery. Although 

MEP amplitude at 10% MVC remained increased above baseline 1 min after exercise 

cessation, it had recovered by the next measurement, 10 min post-exercise. 

 The two longest duration dynamic whole-body exercise studies employing TMS, 

including the only previous study investigating corticospinal changes after running, 

investigated MEP changes in the relaxed muscle and did not normalize MEP amplitude. Ross 
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et al. (2007) reported decreased MEP amplitude in the relaxed tibialis anterior following a 

marathon. The fact that post-marathon measurements occurred anywhere up to 20 min post-

exercise and that decreased MEP amplitude was associated with a non-significant decrease in 

Mmax does not allow the drawing of clear conclusions on MEP·Mmax-1 changes. Similarly, 

Ross et al. (2010b) observed both decreased vastus lateralis MEP amplitude and Mmax 

measured in the relaxed muscle on days 9 and 17 of the 2007 Tour de France and only 

decreased MEP amplitude 2 days post-Tour. That neuromuscular evaluations were conducted 

>18 h after the end of the previous stage during the Tour and even longer post-Tour also 

restrict the useful interpretation of these results in regards to acute exercise-induced fatigue.  

 Goodall et al. (2012) did not observe changes in MEP·Mmax-1 area during contractions 

at 100, 75 and 50% MVC in the vastus lateralis after constant load cycling at 80% MAP to 

task failure. Similarly, two longer cycling protocols did not observe changes in MEP·Mmax-1 

(Sidhu et al., 2009b; Klass et al., 2012). Two to three minutes after eight 5-min bouts of 

cycling at 80% MAP separated by 1 min, Sidhu et al. (2009b) observed unchanged 

MEP·Mmax-1 area in rectus femoris. Klass et al. (2012) also found unchanged MEP·Mmax-1 

in rectus femoris and vastus medialis after ~1.5 h cycling. Two studies specifically examining 

cycling sprint performance reported contradictory results. Girard et al. (2013) observed 

unchanged vastus lateralis MEP·Mmax-1 amplitude after a series of fifteen 6-s sprints. 

Conversely, after 30-s all-out sprints, Fernandez-del-Olmo et al. (2013) reported increased 

MEP·Mmax-1 area during contractions at 50 and 75% MVC but not 100% MVC in the vastus 

lateralis evaluated 1 min after each of two Wingate tests. The differences between this study 

and the others might reflect specific central adaptations to submaximal and very short 

maximal exercise (Taylor & Gandevia, 2008) or that submaximal isometric contractions were 

performed at the same absolute force across the experimental session (i.e. based on 

percentages of the baseline MVC). Thus, the increase in MEP amplitude observed in 

Fernandez-del-Olmo et al. (2013) was interpreted as a compensatory mechanism to generate 

the required motor output and overcome the reduced peripheral force production. Conversely, 

the unchanged MEP areas observed by Sidhu et al. (2009b), Klass et al. (2012) and Goodall et 

al. (2012) may be related to evaluations having been conducted at the same relative strength 

levels (i.e. accounting for lower post-exercise MVC). Other factors that may have influenced 

the differential MEP responses to whole-body lower-limb exercise include TMS intensity 

(Table 1), exercise duration and exercise intensity (Table 2). 

 Changes in corticospinal excitability during submaximal whole-body exercise were first 

published by Sidhu et al. (2012a). Knee extensor (i.e. vastus lateralis and rectus femoris) 
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MEP·Mmax-1 and CMEP·Mmax-1 were assessed every 3 min during 30 min of cycling at 

75% of MAP and each minute during a 105% MAP cycling bout to task failure immediately 

thereafter. Neither MEP·Mmax-1 nor CMEP·Mmax-1 changed significantly during exercise. 

MEP and CMEP were also normalized to voluntary EMG during cycling and unlike with 

conventional normalization methods, CMEP amplitude remained unchanged and MEP 

amplitude decreased from 10 min to task failure. Together, these results suggest a general 

inclination towards decreased cortical excitability during exercise and at task failure. There is 

difficulty in interpreting these results because statistical analysis compared MEPs and CMEPs 

at 110% MAP (pre-exercise), three points at 75% MAP and 105% MAP (immediately pre-

task failure). These findings contradict MEP and CMEP changes during submaximal single-

joint isometric contraction protocols (Levenez et al., 2008; Hoffman et al., 2009) although 

like in Hoffman et al. (2009), it suggests that central changes largely occur at the supraspinal 

level. The higher cardiorespiratory and metabolic demands during whole-body exercise 

compared to single-joint exercise may increase the role of factors such as core temperature, 

glycaemia, brain catecholamines and cerebral oxygenation on evoked motor cortical and 

corticospinal tract responses (Nybo & Nielsen, 2001; Todd et al., 2005; Hasegawa et al., 

2008; Secher et al., 2008; Rasmussen et al., 2010; Verges et al., 2012).  

 Further investigation is required to confirm and elucidate the reported differences in 

MEP responses elicited during isometric exercise in the upper (i.e. increased cortical 

excitability) and lower (i.e. increased cortical excitability in sustained submaximal 

contractions and unchanged cortical excitability during sustained maximal contractions) 

limbs. The effects of submaximal whole-body exercise also need to be clarified since 

measures during exercise differ from those made only before and after exercise and these 

changes differ from MEP changes observed in isometric contraction protocols. Finally, MEP 

recovery kinetics, especially as it pertains to the effect of the delay to post-exercise 

assessment on MEP change, require further study. 

 

Cortical silent period 

 

As previously indicated in upper-limb muscles, CSP generally increases during isometric 

voluntary contractions. The increased CSP during intermittent plantar flexor (Iguchi & 

Shields, 2012) and sustained dorsiflexor (McKay et al., 1996) MVCs is consistent with this 

finding. Conversely, Goodall et al. (2010) did not observe any change to CSP duration 

measured immediately post-task failure after an intermittent submaximal quadriceps 
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contraction protocol. This suggests that perhaps the combination of both the submaximal 

contraction intensity and intermittent nature of the protocol prevented the development of 

intracortical inhibition. 

After whole-body exercise, no change in CSP has been observed. Ross et al. (2007) 

observed unchanged tibialis anterior CSP during MVCs after a treadmill marathon with TMS 

delivered at 100% maximal stimulator output. After cycling protocols, irrespective of exercise 

duration or intensity or TMS intensity, CSP was also unchanged (Sidhu et al., 2009b; Goodall 

et al., 2012; Klass et al., 2012; Fernandez-del-Olmo et al., 2013; Girard et al., 2013). These 

findings suggest that previously-evaluated dynamic whole-body exercise protocols may be 

unable to induce GABAB-related intracortical inhibition or that because of the rapid recovery 

of CSP after exercise (Taylor et al., 2000), the delay between exercise cessation and post-

exercise evaluation masked CSP changes. 

Sidhu et al. (2013b) assessed the effects of sub-threshold intensity TMS on EMG 

suppression to evaluate intracortical inhibition. Increased EMG inhibition during the last 5 

min of a 30-min cycling bout at 75% MAP compared to the first 5 min was observed. This is 

in agreement with increased EMG suppression observed during sustained elbow flexion 

(Seifert & Petersen, 2010). It is also in agreement with most upper- and lower-limb 

investigations with isometric voluntary contraction protocols that show increased CSP with 

exercise but contradicts the lack of CSP change with whole-body dynamic exercise. The 

increased intracortical inhibition as determined by this method and unchanged CSP with 

dynamic whole-body exercise appears contradictory and must be investigated. Future studies 

must take into account the delay between the end of the running and cycling bouts and the 

start of post-exercise evaluation. The fact the method employed by Sidhu et al. (2013b) can be 

performed during cycling (i.e. without a delay between exercise cessation and evaluation) 

may be a key factor in explaining this discrepancy. 

 

Paired pulses 

 

The only study that to date has examined the effect of a lower-limb intervention with paired 

TMS pulses employed a static squat (Mileva et al., 2009). Neither SICI or ICF, nor pre-TMS 

EMG changed significantly over the course of the 330-s static squat in the target tibialis 

anterior muscle. 
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A summary of the changes to VAc and TMS-induced EMG parameters in upper- and lower-

limb exercise are resented in Table 3. 

 

Table 3. A summary of the principal TMS parameters evaluated during voluntary muscular 

contraction in response to exercise of the upper and lower limbs. 

  Upper-limb exercise  Lower-limb exercise  

  Submaximal 
isometric 

Maximal 
isometric  Submaximal 

isometric 
Maximal 
isometric 

Whole-body 
dynamic 

(measured 
isometrically) 

Whole-body 
dynamic 

(measured 
during activity) 

VAc  ↓ ↓  ↓ ↓ ↓ / ↔  

MEP  ↑ ↑  ↑ ↔ ↔ ↓1 / ↔2 

CSP  ↑ ↑  ↑ ↑ ↔  

EMG 
suppression3  ↑      ↑ 

SICI  ↑   ↔   ↔ 

ICF  ↔   ↔   ↔ 

LICI  ↑ ↑      

CSP, cortical silent period; ICF, intracortical facilitation; LICI, long-interval intracortical inhibition; 
MEP, motor-evoked potential; SICI, short-interval intracortical inhibition; VAc, cortical voluntary 
activation.  
 
1 normalized to cycling EMG  
2 normalized to Mmax 
3 indication of intracortical inhibition 
 

TRANSCRANIAL MAGNETIC STIMULATION HIGHLIGHTS 
 

What is known: 

 TMS trans-synaptically excites the pyramidal neurons and some direct excitation of 
pyramidal tract axons is believed to occur depending on numerous factors such as 
stimulus intensity 

 Increasing TMS intensity causes increasing MEP amplitude/area and increasing CSP 
duration to a maximal response 
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 TMS allows calculation of VAc and reflects the ability of the upper motoneurons to 
respond to cortical motor input 

 MEP amplitude/area and CSP duration both increase during upper-limb isometric 
exercise 

 Lower-limb whole-body exercise does not appear to induce changes in MEP 
amplitude/area or CSP duration 

 VAc decreases during fatiguing isometric and dynamic whole-body exercise of the 
upper and lower limbs 

What is not known (methodological): 

 The effect of employing different methods of determining optimal TMS stimulus 
intensity on the subsequent evaluation of central parameters 

 Whether it is appropriate to use one muscle as a surrogate for a muscle group when 
there is no dominant muscle 

 The effect of different ways of reaching a target force level on MEP and CSP 
responses 

What is not known (applied): 

 The effect of TMS stimulus intensity on MEP and CSP responses during the 
development of fatigue 

 The effect of exercise duration and/or modality on supraspinal fatigue development 
and indices of corticospinal excitation and inhibition 

 The effect of extreme duration exercise and confounding factors (e.g. sleep 
deprivation, pacing) on the development of supraspinal fatigue and changes to other 
TMS-induced parameters 

 

SLEEP DEPRIVATION 
 

Sleep deprivation (SD) is most frequently a condition of insufficient sleep duration. This may 

present as either complete or partial SD and persons experiencing SD often report subjective 

feelings of tiredness, clumsiness and fatigue. Whether the experienced fatigue is related to 

mechanisms causing central fatigue is unknown.  

Numerous studies have observed performance deficits during aerobic exercise after 

SD. In his early study, Holland (1968) observed decreased time to task failure for an 

incremental cycling test in 24 university students after one night SD. Shorter times to task 

failure were also found with intense walking after 36-50 h SD (Martin, 1981; Martin & Chen, 

1984) and the distance run over 30 min following 30 min of submaximal running was 2.9% 

less after 30 h SD (Oliver et al., 2009). Conversely, Daanen et al. (2013) found no difference 
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in distance cycled during a 20-min time-trial conducted 30 min after a 30-min cycling bout at 

the power output eliciting 50% peak oxygen consumption following one night SD. The 

findings of studies that have investigated the effect of SD on shorter performance durations in 

running and cycling are equivocal (Chen, 1991; Azboy & Kaygisiz, 2009; Konishi et al., 

2012). Table 4 details studies investigating the effects of SD on aerobic exercise performance 

and physiological parameters. Maximal strength loss was not observed during either isometric 

or isokinetic contractions of upper or lower limbs during 60 h SD (Symons et al., 1988a; 

Symons et al., 1988b), nor was there any effect on grip strength after 41 h SD (Meney et al., 

1998). Conversely, 30 h of SD resulted in decreased isokinetic knee extensor torque although 

isokinetic knee flexor torque was unaffected (Bulbulian et al., 1996). Collectively, these 

results suggest that the decreased performances sometimes observed in SD may be more 

likely to occur as the exercise bout duration increases; however, the abundance of conflicting 

results precludes a definitive explanation. 

Neither oxygen consumption (VO2) nor heart rate (HR) during constant-load efforts of 

varying intensity up to 1 h (Martin, 1981; Martin & Chen, 1984; Oliver et al., 2009; Daanen 

et al., 2013) were influenced by SD. This may not be the case in longer duration exercise 

bouts since Martin et al. (1986) reported decreased VO2 after 3h, but not 1 or 2 h, of light 

treadmill walking after 36 h SD. Heart rate, however, was similar between SD and control 

conditions in this study. Meanwhile, Scott and McNaughton (2004) observed lower HR 

during 30 h SD with 20 min of light exercise (50% peak VO2) every 4 h but not when exercise 

frequency was increased to 20 min every 2 h. Results from incremental tests to task failure are 

equivocal about the effects of at least 24 h SD on HR responses and maximal oxygen uptake 

(VO2max) (Martin & Gaddis, 1981; Plyley et al., 1987; Goodman et al., 1989; Chen, 1991; 

Konishi et al., 2012). Similarly, HR during a time-trial of 20-30 min preceded by a steady-

state exercise bout was either lower (Oliver et al., 2009) or similar (Daanen et al., 2013) after 

at least 24 h SD. The results of these investigations do not suggest a clear link between either 

HR or VO2 and SD. 

 Investigation of RPE has been primarily investigated in short exercise bouts under 

conditions of SD. With a longer exercise bout, Martin et al. (1986) observed increased RPE at 

3 h of treadmill walking at 5.6 km·h -1 and 2% grade; however RPE was unchanged at 1 and 2 

h of the protocol. Employing a combination of 30-min treadmill running at 60% VO2max 

followed immediately by a 30-min time-trial, Oliver et al. (2009) reported no difference in 

RPE in either the fixed intensity or time-trial portions despite subjects running a shorter 

distance after SD. Although Daanen et al. (2013) observed similar 20-min cycling time-trial  
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Table 4. The effects of complete sleep deprivation on exercise performance, heart rate, oxygen consumption and ratings of perceived exertion 

Reference SD 
duration 

Study 
design Exercise protocol Exercise 

duration 

Effect of SD on 
physical 

performance 

Effect of SD on 
exercise VO2 or 

VO2max 

Effect of SD on 
exercise HR or 

HRmax 

Effect of SD on 
RPE 

(McMurray & 
Brown, 1984)  24 h crossover treadmill running at 80% 

VO2max 
20 min N/A no difference in 

VO2 
no difference in 

HR N/A 

(Daanen et al., 
2013) one night crossover 

30 min cycling at 50% VO2peak, 
30 min rest and 20-min cycling 

time-trial 
50 min 

no difference in 
distance completed 
during 20-min time-

trial 

N/A 
no difference in 

HR in either 
cycling bout 

no difference in 
either cycling bout 

(Holland, 
1968) one night 

PRE 
values as 
control 

incremental cycling test to TF 5-9 min decreased time to TF N/A 

decreased HR at 
50 and 150 W; 
no difference in 
HR at 100, 200, 
250 or 300 W 

N/A 

(Azboy & 
Kaygisiz, 

2009) 
25-30 h crossover incremental treadmill running 

test to TF 

mean time 
to TF of 

11-13 min 

no difference in time 
to TF in runners; 

decreased time to TF 
in volleyball players 

no difference in 
VO2max 

no difference in 
HRmax 

N/A 

(Chen, 1991) 30 h crossover incremental cycling test to TF 
mean time 
to TF of 8-

9 min 

no difference in 
Wmax; decreased 

time to TF 
decreased VO2max 

decreased 
HRmax 

N/A 

 30 h crossover 75% Wmax cycling to TF 
mean time 
to TF of 

11-12 min 

no difference in time 
to TF 

decreased VO2 at 
6 min 

no difference in 
HR N/A 

(Martin & 
Gaddis, 1981) 30 h crossover 25, 50 and 75% VO2max cycling 

8 min at 
each 

intensity 
N/A no difference in 

VO2 
no difference in 

HR 

no difference in 
RPE at 25% 

VO2max; increased 
RPE at 50 and 75% 

% VO2max 
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 30 h crossover incremental cycling test to TF 5-8 min N/A no difference in 
VO2max 

N/A N/A 

(Martin & 
Haney, 1982) 30 h crossover 

treadmill walking at 5.6 km·h-1 
and grade to elicit RPE of 4 out 

5 (~17 on Borg scale)  

10 min 
(grade 

unchanged 
from 8 
min) 

no difference in 
treadmill grade 

no difference in 
VO2 

decreased HR N/A 

(Oliver et al., 
2009) 30 h crossover 

30-min treadmill run at 60% 
VO2max followed by 30-min run 

for maximum distance 
60 min decreased distance run 

increased VO2 at 
30 min of 60% 
VO2max running 
compared to 5 

min; N/A during 
run for distance 

decreased HR 
during 30-min 

run for distance 
only 

no difference in 
RPE 

(Pickett & 
Morris, 1975) 30 h crossover1 Bruce treadmill test ≤21 min no difference in 

exercise time N/A no difference in 
HR N/A 

(Scott & 
McNaughton, 

2004) 
30 h crossover 20-min cycling bouts at 50% 

VO2max every 4 h 20 min N/A no difference in 
mean VO2 

decreased mean 
HR N/A 

 30 h crossover 20-min cycling bouts at 50% 
VO2max every 2 h 20 min N/A no difference in 

mean VO2 
no difference in 

mean HR N/A 

(Skein et al., 
2011) 30 h crossover incremental treadmill running 

test at 60, 70 and 80% VO2max 
30 min N/A N/A no difference in 

mean HR 
no difference in 

RPE 

 30 h crossover 

self-paced intermittent sprint 
running exercise (15-m sprint 
each minute with 1- min break 

each 10 min) 

50 min 
decreased mean sprint 
speed throughout the 

protocol 
N/A no difference in 

mean HR2 
no difference in 

RPE 

(Konishi et 
al., 2012) 34 h crossover incremental treadmill running 

test to TF 

mean time 
to TF of 

12-14 min 

no difference in time 
to TF 

no difference in 
VO2 

decreased HR N/A 
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(Martin, 1981) 36 h crossover 80% VO2max treadmill walking 
to TF 

31-156 
min decreased time to TF 

no difference in 
VO2 for first 31 

min3 

no difference in 
HR for first 31 

min3 

increased RPE for 
first 31 min3 

(Martin et al., 
1986) 36 h crossover treadmill walking at 5.6 km·h-1 

and 2% grade 3 h N/A 

no difference in 
VO2 at 1 or 2 h; 
increased VO2 at 

3 h 

no difference in 
HR 

no difference in 
RPE at 1 or 2 h; 

increased RPE at 3 
h 

(Racinais et 
al., 2004) 38 h crossover Leger and Gadoury shuttle test NR no difference no difference in 

estimated VO2max 
N/A N/A 

(Meney et al., 
1998) 41 h crossover 

self-selected cycling intensity 
that subject believed could be 

maintained for 30 min (every 4 
h) 4 

5 min no difference in self-
selected power output N/A no difference in 

HR 
decreased RPE on 

the second day 

(Bond et al., 
1986) 42 h crossover incremental cycling test to TF 

mean time 
to TF 21-
23 min 

decreased time to TF 

decreased 
VO2max; no 

difference in VO2 
at 25, 50 and 
75% VO2max 

decreased 
HRmax; 

decreased HR at 
25, 50 and 75% 

VO2max 

increased RPE at 
50 and 75% 

VO2max 

(Rodgers et 
al., 1995) 48h 

PRE 
values as 
control 

approximately 6 times each (30-
min sandbag carrying, walking, 
stake planting, arm ergometry 

and wheel barrow loads, 45-min 
stake planting and 2-min 
cycling workload test) 

various 

decreased 
performance for all 

tests in second half of 
intervention except 

cycling workload test 

N/A N/A N/A 

 48 h 

SD only 
group and 

SD + 
work 
group 

PWC170, perceived exertion test 
and self-paced walking test various 

decreased PWC170 in 
SD only group; 
decreased self-

selected walking 
speed and cycling 
power output at a 

given RPE in SD + 
work group 

N/A N/A increased RPE in 
SD only group 
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(Martin & 
Chen, 1984) 50 h crossover 

treadmill walking at 5.6 km·h-1 
and grade to elicit HR of 160 
beats·min-1 after normal sleep 

mean time 
35-46 min decreased time to TF no difference in 

VO2 
no difference in 

HR N/A 

(Myles, 1985) 54 h 
PRE 

values as 
control 

incremental cycling test to TF; 
10 x 30-s bouts as 2 each at 

100, 120, 140, 160 and 180 W 
NR N/A no difference in 

VO2max 
N/A 

no difference in 
RPE at any power 

output 

(Goodman et 
al., 1989) 60 h 

PRE 
values as 
control 

incremental cycling test to TF 
mean time 
to TF of 

19-20 min 

no difference in time 
to TF 

no difference in 
VO2max 

no difference in 
HRmax 

N/A 

(Symons et 
al., 1988b) 60 h crossover 

25-min treadmill run including 
8 min at 70% VO2max from 6-14 
min and 8 min at 80% VO2max 

from 14-22 min 

25 min N/A no difference in 
VO2 

increased HR at 
80% VO2max 

increased RPE at 
80% VO2max  

 60 h crossover 

5 min cycling bout at 50% 
VO2max then alternating 2 min at 
80% VO2max and 2 min recovery 

8 times 

21 min N/A N/A no difference in 
HR 

no difference in 
RPE 

(Plyley et al., 
1987) 64 h 

PRE 
values as 
control 

incremental cycling test to TF 
(every 12 h) NR NR decreased VO2max 

no difference in 
HRmax

5 N/A 

 64 h 
PRE 

values as 
control 

incremental cycling test to TF 
(every 12 h) with intervention 

of 1 h treadmill walking at 
~28% VO2max every 3 h 

NR NR decreased VO2max 
decreased 

HRmax
5 

increased RPE 
during submaximal 

exercise 

(Horne & 
Pettitt, 1984) 72 h 

separate 
control 
and SD 
groups 

10 min cycling bouts at 40, 60 
and 80% VO2max and 5 min rest 

between bouts 
40 min N/A no difference in 

VO2 
no difference in 

HR N/A 
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(Brodan et al., 
1969)6,7 120 h NR Harvard Step Test8 5 min9 

decreased score at 24 
and 48 h; no change in 
score at 72, 96 or 120 

h 

N/A N/A10 N/A 

HR, heart rate; HRmax, maximal heart rate; MAP, maximal power output; N/A, not applicable (not measured); NR, not reported (measured); PRE, testing before 
the sleep deprivation intervention; PWC170, estimated peak work capacity at a heart rate of 170 beats·min-1; RPE, ratings of perceived exertion; SD, sleep 
deprivation; TF, task failure; VO2, oxygen consumption; VO2max, maximal oxygen consumptionMAP, maximal power output 
 
1 baseline measures performed one week before intervention  

2 mean HR was lower intervention in both control and SD conditions; however, there was no difference between conditions  

3 only compared over the first 30 min of exercise because TF occurred at 31 min in SD in one subject 
4 no measures performed at 6:00 on the second day for either control or SD conditions 
5 decreased HRmax in protocol where subjects walked on a treadmill at ~28% VO2max for 1 h out of every 3 h during SD 
6 subjects were tested numerous times and that duration of SD varied. It is unknown if all subjects presented underwent 120 h of SD 
7 statistical analyses not explained and it is unclear whether statistical analyses were performed 
8 supplementary examinations conducted on a cycle ergometer not explained 
9 duration shortened when individuals performed poorly 
10 Harvard Step Test score calculated from recovery HR, thus indicating slower HR recovery at 24 and 48 h of SD and no difference after 72, 96 or 120 h of SD 
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distance 30 min after a 30-min fixed-intensity cycling bout, they also found no difference in 

RPE during either exercise bout. Martin (1981) reported increased iso-time RPE during a 

treadmill exercise to task failure over the first 31 min; however, this may be heavily 

influenced by time to task failure decreasing by 15-40% in half the subjects. Plyley et al. 

(1987) also observed increased RPE during 1 h of treadmill walking every 3 h at ~28% 

VO2max during 64 h of SD. Since RPE was not compared to the SD condition without exercise 

every 3 h and RPE was compared to pre-intervention values, multiple factors may have 

influenced RPE change (e.g. protocol boredom). Exercise bouts of 30 min or less at various 

intensities have been equivocal with some studies showing increased (Martin & Gaddis, 1981; 

Myles, 1985; Bond et al., 1986; Symons et al., 1988b; Rodgers et al., 1995), decreased 

(Meney et al., 1998) or unchanged (Martin & Gaddis, 1981; Myles, 1985; Symons et al., 

1988b; Rodgers et al., 1995; Skein et al., 2011) RPE with SD compared to control conditions. 

Early research indicated cognitive deficits during 90 h of SD (Patrick & Gilbert, 

1896); however, it was not until several decades later that there was agreement on the 

negative effect of SD on cognitive performance. There is now consensus that both partial and 

complete SD have profound effects on cognitive performance. This includes increased 

performance variability and slowed response speed (i.e. reaction time, RT), especially for 

simple measures of vigilance, attention and alertness that form the basis for higher cognitive 

functions. Reaction time is a frequently employed measure in the evaluation of simple 

cognitive functions. It has been observed that RT increases in psychomotor vigilance tasks 

with SD (Dinges et al., 1997). The failure to respond to a stimulus in a timely manner, 

referred to as omission, is also characteristic of SD (Dinges et al., 1997; Doran et al., 2001) 

and this becomes increasingly pronounced as the duration of SD increases. Conclusions about 

the effect of SD on higher-level cognitive functions, including memory, perception and 

executive functions (i.e. cognitive processes that control and regulate other cognitive 

processes), are however more equivocal. For example, Sagaspe et al. (2006) observed no 

effect of 36 h of SD on three short Stroop tasks (Color-Word, Emotional, and Specific) that 

measure selective attention, processing speed and cognitive flexibility. Similarly, 34 to 36 h 

of complete SD did not impair performance on the Wisconsin Card Sorting Test, a test of the 

ability to shift focus between single and multiple concepts (Binks et al., 1999). Conversely, 

Harrison and Horne (1998) observed decrements in word fluency and the capacity to inhibit 

strong contextual associations in order to create original responses. These equivocal results 

may indicate that SD does not cause a global impairment in cognitive functioning and that 

certain aspects of cognition are more greatly affected than others. 
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 A recent meta-analysis has shown that exercise improves cognitive performance 

across a variety of cognitive tasks and exercise intensities when subjects are not in a state of 

SD and that these cognitive improvements also transiently persist after exercise cessation 

(Chang et al., 2012). Most (Chmura et al., 1994; Chmura et al., 1998; Yagi et al., 1999; 

Davranche et al., 2005; Davranche et al., 2006a; Davranche et al., 2006b) but not all 

(Delignières et al., 1994; Brisswalter et al., 1997) studies investigating RT have shown that 

RT decreases during exercise at most intensities. Recent EMG investigations of RT 

amelioration with exercise indicate that this occurs due to reduced motor time without change 

in pre-motor time (Davranche et al., 2005, 2006b). Only a few studies have investigated the 

potential for exercise to act as a countermeasure to SD-induced cognitive deficits. These 

studies have found exercise to have short-term alerting effects (LeDuc et al., 2000) and to 

decrease one- and two-choice RTs to a visual stimulus (Scott et al., 2006). 

Two studies have previously examined central fatigue with SD and exercise (Skein et al., 

2011; Skein et al., 2013). Skein et al. (2013) investigated the effects of SD after a rugby 

league match, i.e. the effects of SD on recovery. Meanwhile, Skein et al. (2011) investigated 

the effects of SD on voluntary force, RPE and numerous other parameters, including a 30-min 

running bout at three intensities and a 50-min intermittent-sprint exercise protocol. Voluntary 

activation was assessed by ITT from direct stimulation of the muscle. Extremely low levels of 

voluntary activation (~75% in control conditions before exercise) were reported in team sport 

athletes at a representative club level, raising serious questions about the method of VA 

evaluation, and subsequent interpretation of the results. 

A number of studies have employed TMS to evaluate corticospinal changes in SD in 

healthy subjects. All such studies have evaluated the effects of SD in isolation (i.e. without 

exercise or other interventions). The protocols and main findings of all studies employing 

TMS in the evaluation of SD are detailed in Table 5. These studies have rarely investigated 

measures during voluntary muscular contractions (i.e. MEPs (Scalise et al., 2006) and CSPs 

(Civardi et al., 2001; Manganotti et al., 2001; Manganotti et al., 2006; Scalise et al., 2006; 

Kreuzer et al., 2011)) and when voluntary contractions were employed, the methodology was 

extremely vague. This limits the ability to interpret and apply these findings in the context of 

fatigue. One study observed a change in RMT with SD (De Gennaro et al., 2007), possibly 

due to SD of 40 h compared to the ~24-h periods employed in the other studies. Single-pulse 

TMS parameters more commonly investigated in fatigue studies (e.g. MEPs and CSPs) were 

unchanged except for Scalise et al. (2006), who observed decreased CSP. Changes to paired-

pulse TMS parameters in the relaxed muscle, however, indicated greater likelihood of SD-
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Table 5. The effects of complete sleep deprivation (SD) on parameters assessed by transcranial magnetic stimulation in healthy subjects and methodological 

details from these studies. 

Reference SD 
duration Stimulator Coil Muscle(s) 

investigated 
Thresholds 
measured 

Threshold 
change 

PRE-POST 
SD 

MEP 
(TMS 

%) 

MEP 
change 
PRE-
POST 

CSP 
(TMS 

%) 

CSP 
change 
PRE-
POST 

SICI 
(TMS%)1 

SICI 
change 
PRE-
POST 

ICF 
(TMS%)1 

ICF 
change 
PRE-
POST 

(Badawy et 
al., 2006) 

awake >20 
h non-stop 

in 
preceding 

24 h 

Magstim 
Bistim 200 

90-mm 
circular 

coil 

dominant 
abductor 

pollicis brevis 
RMT no change 120% 

RMT NR N/A N/A 
80% 

RMT/120
% RMT 

no change 
80% 

RMT/120% 
RMT 

no change 

(Civardi et 
al., 2001) ≥24 h Magstim 

Bistim 200 

figure-
of-eight 

coil 

right first 
dorsal 

interosseous 

AMT (10% 
MVC), 
RMT 

no change 
for AMT or 

RMT 

120% 
RMT NR 

150% 
RMT 

at 10% 
MVC 

no change 
80% 

RMT/120
% RMT 

decreased 
80% 

RMT/120% 
RMT 

decreased 

(Kreuzer et 
al., 2011) 24 h NR NR right abductor 

digiti minimi RMT no change N/A N/A 150% 
RMT no change 

80% 
RMT/ 

intensity 
at rest to 

elicit MEP 
of 1 mV 

decreased 

80% RMT/ 
intensity at 
rest to elicit 
MEP of 1 

mV 

no change 

(Manganotti 
et al., 2001) >24 h2 Magstim 

Bistim 200 
circular 

coil 

right thenar 
eminence 
muscles 

RMT no change3 120% 
RMT 

No 
change 

110, 
120, 

130% 
RMT4 

no 
change4 

70% 
RMT/120
% RMT 

no 
change5 

70% 
RMT/120% 

RMT 
no change 

(Manganotti 
et al., 2006) >24 h6 Magstim 

Bistim 200 

90-mm 
circular 

coil 

right thenar 
eminence 
muscles 

RMT no change 

110, 
120, 

130% 
RMT 

no 
change 

110, 
120, 

130% 
RMT4 

no change 
70% 

RMT/120
% RMT 

no change 
70% 

RMT/120% 
RMT 

no change 

(Scalise et 
al., 2006) ≥24 h Magstim 

Bistim 200 
double-

cone coil 
left opponens 

pollicis RMT no change NR7,8 no 
change NR8 decreased 

70% 
RMT/110-

120% 
RMT 

decreased N/A N/A 
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(De 
Gennaro et 
al., 2007) 

40 h9 Magstim 
200 

90-mm 
figure-
of-eight 

coil 

right abductor 
digiti minimi 

RMT, lower 
RMT, upper 

RMT 

increased 
RMT, 

increased 
lower RMT, 

increased 
upper RMT 

130% 
RMT NR N/A N/A 

70% 
RMT/130
% RMT 

no change 
70% 

RMT/130% 
RMT 

no change; 
increased 
in female 
sub-group 
post SD 

only 
ICF, intracortical facilitation; N/A, not applicable (the parameter was not evaluated); NR, not reported (includes parameters that were evaluated however the 
results are not reported in the article); PRE, before sleep deprivation; POST, after sleep deprivation; RMT, resting motor threshold; lower RMT, the highest TMS 
intensity where no stimuli elicited MEPs; upper RMT, the lowest TMS intensity where all stimuli elicited MEPs; SD, sleep deprivation; SICI, short-interval 
intracortical inhibition  
 
1 conditioning stimulus/test stimulus 
2 subjects supervised during 24 h of testing from the time they arrived at the laboratory  
3 significantly lower during the night than PRE or POST 
4 shorter CSP at 10% RMT late at night than PRE or POST 
5 shorter SICI during the night than PRE or POST 
6
 testing between 9 and 10 am each day

7 raw MEP amplitude 
8 voluntary contraction intensity indicated as moderate 
9 testing was always conducted at 10:30 pm meaning that there was 48 h between testing sessions, not 40 h as indicated in methods 
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induced cortical changes. Several studies observed decreased SICI (Civardi et al., 2001; 

Scalise et al., 2006; Kreuzer et al., 2011) and the ICF results were equivocal. Badawy et al. 

(2006) also reported SD of 20 h of continued wakefulness over the previous 24 h. It is 

debatable whether this period constitutes SD or an extended period of wakefulness despite the 

fact that this study, like almost all the others, failed to observe a difference between SD and 

control conditions.  

 After at least one night SD, exercise performance appears to decrease as exercise 

duration increases. Equivocal effects of SD on exercise HR, VO2 and RPE have also been 

observed. Decreased cognitive functioning is a well-established consequence of SD and this is 

especially true for simple cognitive measures (e.g. RT tasks). Meanwhile, there has been a 

lack of research into the effects of SD on neuromuscular function. The few studies employing 

TMS have observed few differences between control conditions and SD although most 

differences are equivocal. The most consistent observation was increased SICI with SD 

although all measures were conducted at rest and may thus not have any relation to exercise 

performance and responses in active muscle.   

 Further confirmation for the reduction of endurance exercise performance is required. 

Then it remains to be determined whether central fatigue, as quantified by VA, that develops 

during prolonged exercise is greater with SD. It is possible that decreased exercise 

performance and increased RPE during exercise with SD occur in conjunction with and 

possibly contribute to increased central fatigue. The possibility of mechanistic interaction 

among these parameters should be explored. 

 

SLEEP DEPRIVATION HIGHLIGHTS 
 

What is known: 

 SD impairs exercise performance, possibly to a larger extent with increasing exercise 
duration 

 The effects of SD on maximal strength, HR, RPE and VO2 are equivocal 
 SD induces profound negative effects on cognitive performance such as greater 

performance variability and slower RT, particularly amongst simple measures of 
alertness, attention and vigilance. 

 Cognitive processes are not equally sensitive to SD 
 Exercise permits a transient recovery of cognitive functioning during aerobic exercise 

with SD 
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What is not known:  

 Whether SD causes increased central and/or peripheral fatigue compared to  a control 
condition  

 Whether there are other effects of SD on motor cortical excitatory and/or inhibitory 
mechanisms  

 Whether changes in central mechanisms explain reduced exercise and cognitive 
performance with SD 

 The effects of SD duration and type (complete or partial) and exercise duration, 
intensity and modality on HR and RPE 

 

 

ULTRA-ENDURANCE EXERCISE 
 

Ultra-endurance exercise can be categorized as exercise of at least 4-5 h in duration. Many 

studies that examined prolonged exercise investigated whole-body exercise less than 2 h in 

duration and frequently at a higher intensity than that seen in ultra-endurance events. A 

characteristic feature of ultra-endurance exercise is a decrease in maximal force production of 

active muscles as observed in running (Davies & Thompson, 1986; Millet et al., 2002; Place 

et al., 2004; Easthope et al., 2010; Martin et al., 2010; Millet et al., 2011c; Saugy et al., 

2013), cycling (Lepers et al., 2002; Millet et al., 2003c; Ross et al., 2010b) and cross-country 

skiing (Forsberg et al., 1979; Viitasalo et al., 1982). This maximal strength loss can be 

attributed to both central and peripheral mechanisms. 

 The gold standard for determination of central fatigue is VA. As assessed by ITT, 

VAp decreases with ultra-endurance exercise (Millet et al., 2002; Place et al., 2004; Martin et 

al., 2010; Ross et al., 2010b; Millet et al., 2011c; Saugy et al., 2013). Other measures of 

central fatigue have been less frequently assessed. In running, RMS·Mmax-1 has been 

observed to decrease (Place et al., 2004; Martin et al., 2010; Millet et al., 2011c) or have a 

tendency to decrease (Millet et al., 2002) in the vastus lateralis but not rectus femoris or 

soleus. Similarly, cycling vastus lateralis and vastus medialis RMS·Mmax-1 decreased over 5 

h of cycling (Lepers et al., 2002). 

Indices of peripheral deficits after endurance exercise have been more equivocal than 

central ones. Most studies have observed decreased potentiated twitch amplitude indicative of 

reduced excitation-contraction coupling (Lepers et al., 2002; Martin et al., 2010; Ross et al., 

2010b; Millet et al., 2011c; Saugy et al., 2013) although Easthope et al. (2010) reported no 
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difference and Place et al. (2004) observed increased twitch amplitude that became significant 

only after 5 h of treadmill running. Further elucidation of the type of peripheral fatigue has 

been limited since evidence of low- or high-frequency fatigue has not been observed except in 

a single study after 166-km ultra-trail where low-frequency fatigue just reached statistical 

significance (Millet et al., 2011c). There is also evidence of action potential transmission 

perturbation although this is not consistent across muscles or even within the same muscle 

group. Numerous studies showed decreased M-wave amplitude in at least one muscle (Place 

et al., 2004; Martin et al., 2010; Ross et al., 2010b; Millet et al., 2011c) while Millet et al. 

(2002) reported increased soleus M-wave amplitude. Similarly, several studies observed 

increased M-wave duration in at least one muscle (Lepers et al., 2002; Easthope et al., 2010; 

Millet et al., 2011c) while another study observed decreased M-wave duration (Place et al., 

2004). Collectively, these results suggest that the presence of peripheral fatigue indices may 

depend on the muscle investigated, sport and intensity and duration of exercise. 

 Despite the body of literature demonstrating the importance of central fatigue, as 

determined by peripheral neural stimulation, after an ultra-endurance exercise bout, there are 

no published studies that have investigated a more precise source of this central fatigue. It 

remains to be determined whether central fatigue can be observed at the supraspinal level and 

what roles changes in corticospinal inhibition and excitation have in the development and 

presentation of central fatigue in ultra-endurance exercise. 

 

ULTRA-ENDURANCE EXERCISE HIGHLIGHTS 
 

What is known: 

 Ultra-endurance exercise is characterized by maximal force loss that is caused by a 
combination of central and peripheral mechanisms 

 Large decreases in VAp have been consistently observed 
 Peripheral indices of fatigue are not always present and may be dependent on the 

muscle investigated and intensity, duration and modality of exercise 

What is not known:  

 The precise location of central fatigue, especially between spinal and supraspinal 
locations 

 Whether supraspinal fatigue develops and contributes to ultra-endurance exercise 
limitations 

 The effects of excitatory and inhibitory corticospinal mechanisms in the context of 
central fatigue 
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The methodological hypotheses of this thesis are that: 

 The manner in which a target force is approached influences elicited MEP and SIT 

amplitudes 

 Different methods of determining optimal TMS intensity result in the selection of 

different intensities  

 

The applied hypotheses of this thesis are that: 

 SD induces exercise and cognitive performance deficits compared to a control 

condition 

 Exercise to task failure with SD induces greater central fatigue, including supraspinal 

fatigue, than in a control condition 

 Increased central and supraspinal fatigue and RPE contribute to exercise performance 

impairment 

 An ultra-endurance exercise bout induces significant central fatigue and a contribution 

occurs at the supraspinal level 

 The development of supraspinal fatigue occurs with either unchanged or increased 

MEP amplitude and unchanged CSP duration 
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REVUE DE LA LITTERATURE 

 

La fatigue se réfère généralement à une diminution de la performance mesurable. La fatigue 

physique peut se caractériser par une diminution de la force maximale volontaire ou de la 

puissance maximale. La fatigue est aussi un symptôme primaire dans de nombreuses 

maladies, en particulier les troubles neuromusculaires, et peut sérieusement affecter la 

qualité de vie. En même temps que le développement de la fatigue, le coût énergétique de 

l'activité physique et la perception subjective de l'effort (RPE) augmentent. Cela peut 

entraîner une diminution de l'intensité de l'exercice ou son arrêt. 

 

FATIGUE CENTRALE  
 

La fatigue peut être classifiée comme centrale ou périphérique. La partie centrale comprend 

tous les éléments proximaux à la jonction neuromusculaire, y compris le cerveau et les 

motoneurones supérieurs et inférieurs. Elle inclut également la diminution de la performance 

cognitive, des changements du contrôle moteur et de la commande motrice et l’augmentation 

du RPE. La fatigue centrale est évaluée par la détermination de la capacité à activer 

volontairement au maximum le muscle (activation volontaire, VA). La fatigue centrale a été 

observée pendant et après des contractions isométriques volontaires sous-maximales et 

maximales (MVC) intermittentes et maintenues ainsi qu’après des exercices de course à pied 

et vélo. Le mode, l'intensité et la durée d’exercice sont importants dans le développement de 

la fatigue centrale. 

La fatigue centrale peut être divisée en sections pour mieux comprendre où et comment la 

fatigue se présente. Des stimulations peuvent être délivrées au niveau du cortex moteur, de la 

jonction cervicomédullaire et aux racines des nerfs spinaux. D'autres techniques sont souvent 

utilisées pour étudier les perturbations centrales associées à l'exercice, telles que 

l'électromyographie (EMG), la spectroscopie proche infrarouge, l'échographie Doppler, 

l’imagerie par résonance magnétique et l'électroencéphalographie. 

 

STIMULATION MAGNETIQUE 
 

La stimulation magnétique est basée sur le taux de variation du champ magnétique émis par 

une bobine. Les anodes et des cathodes virtuelles créées induisent un courant électrique dans 
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le corps. Si le courant électrique induit est suffisamment fort, le tissu est stimulé. Les bobines 

de la stimulation magnétique sont de forme circulaire, en forme de huit ou de double cône. La 

stimulation magnétique, et la stimulation magnétique transcrânienne (TMS) en particulier, 

ont des applications dans de nombreux domaines. Par exemple, la TMS est utilisée pour 

étudier la psychiatrie, la vision, la langue, l'émotion, la plasticité du cerveau, la fatigue, les 

fonctions et la cartographie des régions corticales. 

 

STIMULATION MAGNETIQUE POUR LA FATIGUE 
 

La stimulation magnétique est utilisée comme un substitut à la stimulation électrique dans la 

recherche et l'évaluation clinique de la fatigue. Elle est utilisée pour stimuler les nerfs 

périphériques, le cortex moteur (TMS) et la jonction cervicomédullaire. 

 

STIMULATION MAGNETIQUE TRANSCRANIENNE 

 

La stimulation magnétique transcrânienne est une technique non invasive et sûre pour étudier 

le cortex moteur par excitation transynaptique des neurones pyramidaux et en partie par 

excitation directe des axones pyramidaux. La TMS peut induire des réponses à la fois 

excitatrices et inhibitrices mesurables par EMG. Le potentiel moteur évoqué (MEP) est la 

réponse électrique dans le muscle et indique l'excitabilité corticale. La période de silence 

corticale (CSP) est la période de quasi-silence d’EMG induite par la TMS après un MEP et 

est proposée comme étant représentative de l'inhibition intracorticale. La production 

motoneuronale induite par la TMS est très influencée par l'augmentation rapide de 

l’excitabilité corticospinale lors de contractions musculaires volontaires à intensités faibles et 

modérées. L'étude des paramètres centraux mesurés pendant une contraction musculaire 

avant, pendant et après l'exercice permet de mieux comprendre les origines des changements 

corticospinaux associés à la fatigue. Avec la stimulation de la jonction cervicomédullaire, la 

TMS peut être utilisée pour différencier les composantes corticales et spinales. Les 

nombreuses différences de technique et méthodologie entre les protocoles utilisant la TMS 

rendent l'interprétation et la comparaison de résultats difficiles. Ces différences concernent le 

type de stimulateurs, de bobines, la position de la bobine sur la tête et l'intensité de la 

stimulation. Les avantages et les inconvénients de ces méthodes n'ont pas encore été clarifiés 

et il reste à déterminer si les différentes méthodes utilisées pour déterminer l'intensité de la 
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TMS donnent la même intensité ou si la sélection de l'intensité de la TMS doit toujours être 

effectuée de la même manière. 

 

Membres supérieurs 

 

L’augmentation de l'amplitude de la secousse surimposée (SIT) évoquée par la TMS pendant 

les protocoles fatigants de type sous maximal et maximal indique que des mécanismes 

supraspinaux contribuent à la fatigue. Bien que cette observation souligne la présence de la 

fatigue supraspinale, elle n'élimine pas la possibilité de contributions spinales à la fatigue 

centrale. L’activation volontaire corticale (VAc) évaluée par la TMS diminue pendant les 

contractions isométriques fatigantes sous maximales et maximales suggérant que la fatigue 

supraspinale se développe progressivement. Les changements dans la taille de MEP indiquent 

des changements dans l'excitabilité corticospinale quand le MEP est normalisé à l’onde M 

maximale (Mmax) pour tenir compte des changements périphériques. Les modifications de 

MEPs et de potentiels cervicomédullaires évoqués (CMEPs) peuvent aussi être comparées 

pour identifier des changements aux niveaux corticaux et spinaux. Pendant les contractions 

isométriques sous-maximales maintenues, MEP·Mmax-1 augmente dans les fléchisseurs du 

coude en raison de l'augmentation de la commande motrice pour maintenir le niveau de 

force. Le fait que des changements d'excitabilité se produisent au niveau spinal ou cortical, 

ou les deux, reste à élucider. Une augmentation de MEP·Mmax-1 a été observée au cours 

d’une MVC maintenue alors que CMEP·Mmax-1 diminuait. Collectivement, cela indique une 

augmentation de l'excitabilité corticale pendant une MVC maintenue. MEP·Mmax-1 mesuré 

immédiatement après l'exercice est élevé par rapport à avant l’exercice, récupère en ~30 s 

après l'exercice et retourne à son amplitude initiale en quelques minutes. La CSP se prolonge 

pendant des contractions isométriques fatigantes maintenues. Pendant des contractions 

prolongées d'intensité faible ou modérée, la CSP augmente progressivement bien que pendant 

une MVC maintenue la CSP augmente rapidement au cours des premières secondes avant de 

se stabiliser. Ceci suggère que l'intensité de l'exercice est un facteur important qui influe sur 

l'inhibition intracorticale. Tout délai entre la fin de l’exercice et les évaluations après 

l’exercice peut masquer des changements dus à la récupération rapide de la CSP. 
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Membres inférieurs 

 

La SIT évoquée par TMS augmente au cours de contractions isométriques maintenues. Dans 

les protocoles de type isométrique et à l’exercice dynamique, VAc est généralement plus bas 

après l’exercice. Ces résultats indiquent que les exercices isométriques et dynamiques 

peuvent provoquer de la fatigue supraspinale. Au cours de contractions isométriques sous-

maximales des fléchisseurs plantaires maintenues, MEP·Mmax-1 augmente tandis que 

MEP·Mmax-1 reste stable au cours d’une MVC maintenue. Ceci est différent de 

l'augmentation de la MEP rapportée dans les membres supérieurs et renforce la suggestion 

que des mécanismes de contrôle neuronaux distincts existent pour les membres supérieurs et 

inférieurs. Un MEP·Mmax-1 inchangé a été observé après des protocoles de vélo d'intensités 

modérée et maximale. Au cours d’un récent protocole de vélo, aucun changement de 

MEP·Mmax-1 ni de CMEP·Mmax-1 n’a été rapporté bien que les MEPs et CMEPs normalisés 

à l’EMG volontaire aient diminué ou soient restés inchangés, respectivement. Ces résultats 

suggèrent une tendance générale à la diminution de l'excitabilité corticale au cours de 

l'exercice et à l’épuisement. Les demandes cardiorespiratoires et métaboliques plus élevées 

au cours de l’exercice comme le vélo ou la course à pied peuvent aussi influencer les 

réponses corticospinales évoquées. La CSP augmente au cours de MVC isométriques 

intermittentes et maintenues et elle reste inchangée après un protocole intermittent sous-

maximal. Après exercice dynamique, aucun changement de CSP n’a été observé, quel que soit 

le type d’exercice, sa durée ou son intensité. Ceci suggère que ce type d'exercice peut ne pas 

susciter d'inhibition intracorticale ou que le délai de l’évaluation après l’exercice est trop 

long pour observer un changement de CSP. Inversement, l'augmentation de la suppression 

d’EMG pendant le vélo indique une augmentation de l’inhibition intracorticale. Le fait que la 

suppression d’EMG peut être évaluée au cours de l'exercice et sans délai avant les mesures 

après l’exercice peut être importante pour expliquer cette différence. 

 

PRIVATION DE SOMMEIL 
 

La privation de sommeil (SD) se rapporte globalement à une condition de durée de sommeil 

insuffisante. De nombreuses études ont observé des déficits de la performance au cours de 

l'exercice aérobie après SD même si ce n'est pas toujours le cas. Les résultats d'études 

réalisées avec des tests de performance plus courtes en vélo et course à pied sont équivoques, 
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suggérant que la diminution de la performance est plus probable avec l’augmentation de la 

durée de l’exercice. Les effets de la SD sur la consommation d'oxygène et la fréquence 

cardiaque ne suggèrent pas de lien évident. Une augmentation du RPE a été observée dans 

certains protocoles de longue durée mais pas dans tous. L'effet de l'exercice de moins de 30 

minutes sur la RPE est aussi équivoque. La SD partielle ainsi que la SD complète ont des 

effets profonds sur la performance cognitive. Cela inclut une augmentation de la variabilité 

de la performance, un augmentation du temps de réaction et une augmentation de l’absence 

de réponse à un stimulus dans les délais impartis. Les effets de la SD sur les fonctions 

exécutives sont plus équivoques, ce qui suggère que la SD ne provoque pas une déficience 

globale du fonctionnement cognitif et que certains aspects de la cognition sont plus fortement 

touchés que d'autres. L'exercice améliore la performance lors de différentes tâches cognitives 

lorsque les sujets ne sont pas privés de sommeil et ces améliorations cognitives persistent 

transitoirement après la cessation de l'exercice. L'exercice pourrait ainsi agir comme une 

contre-mesure à des déficits cognitifs provoqués par la SD. La TMS a rarement été utilisée 

pour évaluer les changements corticospinaux induits par la SD chez les sujets sains au repos. 

Les résultats sont difficiles à interpréter dans le contexte de la fatigue parce que très peu 

d’études ont employé des contractions musculaires volontaires et leur méthodologie est 

relativement floue. Il reste à déterminer si la fatigue centrale est supérieure pendant 

l'exercice avec SD et si la diminution de la performance cognitive et à l'exercice et 

l’augmentation du RPE avec la SD fréquemment observées sont associées à une fatigue 

centrale élevée. 

 

EXERCICE D’ULTRA-ENDURANCE 
 

L’exercice d’ultra-endurance est un effort qui dure au minimum 4 à 5 h et jusqu’à plusieurs 

jours. Une caractéristique de l'exercice d’ultra-endurance est une diminution de la 

production de force maximale volontaire qui peut être attribuée aux mécanismes centraux et 

périphériques. Les indices de la fatigue centrale (par exemple, VA) baissent pendant le vélo et 

la course à pied bien que les déficits périphériques après un exercice d’ultra-endurance 

soient plus équivoques. La plupart des études ont observé une diminution de l’amplitude de la 

secousse potentiée ce qui suggère une réduction de couplage excitation-contraction. Il existe 

aussi des preuves inconsistantes de la perturbation de la transmission du potentiel d’action 

qui sont démontrés par des altérations de l’onde M. Le développement de la fatigue 
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périphérique peut dépendre du muscle, du type de sport et de l'intensité et durée de l'exercice. 

Malgré le développement de la fatigue centrale pendant l'exercice d’ultra-endurance, aucune 

étude n'a examiné si la fatigue se produit au niveau supraspinal et si les changements de 

l'inhibition et de l’excitation corticospinale ont un rôle dans le développement de la fatigue 

centrale au cours d’un exercice d’ultra-endurance. 

 

Les hypothèses méthodologiques de cette thèse sont les suivantes: 

• La manière dont une force de cible est approchée influence les amplitudes des MEPs et SITs 

induits par TMS 

• L’intensité de TMS optimale est différente selon les méthodes de détermination choisies 

 

Les hypothèses appliquées de cette thèse sont les suivantes: 

• La SD provoque des déficits de performance cognitive par comparaison à une condition 

contrôle 

• L’exercice conduit jusqu’à épuisement dans un état de SD provoque une plus grande fatigue 

centrale que dans une condition contrôle, et ceci est dû à une augmentation de la fatigue 

supraspinale  

• L’augmentation de fatigue centrale, de fatigue supraspinale et du RPE contribuent à la 

diminution de la performance à l’exercice avec SD 

• Un exercice d’ultra-endurance induit une fatigue centrale importante et une partie de cette 

fatigue centrale se situe au niveau supraspinal 

• Le développement de la fatigue supraspinale se produit avec une amplitude de MEP 

inchangée ou augmentée et avec une durée de CSP inchangée 
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INTRODUCTION TO STUDIES 1 AND 2 

 

The two studies forming the first part of this thesis examine two of the methodological issues 

presented in the literature review (Transcranial Magnetic Stimulation – Methodological 

Issues). Study 1 examined the effect of stimulating at the specified force on TMS-induced 

responses while force increased or decreased to the target force or remained stable at the 

target force. Many studies require subjects to perform brief isometric voluntary contractions 

and once the subject is at a pre-determined force, TMS is delivered. It has also been observed 

that corticospinal excitability increases rapidly as voluntary contraction intensity increases 

from rest to ~50% MVC in numerous muscles (Ugawa et al., 1995; Taylor et al., 1997). Thus, 

a change in contraction intensity may result in a transient change in corticospinal excitability, 

a change that may require time for stabilization once the contraction intensity itself has 

stabilized (i.e. a temporal delay between contraction intensity and corticospinal excitability). 

Thus, the corticospinal excitability present during a voluntary contraction may not be 

representative of the true corticospinal activity at the target force level if the latter was not 

maintained for a sufficient duration. Study 1 investigated whether the contraction intensity 

alone influences evoked responses or whether the manner in which a target force is 

approached, and any possible changes to corticospinal excitability arising therefrom, may also 

influence evoked responses.  

Study 2 examined three commonly employed methods used to determine TMS 

intensity in order to compare their effects on selection of stimulus intensity. This has 

enormous implications in both research and clinical settings because selection of a stimulus 

intensity that permits evaluation of the desired parameters may preclude repeat visits (i.e. 

follow-up visits might be necessary if the selected stimulus intensity was too high or too low 

to properly interpret the desired parameters), allow selection of the lowest required stimulus 

intensity to reduce subject discomfort, including undesired stimulation of non-targeted 

muscles, and save time. Different research groups use different methods of determining 

stimulus intensity. These methods include RMT, AMT and selection of a stimulus intensity to 

evoke MEP responses of a certain size. Groppa et al. (2012) indicate that optimal stimulus 

intensity occurs at the transition from the rising slope to the flat portion of the sigmoid 

stimulus-response (stimulus intensity-MEP amplitude/area) curve and suggest that this 

corresponds approximately to 140% RMT or 170% AMT. Instead of estimating optimal 

stimulus intensity, it may be more valid to select the intensity from an appropriate stimulus-
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response curve (i.e. with the voluntary optimal contraction intensity and curve analysis). It 

also remains to be evaluated whether the percentages of RMT and AMT frequently used to 

determine optimal stimulus intensity correspond to the optimal intensity as proposed by 

Groppa et al. (2012).  

In the study of fatigue, many protocols have employed brief voluntary contractions, 

especially in the evaluation of VAc. These brief voluntary contractions are of intensities 

≥50% MVC (Todd et al., 2003; Goodall et al., 2009; Sidhu et al., 2009a). As reported by 

Rupp et al. (2012), a series of 32 brief contractions at 50% MVC with at least 10 s rest 

between each followed by baseline evaluation of VAc is sufficient to produce residual fatigue 

that can remain in evidence 1 h later. Thus, a stimulus-response curve performed at 50% 

MVC would not be ideal despite corresponding to contraction intensities to be evaluated. It 

has not been evaluated whether stimulus-response curves at lower contraction intensities (e.g. 

10 or 20% MVC) may be used to determine a comparable stimulus intensity.   
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ABSTRACT 

 

The aim of this study was to determine whether the manner in which a target force is 

approached can influence the EMG parameters evoked by transcranial magnetic stimulation 

(TMS) during brief muscular contractions. The amplitude of motor-evoked potentials (MEPs) 

and duration of the silent period were recorded in 8 healthy participants in response to TMS 

delivered during brief isometric voluntary contractions of the quadriceps maintaining a target 

force (10 and 50% of maximal voluntary force) or gradually increasing or decreasing to it. 

This study demonstrates that MEPs, unlike silent periods, are influenced by the manner of 

reaching a low (10% of maximal voluntary force) but not moderate (50% of maximal 

voluntary force) force level. Clear instructions must be provided to research participants and 

patients. Rapidly increasing to a target force without exceeding it and maintaining the force 

before the delivery of TMS results in stable and representative MEP amplitudes. 

 

Keywords: transcranial magnetic stimulation; muscle contraction; motor evoked potential; 

cortical silent period; variability. 

 

RÉSUMÉ 

 

Le but de cette étude était de déterminer si la manière avec laquelle une force cible est 

atteinte peut influencer l’EMG et les paramètres mécaniques évoqués par la stimulation 

magnétique transcrânienne (TMS) lors de courtes contractions musculaires. L'amplitude des 

potentiels moteurs évoqués (MEP) et des secousses surimposées ainsi que la durée des 

périodes de silence ont été enregistrés chez 8 sujets sains en réponse à une TMS délivrée au 

cours de courtes contractions volontaires isométriques du quadriceps. Les stimulations ont 

été effectuées en maintenant une force cible (10 et 50% de la force maximale volontaire) ou 

en augmentant ou en diminuant progressivement la force produite jusqu’à cette cible. 

Contrairement à la période de silence, les MEPs et secousses surimposées sont influencés par 

la manière d’atteindre une force cible d’intensité faible (10% de la force maximale 

volontaire) mais pas modérée (50% de la force maximale volontaire). Cette étude démontre 

que des instructions claires doivent être fournies aux sujets participants à des protocoles de 

recherche ainsi qu’aux patients lors d’investigation clinique. Une montée rapide à la force 
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cible sans la dépasser et un maintien de cette force avant de délivrer la TMS permet d’obtenir 

des amplitudes de MEPs stables et représentatives. 

 

Mots clés : stimulation magnétique transcrânienne, contraction musculaire, potentiel moteur 

évoqué, période de silence corticale, variabilité  
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INTRODUCTION 
 

Transcranial magnetic stimulation (TMS) over the motor cortex during muscle contraction 

produces a motor-evoked potential (MEP) followed by interruption of ongoing 

electromyographic (EMG) activity, termed silent period (CSP). MEP and CSP are useful 

measures of corticospinal excitability and intracortical inhibition but can be highly variable in 

response to the same stimulus (Darling et al., 2006; Saisanen et al., 2008). As this variability 

may also be affected by different experimental conditions, it appears critical to identify 

optimal experimental protocols in order to accurately detect adaptive changes in motor 

cortical pathways. As participants contract to a visual target force, they may sometimes 

gradually increase to it or exceed it before decreasing to the target level. It is unknown 

whether the means of approaching a target force influences EMG responses to TMS. The 

main objective of this study was to investigate the effects of three means of reaching a desired 

force on CSP and MEP amplitude.  

 

METHODS 

 

Eight healthy males were studied (age: 29.5  7.8 years) after providing written informed 

consent. The study was conducted according to the Declaration of Helsinki and approved by 

the local ethics committee. 

Participants sat upright in a custom-built chair with both hips and right knee at 90° of 

flexion. The distal part of the right shank was connected with a non-compliant strap to a force 

transducer just proximal to the lateral malleolus. Surface EMG signals were recorded from the 

right vastus lateralis, vastus medialis, rectus femoris and biceps femoris muscles in bipolar 

configuration as previously described (Rupp et al., 2012). 

TMS (Magstim 200², Magstim Co., Whitland, UK) by double cone coil (110 mm 

diameter, 1.4 T) positioned over the left motor cortex was used to elicit MEPs and SPs in the 

contralateral knee extensors. Optimal coil position and stimulus intensity corresponded to the 

site and intensity that elicited the largest MEP amplitudes in quadriceps muscles and small 

MEPs in biceps femoris (Rupp et al., 2012). 

Participants performed 24 contractions of the right knee extensors (4 brief contractions 

for each of six conditions, the first three at 10% of maximum voluntary contraction (MVC) 

then three at 50% MVC in random order with visual feedback). The conditions were i) 

increasing force at a constant rate to 10% MVC over ~2 s (increasing, INC10%), ii) contracting 
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rapidly to 10% MVC and maintaining the force for ~2 s (plateau, PLA10%), iii) contracting 

rapidly to 20% MVC and maintaining the force for ~1 s then decreasing force at a constant 

rate to 10% MVC over 1-2 s (decreasing, DEC10%), iv) contracting rapidly to 40% MVC and 

maintaining the force for ~1 s then increasing force at a constant rate to 50% MVC over 1-2 s 

(INC50%), v) contracting rapidly to 50% MVC and maintaining the force for ~2 s (PLA50%) 

and vi) contracting rapidly to 60% MVC and maintaining the force for ~1 s then decreasing 

force at a constant rate to 50% MVC over 1-2 s (DEC50%). PLA stimuli were manually 

delivered after maintenance of force for ~2 s. INC and DEC stimuli were delivered 

automatically once the force increased (INC) or decreased (DEC) to the threshold. After each 

stimulus, participants were asked to return as fast as possible to the target force level. The 

inter-contraction interval was 20 s for conditions i-iii and 30 s for conditions iv-vi.  

MEP amplitude and EMG root mean square (RMS) for 200 ms prior to the stimulus 

were measured offline. Contraction time (CT) and CSP were calculated as the intervals from 

voluntary force initiation to the stimulus and from the stimulus to the resumption of 

continuous EMG (Hunter et al., 2008), respectively. MEP, CSP, RMS and CT are the means 

of four contractions for each of the six conditions. Within-participant coefficients of variation 

(CVs) for MEP and CSP were also determined for each condition. 

Statistical significance was set at P < 0.05. Data are presented as mean  standard 

deviation. To assess condition differences, one-way analyses of variance for repeated 

measures were conducted on mean values for each muscle at both contraction levels. MEP 

and CSP CVs were also analyzed to determine whether parameter variability was affected by 

condition. Tukey’s post-hoc tests were used when necessary.  

 

RESULTS 
 

MEP amplitude was lower in DEC10% than both INC10% and PLA10% for all muscles (P < 0.01, 

Figure 15A). MEP amplitude was similar for all conditions at 50% MVC. There was no 

difference in CSP at either 10% (Figure 15B) or 50% MVC. MEP CVs were similar between 

the three conditions for all muscles and both force levels. CSP CVs were higher in DEC at 

both force levels for the vastus lateralis, in DEC10% for the rectus femoris and in DEC50% for 

the vastus medialis (all P < 0.05). CT was longer in DEC10% (3.69  0.38 s) than both PLA10% 

(2.75  0.33 s) and INC10% (1.86  0.42 s) (P < 0.01) and shorter in DEC50% (2.62  0.26 s) 
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than in INC50% (3.13  0.63 s) (P < 0.05). EMG RMS was similar between the three 

conditions for all muscles at both force levels. 

 

 

Figure 15. Effects of different means of approaching a target force on MEP amplitude (Panel A) and 

CSP duration (Panel B) for the vastus lateralis, rectus femoris and vastus medialis at 10% MVC. * 

Significant difference between the decreasing and plateau conditions (P < 0.01). † Significant 

difference between the decreasing and increasing conditions (P < 0.01). Due to background EMG 

noise, it was only possible to determine CSPs in 6 participants. 

DISCUSSION 

 

The main result of this study is that, unlike the CSP, the MEP was influenced in all quadriceps 

muscles by the manner of approaching a low force level; the DEC10% condition produced 

smaller MEP amplitudes.  

This condition effect might be caused by differences in volitional EMG before the 

stimulus (Sidhu et al., 2012a) and/or CT between conditions. However, the similar volitional 

EMG for conditions at both 10 and 50% MVC and the absence of MEP changes between 
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conditions presenting different CT such as at 50% MVC and between INC10% and PLA10% 

suggest otherwise.  

In DEC10%, the force reduction from 20% to 10% MVC may have transiently 

decreased the spinal excitability at stimulus application leading to reduced MEP amplitude 

without affecting the intracortical inhibitory mechanisms responsible for the CSP. A similar 

transient depression in spinal excitability in DEC50% may have been masked by the 

substantially higher corticospinal excitability required to exert a contraction at 50% MVC. 

The highly variable CSP in both DEC10% and DEC50% suggest that the instructions given to 

the participants (i.e. returning as fast as possible to the desired force level) were more difficult 

to follow in these conditions (Mathis et al., 1998). 

Particular attention is needed regarding the manner a low target force is reached before 

delivering a TMS pulse in order to obtain stable and representative MEP and CSP 

measurements. These results highlight the importance of not surpassing the target force before 

delivering the TMS.  
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ABSTRACT 

 

Transcranial magnetic stimulation (TMS) is a widely-used investigative technique in motor 

cortical evaluation. Recently, there has been a surge in TMS studies evaluating lower-limb 

fatigue. TMS intensity of 120-130% resting motor threshold (RMT) and 120% active motor 

threshold (AMT) and TMS intensity determined using stimulus-response curves during 

muscular contraction have been used in these studies. With the expansion of fatigue research 

in locomotion, the quadriceps femoris is increasingly of interest. It is important to select a 

stimulus intensity appropriate to evaluate the variables, including voluntary activation, being 

measured in this functionally important muscle group. This study assessed whether selected 

quadriceps TMS stimulus intensity determined by frequently employed methods is similar 

between methods and muscles. Stimulus intensity in vastus lateralis, rectus femoris and vastus 

medialis muscles was determined by RMT, AMT (i.e. during brief voluntary contractions at 

10% maximal voluntary force, MVC) and maximal motor-evoked potential (MEP) amplitude 

from stimulus-response curves during brief voluntary contractions at 10, 20 and 50% MVC at 

different stimulus intensities. Stimulus intensity determined from a 10% MVC stimulus-

response curve and at 120 and 130% RMT was higher than stimulus intensity at 120% AMT 

(lowest) and from a 50% MVC stimulus-response curve (P < 0.05). Stimulus intensity from a 

20% MVC stimulus-response curve was similar to 120% RMT and 50% MVC stimulus-

response curve. Mean stimulus intensity for stimulus-response curves at 10, 20 and 50% 

MVC corresponded to approximately 135, 115 and 100% RMT and 180, 155 and 130% 

AMT, respectively. Selected stimulus intensity was similar between muscles for all methods 

(P > 0.05). The higher stimulus intensity at 120-130% RMT with the potential to cause 

increased coactivation and discomfort and the lower stimulus intensity at 120% AMT that 

may underestimate evoked responses preclude their use to accurately determine maximal 

MEP amplitude. Similar optimal stimulus intensity and maximal MEP amplitudes at 20 and 

50% MVC and the minimal risk of residual fatigue at 20% MVC suggest that a 20% MVC 

stimulus-response curve is appropriate for determining TMS stimulus intensity. One muscle 

may also act as a surrogate in determining optimal quadriceps femoris stimulation intensity. 

 

Keywords: stimulus intensity determination, fatigue, methodological considerations. 
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RÉSUMÉ 
 

La stimulation magnétique transcrânienne (TMS) est une technique d'investigation souvent 

utilisée dans l'évaluation du cortex moteur. Récemment, il y a eu une augmentation 

exponentielle du nombre de recherches évaluant la fatigue des membres inférieurs par TMS. 

Les intensités de TMS généralement utilisées dans ces études correspondent à 120-130% du 

seuil moteur de repos (RMT), 120% du seuil moteur actif (AMT) ou ont été déterminées à 

partir des courbes stimulus-réponse obtenues au cours de contractions musculaires sous-

maximales. Dans le cadre de la recherche sur la fatigue et la locomotion, le quadriceps est un 

muscle particulièrement important. Il est essentiel de choisir une intensité de stimulation 

pertinente pour évaluer les variables mesurée dans ce groupe musculaire fonctionnellement 

clef, par exemple pour l’évaluation de l’activation volontaire. La présente étude a évalué si 

les intensités de stimulation du quadriceps déterminées par les méthodes fréquemment 

employées sont similaires entre elles et ceci au niveau des différents chefs du muscle 

quadriceps. L'intensité de la stimulation du vastus lateralis, rectus femoris et vastus medialis 

a été déterminée par RMT, AMT (i.e. pendant de brèves contractions volontaires à 10% de la 

force maximale volontaire, MVC) et à partir de l’amplitude maximale du potentiel moteur 

évoqué (MEP) obtenue sur des courbes de stimulus-réponse pendant de brèves contractions 

volontaires à 10, 20 et 50% MVC. L'intensité de la stimulation déterminée à partir d'une 

courbe stimulus-réponse à 10% MVC et à 120 et 130% RMT était plus haute que l'intensité de 

la stimulation à 120% AMT (la plus basse) et d'une courbe stimulus-réponse à 50% MVC (P 

< 0,05). L'intensité de la stimulation déterminée par une courbe stimulus-réponse à 20% 

MVC était similaire à celle obtenue à 120% RMT et par courbe stimulus-réponse à 50% 

MVC. Les intensités de stimulation moyennes pour les courbes stimulus-réponse à 10, 20 et 

50% MVC correspondaient à environ 135, 115 et 100% RMT, respectivement, et 180, 155 et 

130% AMT, respectivement. Les intensités de stimulation choisies étaient similaires entre les 

muscles pour toutes les méthodes (P > 0,05). Les intensités de stimulation plus élevées 

correspondant à 120-130% RMT avec l’occurrence d’une augmentation de co-activation et 

de l'inconfort ainsi que l'intensité de stimulation plus basse à 120% AMT pouvant sous-

estimer les réponses évoquées empêchent leur utilisation dans la détermination de l'amplitude 

de MEP maximale. Les intensités optimales et amplitudes de MEP maximales similaires 

obtenues avec les courbes stimulus-réponse à 20 et 50% MVC ainsi qu’un risque inférieur de 

fatigue résiduelle à 20% MVC par rapport à 50% MVC suggèrent qu'une courbe stimulus-

réponse à 20% MVC est recommandée pour déterminer l’intensité de stimulation optimale 
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par TMS dans le contexte de l’étude des réponses à l’effort et à la fatigue. Un seul chef du 

quadriceps peut également être représentatif du quadriceps pour déterminer l’intensité 

optimale de TMS de ce groupe musculaire dans son ensemble. 

 

Mots clés : Détermination de l’intensité du stimulus, fatigue, considération méthodologique  
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INTRODUCTION 

Transcranial magnetic stimulation (TMS) is a safe non-invasive technique employed to 

investigate the motor cortex. A rapidly changing magnetic field is produced by a coil placed 

over the target area of the brain and this causes electromagnetic induction to generate an 

electrical current in the brain. When sufficiently strong, this electrical current causes direct 

and trans-synaptic depolarization, and stimulation, of the pyramidal tract axons. 

Selection of suitable TMS intensity is an important concern for researchers and 

clinicians. While being non-invasive, stimulation of the brain may be uncomfortable, 

particularly at high stimulus intensities. Thus, reducing the number of stimuli necessary to 

determine stimulus intensity and selecting the minimum intensity necessary to appropriately 

measure the desired parameters is beneficial to both investigators and subjects. The latter 

point has been largely absent in the literature despite several studies finding either similar or 

contradictory results when two different stimulus intensities were employed (McNeil et al., 

2011a; Temesi et al., 2013). The majority of recent research has been conducted on clinical 

populations, and thus, recommendations are generally directed towards investigations in 

clinical populations or for clinical purposes (Lefaucheur et al., 2011; Groppa et al., 2012). 

International Federation of Clinical Neurophysiology (IFCN) practical guidelines (Groppa et 

al., 2012) discuss different methods of determining cortical motor threshold in relaxed muscle 

(RMT, resting motor threshold) and subsequent implications for stimulus intensity. These 

practical guidelines state that optimal intensity for TMS should correspond to the transition 

from the rising slope to the flat portion of the sigmoid stimulus-response (stimulator intensity-

elicited motor-evoked potential (MEP) amplitude) curve and that this optimal intensity 

corresponds approximately to 140% RMT or 170% cortical motor threshold determined 

during voluntary muscular contraction (AMT, active motor threshold) (Groppa et al., 2012). 

Stimulus-response curves are not currently used for diagnostic purposes despite providing a 

direct means to determine stimulus intensity to elicit maximal MEP responses. This type of 

method has recently been employed by several research groups in the applied exercise 

sciences (Sidhu et al., 2009b; Klass et al., 2012; Rupp et al., 2012; Temesi et al., 2013) while 

several other studies have determined stimulus intensity from RMT or AMT (Sammut et al., 

1995; Goodall et al., 2012; Iguchi & Shields, 2012; Weier et al., 2012). It remains to be 

determined if commonly employed selection of TMS intensity as determined by RMT, AMT 

and stimulus-response curves in this applied field result in selection of similar TMS 

intensities. Furthermore, practical guidelines for TMS intensity determination are normally 

http://en.wikipedia.org/wiki/Magnetic_field
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based on investigations in upper-limb muscles. Data from lower-limb muscles are limited 

despite the functional importance of the lower limbs, specifically in regards to locomotion. 

Studies utilizing TMS to investigate fatigue or acute exercise interventions in lower-

limb muscles have used various methods to determine stimulus intensity. The most common 

of these has been RMT (the lowest intensity necessary to elicit MEPs, usually of at least 0.05 

mV in amplitude, in at least one half of a given number of stimuli in the relaxed muscle) 

(Sammut et al., 1995; Lentz & Nielsen, 2002; Mileva et al., 2009; Goodall et al., 2012; 

Tallent et al., 2012). Another common method is AMT (the lowest intensity necessary to 

elicit detectable MEPs or MEPs of a pre-determined amplitude in at least one half of a given 

number of stimuli during weak voluntary contraction) (Kalmar & Cafarelli, 2006; Hilty et al., 

2011; Iguchi & Shields, 2012; Krishnan & Dhaher, 2012; Weier et al., 2012). More recently, 

numerous studies have selected a stimulus intensity to evoke MEP responses of a certain size 

in the target muscle during voluntary contraction (Sidhu et al., 2009a, b; Klass et al., 2012; 

Rupp et al., 2012; Fernandez-del-Olmo et al., 2013; Temesi et al., 2013). Some studies are 

unclear about the intensity chosen for TMS (McKay et al., 1995) or whether intensity 

determination was performed with the muscle in the relaxed or contracted state (Hollge et al., 

1997). Other studies based stimulus intensity on the intensity chosen to stimulate another 

muscle group (Verin et al., 2004) or simply selected maximal stimulator output (Gibbons et 

al., 2010). 

Each of these methods produces a unique set of concerns. Cortical excitability is 

intrinsically linked to voluntary contraction intensity. While cortical excitability is low at rest, 

it increases rapidly as contraction intensity increases from rest (Ugawa et al., 1995; Taylor et 

al., 1997). Whether determination of stimulus intensity in relaxed muscle (as with RMT) is 

appropriate for conducting measures in contracting muscle is unknown. Similarly, it remains 

to be determined whether determining stimulus intensity at a different contraction level than 

that employed during evaluation is appropriate.  

An additional complexity when evaluating leg muscles (e.g. knee extensors, knee 

flexors, plantar flexors) is that, unlike the elbow flexors, there is not a single dominant 

muscle. Whether it is appropriate to use a single muscle as a surrogate for all muscles within a 

muscle group (e.g. rectus femoris (RF) for the quadriceps femoris) when determining 

stimulus intensity remains to be investigated, especially since muscles and muscle groups may 

respond differently to TMS. This is a pertinent issue given both the functional importance of 

the quadriceps femoris and its increasing prevalence in studies utilizing TMS in the 
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evaluation of fatigue (Sidhu et al., 2009b; Goodall et al., 2010; Goodall et al., 2012; Klass et 

al., 2012; Temesi et al., 2013). 

Fatigue of the quadriceps is increasingly being evaluated in both healthy and clinical 

populations. An important measure in fatigue evaluation is voluntary activation (VA) 

(Gandevia, 2001; Gruet et al., 2013a). Evaluation of cortical VA utilizes superimposed 

twitches (SIT) evoked by TMS delivered during moderate- to high-intensity voluntary 

contractions (i.e. ≥50% maximal voluntary force, MVC) (Todd et al., 2003; Goodall et al., 

2009; Sidhu et al., 2009a). Evoked MEP responses at ~50% MVC are theoretically maximal 

due to the firing of almost all motoneurons and maximal corticospinal excitability (Taylor et 

al., 1997; Todd et al., 2003; Sidhu et al., 2009a). Since a key component of VA is the 

requirement that the muscle is driven maximally, maximal MEP amplitude is believed to be 

essential to ensure that SIT, and by extension VA, is not underestimated. Recently, 

quadriceps femoris studies have begun using TMS-induced antagonist coactivation as a 

criterion in the selection of TMS intensity (Sidhu et al., 2009b; Goodall et al., 2012; Klass et 

al., 2012; Rupp et al., 2012) since this may cause SIT underestimation, and thus 

underestimate the development of central fatigue. 

A comparison of selected stimulus intensity between published studies is impossible 

due to the use of different methods and equipment and different study aims. Thus, the primary 

objective of this study was to compare different methods of determining TMS intensity for the 

purposes of fatigue evaluation in the quadriceps femoris on selected stimulus intensity. 

Because of the use of voluntary contractions ≥50% MVC to determine VA and because 

maximal MEP responses have been observed to occur during contractions of approximately 

50% MVC, a stimulus-response curve at 50% MVC was used as a baseline for comparison 

with other methods (i.e. this method most closely resembles fatigue evaluation). By using the 

same stimulator, coil and stimulation site, this protocol permits the isolation of differences 

between methods of stimulus intensity determination. The secondary objective was to 

determine whether selected stimulus intensity is similar for each of the three superficial 

quadriceps muscles.  
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METHODS 

 

Subjects 

Eight healthy active men participated in this study (means ± standard deviation: age, 30  8 

years; height, 181 ± 5 cm; body mass, 73 ± 4 kg). Subjects were informed of the experimental 

protocol and all associated risks prior to giving written informed consent as part of a medical 

inclusion. All procedures conformed to the Declaration of Helsinki and were approved by the 

local ethics committee. 

 

Experimental design 

Each subject completed one familiarization session and one experimental session. During the 

familiarization session, subjects were introduced to all procedures conducted in the 

experimental session and repeated trials until they performed all tests consistently and as 

directed. The largest MVC from the familiarization session was used to calculate contraction 

intensities and the reproducibility of MVC between sessions was verified. 

 

Force and electromyographic recordings 

Knee extensor force was measured during voluntary and evoked contractions by a calibrated 

force transducer (Meiri F2732 200 daN, Celians, Montauban, France) with amplifier that was 

attached by a non-compliant strap to the right leg immediately proximal to the malleoli of the 

ankle joint. Subjects were seated upright in a custom-built chair with both hips and right knee 

at 90° of flexion. The force transducer was fixed to the chair such that force was measured in 

direct line to the applied force. Electromyographic (EMG) activity of the right knee extensors 

(RF, vastus lateralis (VL) and vastus medialis (VM)) and flexors (biceps femoris, BF) was 

recorded. 

EMG activity was recorded with a pair of self-adhesive surface electrodes (Meditrace 

100, Covidien, Mansfield, USA) in bipolar configuration with a 30-mm interelectrode 

distance and the reference on the patella. Low impedance (<5 kΩ) between electrodes was 

obtained by shaving, gently abrading the skin with sandpaper and then cleaning it with 

isopropyl alcohol. Signals were analogue-to-digitally converted at a sampling rate of 2000 Hz 

by PowerLab system (16/30—ML880/P, ADInstruments, Bella Vista, Australia) and octal 

bio-amplifier (ML138, ADInstruments) with bandpass filter (5-500 Hz) and analyzed offline 

using Labchart 7 software (ADInstruments). 
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Femoral nerve stimulation 

Single electrical stimuli of 1-ms duration were delivered via constant-current stimulator 

(DS7A, Digitimer, Welwyn Garden City, Hertfordshire, UK) to the right femoral nerve via a 

30-mm diameter surface cathode in the femoral triangle (Meditrace 100, Covidien, Mansfield, 

USA) and 50 x 90 mm rectangular anode (Durastick Plus, DJO Global, Vista, USA) on the 

gluteus maximus. Single stimuli were delivered incrementally until plateaus in maximal M-

wave (Mmax) and twitch amplitude were reached. Three supramaximal stimuli at 130% of the 

intensity to produce maximal Mmax and twitch responses (52 ± 9 mA) were delivered at rest.  

 

Transcranial magnetic stimulation 

Single-pulses (0.1-ms rise time; 1-ms duration) were manually delivered by TMS to elicit 

MEPs and twitches in the right knee extensors. The contralateral motor cortex was stimulated 

by a magnetic stimulator (Magstim 200², The Magstim Company Ltd, Whitland, UK) with 

110-mm double-cone coil (maximum output of 1.4 T) to induce a postero-anterior current. 

The coil was manually controlled by an experienced investigator throughout the protocol. 

Subjects wore a cervical collar during all TMS measures to stabilize the head and neck. 

 

Determination of coil position 

Subjects wore a latex swim cap on which lines were drawn between the preauricular points 

and from nasion to inion to identify the vertex. Every centimeter from 1 cm anterior to 3 cm 

posterior to the vertex was demarcated along the nasal-inion line and also to 2 cm over the left 

motor cortex. At each point a stimulus was delivered at 70% maximal stimulator output 

during brief voluntary contraction of the knee extensors at 10% MVC. Target force was 

displayed on a screen and subjects were provided with real-time visual feedback during all 

voluntary contractions throughout the protocol. The coil was positioned at the site evoking the 

largest VL (39.5 ± 19.2% Mmax), RF (75.9 ± 26.7% Mmax) and VM (45.0 ± 21.3% Mmax) 

MEP amplitudes and SIT with minimal BF MEP amplitude. This coil position was drawn 

directly onto the swim cap and used throughout the protocol. Coil position was also verified 

before the delivery of each stimulus. 
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Determination of stimulus intensity 

Four methods of determining stimulus intensity were investigated in the following order: 1) 

RMT: Beginning at 30% of maximal stimulator output and increasing by 5% increments to 

80%, subjects received 10 stimuli at each stimulus intensity with the knee extensors 

completely relaxed. Stimuli were delivered at 10-s intervals. 2) AMT/stimulus-response curve 

at 10% MVC: Subjects performed brief voluntary contractions (~2-3 s) of the knee extensors 

with TMS delivered 10 times at 20, 25, 30, 35 and then 40% of maximal stimulator output. 

Subjects then performed brief contractions with TMS delivered 4 consecutive times at each of 

the following randomly-ordered stimulus intensities: 50, 60, 70 and 80% of maximal 

stimulator output. All stimuli were delivered at 15-s intervals. 3) Stimulus-response curve at 

20% MVC: Subjects performed brief contractions (~2-3 s) of the knee extensors with TMS 

delivered 4 consecutive times at each of the following randomly-ordered stimulus intensities: 

20, 30, 40, 50, 60, 70 and 80% maximal stimulator output. Stimuli were delivered at 15-s 

intervals. 4) Stimulus-response curve at 50% MVC: Similar to the stimulus-response curve at 

20% MVC except that stimuli were delivered at 20-s intervals. During voluntary contractions, 

TMS was always delivered once the subject had contracted to the appropriate force level and 

the force had stabilized (Gruet et al., 2013b) and 10 min rest was provided between each of 

the four methods. 

 

Data analysis 

Peak-to-peak MEP and Mmax amplitudes were measured offline for each individual response. 

Individual MEP and Mmax amplitudes were then averaged and MEP amplitudes were 

normalized to Mmax amplitudes evoked in relaxed muscle. Data collected from a similar 

group of subjects in our laboratory indicated Mmax amplitudes were similar at rest and at the 

contraction intensities employed in this study (i.e. up to 50% MVC, unpublished observations, 

2012). RMT was determined as the lowest stimulus intensity producing at least 5 MEPs of at 

least 0.05 mV from 10 stimuli. RMT was also determined from 6 and 8 stimuli (minimum of 

3 and 4 MEPs, respectively). Stimulus intensities of 120 and 130% RMT were determined for 

comparison with methods used in other lower-limb studies (Sammut et al., 1995; Lentz & 

Nielsen, 2002; Ross et al., 2007; Goodall et al., 2009; Goodall et al., 2010; Goodall et al., 

2012; Tallent et al., 2012). AMT was determined by visual identification of MEPs above 

background EMG from contractions at 10% MVC (Sacco et al., 1999) and corresponded to 

the lowest stimulus intensity producing MEPs in at least half the contractions. Classically, 

fixed thresholds are used to determine the presence of a MEP (i.e. 0.2 mV at 10% MVC 
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(Weier et al., 2012)); however, the large variability in background EMG activity for the three 

measured quadriceps muscles rendered this method impractical. AMT was also determined 

from 6 and 8 stimuli (minimum of 3 and 4 MEPs, respectively). The stimulus intensity of 

120% AMT was determined for comparison because of its use in other lower-limb studies 

(Iguchi & Shields, 2012; Weier et al., 2012). Stimulus-response curves at 10, 20 and 50% 

MVC were used to determine stimulus intensity by identifying the minimum stimulus 

intensity to evoke maximal MEP amplitude (i.e. the lowest intensity resulting in an increase 

of less than 5% MEP amplitude at higher stimulus intensities). Individual MEPs from a 

typical stimulus-response curve at 20% MVC for one subject are presented in Figure 16. 

Antagonist MEP amplitude was examined to verify that this stimulus intensity did not elicit 

increased TMS-induced coactivation. For the 10% MVC stimulus-response curve, only the 

first 4 stimuli at 20, 30 and 40% maximal stimulator output were considered. Where a plateau 

was not reached, MEP amplitude at 80% maximal stimulator output was compared to the 

estimated maximal MEP amplitude from Boltzmann modeling (see next paragraph). If mean 

MEP amplitude was greater or equal to the maximal modeled MEP amplitude, 80% was 

accepted as being part of the plateau and selected as the appropriate stimulus intensity. 

Otherwise, a plateau was determined to not have occurred and the data was excluded from 

analyses. 

MEP amplitude from stimulus-response curves were modeled with a Boltzmann 

sigmoidal function (Devanne et al., 1997) using the equation: 

       ሺ ሻ              [      ]  
 

where MEPmax is the estimated maximal MEP amplitude, S is the stimulus intensity, S50 is 

the stimulus intensity required to produce a response equal to half MEPmax and k is the slope 

parameter (inversely proportional to maximal function steepness). To eliminate the effects of 

background EMG in the modeling process, an amplitude of 0 mV was assigned to all 

responses in which there was no discernible MEP. 

 

Statistics 

Statistical analyses were performed with Statistica (version 8, Tulsa, USA). The Shapiro-Wilk 

test was used to verify data normality. One-way repeated measures analyses of variance 
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Figure 16. Representative individual motor-evoked potentials from a stimulus-response curve. 

Representative individual motor-evoked potentials elicited in the vastus lateralis (VL), rectus femoris 

(RF), vastus medialis (VM) and and biceps femoris (BF) for one subject from a stimulus-response 

curve at 20% maximal voluntary force. 

 

 (ANOVA) were used to evaluate the method of stimulus determination (120 and 130% RMT, 

120% AMT and stimulus-response curves), any difference between muscles and the effect of 

contraction intensity on Boltzmann parameters. One-way repeated measures ANOVA were 

also used to compare AMT and RMT determined from 6, 8 and 10 stimuli. When ANOVA 

revealed significant interactions, the Newman-Keuls post-hoc test was used to identify 

differences. Dependent t-tests were used to compare Boltzmann and linear relationships for 

the coefficient of determination of MEP amplitude. Statistical significance was set at p < 0.05. 

All data are expressed as means ± standard deviation except Figure 2 where values are 

expressed as means ± standard error of the mean. 
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RESULTS 
 

Selected stimulus intensity 

One subject did not reach a plateau in MEP amplitude in RF with the 10% MVC stimulus-

response curve and was thus excluded from all relevant analyses.   

Neither AMT nor RMT were different whether determination occurred with the first 6, 

8 or 10 responses at each stimulus intensity for any muscle (P > 0.05). Therefore all 

subsequent analyses were conducted based upon AMT and RMT determined from 10 stimuli 

at each stimulus intensity. Selected TMS intensity determined by RMT, AMT and stimulus-

response curves are presented in Figure 17. Stimulus intensities determined from RMT (120 

and 130%) and stimulus-response curves at 10% MVC were higher than the intensity 

determined by stimulus-response curve at 50% MVC (VL: F(5,35) = 7.00, P < 0.001; RF: 

F(5,30) = 8.13, P < 0.001; VM: F(5,35) = 8.71, P < 0.001). Stimulus intensity at 120% AMT 

was lower than stimulus intensity determined from stimulus-response curves at both 10 and 

20% MVC (P < 0.05). Table 6 presents the selected stimulus intensities from the stimulus-

response curves as a percentage of both RMT and AMT to contextualize the differences 

between these methods. There was also no difference in selected intensity between muscles 

for any method (RMT: F(2,14) = 2.62, P = 0.11; AMT: F(2,14) = 1.21, P = 0.33; 10% MVC: 

F(2,12) = 1.00, P = 0.40; 20% MVC: F(2,14) = 1.15, P = 0.35; 50% MVC: F(2,14) = 0.778, 

P = 0.48) nor difference in normalized MEP amplitude at the selected stimulus intensity 

between 10, 20 and 50% MVC stimulus-response curves (VL: F(2,14) = 3.23, P = 0.07; RF: 

F(2,12) = 2.48, P = 0.13; VM: F(2,14) = 2.81, P = 0.09) (Table 7). A single stimulus-

response curve at 50% MVC is presented in Figure 18. 

In VL, RF and VM, Mmax amplitudes were 16.2 ± 4.1 mV, 7.4 ± 1.8 mV and 17.0 ± 

6.7 mV, respectively. Central drive as indicated by RMS·Mmax-1 for VL (0.0046 ± 0.0014), 

RF (0.0039 ± 0.0007) and VM (0.0053 ± 0.0025) at 10% MVC and VL (0.0088 ± 0.0024), RF 

(0.0086 ± 0.0019) and VM (0.0100 ± 0.0039) at 20% MVC were similar (F(2,14) = 1.32, P = 

0.30 and F(2,14) = 0.660, P = 0.53, respectively). At 50% MVC, RMS·Mmax-1 for RF 

(0.0376 ± 0.0160) was greater than for both VL (0.0237 ± 0.0094) and VM (0.0264 ± 0.0115) 

(F(2,14) = 8.36, P = 0.004). 
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Boltzmann sigmoidal curves 

Boltzmann curves from a typical subject are presented in Figure 19. Boltzmann curves 

provided a significantly better fit for the relationship between MEP amplitude and stimulator 

intensity than a linear relationship for stimulus-response curves at 10, 20 and 50% MVC for 

all muscles (P < 0.05). As contraction intensity increased, S50 decreased in all muscles (VL: 

F(2,14) = 33.1, P < 0.001; RF: F(2,14) = 55.6, P < 0.001; VM: F(2,14) = 32.5, P < 0.001). 

Few differences were observed in MEPmax/Mmax (only RF lower at 10% MVC; VL: F(2,14) 

= 1.88, P = 0.19; RF: F(2,14) = 3.88, P = 0.046; VM: F(2,14) = 2.40, P = 0.13) and k (only 

VL lower at 10% MVC; VL: F(2,14) = 7.50, P = 0.006; RF: F(2,14) = 1.62, P = 0.23; VM: 

F(2,14) = 0.911, P = 0.42). Results from modeling the stimulus-response curve data with the 

Boltzmann equation are presented in Table 8. 

 

Table 6. Selected stimulus intensity from stimulus-response curves presented as a percentage of 

stimulator intensity to elicit active and resting motor thresholds. 

  Vastus lateralis Rectus femoris Vastus medialis 
     

10% MVC RMT 135 ± 26 138 ± 26 129 ± 20 

  (109 – 175) (109 – 175) (107 – 160) 

 AMT 179 ± 48 187 ± 46 177 ± 46 

  (120 – 250) (120 – 250) (117 – 250) 

20% MVC RMT 117 ± 27 113 ± 15 114 ± 16 

  (86 – 175) (86 – 133) (92 – 140) 

 AMT 154 ± 40 151 ± 32 156 ± 36 

  (100 – 200) (120 – 200) (100 – 200) 

50% MVC RMT 96 ± 21 100 ± 23 98 ± 21 

  (71 – 127) (75 – 140) (67 – 120) 

 
AMT 124 ± 22 131 ± 26 132 ± 27 

  (100 – 150) (100 – 175) (86 – 160) 

AMT : active motor threshold; MVC: maximal voluntary force; RMT: resting motor 
threshold. For rectus femoris, values from the stimulus-response curve at 10% MVC are n = 
7. Values are expressed as means ± standard deviation and (range). 
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Figure 17. Comparison of methods for determination of TMS stimulus intensity. Comparison of 

different methods of determining TMS stimulus intensity for vastus lateralis in Panel A, rectus femoris 

(n=7) in Panel B and vastus medialis in Panel C. The methods compared are resting motor threshold 

(RMT), active motor threshold (AMT) during contractions at 10% maximal voluntary force (MVC) and 

stimulus-response curves at 10, 20 and 50% MVC. Stimulus intensity is presented as means ± 

standard error of the mean for stimulus-response curves and commonly utilized intensities derived 

from thresholds (●) and estimated optimal intensity (□) [4]. Significantly different from 50% MVC, * (p < 

0.05) and ** (p < 0.01); significantly different from 20% MVC, † (p < 0.05) and ‡ (p < 0.01); significantly 

different from 10% MVC, § (p < 0.01); significantly different from 120% AMT, # (p < 0.01). 
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Figure 18. Sample stimulus-response curves. Stimulus-response curves at 50% maximal voluntary 

force for one subject for Panel A) vastus lateralis (●), rectus femoris ( ), vastus medialis (■) and 

biceps femoris (◊) in and Panel B) superimposed twitch. All values are presented as means ± standard 

deviation of four evoked responses at each stimulus intensity. 

 

 

 

Table 7. Normalized motor-evoked potential amplitudes at selected stimulus intensity from stimulus-

response curves for all quadriceps muscles. 

 
Vastus lateralis Rectus femoris Vastus medialis 

    

10% MVC 34.5 ± 20.5 75.8 ± 16.1 43.4 ± 21.6 

 (13.2 – 75.9) (53.3 – 98.7) (14.3 – 82.1) 

20% MVC 42.9 ± 16.7 82.8 ± 18.7 52.8 ± 18.9 

 (22.9 – 69.2) (58.6 – 111.0) (16.9 – 82.6) 

50% MVC 45.3 ± 11.1 85.9 ± 22.2 49.7 ± 10.8 

 (28.1 – 63.3) (62.4 – 130.5) (30.2 – 69.5) 

MVC: maximal voluntary force. For rectus femoris, values from the stimulus-response curve 
at 10% MVC are n = 7. Normalized motor-evoked potential amplitudes are expressed as 
means ± standard deviation and (range). 
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Figure 19. Sample Boltzmann curves. Boltzmann sigmoidal function plotted versus stimulator 

intensity for one subject for Panel A) vastus lateralis, Panel B) rectus femoris and Panel C) vastus 

medialis. All motor-evoked potentials used in the modeling and the Boltzmann curves are presented 

for stimulus-response curves at 10 (●, ), 20 (○, ) and 50% (▼, ) of maximal voluntary 

force. 
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Table 8. Modeled Boltzmann parameters for vastus lateralis, rectus femoris and vastus medialis 

muscles. 

  

Vastus lateralis Rectus femoris Vastus medialis 

   

MEPmax/ Mmax 

  

 

10% MVC 34.7 ± 21.6 68.8 ± 19.6*,# 42.7 ± 22.3 

 

20% MVC 42.9 ± 17.1 83.3 ± 19.3 51.2 ± 18.7 

 

50% MVC 42.6 ± 11.1 83.0 ± 23.0 47.7 ± 11.9 

S50 

    

 

10% MVC 43 ± 10**,## 45 ± 11**,## 44 ± 10**,## 

 

20% MVC 38 ± 11** 40 ± 10** 39 ± 10** 

 

50% MVC 32 ± 9 30 ± 7 34 ± 7 

k 

    

 

10% MVC 0.051 ± 0.018**,# 0.036 ± 0.029 0.037 ± 0.018 

 

20% MVC 0.032 ± 0.020 0.027 ± 0.015 0.031 ± 0.026 

 

50% MVC 0.020 ± 0.018 0.019 ± 0.014 0.027 ± 0.012 

r²     

 10% MVC    

    Model 0.928 ± 0.045† 0.964 ± 0.051‡ 0.937 ± 0.045‡ 

    Linear regression 0.804 ± 0.095 0.770 ± 0.118 0.779 ± 0.112 

 20% MVC    

    Model 0.943 ± 0.048† 0.982 ± 0.012‡ 0.933 ± 0.050‡ 

    Linear regression 0.724 ± 0.173 0.716 ± 0.180 0.688 ± 0.196 

 50% MVC    

    Model 0.919 ± 0.052‡ 0.900 ± 0.092‡ 0.882 ± 0.115‡ 

    Linear regression 0.563 ± 0.214 0.537 ± 0.207 0.598 ± 0.190 

MEPmax/Mmax: maximal motor-evoked potential amplitude (MEPmax) normalized to 
maximal M-wave amplitude, MVC: maximal voluntary force, S50: stimulus intensity to evoke 
motor-evoked potentials half the amplitude of MEPmax (as % maximal stimulator output), k: 
slope parameter (inversely proportional to maximal function steepness), r²: coefficient of 
determination. Values are expressed as means ± standard deviation. Significantly different 
from 50% maximal voluntary force (MVC), * (p < 0.05) and ** (p < 0.01); significantly 
different from 20% MVC, # (p < 0.05) and ## (p < 0.01); significantly different from linear 
relationship, † (p < 0.05) and ‡ (p < 0.01). 
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DISCUSSION 
 

The main findings of this study are that (i) commonly-used stimulus intensities based upon 

RMT and a stimulus-response curve at 10% MVC are higher than those when determined 

using stimulus-response curves at 20 and 50% MVC and AMT and (ii) selected stimulus 

intensity, as determined by all methods, is similar between the three quadriceps muscles 

investigated. Because a stimulus-response curve performed at 20% MVC resulted in selection 

of a similar stimulus intensity to a stimulus-response curve at 50% MVC and because a 

stimulus-response curve at 20% MVC has a lower risk of inducing fatigue with repeated 

submaximal contractions, the present study indicates that this method is suitable for 

determining optimal stimulus intensity.   

 

Comparison of methods 

 

Resting motor threshold 

In evaluation of the lower limbs to investigate fatigue or the effect of an exercise intervention, 

RMT has often been used to determine stimulus intensity. Most frequently this has been at 

120 (Sammut et al., 1995; Lentz & Nielsen, 2002; Ross et al., 2007; Tallent et al., 2012) and 

130% RMT (Goodall et al., 2009; Goodall et al., 2010; Goodall et al., 2012). The present 

study found that the use of these RMT intensities results in selection of higher stimulus 

intensities than a stimulus-response curve at 50% MVC and that stimulus intensity at 130% 

RMT is significantly greater than that from a stimulus-response curve at 20% MVC. No 

studies in the lower limbs were found to employ the suggested IFCN equivalent of 140% 

RMT (Groppa et al., 2012), an intensity higher than the intensity at the transition from the 

rising slope to the plateau of the stimulus-response curves in the present study (Table 6). 

There are several concerns about using RMT to determine optimal stimulus intensity 

in fatigue studies. The most important is whether it is appropriate to determine stimulus 

intensity in the relaxed muscle when evaluation of TMS-related parameters is conducted 

during muscular contraction. The rapid increase in cortical excitability from rest to even very 

weak contraction (Ugawa et al., 1995; Taylor et al., 1997) and the differential results in MEP 

evolution evaluated after fatiguing contractions when assessed in relaxed (i.e. decreased MEP 

amplitude/area (Gandevia et al., 1999; Khedr et al., 2007; Milanovic et al., 2011)) and 

contracting (i.e. no change or increased MEP amplitude/area (Sogaard et al., 2006; Klass et 
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al., 2008; Iguchi & Shields, 2012)) muscle present conceptual difficulties. More practically, 

increased stimulus intensity is associated with greater subject discomfort and this is important 

when recruiting healthy subjects and critical when evaluating clinical populations. If RMT is 

used to select stimulus intensity, no more than 6 stimuli should be delivered at each stimulus 

intensity since more stimuli do not better identify RMT contrary to the accepted standard of 

10 stimuli at each intensity (Rossini et al., 1994; Groppa et al., 2012). It has also been 

reported that extremely high stimulus intensities are often required to determine RMT due to 

low cortical excitability at rest and that in some subjects RMT cannot be determined (Kalmar 

& Cafarelli, 2006). This difficulty has also occurred in our laboratory. For example, MEPs 

were not consistently elicited in one particular subject in VL or VM at 80% maximal 

stimulator output. Further difficulties in employing RMT may result during the determination 

of coil position. Given that high stimulus intensities may be required to evoke a MEP and the 

variable nature of MEP responses (Kiers et al., 1993), particularly in the relaxed muscle 

(Darling et al., 2006), it may be difficult to identify an appropriate coil position.  

Magnetic stimulation of the motor cortex with a double-cone coil permits more precise 

localization of specific brain areas than with a circular coil. It does not, however, permit 

localization with pin-point accuracy. Barker (1999) detailed the induced electrical field and its 

rate of change with different coil types. Given that the motor cortex is not divided into 

discrete sections corresponding to individual muscles (Nudo et al., 1996) and the imprecise 

area of stimulation with TMS, other muscle groups will inevitably be stimulated. Awiszus et 

al. (1997) discussed the problem of high-intensity electrical muscle stimulation stimulating 

both agonist and antagonist muscles of the upper limb and these findings can likely be applied 

to transcranial motor cortical stimulation. To our knowledge, Todd et al. (2003) were the first 

to specifically address this with a criterion in the determination of stimulus intensity (i.e. “a 

small MEP” in the antagonist). Figure 18 illustrates the 50% MVC stimulus-response curve 

of one subject. A plateau in quadriceps MEP amplitude corresponds to increased BF MEP 

amplitude and decreased SIT. In this subject, 120% RMT equated to 72, 66 and 78% maximal 

stimulator output in VL, RF and VM, respectively. This indicates that in some subjects, at 

120% RMT, coactivation becomes apparent. Coactivation is problematic in the study of 

fatigue since quantification of cortical VA is essential. By determining stimulus intensity in 

the relaxed muscle, SIT during voluntary contraction may be underestimated because the 

selected stimulus intensity increases the contribution of antagonistic muscles without 

corresponding augmentation of quadriceps femoris MEP amplitude.  
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Active motor threshold 

Selected stimulus intensity at 120% AMT is significantly lower than stimulus-response curves 

at 10 and 20% MVC. All lower-limb studies employing AMT as a basis for TMS intensity 

determination utilized intensities much lower than the IFCN comparison equivalent of 170% 

AMT (Groppa et al., 2012), recommendations much closer to a 10% MVC stimulus-response 

curve in this study (Table 6). As with RMT, the use of 6, 8 or 10 stimuli at each stimulus 

intensity when determining AMT did not affect the stimulus intensity selected. 

Background EMG activity varies between individuals and also between muscles at a 

given contraction intensity; in some cases normal peak-to-peak amplitudes vary by >500% 

between subjects in the same muscle. Thus, the appropriateness of the common use of a fixed 

MEP amplitude to determine the presence of a MEP in evaluating AMT at different 

contraction intensities and in different subjects and/or muscles must be investigated. 

Boltzmann modeling indicates high inter-subject variability in evolution from no evoked MEP 

response to a maximal one (i.e. k; see Table 8). Some subjects demonstrated what could be 

characterized as a threshold from which no response immediately became a maximal one 

while in other subjects MEP amplitude gradually increased to maximum as stimulus intensity 

increased. Comparison with stimulus-response curves indicates that using AMT to determine 

stimulus intensity may result in submaximal MEP responses that are situated on the rising part 

of the Boltzmann curve. Unlike the use of maximal muscular responses to neural stimulation 

allowing serial or between-subject comparisons, comparison of submaximal evoked responses 

may introduce additional confounding factors. It remains to be established whether 

submaximal and maximal MEP responses and their evolution (e.g. with fatigue) are similar, 

particularly since preliminary indications from upper- (Temesi et al., 2013) and lower-limb 

(McNeil et al., 2011a) studies suggest this may not always be the case. The evaluation of 

cortical VA may also be affected by the use of stimulus intensities derived from AMT (e.g. 

120%). Stimulus intensity at 120% AMT was non-significantly lower than that determined 

from a 50% MVC stimulus-response curve and this might result in delivery of TMS at a 

submaximal intensity during contractions between 50 and 100% MVC and result in 

underestimated SIT. The effect on estimated resting twitch, calculated from the linear 

regression of three SITs from three different contraction intensities in this range and 

acceptable if r > 0.9 (Hunter et al., 2006; Hunter et al., 2008), and subsequent estimation of 

cortical VA are unknown.  

Generally, AMT is evaluated in voluntary contractions at 5 or 10% MVC in the upper 

limbs (Todd et al., 2006; Sale et al., 2008; Cirillo et al., 2009; Kidgell & Pearce, 2010). In 
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lower limbs, Kalmar and Cafarelli (2006) and Hilty et al. (2011) used 3% MVC and found 

higher AMT than in Weier et al. (2012) and the present study, the latter two having employed 

contractions at 10% MVC. This is consistent with Boltzmann modeling showing decreased 

stimulus intensity to evoke a MEP of half maximal amplitude (i.e. S50; see Table 8) as 

contraction intensity increases.  

 

Stimulus-response curves 

All stimulus-response curves demonstrated a Boltzmann sigmoidal relationship, thus 

permitting the use of a stimulus-response curve to identify maximal MEP amplitudes and 

directly determine optimal diagnostic TMS stimulus intensity (Groppa et al., 2012). Modeling 

of data indicated that estimated maximal MEP amplitude was lower at 10% MVC than at 

other contraction intensities although this was only significant in RF. Stimulus intensity to 

evoke a MEP of half maximal amplitude also decreased as contraction intensity increased. 

Determining stimulus intensity during contractions at 50% MVC would appear to be 

appropriate since evoked MEP responses at this contraction intensity are theoretically 

maximal (Taylor et al., 1997; Todd et al., 2003; Sidhu et al., 2009a) and both this and higher 

contraction intensities are used to determine cortical VA. A concern, however, is that an 

extended series of such contractions may produce measurable effects of fatigue, and 

consequently, that residual effects of fatigue may be present during a subsequent protocol as 

reported in a recent study (Rupp et al., 2012). The lack of difference between stimulus 

intensity as determined by stimulus-response curves at 20 and 50% MVC and the similar 

maximal MEP amplitudes as determined by Boltzmann modeling suggest that in the 

quadriceps femoris, a stimulus-response curve at 20% MVC is appropriate to determine TMS 

intensity when the aim is to evaluate fatigue-related parameters such as VA.  

 

Comparison of muscles 

Studies determining stimulus intensity during contractions have often used normalized MEP 

amplitude or area of a given size as criteria (Sidhu et al., 2009a, b; Klass et al., 2012; 

Fernandez-del-Olmo et al., 2013). For example, Sidhu et al. (2009a) selected an intensity that 

produced the largest RF MEP with the stipulations that this must be at least 50% Mmax and 

that antagonist BF MEP amplitude be less than 10% raw RF MEP amplitude. In VL and VM 

in the present study, only 2 of 8 and 3 of 8 subjects, respectively, satisfied the requirement 

that MEP amplitude be ≥50% Mmax. In the case where several quadriceps muscles are 

examined, the latter criterion is ambiguous. BF may often be greater than 10% raw MEP 
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amplitude in at least one muscle and for one subject in the present study this was the case in 

all muscles at almost all coil positions and stimulus intensities evaluated.  

There was no difference in selected stimulus intensity between muscles as determined 

by any method. This suggests that one muscle could be used as a surrogate for other 

quadriceps muscles. RF alone has frequently been used to determine quadriceps stimulus 

intensity (Sidhu et al., 2009a, b; Rupp et al., 2012; Fernandez-del-Olmo et al., 2013). When 

RF is normalized, MEP amplitude is larger than for either VL or VM due to consistently 

smaller Mmax in the RF and little differences in raw MEP amplitude. The presentation of 

normalized RF MEP amplitudes instead of VL and VM may give the impression of eliciting 

greater corticospinal drive to the quadriceps muscles. In the present study, this was not due to 

a greater RF contribution since RMS·Mmax-1 was only greater than that of VL and VM at 

50% MVC and normalized RF MEPs are larger than VL and VM at all contraction intensities. 

RF may not be an ideal surrogate because of the difficulty in recording clear M waves in this 

muscle. Furthermore, RF is the sole biarticular muscle of the quadriceps femoris, and thus, 

may not be representative of the muscle group. 

 

An important limitation to the protocol is that it was not conducted on a second day to 

investigate the day-to-day variability of the methods employed in this study. Further 

investigations are required to establish whether the different methods employed to evaluate 

TMS parameters with fatigue are reproducible on different days. The present study also used a 

maximal response in contracting muscle as a reference point to evaluate multiple fatigue-

related TMS parameters since this provides important insights into the manifestation and 

development of fatigue; however, recent studies suggest that TMS responses elicited by a 

submaximal stimulus intensity may also further understanding of fatigue mechanisms 

(McNeil et al., 2011a; Temesi et al., 2013). This reinforces the necessity of selecting an 

appropriate method to determine TMS intensity directly related to the parameters being 

investigated. In the context of the evaluation of cortical voluntary activation and corticospinal 

excitability with fatigue, maximal responses as investigated in this study are pertinent. In 

other research and diagnostic areas employing TMS, this may not be the case, and methods 

such as RMT and AMT may be the methods of choice for determining optimal stimulus 

intensity. Further studies must also determine the specific relevance of TMS-induced maximal 

and submaximal responses in both healthy and clinical populations in the context of fatigue, 

including the manner in which this affects measures of cortical voluntary activation and both 

excitatory and inhibitory mechanisms. 
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Conclusion 

Percentages of AMT and RMT have often been employed to determine TMS intensity in 

studies evaluating fatigue; however these methods do not accurately identify the minimum 

stimulus intensity to elicit MEPs of maximal amplitude in the quadriceps femoris. Thus, they 

may be inappropriate for cortical excitability and voluntary activation assessment. The 

potential for increased coactivation and discomfort at 120 and 130% RMT and possible 

underestimation of evoked responses at 120% AMT preclude their use. There are minor 

differences between selected stimulus intensity (lower at 50% MVC for VL only) from 

stimulus-response curves at 20 and 50% MVC. Both MEP amplitude at selected stimulus 

intensity and estimated maximal MEP amplitude determined from these stimulus-response 

curves are similar. This indicates that a stimulus-response curve performed at 20% MVC is a 

suitable method of determining TMS stimulus intensity while reducing the risk of inducing 

fatigue compared to methods at a higher percentage of MVC. From the present study, it is 

also concluded that determining stimulus intensity from a single muscle is acceptable in the 

quadriceps femoris. 
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INTRODUCTION TO STUDIES 3 AND 4 

 

The two preceding studies addressed two important methodological questions. Study 1 

demonstrated that during brief voluntary contractions, TMS must be delivered once the force 

has stabilized at the target force without exceeding it to accurately determine corticospinal 

excitability at this force level. Meanwhile, Study 2 determined that the use of a stimulus-

response curve at 20% MVC to select optimal stimulus intensity is both feasible and 

appropriate. These findings were put into practice in two studies employing TMS to 

investigate fatigue under extreme conditions. 

Our research group has extensively studied the effects of endurance and ultra-

endurance exercise bouts on a number of physiological (Millet et al., 2011a; Gimenez et al., 

2013) and biomechanical (Millet et al., 2009; Morin et al., 2011) parameters, including the 

effects of ultra-endurance sports on neuromuscular fatigue (Martin et al., 2010; Millet et al., 

2011c). Ultra-endurance sporting events have been proposed as a model from which to 

understand fatigue in addition to sport-induced pathologies, cerebral adaptations from 

endurance exercise and the ability of the human body to respond and adapt to extreme 

conditions (Millet & Millet, 2012). Previous neuromuscular studies have demonstrated central 

fatigue, assessed by VA via peripheral nerve stimulation, after endurance exercise. Only a 

couple studies however have employed TMS in any manner with ultra-endurance exercise 

(Ross et al. (2010b) investigating a Tour de France course in endurance-trained cyclists) or 

exercise in extreme conditions (high-intensity exercise by Goodall et al. (2012) in hypoxic 

conditions).  

As detailed in literature review, SD is a condition predominantly of inadequate sleep 

duration. This may be either complete SD such as that often found during ultra-endurance 

sporting events and military exercises or partial SD such as in persons suffering from sleep 

disorders, shift workers, persons flying across time zones and athletes in ultra-endurance 

sporting events lasting beyond a couple days. SD is associated with subjective feelings of 

tiredness, clumsiness and fatigue. Thus, it has the potential to cause negative emotions and/or 

physiological consequences, especially at the cerebral level, that may affect physical 

performance or directly cause performance decrements in sporting events, especially as the 

duration of SD increases. Similarly, SD has the potential to negatively affect quality of life 

and the daily functioning of persons with sleep disorders and impaired sleep. 
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At the extreme end of the ultra-endurance event spectrum are Race Across America 

and Tor des Geants. Race Across America is a west-to-east coast cycling race across the 

United States with a maximum time limit of 12 days for the 4500-5000 km route. The race 

record is 8 days 3 h 11 min to complete 4685 km in 1992. The official race website states that 

top racers sleep approximately 90 min each day and suggests it would be difficult to sleep 

more than 4 h per day to complete the course within the time limit (RAAM, 2013). Similarly, 

top competitors in the Tor des Geants, a 330-km ultra-trail with 24 000 m of positive 

elevation change, sleep only a few hours over the >70 h required to complete the course. It is 

unknown if or how SD may contribute to the previously observed central fatigue in ultra-

endurance exercise bouts 

Study 3 investigated the possibility that SD causes increased central fatigue and other 

central perturbations during exercise compared to a control condition. In this study, the effect 

of one night complete SD was investigated on cycling performance to task failure in 

conjunction with both peripheral electrical stimulation and TMS measures of neuromuscular 

functioning. Reaction time to a Simon task and RPE were also assessed to explore the 

possible interactions of neuromuscular, and specifically central, fatigue, cognitive functioning 

and RPE with SD on endurance cycling performance. 

Study 4 took TMS from the laboratory to a real-world environment. The purpose of 

this study was to build upon previous investigations of neuromuscular fatigue, principally 

central fatigue, caused by a 166-km ultra-trail (Millet et al., 2011c) and long-duration (24 h) 

treadmill running (Martin et al., 2010). The addition of TMS to the investigative protocol was 

to better understand how central fatigue manifests itself and what portion, if any, stems from 

supraspinal fatigue. Furthermore, TMS allows for investigation of both corticospinal 

excitability and inhibition, factors that may have important roles in ultra-endurance 

performance. 
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ABSTRACT 

 

Sleep deprivation (SD) is characterized by reduced cognitive capabilities and endurance 

exercise performance and increased perceived exertion (RPE) during exercise. The combined 

effects of SD and exercise-induced changes on neuromuscular function and cognition are 

unknown. This study aimed to determine if central fatigue is greater with SD, and if so, 

whether this corresponds to diminished cognitive and physical responses. Twelve active 

males performed two 2-day conditions (SD and control, CO). On day 1, subjects performed 

baseline cognitive and neuromuscular testing. After one night SD or normal sleep, subjects 

repeated day 1 testing and then performed 40 min submaximal cycling and a cycling test to 

task failure. Neuromuscular and cognitive functions were evaluated during the cycling 

protocol and at task failure. After SD, exercise time to task failure was shorter (1137 ± 253 s 

vs. 1236 ± 282 s, P = 0.013) and RPE during 40 min submaximal cycling was greater (P = 

0.009) than in CO. Maximal peripheral voluntary activation decreased by 7% (P = 0.003) and 

cortical voluntary activation tended to decrease by 5% (P = 0.059) with exercise. No other 

differences in neuromuscular function or cognitive control were observed between conditions. 

After SD, mean reaction time was 8% longer (P = 0.011) and cognitive response omission 

rate before cycling was higher (P < 0.05) than in CO. Acute submaximal exercise 

counteracted cognitive performance deterioration in SD. One night of complete SD resulted in 

decreased time to task failure and cognitive performance and higher RPE compared to a 

control condition. The lack of difference in neuromuscular function between CO and SD 

indicate decreased SD exercise performance was probably not caused by increased muscular 

or central fatigue. 

 

Key words: transcranial magnetic stimulation, endurance, neuromuscular fatigue, cognition 

 

RÉSUMÉ 

 

La privation de sommeil (SD) est caractérisée par une réduction des capacités cognitives et 

de performance en endurance et une augmentation de l'effort perçu (RPE) au cours de 

l'exercice. Les effets combinés de la SD et des changements induits par l'exercice sur la 

fonction neuromusculaire et la cognition sont inconnus. Cette étude visait à déterminer si la 

fatigue centrale est supérieure avec SD, et dans ce cas, si cela est associé à des réponses 

cognitives et physiques altérées. Douze hommes actifs ont réalisé deux conditions 
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expérimentales de 2 jours (SD et contrôle, CO). Le premier jour, les sujets ont effectué des 

tests cognitif et neuromusculaire de référence. Après une nuit de SD ou de sommeil normal, 

les sujets ont répété les tests du premier jour. Ensuite, ils ont effectué 40 min de vélo à 

intensité sous-maximale puis une épreuve de vélo jusqu’à épuisement (incapacité à maintenir 

la puissance cible). Les fonctions cognitives et neuromusculaires ont été évaluées au cours du 

protocole de vélo et après arrêt de l’exercice. Après SD, le temps d’effort était plus court (1 

137 ± 253 s contre 1 236 ± 282 s, P = 0,013) et RPE pendant les 40 min de vélo à intensité 

sous-maximale était plus élevé (P = 0,009) que dans CO. L’activation maximale volontaire 

périphérique a diminué de 7% (P = 0,003) et l'activation volontaire cortical a eu tendance à 

diminuer de 5% (P = 0,059) après l'exercice. Aucune autre différence de fonction 

neuromusculaire ou de contrôle cognitif entre CO et SD n’a été observée. Après SD, le temps 

de réaction moyen a augmenté de 8% (P = 0,011) et le taux d'omission de réponse cognitive 

au repos était plus élevé (P < 0,05) que pour CO. L’exercice sous-maximal normalisait la 

détérioration de la performance cognitive observée au repos en condition SD. Après une nuit 

complète de SD, une diminution de la durée maximale d’effort et de la performance cognitive 

ainsi qu’un RPE plus élevé sont observés par rapport à CO. L'absence de différence au 

niveau de la fonction neuromusculaire entre CO et SD indique que la diminution de la 

performance physique avec SD n'est pas causée par une augmentation de la fatigue 

musculaire ou centrale. 

 

Mots clés : stimulation magnétique transcrânienne, endurance, fatigue neuromusculaire, 

cognition  
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INTRODUCTION 

 

Sleep deprivation (SD) is usually a condition of inadequate sleep duration. This may be 

complete SD such as in ultra-endurance sporting events and military exercises or partial SD as 

with persons suffering from sleep disorders, shift workers and individuals flying across time 

zones. In both complete and partial SD, affected individuals self-report feelings of tiredness, 

clumsiness and fatigue. 

Numerous studies have also demonstrated performance deficits during prolonged 

exercise under conditions of SD. Intense walking to task failure was significantly shorter 

following 36-50 h sleep deprivation (Martin, 1981; Martin & Chen, 1984) and distance run 

over 30 min following 30 min submaximal running was decreased by 2.9% after 30 h sleep 

deprivation (Oliver et al., 2009). Results from studies examining the effect of SD on 

performance in shorter running or cycling exercise bouts however are contradictory (Chen, 

1991; Azboy & Kaygisiz, 2009; Konishi et al., 2012), suggesting that SD-induced 

performance decrements may be more likely to occur in longer exercise bouts. Maximal 

strength loss was not observed during either isometric or isokinetic contractions of upper or 

lower limbs during 60 h SD (Symons et al., 1988a; Symons et al., 1988b). Attempts to 

explain decreased exercise performance measures have failed due to the abundance of 

conflicting results. Oxygen consumption and heart rate (HR) during constant-load efforts of 

varying intensity up to 1 h (Martin, 1981; Martin & Chen, 1984; Oliver et al., 2009) were 

unaffected by SD although this may not be true in longer duration exercise as decreased 

oxygen consumption was observed after 3h, but not 1 or 2 h, of light treadmill walking after 

36 h SD (Martin et al., 1986). Conversely, Scott and McNaughton (2004) observed lower HR 

during 30 h SD with 20 min of light exercise every 4 h, but not when exercise frequency was 

doubled. Results from incremental tests to task failure are equivocal about the effects of SD of 

at least 24 h on HR responses and maximal oxygen uptake (VO2max) (Martin & Gaddis, 

1981; Plyley et al., 1987; Chen, 1991; Konishi et al., 2012). 

Ratings of perceived exertion (RPE), a subjective measure of exertion, have been 

shown to be increased with SD in prolonged exercise at a given speed or intensity. This 

occurred in protocols involving light to intense walking and SD of at least 30 h (Martin, 1981; 

Myles, 1985; Plyley et al., 1987). Oliver et al. (2009) showed no difference in RPE during a 

30-min time trial despite a reduction in distance run with SD. This suggests that at identical 

running speeds, SD RPE would have been greater.  



STUDY 3 

128 

 

Total and partial SD are associated with a general slowing of response speed and 

decreased alertness and attentional capacities. Disagreement remains over the effect of SD on 

higher-level cognitive functions such as learning, memory and executive functioning (Balkin 

et al., 2008; Killgore, 2010; Lo et al., 2012). The few studies investigating exercise-induced 

cognitive changes with SD have found exercise to have short-term alerting effects (LeDuc et 

al., 2000) and decrease reaction time (RT) to a stimulus (Scott et al., 2006). The positive 

effects of exercise on RT are well-established in non-SD conditions (for review see 

(McMorris & Graydon, 2000)), especially when evaluated after at least 20 min of exercise 

(Chang et al., 2012). This has been suggested to result from greater nervous system activation 

(McMorris & Graydon, 2000) or peripheral motor processes efficiency (Davranche et al., 

2005, 2006b) during exercise than at rest. 

While central changes (e.g. augmented RPE during exercise and decrements in 

cognitive performance) have been observed after extended periods of SD and decreased 

central activation detected after endurance exercise (Millet et al., 2003c), no study has 

examined the potential implications of increased central fatigue, i.e. decreased maximal 

voluntary activation, in performance decrements with SD. To our knowledge, the effects of 

complete SD on neuromuscular parameters have been limited to transcranial magnetic 

stimulation (TMS) measures in the upper limbs without exercise. In healthy subjects, De 

Gennaro et al. (2007) observed increased resting motor threshold after 40 h SD. This was not 

observed in other studies after 24 h SD (Civardi et al., 2001; Scalise et al., 2006; Kreuzer et 

al., 2011), possibly due to circadian effects since the 40-h period ended at midnight. The 

single study reporting motor-evoked potential (MEP) amplitude during muscular contractions 

did not observe a change with SD of at least 24 h (Scalise et al., 2006). This study also 

reported decreased cortical silent period (CSP) (Scalise et al., 2006) while others observed no 

change after 24 h of SD (Civardi et al., 2001; Kreuzer et al., 2011). Intra-cortical inhibition 

tended to decrease (Civardi et al., 2001; Scalise et al., 2006) while changes in intra-cortical 

facilitation in these studies were equivocal (Civardi et al., 2001; De Gennaro et al., 2007). 

Difficulty in interpreting these studies is compounded by the lack of both a control condition 

and pre- and post-SD testing to account for normal inter-day variability and that all studies 

included both men and women. 

The present study aimed to quantify the effects of SD on central fatigue, 

neuromuscular responses, cognitive control and RPE in response to whole-body exercise and 

to determine if SD results in decreased endurance cycling performance. Secondary objectives 

were to link the cognitive, physical and neuromuscular responses to SD together, including 
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the assessment of whether response inhibition, a crucial aspect of human cognitive 

control (i.e. cognitive processes that ensure adaptive goal-directed behavior), is affected by 

SD. It was hypothesized that one night of SD would result in decreased neuromuscular 

functioning evaluated during isometric contractions after exercise and in changes in RPE, HR 

and performance during cycling. Furthermore, it was anticipated that submaximal exercise 

would negate deterioration of information processing efficiency under SD. 

 

METHODS 

 

Subjects 

Twelve healthy active men (mean ± SD: age, 28 ± 9 years; height, 1.80 ± 0.06 m; body mass, 

71 ± 8 kg; MAP, 324 ± 31 W; VO2max, 60 ± 7 ml·kg–1·min–1) participated in a study with 

randomized counterbalanced crossover design. Subjects were non-smokers, non-epileptic and 

free of cardiovascular disease and contraindications to TMS. They had 11 ± 9 years (range: 5-

35) of endurance sport experience and trained 5 ± 3 sessions (range: 3-12) per week. Inclusion 

criteria included verification of normal sleep patterns using the French versions of the 

Pittsburgh Sleep Quality Index (exclusion if score ≥ 5), Horne-Ostberg Morningness-

Eveningness questionnaire (exclusion if score < 30 or > 70), and Epworth Sleepiness Scale 

(exclusion if score ≥10). Written informed consent was obtained from all subjects prior to 

their participation and this study conformed to the standards from latest revision of the 

Declaration of Helsinki. All procedures were approved by Comité de Protection des 

Personnes Sud-Est 1, France. Subjects were instructed to maintain normal sleep/wake patterns 

the week before each condition. They were also instructed to avoid strenuous exercise for the 

2 days preceding each trial and to abstain from alcohol and caffeine from a minimum of 24 h 

before the start of each trial until its completion. Sleep and physical activity were recorded by 

subjects for the three days prior to each condition and verified upon arrival at the laboratory. 

 

Experimental design 

The subjects were required to visit the laboratory for 3 sessions totaling 5 days. The 

preliminary visit was performed 1 to 2 weeks before the first experimental session and 

consisted of a medical inclusion, maximal incremental cycling test to task failure and 

familiarization with all testing procedures. The experimental conditions were performed 

between 2 and 4 weeks apart. These were a SD condition and a control (CO) condition. Due 

to the nature of complete SD, neither subjects nor investigators could be blinded. Subjects 
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were not informed of experimental hypotheses. Each condition comprised 2 days with the first 

day providing baseline cognitive and neuromuscular measures from which day-to-day effects 

of SD and CO conditions were evaluated. On the second day a submaximal cycling bout was 

followed by an incremental cycling test to task failure. Cognitive and neuromuscular 

measures were evaluated before, during and after the exercise performance test (Figure 20). 

 

 
Figure 20. Panel A) Experimental condition test order with time indicated in minutes from the start of 

the exercise protocol to task failure and Panel B) neuromuscular testing protocol. The neuromuscular 

testing protocol began 2 min 30 s after exercise cessation at POST40 and POST TF. 
 

Preliminary visit 

Subjects performed a maximal cycling test to task failure on a cycle ergometer (Monark 839E, 

Monark Exercise AB, Vansbro, Sweden). The test commenced with 3 min of warm-up at 90 

W. Power output was then increased by 15 W·min -1 until task failure. Respiratory measures 

were assessed breath-by-breath by an online system (Ergocard, Medisoft, Sorinnes, Belgium) 

and averaged every 30 s. VO2max was considered as the highest 30-s mean value prior to task 

failure and MAP, the power output at the last completed stage. The familiarization portion of 

the preliminary visit included maximal and submaximal contractions of the knee extensors 

with and without electrical femoral nerve and trancranial magnetic stimuli (see 
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Neuromuscular testing section). This included training subjects to return to the pre-stimulus 

force level as soon as possible after TMS to permit consistent measurement of the CSP. 

Subjects repeated trials until they were able to perform all tests consistently and as directed. 

Subjects also completed a session of the Simon task (see Cognitive task section) consisting of 

4 blocks of 96 trials at 5-min intervals. Each block lasted approximately 3 min 40 s. 

 

Experimental conditions 

 

Sleep, activity and condition control 

Subjects were instructed to maintain their normal sleep/wake and activity patterns before and 

during the protocol (except during the night of SD). They recorded their sleep/wake patterns 

and physical activity (duration and intensity) for three days prior to both experimental 

conditions. An Actiheart (Version 2.2, CamNTech Ltd., Cambridge, UK) was used to 

measure HR, sleep time and physical activity, the latter by internal accelerometer that sensed 

the intensity and frequency of torso movements, from 8:00 the first morning of the 

experimental condition to the end of the protocol. During the night between days 1 and 2, 

subjects were permitted to return home to sleep in CO. In SD, subjects remained at the 

laboratory under the supervision of the investigators where they were only permitted to 

perform sedentary activities such as watching films and listening to music between 23:00 and 

7:00 to limit differences in physical activity and mental stress between conditions. Only the 

consumption of water ad libitum was permitted after lunch on day 2 (12:00). Subjects rated 

their perception of sleepiness on the Stanford Sleepiness Scale before each cognitive test and 

before and after the 40-min submaximal exercise. 

 

Force and Electromyography 

Knee extensor force was measured during voluntary and evoked contractions with a calibrated 

force transducer (Meiri F2732 200 daN, Celians, Montauban, France) with amplifier attached 

by non-compliant strap to the right leg immediately proximal to the malleoli of the ankle 

joint. Subjects were seated upright in a custom-built chair with both hips and right knee at 90° 

of flexion. The load cell was fixed to the chair and in a position that force was measured in 

direct line to the applied force. Electromyographic signals of the right knee extensors (vastus 

lateralis (VL), rectus femoris (RF) and vastus medialis (VM)) and flexors (biceps femoris) 

was recorded. 
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Electromyographic signals were recorded with pairs of self-adhesive electrodes 

(Meditrace 100, Covidien, Mansfield, USA) in bipolar configuration with 30-mm 

interelectrode distance and the reference on the patella. Low impedance (<5 kΩ) between 

electrodes was obtained by shaving, gently abrading the skin with sandpaper and then 

cleaning it with isopropyl alcohol. Electromyographic data were analogue-to-digitally 

converted at a sampling rate of 2000 Hz by a PowerLab system (16/30—ML880/P, 

ADInstruments, Bella Vista, Australia) and octal bio-amplifier (ML138, ADInstruments) with 

bandpass filter (5-500 Hz) and analyzed offline using Labchart 7 software (ADInstruments). 

 

Femoral nerve stimulation 

Single electrical stimuli of 1-ms duration were delivered via constant-current stimulator 

(DS7A, Digitimer, Welwyn Garden City, Hertfordshire, UK) to the right femoral nerve (PNS, 

peripheral nerve stimulation) via a 30-mm diameter surface cathode in the femoral triangle 

(Meditrace 100, Covidien) and 50 x 90 mm rectangular anode (Durastick Plus, DJO Global, 

Vista, USA) on the gluteus maximus. Single stimuli were delivered in the relaxed muscle 

incrementally until plateaus in maximal M-wave (Mmax) and peak evoked force were 

reached. Stimulus intensity throughout the protocol was maintained at 130% of the intensity 

to produce maximal Mmax and twitch responses to ensure supramaximality. Stimulus 

intensity was determined each day (51 ± 9 and 52 ± 9 mA for CO and 49 ± 10 and 48 ± 11 

mA for SD for days 1 and 2, respectively). 

 

Transcranial magnetic stimulation 

Single-pulse TMS was used to evoke MEPs in the right quadriceps muscles. The motor cortex 

was stimulated by a magnetic stimulator (Magstim 200², The Magstim Company Ltd, 

Whitland, UK) with a 110-mm double-cone coil (maximum output of 1.4 T). Single stimuli 

were applied to the contralateral motor cortex producing an induced postero-anterior current. 

Subjects wore a cervical collar during all TMS measures to stabilize the head and neck. Every 

centimeter from 1 cm anterior to 3 cm posterior of the vertex was demarcated along the nasal-

inion line and to 2 cm over the left cortex. Optimal coil position was determined by assessing 

MEP responses evoked during brief isometric knee extension at 10% MVC and 50% maximal 

stimulator output. The optimal coil position corresponded to the site producing the largest 

MEP amplitudes in VL, RF and VM with minimal biceps femoris MEP amplitude. Optimal 

coil position was marked on a cloth cap secured to the scalp and it was determined each day 

since the wearing of an immovable head covering over the course of two days was 
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impractical. Stimulus intensity was determined by stimulus-response curve from responses 

during brief isometric knee extension at 20% MVC. Four consecutive contractions were 

performed at 15-s intervals at each of the following randomly-ordered stimulus intensities: 20, 

30, 40, 50, 60, 70 and 80% maximal stimulator output. Optimal stimulus intensity was 

defined as the minimum stimulus intensity evoking maximal MEP amplitude in all measured 

quadriceps muscles. A sub-optimal stimulus intensity was also determined from the stimulus-

response curve at 20% MVC. This intensity corresponded to a stimulus intensity evoking 

MEP amplitudes approximately half their maximum for VL, RF and VM. 

 

Neuromuscular testing 

Neuromuscular measures (force and electromyography) were assessed at four time points 

during each condition (day 1 (D1), day 2 pre-cycling (PRE), post-40 min submaximal cycling 

(POST40) and post-cycling task failure (POST TF)) (Figure 20A). After determining the 

optimal site and intensity for TMS and PNS each day, maximal force was determined from 

four MVCs separated by 30 s. In the latter two MVCs, PNS (100-Hz doublet) was delivered at 

peak force and immediately after in the relaxed state (100- and 10-Hz doublets). Three series 

of five contractions were performed with real-time visual feedback, consisting of four during 

which TMS was delivered (100, 75 and 50% MVC at optimal stimulus intensity (Todd et al., 

2003) and 50% MVC at sub-optimal stimulus intensity) and another MVC with PNS (single 

stimulus delivered at peak force and again in the relaxed muscle in the potentiated state). 

Contractions began at 15-s intervals and sets were separated by 30 s. Subjects were instructed 

to maintain or return to the pre-stimulus force level after TMS. At POST 40 and POST TF, 

measures began exactly 2 min 30 s after the cessation of cycling. Only two MVCs, the latter 

with PNS doublets, and two series of five contractions (100, 75 and 50% MVC at optimal 

stimulus intensity, 50% MVC at sub-optimal stimulus intensity and MVC with single PNS 

stimuli) were performed due to the time-sensitive nature of the measurement with fatigue 

(Figure 20B). 

 

Cognitive task 

Subjects were required to complete 4 blocks of the Simon task (i.e. a classical paradigm used 

to assess the ability to focus attention while ignoring irrelevant information; for a review, see 

(Simon, 1990)) at four time points during each condition (day 1 (D1), day 2 pre-cycling 

(PRE), from 20 to 40 min of the 40-min submaximal cycling bout (CYCL20-40) and post-

cycling task failure (POST TF)) (Figure 20A). Each block consisted of 96 trials and blocks 
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were performed at precisely 5-min intervals, giving subjects between 60 and 90 s of 

“cognitive rest.” The cognitive task was performed while seated on the cycle ergometer facing 

a computer screen at a distance of 1.0 m. A response button was fixed to each of the 

handlebars (right and left) of the ergometer. A fixation point (white circle) was located in the 

center of the screen and remained present throughout the trials. Subjects were instructed to 

respond as quickly and accurately as possible by pressing the appropriate response button 

according to the color of circle presented either to the left or right of the fixation point at a 

visual angle of 8.6 degrees. Subjects were instructed to respond according to the color of the 

stimulus while ignoring its spatial location. The mapping of stimulus color to response button 

was counterbalanced across subjects. The task was comprised of two equally probable trial 

types: congruent trials where the spatial location of the stimulus corresponded to the task-

relevant aspect of the stimulus (e.g., left stimulus/left response) and incongruent trials where 

the spatial location of the stimulus corresponded to the opposite spatial location of the 

response (e.g., left stimulus/right response). As soon as a response button was pressed, or after 

1500 ms in the absence of a response, the stimulus was removed and the next trial presented. 

 

Exercise protocol 

On Day 2, subjects performed a two-part cycling test at self-selected pedal frequency. The 

first part consisted of 40 min of submaximal exercise as 5 min warm-up at 50% MAP and 35 

min at 65% MAP (i.e. 210 ± 20 W). Ratings of perceived exertion were assessed by 100-mm 

visual analogue scale (Neely et al., 1992) every 5 min from 10 min and HR was recorded 

throughout. Beginning at 20 min of part 1, subjects performed the cognitive task while 

cycling. The second part, i.e. the timed exercise to task failure (TTF), commenced with 5 min 

at 65% MAP, increasing step-wise by 5% MAP every 5 min until task failure. Ratings of 

perceived exertion were assessed every 5 min and at task failure and HR was recorded 

throughout. Subjects were required to remain seated throughout the cycling test and an 

investigator blinded to exercise time provided standardized encouragement in both conditions. 

 

Data analysis 

 

Activity 

Mean activity in arbitrary units per min was determined from 8:00 on day 1 to 14:30 on day 2. 

Sub-analyses on the normal sleep period from (23:00 to 8:00) and the non-sleep period (Day 1 

from 8:00-23:00 and Day 2 from 8:00-14:30) were also conducted. 
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Peripheral nerve stimulation 

Voluntary activation was assessed peripherally (VAp) by twitch interpolation using the 

superimposed and potentiated twitch amplitudes elicited by PNS 100-Hz doublets during and 

after MVCs and calculated from the equation: [1 – (PNS 100-Hz superimposed twitch / 

Db100)] × 100. The evolution of low- and high-frequency fatigue was evaluated from the 

change in the ratio of low-frequency (Db10, 10-Hz) doublet to high-frequency (Db100, 100-

Hz) doublet (Verges et al., 2009). 

 

Transcranial magnetic stimulation 

Peak-to-peak amplitude of MEPs and M waves were measured and MEP amplitude was 

normalized to maximal M-wave amplitude during MVC (Msup) and Mmax measured at the 

same time point. In one subject MEP normalization by Msup was not performed due to 

difficulties in eliciting Msup. All analyses involving Msup or values normalized with Msup 

were thus performed on 11 subjects. Cortical voluntary activation (VAc) during maximal 

effort was measured by modified twitch interpolation. Corticospinal excitability increases 

substantially during the transition from relaxed to contracted muscle states (Ugawa et al., 

1995), thus underestimating TMS in the relaxed muscle. Instead the potentiated twitch 

amplitude elicited by TMS in relaxed muscle was estimated. At each time point, a linear 

regression was performed on the relation between SITs evoked when TMS was delivered at 

100, 75 and 50% MVC and voluntary force (Todd et al., 2003). This relation was extrapolated 

and the y-intercept was interpreted as the estimated resting twitch amplitude. VAc was 

assessed with the equation: [1 – (TMS superimposed twitch / estimated resting twitch)] × 100. 

The reliability of this method has recently been validated in the knee extensors (Goodall et al., 

2009). The duration of the CSP was determined visually and defined as the duration from the 

cortical stimulus to the return of continuous voluntary electromyography (Sidhu et al., 

2009b). 

 

Cognitive task 

Reaction times less than 100 ms were considered anticipated responses and were thus 

excluded from further analyses. The rates of errors and omissions (RT greater than 1500 ms) 

were both calculated as a percentage of the total number of trials. Mean RT for correct trials 

was calculated for each of condition (SD, CO) time (D1, PRE, CYCL20-40, POST TF), block 

(1, 2, 3, 4) and congruency (congruent, incongruent). 



STUDY 3 

136 

 

 

Statistics 

 

Exercise and neuromuscular responses 

All data was assessed for normality before statistical analysis was performed. Two-way 

repeated-measures ANOVA (condition × time) were used to test evaluate differences between 

D1 and PRE in CO and SD. Then two-way repeated-measures ANOVA (condition × time) 

were used to assess changes on day 2 for all neuromuscular measures. Two-way repeated-

measures ANOVA (condition × time) were conducted on RPE and HR in parts 1 and 2 of the 

cycling protocol. Comparison of CSP between days was not conducted because optimal 

stimulus intensity was determined each day and changes to stimulus intensity influence CSP 

duration independent of other factors. When ANOVA revealed significant interactions, the 

Newman-Keuls post hoc test was used to identify differences. Cortical voluntary activation 

was assessed by two-way non-parametric repeated-measures ANOVA because this data was 

not normally distributed. Students paired t-tests were used to evaluate differences in TTF 

performance, activity and sleep patterns. Data are presented as mean ± standard deviation. 

 

Cognitive task 

The arcsine transformations of mean RT and error rate were both evaluated by ANOVA with 

condition (SD, CO), time point (D1, PRE, CYCL20-40, POST TF), block (1, 2, 3, 4) and 

congruency as within-subject factors. To correct for violation of sphericity assumptions, a 

Greenhouse–Geisser degree of freedom correction was applied. Post hoc Newman-Keuls 

analyses were conducted on all significant interactions. Arcsine transformations of omission 

rate were assessed by non-parametric Wilcoxon Signed-Rank test. Data are presented as mean 

± standard error of the mean. 

Statistical significance was set at P < 0.05 for all statistical analyses. 

 

RESULTS 

 

Sleep patterns and sleepiness 

Normal sleep patterns were characterized by scores of 3 ± 1 on the Pittsburgh Sleep Quality 

Index, 56 ± 8 on the Horne-Ostberg Morningness-Eveningness questionnaire and 6 ± 2 on the 

Epworth Sleepiness Scale. There were no differences between conditions in the time subjects 

slept (CO, 11:35 pm vs. SD, 11:35 pm; P = 1.00) or woke up (CO, 8:04 am vs. SD, 8:02 am; 
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P = 0.88) or in the number of hours they slept (CO, 8 h 29 min ± 53 min vs. SD, 8 h 27 min ± 

48 min; P = 0.88) the three nights before the experimental protocols. Subjects were more 

active in SD than CO (CO, 71 ± 15 arbitrary units·min -1 vs. SD, 89 ± 25 arbitrary units·min -1; 

P = 0.028). This was exclusively due to a difference in activity during the normal sleep period 

(CO, 19 ± 27 arbitrary units·min -1 vs. SD, 45 ± 15 arbitrary units·min -1; P = 0.002). 

There was no difference between conditions on day 1 on the Stanford Sleepiness Scale 

(P = 1.00). Sleepiness increased from day 1 to day 2 in SD only (CO, 1.7 ± 0.5 and 1.8 ± 0.6 

vs. SD, 1.7 ± 0.7 and 4.0 ± 1.2 for days 1 and 2, respectively; P < 0.001). Subjective 

sleepiness was greater at all time points on day 2 in SD than CO (P < 0.001). 

 

Performance, RPE and HR during exercise 

Cycling time to task failure was significantly shorter in SD than CO (Figure 21A). RPE was 

significantly greater in SD than CO and increased (P < 0.001) during 40 min of submaximal 

exercise. There was no difference in RPE during TTF between conditions (P = 0.15) as RPE 

increased to task failure (P < 0.001) (Figure 21B). There was also no difference in HR 

between SD and CO during 40-min submaximal cycling (mean HR: CO, 159 ± 14 beats·min-1 

vs. SD, 157 ± 15 beats·min-1; P = 0.12). During TTF, HR was higher in CO than SD at all 

time points (HR at task failure: CO, 180 ± 12 beats·min-1 vs. SD, 173 ± 14 beats·min-1; P < 

0.001). 

 

 
Figure 21. Effect of SD and CO conditions on (Panel A) mean and individual cycling time to task 

failure and (Panel B) RPE during the cycling protocol. There was higher RPE in SD than CO (P = 

0.009) during the first 40 min. Values are presented as mean ± standard deviation. 
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Neuromuscular responses 

 

Maximal voluntary and evoked forces 

There were no differences in MVC between conditions or days (P > 0.05). MVC decreased 

with exercise from PRE to POST40 (P = 0.011) and then no further to POST TF (P = 0.09). 

Similarly, Db100, Db10/Db100 and potentiated twitch and estimated resting twitch 

amplitudes were similar between D1 and PRE and between conditions (P > 0.05) and all 

decreased with exercise (Table 9). 

 

M-waves 

Decreased VL and RF Mmax and RF Msup were observed from D1 to PRE (P < 0.01). No 

differences in VM Mmax nor VL or VM Msup were observed between days (P > 0.05). Both 

Mmax and Msup decreased with exercise in both conditions and all muscles (P < 0.01) 

(Table 9). 

 

TMS stimulus intensity 

There was no difference between conditions (P = 0.71) or days (P = 0.68) for optimal 

stimulus intensity. Mean optimal stimulus intensity was 65 ± 8 and 62 ± 9% for CO and 62 ± 

9 and 63 ± 12% for SD for days 1 and 2, respectively. There was also no difference between 

conditions (P = 0.46) or days (P = 0.59) for submaximal stimulus intensity. Mean 

submaximal stimulus intensity was 35 ± 7 and 35 ± 8% for CO and 36 ± 8 and 36 ± 8% for 

SD for days 1 and 2, respectively. 

 

Voluntary activation 

There were no differences between conditions for either VAc (P = 0.34) or VAp (P = 0.31). 

There was a trend for VAc to decrease with exercise; however, this did not achieve statistical 

significance (P = 0.059) (Figure 22A). Peripheral voluntary activation decreased with 

exercise (P = 0.003) and was lower at POST TF than both PRE (P = 0.003) and POST40 (P = 

0.014) (Figure 22B). 

 

Motor-evoked potentials (at optimal stimulus intensity) 

No differences in MEP·Mmax-1 or MEP·Msup-1 were observed between days or conditions 

for any muscle or contraction intensity (P > 0.05). Increased VL MEP·Mmax-1 and 

MEP·Msup-1 with exercise at all contraction intensities were observed (P < 0.05). Vastus  
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Table 9. Neuromuscular parameter evolution with time in SD and CO conditions at D1, PRE, 

POST40 and POST 40 (n=12 unless otherwise indicated).  

   D1 PRE POST40 POST TF 

MVC (N)  CO 599 ± 121 610 ± 100 544 ± 97‡‡ 515 ± 85‡‡ 

  SD 589 ± 95 577 ± 94 510 ± 92‡‡ 494 ± 71‡‡ 

Potentiated  CO 159 ± 34 160 ± 35 123 ± 30‡‡ 115 ± 26‡‡,* 

     twitch (N)  SD 158 ± 30 160 ± 30 125 ± 26‡‡ 117 ± 27‡‡,* 

Db100 (N) CO 268 ± 50 271 ± 45 218 ± 47‡‡ 206 ± 48‡‡ 

  SD 268 ± 44 266 ± 46 222 ± 51‡‡ 211 ± 49‡‡ 

Db10/Db100  CO 1.01 ± 0.08 1.01 ± 0.06 0.75 ± 0.12‡‡ 0.74 ± 0.11‡‡ 

  SD 1.04 ± 0.06 1.01 ± 0.08 0.75 ± 0.09‡‡ 0.73 ± 0.09‡‡ 

Estimated resting  CO 101 ± 45 102 ± 45 69 ± 42‡‡ 52 ± 27‡‡,** 

     twitch (N)  SD 103 ± 35 98 ± 34 78 ± 41‡‡ 59 ± 33‡‡,** 

Mmax (mV)       

VL 
CO 17.1 ± 3.3‡ 15.7 ± 3.5 14.4 ± 4.3† 12.5 ± 4.6‡‡,*** 

SD 16.4 ± 3.1‡ 15.5 ± 2.5 14.6 ± 2.7† 12.4 ± 4.5‡‡,*** 

RF 
CO 7.7 ± 2.5‡‡ 6.9 ± 2.3 6.4 ± 2.1† 4.9 ± 1.8‡‡,*** 

SD 8.5 ± 2.6‡‡ 8.0 ± 2.5 7.1 ± 2.5† 5.8 ± 2.8‡‡,*** 

VM 
CO 13.5 ± 4.4 13.1 ± 4.4 12.5 ± 5.3 10.1 ± 4.5‡,* 

SD 12.1 ± 4.2 11.5 ± 3.8 9.9 ± 3.0 7.7 ± 3.9‡,* 
Msup (mV) (n=11)      

VL 
CO 15.2 ± 3.9 14.4 ± 3.9 12.9 ±  4.3† 11.1 ± 4.1‡‡,** 

SD 14.3 ± 3.6 14.2 ± 4.0 13.3 ± 3.1† 12.0 ± 5.4‡‡,** 

RF 
CO 8.2 ± 3.2‡ 7.2 ± 2.7 6.7 ± 2.5 5.5 ± 2.2‡‡,** 

SD 9.0 ± 3.3‡ 8.6 ± 3.0 7.6 ± 2.5 6.2 ± 3.0‡‡,** 

VM 
CO 10.3 ± 3.8 9.6 ± 3.8 9.3 ± 3.7 8.0 ± 4.7†,* 

SD 10.3 ± 2.9 10.1 ± 2.3 9.5 ± 2.1 7.6 ± 3.2†,* 
There were no differences between CO and SD (P > 0.05). Time point significantly 
different from PRE † (P < 0.05), ‡ (P < 0.01) or ‡‡ (P < 0.001). Time point significantly 
different from POST40 * (P < 0.05), ** (P < 0.01) or *** (P < 0.001).  
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medialis MEP·Mmax-1 at 100% and 75% MVC and MEP·Msup-1 at 100% MVC increased 

with exercise (P < 0.05). The increase in VM MEP·Mmax-1 at 50% MVC approached 

statistical significance (P = 0.050). There were no changes in RF MEP·Mmax-1 or 

MEP·Msup-1 (P > 0.05) with exercise (Figure 23). 

 

 
Figure 22. Effect of SD and CO conditions and exercise on (Panel A) VAc and (Panel B) VAp. 

Values are presented as mean ± standard deviation. 

 

Motor-evoked potentials (at sub-optimal stimulus intensity) 

Both VL MEP·Mmax-1 (P = 0.011) and MEP·Msup-1 (P = 0.026) increased with exercise. 

There were no changes in RF or VM MEP·Mmax-1 or MEP·Msup-1 (P > 0.05) with exercise 

and no differences between conditions or days for any muscle (P > 0.05) (Figure 23). 

 

Cortical silent period 

Analysis of CSP was performed on 11 subjects because one subject did not return to pre-

contraction force levels after the delivery of TMS, thus making CSP determination 

impossible. There were no differences in CSP between conditions for any muscle or 

contraction intensity (P > 0.05). Cortical silent periods were shorter at both POST40 and 

POST TF than at PRE for all muscles and contraction intensities (P < 0.01) (Figure 24). 
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Figure 23. Effect of SD and CO conditions and exercise on MEP·Max-1 in (Panel A) vastus lateralis 

(VL), (Panel B) rectus femoris (RF) and (Panel C) vastus medialis (VM) during contractions at 50, 75 

and 100% MVC with TMS delivered at optimal stimulus intensity  and 50% MVC (50S) with TMS 

delivered at sub-optimal stimulus intensity. Values are presented as mean ± standard deviation. 

Significant changes are presented in the text only. 
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Figure 24. Effect of SD and CO conditions and exercise on CSPs in (Panel A) vastus lateralis (VL), 

(Panel B) rectus femoris (RF) and (Panel C) vastus medialis (VM) during contractions at 50, 75 and 

100% MVC with TMS delivered at optimal stimulus intensity  and 50% MVC (50S) with TMS delivered 

at sub-optimal stimulus intensity. Values are presented as mean ± standard deviation. Significant 

changes are presented in the text only. 
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Cognitive task 

 

Reaction time 

Results showed main effects of condition (P = 0.011), trial congruency (P = 0.019), time (P = 

0.023), block (P = 0.024) and an interaction between condition and time (P = 0.035). Reaction 

times were longer for incongruent trials (406 ± 11 ms) than congruent trials (377 ± 10 ms). 

The interaction between condition and time indicated that RT lengthened in SD in PRE (375 ± 

9 ms, P = 0.007) and POST TF (371 ± 16 ms, P = 0.002) compared to CO (349 ± 8 ms and 

337 ± 10 ms for PRE and POST TF, respectively). Conversely, during CYCL20-40 RT in SD 

(347 ± 11 ms) did not differ from RT observed in CO (CO, 333 ± 9 ms vs. 347 ± 11 ms; P = 

0.20) (Figure 25A). No other interactions were observed. 

 

Decision errors and omissions 

A classic congruency effect was observed with the prevalence of errors in incongruent trials 

(6.19 ± 0.7%) greater than in congruent trials (3.04 ± 0.4%; P < 0.001). There were no other 

main effects or interactions. Wilcoxon Signed-Rank test showed that the omission rate was 

greater in SD during PRE (0.82%, P = 0.012) and POST TF (1.68%, P = 0.002) than CO 

(0.02 and 0% for PRE and POST TF, respectively). Conversely, no omissions were observed 

in either SD or CO during CYCL20-40 (Figure 25B). 

 

 
Figure 25. Effect of SD and CO conditions and exercise on (Panel A) RT and (Panel B) omission 

rate. Values are presented as mean ± standard error of the mean. Results in SD significantly different 

than CO, * (P < 0.05) and ** (P < 0.01). 
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DISCUSSION 

 

The principal findings of this study are that one night SD resulted in decreased cycling time to 

task failure, increased RPE during cycling and both longer RT and higher omitted response 

rates at rest without evidence of decreased cognitive control efficiency compared to CO. 

Despite increased RPE in SD, submaximal cycling exercise restored information processing 

efficiency to baseline levels. Furthermore, changes within the muscle or to voluntary 

activation measured after task failure cannot explain the decrement in exercise performance 

with SD. The hypothesis that increased central fatigue might elucidate performance 

deterioration was refuted since neuromuscular function was not affected by SD. 

 

Cycling performance 

The diminished cycling performance in SD may be explained by differences in RPE and 

sleepiness. Motivation and the decision to stop exercise involve complex cognitive functions. 

Sleepiness, as assessed by the Stanford Sleepiness Scale, was greater in SD than CO, also 

during exercise when sleepiness increased in CO and was unchanged by SD. These coupled 

with prior research indicating that combined intermittent exercise and SD causes individuals 

to be more susceptible to negative mood states than SD alone (Scott et al., 2006) suggest that 

increased sleepiness during exercise and mood disturbances may have contributed to reduced 

exercise performance in SD. 

 

RPE and HR 

During the 40 min of submaximal cycling, RPE was significantly greater with SD. Despite 

this difference, there was no difference in RPE during TTF between conditions. All subjects 

however had maximal RPE at task failure although this occurred 59 s later in CO (mean 

performance time decrement of 7.5% in SD). This result concurs with the findings of Marcora 

et al. (2009), who compared TTF after both a 90-min mentally fatiguing task and a 90-min 

mentally neutral task. In this study, RPE was higher in the mentally fatiguing condition except 

at task failure which occurred earlier after the mentally fatiguing task. Sleep loss has 

previously been shown to have dramatic effects on emotional processing, judgment and self-

esteem and subjects were more likely to report increased feelings of worthlessness, 

inadequacy, powerlessness and failure (Killgore, 2010). Emotional modifications may explain 

the difference in a self-reported measure like RPE and require further investigation. Sleep 

deprivation also reduced exercise HR only during TTF in the present study. The finding that 
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SD results in decreased exercise HR is equivocal (Martin, 1981; Martin & Gaddis, 1981; 

Martin & Chen, 1984; Scott & McNaughton, 2004; Oliver et al., 2009), suggesting that 

exercise duration and/or intensity may be important factors influencing the impact of SD on 

HR. Scott and McNaughton (2004) discussed several proposed mechanisms to explain lower 

HR during exercise in SD, including plasma volume expansion and decreased respiratory 

controller sensitivity, and their potential problems or the data required to support them. 

Interestingly, in conjunction with the increased RPE during TTF after a mentally fatiguing 

task, Marcora et al. (2009) observed lower HR only at task failure and attributed this 

difference to task failure occurring earlier. Further investigation is required in order to 

identify the mechanisms and conditions underlying decreased exercise HR with SD. 

 

Neuromuscular function 

Our hypothesis that a greater reduction in the neural recruitment of motor units, central 

fatigue, might partially explain diminished cycling performance with SD was refuted. 

Maximal voluntary force and electrically evoked M-wave and force decreased with exercise, 

agreeing with previous studies of aerobic exercise (Millet et al., 2003c). There was evidence 

of decreased VA, including VAc showing a strong tendency to decrease with exercise (P = 

0.059). Isometric MVC has been shown to begin to recover immediately after a fatiguing task 

(Froyd et al., 2013). Peripheral voluntary activation was evaluated before VAc at each 

evaluation and the additional recovery time may have been sufficient to create this 

discrepancy and render VAc evaluation insufficiently sensitive to real changes in some 

subjects. However, measures of central fatigue recover more slowly than peripheral responses 

(unpublished data and (Froyd et al., 2013)), suggesting that the effect of PNS and TMS 

testing order was likely minimal. Previous studies evaluating TMS measures in SD generally 

observed results in SD and CO to be similar (Civardi et al., 2001; Scalise et al., 2006; De 

Gennaro et al., 2007; Kreuzer et al., 2011). Only MEP amplitude during muscular contraction 

was a common measure with any of these studies. Scalise et al. (2006) observed no change in 

absolute MEP amplitude after at least 24 h SD in opponens pollicis, mirroring our observation 

that MEP amplitude is unaffected by SD. Vastus lateralis MEP amplitude and VM MEP 

amplitude at some contraction intensities increased with exercise, consistent with findings in 

fatiguing submaximal and maximal isometric-contraction protocols (Gruet et al., 2013a). 

Conversely, RF MEP amplitude and VM MEP amplitude at some contraction intensities did 

not change with exercise, consistent with other cycling protocols (Sidhu et al., 2009b; 

Goodall et al., 2012; Klass et al., 2012), including two of comparable duration. The 
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discrepancy between these studies (Sidhu et al., 2009b; Klass et al., 2012) and the present 

study may be due to their use of lower TMS intensities (30-60% maximal stimulator output 

vs. mean stimulus intensity > 60% maximal stimulator output in all sessions in the present 

study). These results also suggest that different muscles of the quadriceps may not 

demonstrate a homogeneous response to exercise although the rapid recovery of MEPs to 

baseline levels post-exercise (Taylor et al., 1996) may mask exercise-induced changes in RF 

and VM. Changes in MEP amplitude during exercise did not differ between SD and CO, 

indicating that corticospinal excitability was unaffected by SD, both at rest and following 

fatiguing exercise.  

The amplitude of MEPs at 50% MVC was evaluated by TMS delivered at two 

stimulus intensities, one to evoke maximal MEP amplitudes and the other half-maximal MEP 

amplitudes, both determined from the stimulus-response curve at 20% MVC. For all muscles, 

the same changes were observed at both TMS stimulus intensities. The changes in MEP 

amplitude observed in this study were independent of TMS stimulus intensity. If submaximal 

MEP responses are not measured, real changes in cortical excitability may be overlooked if 

the stimulus-response curve shifts to the left or right and maximal MEP amplitude remains 

unaffected. This however was not the case in the present study. 

The finding that CSP decreased with exercise is novel. This contrasts the increased 

CSP observed in sustained submaximal and maximal isometric contractions (Gruet et al., 

2013a) and its lack of change after other cycling protocols (Sidhu et al., 2009b; Goodall et al., 

2012; Klass et al., 2012). The difference between cycling protocols of similar duration (Sidhu 

et al., 2009b; Klass et al., 2012) may be due, at least in part, to the aforementioned difference 

in TMS intensities employed. After exercise cessation, CSPs have been observed to rapidly 

return to baseline values (Taylor et al., 2000), suggesting that the magnitude of decrease may 

be underestimated. The primary inhibitory cerebral neurotransmitter is GABA, which is 

derived from glutamate. Cortical silent periods are predominantly mediated by GABAB 

receptors (McDonnell et al., 2006); thus, decreased GABAB concentration would reduce 

cortical inhibition and CSP duration. After 3 h of cycling at 60% VO2max, cerebral ammonia 

uptake and its accumulation in cerebral spinal fluid was observed (Nybo et al., 2005). 

Previously, maximal incremental cycling to task failure (~12 min) showed cerebral ammonia 

uptake without cerebral spinal fluid accumulation (Dalsgaard et al., 2004). Proposed by Nybo 

et al. (2005) and supported by previous research in rats (Guezennec et al., 1998), a minimum 

duration and exercise intensity is necessary to exceed the ammonia removal capacity of the 

brain. Accumulation of ammonia in cerebral spinal fluid could cause decreased cortical 
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glutamate concentration since ammonia is condensed with glutamate to produce glutamine 

during ammonia removal. Consequently, GABA concentration would decrease, resulting in 

decreased cortical inhibition. Whether this mechanism may explain the observed reduction of 

intracortical inhibition during prolonged exercise requires further investigation. The lack of 

difference between CSP shortening in CO and SD indicates that any mechanism contributing 

to shorter CSPs during exercise is unaffected by SD. 

 

Cognitive performance, sleep deprivation and exercise 

This study reproduced cognitive deficits widely reported after one night of SD, notably 

slowed response speed and increased number of omitted responses (e.g. (Tsai et al., 2005)). 

No evidence of decreased response inhibition was observed in SD as demonstrated by the lack 

of primary interaction between congruency and condition, or second-order interaction with 

the addition of time points (D1, PRE, CYCL20-40, POST TF). Using three short Stroop tasks 

(Color-Word, Emotional, and Specific), Sagaspe et al. (2006) similarly observed that 36 h of 

SD did not affect cognitive control. Cognitive control was also unaffected by exercise as there 

was no interaction between congruency and time points. In conjunction with the lack of 

significant interactions involving mean RT or decision error, these results suggest neither SD 

or exercise, nor their interaction, influenced cognitive control. The present study is consistent 

with Killgore (2010) and suggests that cognitive processes are differentially sensitive to SD as 

some cognitive functions were impaired (e.g. slowing of response speed) whereas others were 

unaffected (e.g. selective response inhibition). 

Shorter RT during exercise was not associated with increased decision error, 

indicating that the response strategy (i.e. speed-accuracy trade-off) did not change and that 

exercise specifically caused increased performance. In accordance with our hypothesis, this 

positive effect of acute submaximal exercise also counteracted the negative effects of SD and 

restored information processing efficiency (i.e. faster RT, fewer omissions) to baseline levels. 

This benefit could have been due to greater exercise-induced nervous system activation (e.g. 

increased HR (Davranche et al., 2005, 2006b), increased plasma catecholamines (Chmura et 

al., 1994)), which could have temporarily negated the decreased alertness and attentional 

capacities caused by SD. This gain may have endured for a short duration; however it was no 

longer observed at POST TF, reinforcing the established transient post-exercise benefits of 

exercise on cognitive performance (Chang et al., 2012). The exact mechanism(s) for transient 

improvements in cognitive performance during exercise remain to be elucidated. 
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Limitations 

Without the availability of electroencephalography the effects of possible microsleeps are 

unknown despite constant subject supervision. Effects of subjects being exposed to low levels 

of light and being more active in SD may also have influenced results. The performance 

measure of TTF was chosen despite its limited application to real-world exercise 

performance, greater variability and important motivational component. The primary goal was 

to exhaust the subject and if a time trial was employed, the associated pacing strategies may 

have complicated interpretation of the results. Neuromuscular assessment was not conducted 

on the same apparatus as cycling, thus there was a delay from exercise termination to 

neuromuscular evaluation meaning that changes in neuromuscular measures immediately 

post-exercise would not have been identified. Measurement of electromyography was not 

conducted during the exercise bouts, thus preventing neuromuscular evaluation of the effects 

of SD during exercise. Further studies are required to investigate combined PNS and TMS 

measures during exercise with SD. 

 

Conclusion 

In summary, one night of complete SD resulted in decreased cycling time to task failure 

compared to a control condition. Self-reported measures, including RPE, were altered in SD, 

confirming the importance of emotional processing in SD-induced performance deficits. 

Cognitive processes appear to be differentially sensitive to SD as only some cognitive 

functions were impaired. Furthermore, the compensatory effect of acute submaximal exercise 

on cognitive deficits induced by sleep loss was demonstrated. Neuromuscular function 3-4 

min after cycling cessation was similar between CO and SD, indicating that changes in the 

muscle and to the motor nervous system likely cannot explain any of the decrement in 

exercise performance with SD. Thus, the hypothesis that increased central fatigue after one 

night complete SD contributes to decreased exercise performance is unsupported. 
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ABSTRACT 

 

The underlying mechanisms of the well-established central deficit in ultra-endurance running 

races are not understood. The use of transcranial magnetic stimulation (TMS) in parallel with 

peripheral nerve stimulation provides insight into the source of these central changes. The 

aims of this study were to determine the presence and magnitude of cortical and peripheral 

voluntary activation deficits after a mountain trail-running race and whether this can be 

explained by simultaneous changes in corticospinal excitability and intracortical inhibition. 

Neuromuscular function (TMS and femoral nerve electrical stimulation) of the knee extensors 

was evaluated before and after a 110-km ultra-trail in 26 experienced ultra-endurance trail 

runners during maximal and submaximal voluntary contractions and in relaxed muscle. Both 

peripheral (-26%) and cortical (-16%) voluntary activation decreased and were correlated (P < 

0.01). Decreases in potentiated twitch and doublet amplitudes were correlated with decreased 

cortical voluntary activation (P < 0.05). There was increased motor-evoked potential (MEP) 

amplitude (P < 0.05) without change in cortical silent period (CSP) elicited by TMS at 

optimal stimulus intensity. Conversely, CSP at sub-optimal TMS intensity increased (P < 

0.05) without concurrent change MEP amplitude. MEP and CSP responses suggest a shift in 

the sigmoidal MEP-stimulus-intensity relationship towards larger MEPs at great TMS 

intensity without change in inflection point of the curve and a left-shift in the CSP-stimulus-

intensity relationship. These changes may contribute to the impaired motor command 

observed after the ultra-trail. The presence of peripheral changes, correlated with decreased 

cortical voluntary activation, suggests contribution of group III and IV afferents to central 

deficits during ultra-endurance running exercise. 

 

Keywords: cortical voluntary activation, corticospinal excitability, intracortical inhibition, 

neuromuscular fatigue 

 

RÉSUMÉ 

 

Les mécanismes sous-jacents au déficit central bien décrit dans la course à pied d’ultra-

endurance restent à éclaircir. L'utilisation de la stimulation magnétique transcrânienne 

(TMS) en parallèle de la stimulation nerveuse périphérique peut permettre de mieux 

comprendre l'origine de ces changements centraux. Les objectifs de cette étude étaient de 

déterminer la présence et l’importance des déficits d'activation volontaire corticale et 
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périphérique après un ultra-trail et si ces modifications peuvent être expliquées par des 

modifications simultanées d’excitabilité corticospinale et d'inhibition intracorticale. La 

fonction neuromusculaire (TMS et stimulation électrique du nerf fémoral) des extenseurs du 

genou a été évaluée avant et après un ultra-trail de 110 km chez 26 coureurs de trail d’ultra-

endurance expérimentés pendant des contractions volontaires maximales et sous-maximales 

et sur muscle relâché. L’activation volontaire périphérique (-26%) et corticale (-16%) ont 

diminué et étaient corrélées (P < 0,01). La diminution des amplitudes de la secousse simple et 

des doublets potentiés étaient corrélés à la diminution de l'activation volontaire corticale (P 

< 0,05). L’amplitude des potentiels moteurs évoqués (MEP) (P < 0,05) a augmenté sans 

changement de la période de silence corticale (CSP) provoquée par la TMS à intensité 

optimale. Inversement, les CSP à intensité de TMS sous-optimale ont augmenté (P < 0,05) 

sans changement de l’amplitude des MEP. Les modifications de MEP et CSP observées 

suggèrent un changement dans la relation sigmoïdale entre l’amplitude des MEP et l’intensité 

de stimulation par TMS avec des MEP plus importants pour des intensités de TMS élevées 

sans changement du point d'inflexion de la courbe, ainsi qu’avec un décalage vers la gauche 

de la relation entre CSP et intensité de stimulation. Ces changements pourraient contribuer à 

la diminution de la commande motrice observée après un ultra-trail. La présence de 

changements périphériques, corrélés à la diminution de l'activation volontaire corticale, 

suggère la contribution des afférences de groupes III et IV dans les déficits centraux au cours 

d’une course à pied d’ultra-endurance. 

 

Mots clés : activation volontaire corticale, excitabilité corticospinale, inhibition 

intracorticale, fatigue neuromusculaire 
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INTRODUCTION 
 

Probably due to the explosion of ultra-endurance running participation, a large amount of 

research on the physiological consequences of ultra-marathons has been conducted recently 

(Millet et al., 2002; Easthope et al., 2010; Martin et al., 2010; Millet et al., 2011c). This type 

of event permits investigation and greater understanding of the limits of human performance 

(Millet & Millet, 2012). The origins of fatigue are dependent on numerous factors, including 

the type of exercise, making the ultra-trail running sub-group of endurance-running a unique 

field of study. With substantial elevation changes and long duration, ultra-trails combine a 

range of specific exercise intensities and employ various muscle groups, activation patterns 

and types of muscle contraction (i.e. combining concentric and severe eccentric loads).  

Neuromuscular fatigue is an exercise-related decrease in the maximal voluntary torque 

of a muscle or muscle group, regardless of whether or not a task can be sustained. This may 

involve processes at all levels of the motor pathway from the brain to skeletal muscle. Large 

central fatigue (i.e. reduced maximal voluntary activation) has been observed in running bouts 

longer than 5 h (Millet et al., 2002; Place et al., 2004; Martin et al., 2010; Millet et al., 

2011c). The presence of central fatigue does not however mean an absence of peripheral 

fatigue although compared to the central component peripheral fatigue appears to be only of 

moderate importance in extremely long-duration exercise. Only a few studies have 

investigated central fatigue in running exercise longer than 12 h in duration (Martin et al., 

2010; Millet et al., 2011c; Saugy et al., 2013), and only two have combined elevation change 

and extreme duration (Millet et al., 2011c; Saugy et al., 2013). All these studies used the 

classical peripheral electrical stimulation techniques of twitch interpolation and central 

activation ratio to assess voluntary activation (Merton, 1954). The major issue with these 

techniques is that they do not permit the differentiation between spinal and supraspinal 

components of central fatigue. 

Using transcranial magnetic stimulation (TMS) in parallel with peripheral nerve 

stimulation during voluntary isometric contractions, Gandevia et al. (1996) observed that as 

exercise duration increases, the role of supraspinal factors in fatigue increases and that 

supraspinal deficits and failure are not necessarily paralleled by impairment of motor cortical 

excitability. Furthermore, the presence of central fatigue does not mean that both spinal and 

supraspinal fatigue are certainties.  

Dynamic whole-body exercise has only recently been investigated with TMS, 

predominantly in cycling studies (e.g. (Goodall et al., 2012; Sidhu et al., 2012a; Temesi et al., 
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2013)). Only one published study has employed TMS with running (Ross et al., 2007), 

observing decreased cortical voluntary activation (VAc) of the dorsiflexors after a treadmill 

marathon. This study also observed decreased motor-evoked potential (MEP) amplitude of the 

tibialis anterior in relaxed muscle immediately post-marathon; however, MEP amplitude 

assessed in relaxed muscle limits interpretation because of both the greater MEP variability 

and lower corticospinal excitability in the relaxed muscle state (Gruet et al., 2013a). All other 

whole-body investigations of VAc have been conducted with cycling and generally showed 

decreased VAc after exercise (Sidhu et al., 2009b; Goodall et al., 2012; Temesi et al., 2013) 

although not 10 min after ~1.5 h of cycling (Klass et al., 2012).  

At similar exercise intensities, there is less central fatigue in cycling than running and 

this has been proposed to be related to increased influence of group III/IV afferents because of 

increased muscle damage in running (Millet & Lepers, 2004). Unlike the dorsiflexors which 

do not limit running performance (Fourchet et al., 2012) and plantar flexors which display 

only moderate central deficits, the knee extensors demonstrate large central deficits after 

prolonged exercise (Martin et al., 2010; Millet et al., 2011c). Whether this manifests at the 

supraspinal level in trail running, particularly given the muscle damage associated with the 

eccentric nature of downhill running, remains to be determined. The use of TMS in parallel 

with peripheral nerve stimulation can provide greater insight into the source of these central 

changes.  

Despite large central consequences, the effects of long running bouts on supraspinal 

activity and any subsequent effect on knee extensor function are unknown. Specifically, 

whether a supraspinal deficit occurs with an ultra-endurance trail running race and whether or 

not any such deficit is associated with changes in corticospinal excitability and/or intracortical 

inhibition remain to be determined. The aim of this study was thus to test the hypotheses that 

(i) an ultra-trail decreases VAc, and (ii) corticospinal fatigue occurs despite no change or 

increased MEP amplitude and unchanged cortical silent period (CSP). 

 

METHODS 

 

Subjects 

Thirty-five healthy experienced ultra-endurance trail runners (15 females and 20 males) were 

recruited to participate in this study. Six subjects (3 females and 3 males) did not complete the 

ultra-trail and 3 others (1 female and 2 males) did not perform post-race testing due to time 

constraints. Thus, 26 subjects (11 females and 15 males) participated in all aspects of this 
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study (mean ± standard deviation: age, 43  9 years; height, 172 ± 9 cm; body mass, 66.5 ± 

10.9 kg; maximal oxygen consumption (VO2max), 56.2 ± 6.3 ml·kg -1·min -1). Subjects were 

informed of the experimental protocol and all associated risks prior to giving written informed 

consent as part of a medical inclusion. All procedures conformed to the Declaration of 

Helsinki and were approved by the local ethics committee. All subjects were experienced 

ultra-endurance trail runners since participation in the partner ultra-trail (the North Face® 

Ultra-Trail du Mont-Blanc® 2012) required completion of a minimum of two demanding trail-

running races with significant elevation change in the two years preceding the race.  

 

Experimental design 

Each subject completed one preliminary session and two experimental sessions. During the 

preliminary session, subjects completed a maximal incremental running test and were 

introduced to all experimental procedures and repeated trials until they were able to perform 

all tests consistently and as directed. The first experimental session (PRE) occurred on one of 

the three days before the North Face® Ultra-Trail du Mont-Blanc® 2012 and the second 

(POST) 1:01:30 ± 0:22:37 after completing the ultra-trail. Due to exceptional inclement 

weather conditions, the 2012 edition of the North Face® Ultra-Trail du Mont Blanc® involved 

running/walking 110 km with total positive elevation change of 5862 m (Figure 26). Under 

conditions of a mixture of rain, snow and clouds, the temperature reached a maximum of 

12°C in Chamonix and decreased below 0°C at altitudes above 1800 m. 

 
Figure 26. Course profile of Ultra-Trail du Mont-Blanc 2012. 
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Preliminary session 

After a medical examination, subjects performed a maximal incremental running test to 

exhaustion on a treadmill (EF1800, HEF Tecmachine, Andrezieux-Boutheon, France). The 

subjects began the test at 10% grade and a speed of 4-6 km·h -1, with starting speed 

corresponding to running ability. The speed was then increased by 1 km·h -1 until volitional 

exhaustion. Subjects ran 2 min 30 s at each speed and then stopped for 30 s for a blood 

sample for lactate measurement. Respiratory measures were assessed breath-by-breath by an 

online system (Ergocard, Medisoft, Sorinnes, Belgium) and averaged every 30 s. VO2max was 

considered as the oxygen consumption during the last 30 s prior to exhaustion.  

The familiarization portion of the preliminary visit included maximal and submaximal 

contractions of the knee extensors with and without femoral nerve electrical stimulation 

(PNS) and TMS (see Neuromuscular testing protocol section). For TMS, this included 

training subjects to return to the pre-stimulus torque as soon as possible after the stimulus to 

permit accurate measurement of the CSP. 

 

Neuromuscular testing protocol 

Neuromuscular measures (Figure 27) were assessed PRE and POST with real-time visual 

feedback. Maximal torque was determined from 3 MVCs separated by 30 s with PNS (100-Hz 

paired pulses and single pulses) delivered at peak torque and immediately after in the relaxed 

state (100- and 10-Hz paired pulses and single pulses). Then three series of four contractions 

were performed with TMS delivered at the desired torque level (100, 75 and 50% MVC at 

optimal stimulus intensity (Todd et al., 2003) and 50% MVC at sub-optimal stimulus 

intensity; see below for further details). Contractions were separated by 15 s and series by 30 

s.  

 

Force and electromyographic recordings 

Knee extensor force was measured during voluntary and evoked contractions by a calibrated 

force transducer (Meiri F2732 200 daN, Celians, Montauban, France) with amplifier attached 

by a non-compliant strap to the right leg just proximal to the malleoli of the ankle joint. 

Subjects were seated upright in a custom-built chair with both right knee and hips at 90° of 

flexion. The load cell was fixed to the chair such that force was measured in direct line to the 

applied force. Torque was calculated as force measured by the force transducer multiplied by 

the length of the lever arm (i.e. distance from the tibial condyles to where the force transducer 

was attached to the leg). 
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Figure 27. Panel A) Neuromuscular testing order PRE and POST ultra-trail for PNS and TMS. Panel 

B) Neuromuscular testing protocol for PNS MVCs and TMS contraction series. 
 

Electromyographic activity (EMG) of the right knee extensors (vastus lateralis) was 

recorded with a pair of self-adhesive surface electrodes (Meditrace 100, Covidien, Mansfield, 

USA) in bipolar configuration with a 30-mm interelectrode distance and the reference on the 

patella. Low impedance (<5 kΩ) between electrodes was obtained by shaving, gently abrading 

the skin and then cleaning it with isopropyl alcohol. Signals were analogue-to-digitally 

converted at a sampling rate of 2000 Hz by PowerLab system (16/30-ML880/P, 

ADInstruments, Bella Vista, Australia) and octal bio-amplifier (ML138, ADInstruments; 

common mode rejection ratio = 85 dB, gain = 500) with bandpass filter (5-500 Hz) and 

analyzed offline using Labchart 7 software (ADInstruments). 

 

Femoral nerve electrical stimulation 

Single electrical stimuli of 1-ms duration were delivered via constant-current stimulator 

(DS7A, Digitimer, Welwyn Garden City, Hertfordshire, UK) to the right femoral nerve via a 

30-mm diameter surface cathode manually pressed into the femoral triangle (Meditrace 100, 

Covidien, Mansfield, USA) and 50 x 90 mm rectangular anode (Durastick Plus, DJO Global, 
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Vista, USA) in the gluteal fold. Single stimuli were delivered incrementally until maximal M-

wave (Mmax) and twitch amplitudes plateaued. Stimulus intensity of 130% of the intensity to 

produce Mmax and maximal twitch responses was employed to confirm supramaximality. 

Stimulus intensity was determined at the start of each session. Supramaximal PNS intensity 

increased from PRE (60 ± 18 mA) to POST (67 ± 21 mA; P = 0.025). 

 

Transcranial magnetic stimulation 

Single TMS pulses of 1-ms duration were manually delivered to elicit MEPs and 

superimposed twitches (SITs) during voluntary isometric knee extension. The contralateral 

motor cortex was stimulated by a magnetic stimulator (Magstim 200², The Magstim Company 

Ltd, Whitland, UK) with a 110-mm double-cone coil (maximum output of 1.4 T) to induce a 

postero-anterior current. The coil was manually controlled by an experienced investigator 

throughout the protocol. Subjects wore a cervical collar during all TMS measures to stabilize 

the head and neck. Subjects also wore a latex swim cap on which lines were drawn between 

the preauricular points and from nasion to inion to identify the vertex. Every centimeter was 

demarcated from the vertex to 2 cm posterior to the vertex along the nasal-inion line and also 

to 1 cm over the left motor cortex. At each point a stimulus was delivered at 50% maximal 

stimulator output during brief voluntary contractions of the knee extensors at 10% maximal 

voluntary contraction (MVC) torque to determine the optimal stimulus site. The coil was 

positioned at the site evoking the largest MEP amplitude and SIT throughout the protocol. 

Stimulus intensity was determined from a stimulus-response curve determined from MEP 

responses evoked during brief (~2-3 s) voluntary contractions at 20% MVC. TMS was 

delivered during 2 consecutive contractions at each of the randomly-ordered stimulus 

intensities of 40, 50, 60 and 70% maximal stimulator output. Stimuli were delivered at 15-s 

intervals. Optimal stimulus intensity was defined as the lowest stimulus intensity eliciting 

maximal MEP amplitudes (Groppa et al., 2012). If a plateau was not confirmed from these 

intensities, higher intensities were investigated. A sub-optimal stimulus intensity equivalent to 

60% of the optimal intensity (i.e. corresponding to the rising part of the stimulus-response 

curve) was also selected to identify any shift in the stimulus-response curve. Mean stimulus 

intensities PRE were 67 ± 9% and 40 ± 5% maximal stimulator output for optimal and sub-

optimal stimulus intensities, respectively. Coil position in relation to the vertex was noted 

because identical coil position and TMS intensities were utilized PRE and POST. 

Immediately after POST evaluation, optimal stimulus intensity was re-determined in subjects 

still physically capable of sustaining the target torque level (20% MVC POST) (n = 21). 
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Optimal stimulus intensity in these subjects was similar PRE and POST (66 ± 9% versus 67 ± 

6% maximal stimulator output, respectively; P = 0.54). During voluntary contractions, TMS 

was always delivered once the subject had contracted to the appropriate torque level and the 

torque had stabilized. Subjects were also instructed to re-contract to the pre-stimulus torque 

level immediately after TMS delivery. 

 

Data analysis 

 

EMG and femoral nerve electrical stimulation 

M-wave peak-to-peak amplitude and duration were calculated from PNS in both relaxed 

(Mmax) and contracted (Msup at 100% MVC) muscles. Maximal torque was calculated as the 

mean peak torque from three MVCs. EMG root mean square (RMS) was calculated as the 

mean from three MVCs over a 200-ms period after the torque had reached a plateau and 

before PNS was delivered (RMSMVC). Then RMSMVC was normalized to both Mmax and 

Msup. The amplitudes of the potentiated peak twitch (TwPot) and doublet (100-Hz paired 

pulse, Db100; 10-Hz paired pulse, Db10) torques were also determined. 

Peripheral voluntary activation (VAp) was assessed by twitch interpolation using the 

superimposed and potentiated doublet amplitudes elicited by 100-Hz paired pulses during and 

after MVCs and calculated from the equation: [1 – (PNS 100-Hz superimposed doublet 

amplitude)·Db100-1] × 100. The presence of low- and high-frequency fatigue POST was 

evaluated from the change in the ratio of Db10 to Db100 (Verges et al., 2009). 

 

Transcranial magnetic stimulation 

Peak-to-peak amplitude of MEPs were measured and normalized to Msup measured at the 

same time point. VAc during maximal effort was measured with TMS by modified twitch 

interpolation. For each series of contractions, estimated resting twitch (ERT) was determined 

by linear regression of the relation between SIT amplitude evoked when optimal intensity 

TMS was delivered at 100, 75 and 50% MVC and voluntary torque (Todd et al., 2003). This 

relation was extrapolated and the y-intercept was interpreted as the ERT amplitude. In cases 

where the linear regression was not linear (r < 0.9), ERT was excluded and VAc was not 

calculated for the series (Hunter et al., 2006). ERT was linear for all subjects for at least one 

series at both PRE and POST, thus permitting VAc to be determined in all subjects. VAc was 

assessed with the equation: [1 – (SIT·ERT-1)] × 100. The reliability of this method has 

recently been validated in the knee extensors (Goodall et al., 2009; Sidhu et al., 2009a). The 
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duration of the CSP was determined visually and defined as the duration from the stimulus to 

the return of continuous voluntary EMG (Sidhu et al., 2009b). 

 

Statistics 

Statistical analyses were performed with Statistica (version 8, Tulsa, USA). The Shapiro-Wilk 

test was used to verify data normality. Paired T-tests were used to evaluate differences 

between PRE and POST. The relationships between percentage change (∆) PRE-POST in 

selected central and peripheral parameters were determined by Pearson product correlation. 

Statistical significance was set at P < 0.05. All data are presented as mean ± standard 

deviation. 

 

RESULTS 

 

Performance 

Subjects completed the 110-km ultra-trail in a mean time of 20:13:03 ± 3:22:34 (range: 

13:49:31 - 25:49:23), equivalent to 192 ± 32% of the overall winning time (range: 131 - 

245%). 

 

Maximal voluntary torque and evoked responses 

Two subjects with very large central deficits were outliers and excluded from MVC and VA 

analyses only. There was a significant 34% decrease in MVC post-race (Figure 28). 

Peripheral potentiated twitch and doublet (100 and 10 Hz) amplitudes decreased significantly 

by 11, 10 and 14%, respectively (Figure 28). There was also a tendency for Db10/Db100 to 

decrease from PRE to POST although it did not reach the level of significance (Figure 28, P 

= 0.096). 

 

M-waves and RMS 

M-wave amplitudes were unchanged although there was a tendency for both Mmax and Msup 

to be smaller POST (Table 10). Peak-to-peak M-wave duration was also unchanged although 

there was a trend for Msup to be longer POST (Table 10). RMSMVC, both raw and 

normalized, significantly decreased from PRE to POST (Table 10). 
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Figure 28. MVC and electrically-evoked mechanical responses PRE and POST ultra-trail. Values are 

presented as mean ± standard deviation. Significant difference PRE-POST, ** P < 0.01 and *** P < 

0.001. 
 

Table 10. Vastus lateralis M-wave amplitude and duration and RMS 

 
PRE POST P-value 

Mmax amplitude (mV) 13.2 ± 3.8 12.4 ± 4.0 0.09 

Msup amplitude (mV) 13.0 ± 3.6 12.0 ± 4.3 0.10 

Mmax peak-to-peak duration (ms) 9.6 ± 2.2 9.5 ± 2.4 0.45 

Msup peak-to-peak duration (ms) 6.8 ± 1.5 7.2 ± 1.4 0.06 

RMSMVC (mV) 0.63 ± 0.31 0.36 ± 0.15 < 0.001 

RMSMVC·Mmax-1 0.047 ± 0.014 0.030 ± 0.009 < 0.001 

RMSMVC·Msup -1 0.048 ± 0.016 0.034 ± 0.021 0.009 

Values are presented as mean ± standard deviation. 

 

Voluntary activation 

There was a mean decrease of 16% for VAc (93 ± 7 to 80 ± 11%, P < 0.001) and 26% for 

VAp (91 ± 8 to 72 ± 14%, P < 0.001). There was a correlation between ∆VAp and ∆VAc 

(Figure 29). ∆VAc and ∆VAp were correlated with ∆MVC (r = 0.61, P = 0.002 and r = 0.79, 

P < 0.001, respectively). ∆VAc was also correlated with ∆TwPot (r = 0.53, P = 0.008) and 

∆Db10 (r = 0.45, P = 0.028) and there was a trend for ∆VAc to be correlated with ∆Db100 (r 

= 0.37, P = 0.074).  
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Figure 29. Correlation between the change in ∆VAc and ∆VAp. 

 

 

 
Figure 30. Vastus lateralis (Panel A) MEP amplitude normalized to Msup and (Panel B) CSP elicited 

by optimal-intensity TMS during contractions at 50, 75 and 100% MVC and by sub-optimal TMS 

intensity at 50% MVC (50S) PRE and POST ultra-trail. Values are presented as mean ± standard 

deviation. Significant difference PRE-POST, * P < 0.05 and *** P < 0.001. 

 

Motor-evoked potentials 

At 50 and 100% MVC, MEP·Msup -1 increased significantly from PRE to POST (Figure 30A) 

and there was a tendency for MEP·Msup -1 at 75% MVC to increase (P = 0.099). Conversely, 

the amplitude of MEPs elicited at sub-optimal stimulus intensity was unchanged (P = 0.59).  
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Cortical silent period 

There were no changes in CSP during contractions at 50, 75 or 100% MVC elicited by 

optimal stimulus intensity (Figure 30B, P > 0.05). Conversely, CSPs at sub-optimal stimulus 

intensity increased from PRE to POST (Figure 30B). At sub-optimal TMS intensity, no CSP 

was elicited in at least one contraction in 20% of subjects PRE and in 5% of subjects POST.  

 

DISCUSSION 

 

Central fatigue has been reported to be the main cause of knee extensor strength loss after 

prolonged running. The primary aim of the present study was to determine whether at least 

part of this central fatigue was supraspinal. The main results are that after a 110-km ultra-trail 

(i) there were significant and correlated decreases in cortical and peripheral VA, (ii) there 

were correlations between peripheral changes and decreases in VA, suggesting that the large 

central deficits consistently observed after extreme duration running exercise have both 

central and peripheral origins and (iii) there was increased corticospinal excitability (as 

indicated by greater MEP amplitude) and no change in intracortical inhibition (as indicated by 

unchanged CSP) at optimal TMS intensity. There was also increased CSP duration and 

unchanged MEP amplitude at sub-optimal TMS intensity. These suggest a shift in the MEP-

stimulus-intensity relationship towards larger MEP amplitudes only at higher TMS intensities 

and a left-shift in the CSP-stimulus-intensity relationship. 

 

Maximal torque and PNS measures: comparison with the literature 

Only a couple studies (Martin et al., 2010; Millet et al., 2011c; Saugy et al., 2013) have 

examined long-distance running comparable to that of the ultra-trail in the present study. 

Despite being shorter than these studies, mean MVC decrease was similar (Martin et al., 

2010; Millet et al., 2011c) or greater (Saugy et al., 2013), a finding compatible with the 

existence of a plateau in the strength loss-exercise duration relationship (Millet, 2011). In this 

study, ∆VAp was comparable to that reported after a 24-h treadmill run (Martin et al., 2010), 

a 330-km ultra-trail (mean time ~122.5 h) with 24 000 m of elevation change (Saugy et al., 

2013) and a 166-km ultra-trail (mean time ~37.5 h) with 9500 m of elevation change (Millet 

et al., 2011c). The latter study reported decreased vastus lateralis M-wave amplitude and 

increased vastus lateralis M-wave duration. A similar tendency for Mmax and Msup 

amplitude and Msup duration was observed in the present study. Similar to other long-

distance running studies (Millet et al., 2003a; Place et al., 2004; Martin et al., 2010; Saugy et 
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al., 2013), low-frequency fatigue was not observed in this study although there was a trend 

towards a reduction in the ratio Db10 to Db100 in accordance with Millet et al. (2011c). This 

suggests that at low intensities, extremely long-duration eccentric exercise is required to 

trigger low-frequency fatigue that is generally observed in much shorter distance and higher 

intensity (combination of speed and negative slope) downhill running. Finally, as with longer 

treadmill and ultra-trail runs (Martin et al., 2010; Millet et al., 2011c; Saugy et al., 2013), 

potentiated twitch amplitude decreased, although to a lesser extent. With shorter trail (mean 

time < 9 h) and treadmill runs (mean time < 3.5 h), a change in twitch amplitude PRE to 

POST was not observed (Millet et al., 2002; Millet et al., 2003a; Ross et al., 2007; Easthope 

et al., 2010; Ross et al., 2010a) suggesting an effect of distance and/or duration on twitch 

amplitude. The present results confirm previously published consequences of extreme running 

exercise on both global and peripheral fatigue.  

 

Centrally- and peripherally-assessed voluntary activation 

This study was the first to measure VAc of the knee extensors with extreme fatigue induced 

by long-distance running. Previously, Ross et al. (2007) observed decreased dorsiflexor VAc 

after a 42.2-km treadmill marathon but dorsiflexors are not considered limiting to trail 

running performance (Fourchet et al., 2012). All other investigations of knee extensor VAc 

have been conducted with cycling and all showed decreased VAc after exercise (Sidhu et al., 

2009b; Goodall et al., 2012; Temesi et al., 2013) with the exception of Klass et al. (2012) 

where no decrease in VAc was observed 10 min after ~1.5 h of cycling. 

In the present study, despite greater ∆VAp than ∆VAc (-26% versus -16%), these 

changes were well-correlated indicating that supraspinal fatigue plays an important role in the 

decrease of VAp. The correlation between ∆VAp in knee extensors and plantar flexors 

previously observed in an ultra-trail (Millet et al., 2011c) suggests there is a common 

regulatory component independent of peripheral factors. Conversely, the significant 

correlations between central (∆VA) and peripheral factors (∆TwPot and ∆Db) in the present 

study suggest that afferent fibers are involved in central fatigue observed after an ultra-trail. 

This idea has previously been proposed for shorter endurance cycling exercise (Amann, 

2011). Previous research suggests that neither acidosis nor potassium are major factors in 

ultra-endurance activities (Millet et al., 2011c), indicating that group III and IV afferents 

likely respond to mechanical stimuli (i.e. stress and pressure) (Legramante et al., 2000; Ge & 

Khalsa, 2003) and inflammatory processes (Hoheisel et al., 2005; Schomburg et al., 2012) in 

this type of event. After extreme endurance activities, inflammatory markers remain elevated 
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up to five days after the cessation of the exercise bout (Neubauer et al., 2008; Millet et al., 

2011c), well beyond the 1 h delay to POST testing in the present study. The specific role of 

peripheral muscle afferents and direct spinal and supraspinal mechanisms remains to be 

determined. 

 

Motor-evoked potentials and cortical silent periods 

The TMS contraction series required maximal (100% MVC) or submaximal (50 and 75% 

MVC) isometric contractions. Increased MEP amplitude and unchanged CSP at optimal TMS 

intensity after the ultra-trail could indicate a transient increase in cortical excitability without 

change in inhibition that translates into a more effective corticospinal response to a given 

stimulus. The TMS intensities employed in isometric voluntary contraction evaluation, 

however, contrast dramatically with the realities of an ultra-trail and optimal TMS intensity 

likely exceeds normal motor command both during an ultra-trail and MVC. 

Previous studies from other laboratories have not shown any change in MEP 

amplitude/area or CSP duration after cycling (intensity: 55-80% maximal power output; mean 

duration: 4-94 min) (Sidhu et al., 2009b; Goodall et al., 2012; Klass et al., 2012) when 

investigated in a similar manner. These results contrast those observed in the present study. 

Two factors, exercise duration and TMS intensity, may contribute to these differences. 

Another study from our group observed MEP amplitude in the vastus lateralis and vastus 

medialis increase during 40 min of cycling at 65% maximal aerobic power output followed by 

an incremental cycling test to task failure (Temesi et al., 2013). MEP amplitude also increased 

at optimal TMS intensity in the present study, after a more extreme activity in terms of 

duration. Together, these studies suggest that duration of effort and the associated 

consequences (e.g. hydration, glycaemia, pain and also sleep deprivation for extreme-duration 

exercise) play an important role in transient changes toward higher corticospinal excitability 

when tested at optimal stimulus intensity (67 ± 9% maximal stimulator output). The 

concurrent use of optimal and sub-optimal TMS intensities to evaluate MEP and CSP changes 

is novel, and our results suggest that selection of an appropriate TMS intensity is essential. 

Both Klass et al. (2012) and Sidhu et al. (2009b) performed TMS at intensities comparable to 

sub-optimal TMS intensities in the present study (i.e. 30-60% maximal stimulator output 

versus 40 ± 5% maximal stimulator output in the present study). At sub-optimal TMS 

intensity, the unchanged MEP amplitudes in the present study mirrored the aforementioned 

findings of these studies (Sidhu et al., 2009b; Klass et al., 2012). Furthermore, Sidhu et al. 

(2012a) found no change in MEP amplitude normalized to Msup at similar TMS intensities 
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(i.e. 41.4 ± 0.9% maximal stimulator output). This study is particularly activity-specific since 

this is the only one examining MEP changes during cycling. Unlike the observed increase in 

CSP at sub-optimal TMS intensity in the present study, these studies (Sidhu et al., 2009b; 

Klass et al., 2012) did not observe a change in CSP despite similar mean CSP durations and 

TMS intensities. This supports the proposal that corticospinal changes are related to exercise 

duration. The finding that increased corticospinal inhibition occurs during exercise at sub-

optimal TMS intensity has previously been observed during cycling using a different method 

of evaluation (Sidhu et al., 2013b). 

 

 
Figure 31. Proposed theoretical changes to the sigmoidal MEP and CSP stimulus-response curves 

from PRE to POST ultra-trail. Optimal and sub-optimal TMS intensities of 60 (thick arrow and dotted 

line) and 36% (thin arrow and dotted line), respectively, are used as examples. Optimal and sub-

optimal stimulus intensities are based upon PRE evaluation for both PRE and POST. (Panel A) The 

large vertical arrow indicates the proposed shift at moderate to high TMS intensities in the MEP-

stimulus-intensity relationship. There is also no change in inflection point of the relationship. (Panel B) 

The large horizontal arrow illustrates the proposed left-shift in CSP-stimulus intensity relationship. 
 

Isometric voluntary contractions at 50% MVC with sub-optimal intensity TMS would 

probably be the contractions most physiologically representative of regulatory muscle control 

during an ultra-trail. Unlike the unchanged CSP and increased MEP amplitude at optimal 

TMS intensity, CSPs induced by TMS at sub-optimal intensity increased in duration while 

MEP amplitude remained unchanged. These results can be placed within the framework of the 

previously demonstrated sigmoidal MEP- (Devanne et al., 1997; Duclay et al., 2011) and 

CSP- (Kimiskidis et al., 2005; Duclay et al., 2011) stimulus-intensity relationships. In the 

present study, optimal TMS intensity was determined as the lowest stimulus intensity eliciting 

a maximal MEP response (i.e. the intensity at the start of the plateau in a MEP-stimulus-
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intensity curve, Figure 31A). The observed changes in MEP amplitude and CSP duration 

suggest that both MEP and CSP stimulus-response curves underwent transformations and/or 

shifts but that these changes were different (Figure 31). It is proposed that after ultra-

endurance running exercise, there is a shift of the MEP stimulus-response curve towards 

greater MEP amplitudes at higher TMS intensities without change in the lower inflection 

point (Figure 31A). Concurrently, it is proposed that there is a left-shift of the CSP stimulus-

response curve (Figure 31B). This suggests that an ultra-trail may cause a decrease in the 

threshold to induce CSPs at a TMS intensity (sub-optimal) that may be physiologically 

representative of cortical drive during an endurance exercise. There are many demands on the 

brain during an ultra-trail (e.g. regulation of vital physiological systems, prevention of injury 

and long-term physical harm, comparison of perceived exertion to existing pacing templates). 

The combination of increased intracortical inhibition without a compensatory increase in 

corticospinal excitability and decreased voluntary activation may be a regulatory safety 

mechanism to prevent physical harm. 

 

Limitations 

Subjects were tested as soon as possible after they completed the ultra-trail competition. 

Despite efforts to conduct POST measures in a timely manner, there was a large delay and 

some variability in the time between race completion and the start of testing because of the 

distance from the finish to the testing site and the necessity of ensuring the safety of the 

subjects. The same coil position and TMS stimulus intensity were used at PRE and POST. 

This was done for a number of reasons: (i) given the physical state of the subjects at POST, 

including several that were unable to complete the three series of contractions with TMS, 

reassessment of TMS intensity prior to POST assessment would probably have reduced the 

number of subjects and impacted data analysis and (ii) to be able to compare CSP and MEP 

since changes to stimulus intensity influence both these parameters. Optimal stimulus 

intensity was similar PRE and POST. Due to the delay in conducting POST, MEP and CSP 

changes may be underestimated or masked. Previous studies have shown MEPs and CSPs to 

recover rapidly after isometric single-joint exercise (e.g. (Taylor et al., 1996; Taylor et al., 

2000)). Due to the nature of the ultra-trail, it was impossible to test subjects at the same time 

of day. Nevertheless, this was unlikely to influence results as corticospinal and intracortical 

excitability have been shown to be unaffected by time of day (Doeltgen & Ridding, 2010). 

Finally, antagonist (e.g. biceps femoris) EMG was not measured due to time constraints. 
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Changes in the relative contribution of agonists and antagonists may affect measures such as 

VA. 

 

Conclusion 

This study was the first to combine TMS and extreme endurance to investigate the 

physiological consequences of an extreme duration exercise on central changes at the 

supraspinal level. The hypotheses that an ultra-trail decreases VAc and that corticospinal 

fatigue occurs with a concomitant increase in MEP amplitude and unchanged CSP duration 

were confirmed. However, CSP induced by sub-optimal TMS intensity increased without 

concurrent change in MEP amplitude at this intensity. This suggests a left-shift in the CSP-

stimulus-intensity relationship and a shift in the MEP-stimulus-intensity relationship towards 

larger MEPs at higher TMS intensities without change in the inflection point of the curve. 

These changes may contribute to performance limitations during the ultra-trail. Peripheral 

changes were also observed and correlated with decreases in cortical and peripheral voluntary 

activation, supporting the proposed contribution of group III and IV afferents to central 

deficits during endurance exercise. 
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GENERAL DISCUSSION AND PERSPECTIVES 

 

DISCUSSION 
 

This thesis is comprised of two main parts, one methodological (Studies 1 and 2) and one 

applied to extreme exercise (Studies 3 and 4). The first two studies in this thesis indicate that 

the method in which TMS is employed is extremely important and that methodological 

differences may be a source of discrepancies between studies. Together Studies 1 and 2 

contribute to the development of evaluation methods that can offer reliable results and permit 

the investigation of the desired TMS parameters. 

The primary result from Study 1 is that a stable contraction force level is essential 

before the delivery of a TMS pulse. As such, all subsequent studies forming part of this thesis 

ensured that TMS was delivered after the force had stabilized at the target force level. This 

study further suggests that because differential responses in the approach to a target force only 

occurred during weak contractions, transient changes in corticospinal excitability may have 

influenced the elicited responses. As contraction intensity increases from 0% MVC (i.e. rest), 

corticospinal excitability increases rapidly (Ugawa et al., 1995; Taylor et al., 1997). 

Contraction intensity corresponding to maximal corticospinal excitability varies by muscle 

according to their unique spatial recruitment patterns, plateauing around 5% MVC in 

adductor pollicis and 50% MVC in biceps brachii and brachioradialis (Taylor et al., 1997). 

This is characterized by adductor pollicis recruiting almost all motoneurons at a contraction 

intensity <30% MVC while in biceps brachii, approximately 20% of motoneurons are 

recruited at intensities >50% MVC (Kukulka & Clamann, 1981). Given that both Studies 3 

and 4 employed a stimulus-response curve at 20% MVC to determine TMS intensity, 

increasing or decreasing to the target force may have caused either over- or under-estimation 

of the intensity to elicit maximal MEP amplitude, and would thus have influenced the selected 

TMS intensity. The results of Study 1 are also imperative for all other published studies that 

have delivered TMS during voluntary contractions, particularly at low contraction intensities. 

The main result from Study 2 is that the use of commonly employed methods of 

determining TMS intensity (e.g. stimulus-response curves or a percentage of AMT or RMT) 

results in the selection of different stimulus intensities. This presents difficulties when 

comparing the results of studies (see Table 1 for a summary of methods in major lower-limb 

TMS studies) and determining possible reasons for incoherent findings. It is recognized that 
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standardizing TMS methodology is challenging because different research and clinical fields 

are interested in different parameters. This thesis is focused on the use of TMS to evaluate the 

effects of central fatigue, particularly its supraspinal component, and central perturbations 

with endurance and ultra-endurance exercise. By its very definition, fatigue is related to what 

happens during physical activity; thus, connections between the brain and muscle at rest are 

not of primary importance. The connections that exist, their ability to be recruited during 

muscular contraction and any changes that may influence exercise performance, on the other 

hand, are of utmost importance. Similarly, the muscle chosen for investigation is vital when 

determining TMS methodology. In this thesis, all studies have investigated the quadriceps 

femoris due to its functional importance in locomotor activities and daily life. Many initial 

TMS studies, however, employed upper-limb muscles because of the ease with which these 

muscles could be stimulated and the clarity of the responses. 

Many other fundamental methodological aspects of TMS in the evaluation of fatigue 

remain to be elucidated including stimulator/coil differences and the best method of 

determining of optimal coil position. First, most magnetic stimulators used in research are 

Magstim stimulators, theoretically making comparisons between studies easier. However, 

there are Magstim models that deliver monophasic pulses while others deliver biphasic pulses. 

As laboratories strive to economize on tight budgets, laboratories may opt to purchase a one-

size-fits-all stimulator and it is unknown how this might affect research results (see Literature 

Review for details on stimulator differences). Another important methodological issue is the 

determination of optimal coil position. This was not evaluated for this thesis despite being 

extensively considered. It was decided that a grid pattern would be employed and the response 

from a single stimulus at each point during a voluntary contraction at 10% MVC would be 

sufficient to determine the optimal coil position. It is unknown whether identical or similar 

coil positions elicit maximal responses in both the relaxed and contracted muscular states, and 

subsequently how this might influence the selection of optimal coil position. Preliminary 

investigations in our laboratory suggest that for some subjects there can be a large difference 

in optimal coil position between relaxed and contracting muscular states. Furthermore, 

whether it is appropriate to use one response at each site to select the position with the 

greatest response, especially in the relaxed muscle given the increased response variability 

when the target muscle is relaxed (Kiers et al., 1993), is unknown. It is also unknown if an 

optimal coil position exists. Whether homogeneous changes to motor cortical excitability 

occur as contraction intensity increases is an important factor to consider. While it would be 

straightforward if the presence of a MEP is sufficient to select a coil position, it neglects to 
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account for possible effects this might have on initial and subsequent measures in the 

evaluation of fatigue. For example, the selected coil position likely influences the stimulus 

intensity (i.e. increased TMS intensity the further the coil is from the relevant motor cortical 

area, or optimal position) and subsequently the elicited measures (i.e. CSP is largely stimulus-

intensity dependent independent of other factors (Saisanen et al., 2008)) or the selection of 

sub-optimal TMS intensities if these are to be employed. 

Choosing an appropriate TMS intensity is essential and the results of the two applied 

studies (Studies 3 and 4) illustrate this point. In both studies, two TMS intensities were 

employed to investigate changes in MEP amplitude and in Study 4 two intensities for CSP 

duration. The rationale for employing a second, lower, stimulus intensity is that real changes 

in corticospinal excitability or inhibition may potentially be overlooked at optimal stimulus 

intensity. The sigmoidal stimulus-response relationship for both CSPs and MEPs is well-

established (Devanne et al., 1997; Kimiskidis et al., 2005; Duclay et al., 2011). When only an 

optimal intensity corresponding to a maximal response on a stimulus-response curve is 

selected, identification of real changes to the curve may be impeded due to the absence of an 

adequate number of data points or a single inappropriate data point. In Study 4 there were 

contrasting results for MEP amplitude and CSP duration at the two selected stimulus 

intensities. At optimal TMS intensity, MEP amplitude increased while CSP duration was 

unchanged and at sub-optimal TMS intensity MEP amplitude remained unchanged while CSP 

duration increased. In conjunction with the lack of pre-post ultra-trail change in optimal TMS 

intensity, this suggests that there was a left-shift of the CSP stimulus-response curve and a 

shift to greater MEP amplitudes at higher stimulus intensities only. Conversely, MEP 

amplitudes in Study 3 at both selected TMS intensities demonstrated the same changes (i.e. 

during voluntary contractions at 50% MVC, vastus lateralis MEP amplitude increased and 

both rectus femoris and vastus medialis MEP amplitudes remained unchanged). This may 

indicate a shift to greater MEP amplitudes at all stimulus intensities in vastus lateralis without 

any change in the rectus femoris or vastus medialis stimulus-response curves at 50% MVC. 

Interestingly, the increased MEP amplitude in vastus medialis post-exercise in Study 3 may 

be driven by greater contraction intensity and not TMS intensity since it was only observed at 

optimal TMS intensity in MEP·Mmax-1 at 100% and 75% MVC and MEP·Msup -1 at 100% 

MVC. This is the only study that we are aware of that has shown any type of intervention (e.g. 

exercise (Goodall et al., 2012), hypoxia (Goodall et al., 2012; Rupp et al., 2012), passive 

hyperthermia (Ross et al., 2012)) to result in differential changes in corticospinal excitability 

by contraction intensity; however, very few studies have reported changes in MEP amplitude 
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or area at more than one contraction intensity. Whether changes in corticospinal excitability 

are linked to contraction intensity remains to be determined. Although there are no scientific 

studies supporting this suggestion, this may potentially allow individuals to transiently 

perform at a very high intensity when sufficiently motivated despite the deleterious effects of 

fatigue. Such situations may include athlete being able to sprint the last part of a competition 

such as an ultra-trail or military personnel rescuing a colleague from a dangerous situation in 

a war zone despite having been in intense combat for many hours. 

The results of Study 3 also raise the question of differences in the development of 

fatigue between the three quadriceps femoris muscles. Although Study 2 did not observe a 

difference in optimal stimulus intensity determined from vastus lateralis, rectus femoris or 

vastus medialis, changes in corticospinal excitability in Study 3, as assessed by MEP 

amplitude, differed between the three investigated quadriceps muscles. It appears that there 

was a spectrum from no change in rectus femoris to consistently increased corticospinal 

excitability in vastus lateralis with vastus medialis in between these two extremes. This may 

partially reflect that the rectus femoris is biarticular and both the vastus lateralis and vastus 

medialis monoarticular or it may represent differences in corticospinal projections to the 

individual quadriceps muscles. Although the regional differences in fatigability previously 

observed in the rectus femoris (Watanabe et al., 2013) are peripheral, these results indicate 

that the proposed hard-wired difference remains a possibility. It also demonstrates there is 

much to be learnt about how fatigue manifests in the quadriceps.  

In fatigue evaluation, VA is recognized as the gold standard to identify a central 

deficit. Thus, to determine the presence and development of supraspinal deficits, the 

evaluation of VAc is required. Determination of VAp by electrical stimulation employs a 

stimulus intensity guaranteed to elicit the largest possible evoked response (e.g. SIT and 

potentiated twitch), thus supramaximal stimuli are delivered to account for any changes in the 

intensity to elicit a maximal response. A TMS intensity that elicits maximal MEP amplitude 

without a large increased in TMS-induced antagonist response is therefore believed to be 

essential. The potential influence of a moderate or large TMS-induced antagonist response on 

VAc evaluation has yet to be systematically investigated. It remains to be determined whether 

potential antagonist coactivation would be a greater problem than delivering TMS at an 

intensity that only elicits near-maximal responses. Questions pertaining to the selection of 

stimulus intensity in other TMS-induced parameters also exist. Given the differential MEP 

and CSP responses by TMS intensity in Study 4, it remains to be determined whether the 

lowest stimulus intensity to elicit MEPs of maximal amplitude is ideal for investigating other 
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central parameters, particularly in the context of fatigue. It is also unknown if VAc must be 

determined at an intensity to elicit maximal responses. The effect of a sub-optimal TMS 

intensity on SIT at three different contraction intensities for the determination of estimated 

resting twitch and the subsequent VAc calculation are unknown. 

 A previous study (McNeil et al., 2011a) observed differential responses to both strong 

and weak TMS and cervicomedullary junction stimuli during a 10-min weak iso-EMG 

voluntary contraction of the elbow flexors. While weak single-pulse stimuli elicited similar 

MEP and CMEP changes (i.e. decreased amplitude), there were differential responses to a 

strong stimulus intensity (i.e. decreased CMEP amplitude and unchanged MEP amplitude). 

The authors suggest that both weak TMS and cervicomedullary junction stimuli and strong 

cervicomedullary junction stimuli were unable to overcome a reduction in spinal excitability. 

The unchanged MEP amplitude to strong TMS may indicate a capacity for cortical facilitation 

or that the TMS intensity was initially supramaximal and remained supramaximal, although to 

a lesser extent, throughout the protocol. The latter possibility may have occurred in at least 

some of the subjects since the strong TMS pulses were delivered at 155.8 ± 43.0% RMT. 

Study 2 demonstrated that TMS intensities to elicit maximal MEP responses in the quadriceps 

at contraction intensities of 10, 20 and 50% MVC are similar to or lower than at 120 or 130% 

RMT. McNeil et al. (2011a) also reported that conditioned MEP and CMEP areas elicited by 

strong stimuli decreased with time although to a lesser extent than the area of MEPs and 

CMEPs elicited by weak stimuli. They proposed that this difference related to the 

composition of the motoneuronal pool activated during the submaximal contraction. 

Predominantly smaller motoneurons are active during the protocol and these motoneurons 

respond most readily to weak TMS and cervicomedullary junction stimuli. It also becomes 

increasingly difficult to excite these smaller motoneurons as fatigue develops. This resulted in 

the large decrease in MEP and CMEP areas in response to weak stimuli. Meanwhile, the 

larger motoneurons that only respond to strong stimuli appear to be essentially unaffected as 

demonstrated by the smaller decrease in MEPs and CMEPs elicited by strong stimuli, 

although this may also represent intrinsic motoneuronal changes. These results underscore the 

importance of stimulus intensity selection by presenting results that on first glance may 

appear inconsistent. Moreover, they emphasize the need to further investigate the effect of 

fatigue on TMS delivered at different intensities.  

 The few studies that have investigated changes to TMS parameters with exercise at 

different TMS intensities have sometimes (McNeil et al., 2001; Study 4) but not always 

(McNeil et al., 2011; Study 3) observed TMS intensity-dependent differences in responses. 
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The dearth of research in this area does not permit conclusions to be drawn with any degree of 

certainty. For example, McNeil et al. (2011a) proposed that the differential changes to single-

pulse stimuli may be related to the prevalence of small motoneuron activity during their 

protocol and the predominance for these same motoneurons to be activated by weak TMS. 

The former situation is unlikely in Study 4 since an ultra-trail might be expected to activate at 

least a significant portion, if not all, of the motoneuron pool. Over the course of a sustained 

(Garland et al., 1994) or series of intermittent (Carpentier et al., 2001) isometric fatiguing 

contractions, motoneuronal derecruitment has been observed, particularly among 

motoneurons with a high activation threshold (Carpentier et al., 2001). Furthermore, the 

activation threshold in high-threshold motoneurons was observed to decrease over the course 

of a series of fatiguing isometric contractions at 50% MVC (Carpentier et al., 2001). Despite 

the relatively low exercise intensity, the extreme distance (110 km) and duration (13:49:31 - 

25:49:23) and large decrease in VAc suggest that most or all motoneurons played an 

important role in race completion. Meanwhile, the contrasting results in Studies 3 and 4 may 

be associated with differences in distance, duration and/or exercise type (i.e. running versus 

cycling). While stimulus-response curves have been conducted in both the relaxed and 

contracting muscle, the effects of any possible changes to these curves have not been 

investigated with fatigue. As the results of Study 4 and McNeil et al. (2011a) suggest, 

especially when contrasted with the results of Study 3, changes to these curves may help 

explain some performance decrements. In lieu of the time-consuming nature of evaluating 

stimulus response curves and the rapid recovery of TMS parameters in many studies, 

utilization of multiple TMS intensities may be crucial to better understanding the supraspinal 

drive to the muscles and how this may impact fatigue. 

 The finding of decreased VA (VAp and VAc in Study 4 and VAp and a trend for VAc 

in Study 3) with endurance and ultra-endurance exercise is consistent with most related 

studies. The studies in the present thesis are the first to report increased MEP amplitude in any 

muscle after a dynamic whole-body exercise bout, with the exception of Fernandez-del-Olmo 

et al. (2013), who compared pre-post Wingate MEP changes at the same absolute, not 

relative, force levels. The previously discussed results of Study 3 further suggest that changes 

in cortical excitability are muscle dependent. The CSP results from both Studies 3 and 4 are 

also novel. In previous dynamic whole-body exercise, CSP was unchanged in the vastus 

lateralis (Goodall et al., 2012; Fernandez-del-Olmo et al., 2013; Girard et al., 2013), rectus 

femoris (Sidhu et al., 2009b; Klass et al., 2012) and vastus medialis (Klass et al., 2012) after 

cycling and also in the tibialis anterior after a treadmill marathon run (Ross et al., 2007). In 
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Study 4, CSP elicited by sub-optimal TMS intensity increased in duration during the ultra-

trail yet remained unchanged at optimal TMS intensity. While fatiguing isometric contraction 

protocols in both upper and lower limbs report increasing CSP duration, this has not been 

previously observed in locomotor exercise. The fact that shorter duration cycling studies 

performed at moderate to high intensities with TMS intensities comparable to the sub-optimal 

TMS intensity employed in this study reported unchanged CSP (Sidhu et al., 2009b; Klass et 

al., 2012) supports the idea that exercise duration and/or intensity are factors influencing CSP. 

Study 3, meanwhile, is the only published study reporting decreased CSP duration after an 

acute exercise bout. While total exercise duration in Study 3 was comparable to others (Sidhu 

et al., 2009b; Klass et al., 2012), the combination of exercise duration and exercise intensity 

was different. Furthermore, the TMS intensity in Study 3 was greater than that employed by 

either Klass et al. (2012) or Sidhu et al. (2009b). The combination of these factors may have 

contributed to this intriguing finding.  

Another important factor to consider when comparing and interpreting the reported 

CSP and MEP changes, or lack thereof, is the delay between exercise cessation (whether due 

to task failure or protocol design) and post-intervention evaluation. Cortical silent period 

recovery is extremely rapid with significant recovery occurring within as few as 5 s and 

complete recovery within as little as 15 s during intermittent isometric maximal contractions 

over various durations and duty cycles (total protocol time from 3.5-7.5 min) (Taylor et al., 

2000). Similarly, MEP recovery has been shown to recover within the first ~30 s after 

exercise (Taylor et al., 1999; Taylor et al., 2000; Sogaard et al., 2006). There inevitably must 

be a delay between exercise cessation and isometric evaluation in whole-body dynamic 

exercise protocols due to the necessity of installing the subject on an ergometer. In Study 4, 

there was a delay to post-exercise measurements of 1:01:30 ± 0:22:37. Thus, there is great 

confidence that the reported increase in CSP at sub-optimal TMS intensity and the reported 

increase in MEP amplitude at optimal TMS intensity are real changes. The lack of change to 

MEP amplitude at sub-optimal TMS intensity and CSP at optimal TMS intensity may be truly 

representative of the effects of an ultra-trail, or these findings may be the result of transient 

effects that recover more rapidly than the observed changes. Regardless, Study 4 suggests that 

the duration, and possibly the intensity, of the exercise bout have a role to play in the post-

exercise duration of TMS-induced effects. 

  It is important to link these findings to real-world activities. For example, does the 

lack of MEP amplitude change at optimal TMS intensity have real implications to 

performance? The question of what experimental conditions are most representative of those 
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during exercise, especially endurance and ultra-endurance exercise is important. Both steady-

state and time-trial protocols have a role in expanding the understanding of central 

perturbations and fatigue. Study 3, while not entirely steady-state, followed a strict protocol. 

This avoided pacing strategies as a confounding factor. A real-world time-trial such as the 

North Face® Ultra-Trail du Mont Blanc® in Study 4 may be more realistic because it includes 

the management of pacing and feeding strategies, the possibility of changing meteorological 

conditions, the presence and actions of other competitors, the control of cortical drive to 

exercising muscles and the regulation of other tasks, all of which influence perception of task 

effort and eventually performance (Millet, 2011). Thus, the use of an optimal TMS intensity 

as denoted by Groppa et al. (2012) (i.e. the transition from the rising slope to the flat portion 

of the sigmoid stimulus-response curve) may not be the most physiologically relevant to the 

real-world. Instead the changes observed at a sub-optimal TMS intensity in Study 4 (i.e. 

increased CSP and unchanged MEP) may be may be more indicative of changes contributing 

to the observed supraspinal fatigue since supraspinal drive to the muscles during a race may 

be limited by the complex regulatory demands of the body.  

Initially, it appears reasonable to observe decreased VAc in the presence of unchanged 

corticospinal excitability and increased intracortical inhibition, as occurred in Study 4 in 

response to sub-optimal TMS intensity. A logical continuation is that these may contribute to 

decreased endurance performance. Meanwhile, the increased cortical excitability and 

unchanged intracortical inhibition at optimal TMS intensity would appear to suggest the 

possibility of a transient capability to improve or maintain performance since a smaller input 

to the motor cortex may be needed to produce the same central motor command. This 

scenario, however, is in opposition to the findings of Gandevia et al. (1996), who previously 

demonstrated that there are independent mechanisms contributing to the supraspinal deficit 

and decreased MVC and changes to CSPs and MEPs. During a 2-min MVC of the elbow 

flexors, SIT, MEP area and CSP duration increased while MVC decreased. Thirty seconds 

after exercise cessation, recovery had started as demonstrated by decreased SIT and increased 

MVC. The same protocol was repeated with a cuff inflated to maintain ischemia during the 

first minute post-exercise. During the ischemic period, neither MVC nor SIT recovered; 

however, CSP and MEP both returned to baseline levels within 30 s. The results of this study 

indicate that under ischemic conditions, the motor cortex failed to drive corticospinal 

motoneurons that were of normal excitability and that muscle fatigue was directly responsible 

for this continued central failure, likely due to input from group III/IV afferents. Thus, the 

results of Study 4 indicate that the motor cortex failed to drive corticospinal motoneurons that 
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were of increased excitability when they were stimulated maximally (i.e. at optimal TMS 

intensity). Muscle fatigue, via group III/IV afferents, may be responsible for this failure. In an 

ultra-trail, participants are unlikely to attempt maximal physical performance at any one 

moment in order to achieve the best global performance (i.e. best finishing time). Given the 

numerous demands on the body and the low exercise intensity, there does not appear to be a 

need or desire to maximally drive the motoneurons to the legs. Thus, a sub-optimal TMS 

intensity may be more representative of the drive to the muscles during an ultra-trail. In this 

scenario, corticospinal excitability is unchanged while increased intracortical inhibition may 

indicate a greater difficulty to initiate drive to the muscles. In combination with group III/IV 

afferent input contributing to central fatigue, it would be expected to observe decreased 

exercise performance. 

In Study 3, increased cortical excitability, as denoted by increased MEP amplitude in 

vastus lateralis and vastus medialis, and decreased intracortical inhibition, as denoted by 

decreased CSP duration in all quadriceps muscles, were both observed. Reaction time was 

quicker during exercise; however this effect was transient and 15 min after exercise cessation 

this effect was no longer observed. These results reiterate that in short endurance exercise, 

exercise can act to facilitate cortical processes (i.e. cognitive processes and neuromuscular 

processes). These results may signify a link between cortical facilitation and cognitive 

benefits during exercise; however, further investigations need to be conducted to determine if 

this is the case. 

 Finally, it can be concluded that that in endurance and ultra-endurance exercise, there 

is evidence of supraspinal fatigue and changes in both corticospinal excitability and 

inhibition. The real-world relevance of these findings and the role of TMS intensity in the 

evaluation of fatigue remain to be elucidated. 

 

PERSPECTIVES 
 

There are many exciting research areas involving TMS, supraspinal fatigue and 

neuromuscular changes and/or adaptations that remain to be explored and elucidated. While 

there is tremendous interest in clinical populations and funding opportunities to drive such 

research, the healthy active human remains an interesting model. This population must have a 

vital role in the development of sound methodological approaches for evaluating fatigue and 

corticospinal changes with exercise interventions. Furthermore, it must represent a baseline 
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for comparison in order that potential deficiencies in clinical populations or a sedentary 

population can be identified. Booth and Laye (2009) encapsulate this up by stating that 

“[m]edicine must know what biologically normal physiology is in order to know how to 

prescribe the most optimal treatments to maintain optimal health of all organ systems.” 

Therefore, a healthy and active brain and body must be the basis for understanding central and 

supraspinal fatigue and corticospinal changes with physical activity. Within the context of this 

target population, the following perspectives are of personal interest. 

One of the most important factors affecting the interpretation of all results in the 

investigation of fatigue is the delay between the post-intervention measures and the end of the 

exercise intervention (i.e. task failure, the end of a race or a predetermined protocol). Results 

of upper-body isometric-contraction protocols show that the predominant measures 

investigated with TMS (CSP, MEP and SIT, the latter frequently used to determine VAc) 

recover extremely quickly (within ~30 s) after exercise cessation (Taylor et al., 2000; Sogaard 

et al., 2006; Szubski et al., 2007). Further research must be conducted into whether recovery 

kinetics of all TMS parameters is similar and how recovery kinetics might be affected by the 

duration, intensity and type of activity. Due to the rapid recovery of TMS parameters to, but 

not below, baseline in isometric contraction protocols, and the lack of exercise-induced 

effects on MEP and CSP (Sidhu et al., 2009b; Goodall et al., 2012; Klass et al., 2012), no 

change is interpreted as exactly that when it may reflect an inability to observe a real change. 

Results from both Studies 3 and 4 suggest that whole-body dynamic exercise causes changes 

to both corticospinal excitability and inhibition. Furthermore, Study 4 suggests that an ultra-

trail has longer-term post-exercise effects than single-joint isometric protocols, regardless of 

their intensity or duration, as the mean time to the start of post-ultra-trail measures was more 

than 1 h after the end of the exercise bout. Whether this may be linked to central and/or 

peripheral changes that potentially arise from factors such as the persistent effects of 

inflammatory processes after ultra-endurance exercise (see Study 4 discussion) remains to be 

investigated.  

Recently, TMS evaluation during cycling bouts has been employed to evaluate the 

effects of fatigue (Sidhu et al., 2012a; Sidhu et al., 2013b). This enables the rapid recovery of 

TMS parameters after exercise cessation to be overcome. It also permits better understanding 

of fatigue during exercise. In the future, this must be expanded to include activities of daily 

living and functional importance. The necessity and relevance of progressing beyond single-

joint protocols and into the area of locomotion has been discussed by Sidhu et al. (2013a) in a 

recent review. Without question, the major current limitations to locomotor TMS 
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investigations are methodological. As such few studies to date have investigated TMS-

induced parameters during walking (e.g. (Schubert et al., 1999; Petersen et al., 2001)) and 

none of these have examined the effects of fatigue. Furthermore, no study has utilized TMS 

during running. There are obvious difficulties in employing TMS during locomotor activities, 

especially walking and running; however, the fundamental nature of these activities to human 

life implores us to overcome these difficulties to better understand them. Given the very few 

studies employing TMS during locomotion, EMG suppression has been frequently utilized 

(Petersen et al., 2001; Sidhu et al., 2013b). Since EMG suppression must be evaluated during 

exercise, its potential to clarify the role and influence of inhibitory mechanisms during fatigue 

must be explored. However, a major limit to this method is that it must be subthreshold, and 

should facilitation develop over the course of the exercise bout, valid comparisons cannot be 

made. In Sidhu et al. (2013b), approximately half of the 16 subjects were excluded from 

analysis of the effects of cycling and subsequent recovery. The number of excluded subjects 

ranged from a low of 6 (38%) subjects in the vastus lateralis before exercise to a high of 13 

(81%) subjects in the tibialis anterior during recovery. The high rate of subject exclusion 

demands attention and poses the question of whether a method that eliminates half of all 

subjects is viable, or whether it may in fact hide more than it reveals. In our laboratory, we are 

beginning to discuss the methodological questions that must be overcome to build upon the 

scant literature of fatigue development as assessed by TMS during locomotor activities, and 

also how to investigate the functionally important activities that are walking and running. 

Just as Study 4 examined the extreme conditions of an ultra-trail, other studies can use 

extreme conditions as a model to examine neuromuscular and corticospinal changes. The use 

of one night of SD in Study 3, while unusual is not that uncommon. There are many 

individuals that chronically function with inadequate sleep or groups such as military 

personnel that push the limits of sleeplessness to the extreme, and often in high-risk 

situations. It is unknown whether the extension of SD to two, three or more nights would 

permit identification of central and neuromuscular deficits. Given the previously outlined 

importance of the delay between exercise cessation and post-exercise evaluation, if there were 

small differences in central fatigue or corticospinal changes between SD and control 

conditions in Study 3, they may have masked. By extending the period of SD, there would 

probably be a greater chance of identifying differences if there are in fact any. Furthermore, 

while Study 3 was methodologically sound and well-controlled, one study does not provide 

definitive answers, even in areas with a paucity of research. 
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It is also unknown whether the initiation and evolution of either central or supraspinal 

fatigue and associated parameters are different between men and women. Most studies have 

employed exclusively male subject groups although the few studies comparing maximal force 

and fatigue development in males and females have observed several differences. Women 

have been reported to perform submaximal intermittent or sustained isometric contraction 

protocols at the same relative intensity for longer duration than men in upper- (Hunter & 

Enoka, 2001; Hunter et al., 2006; Yoon et al., 2009) and lower- (Clark et al., 2005; 

Bachasson et al., 2013b) limb muscles. It has also been observed that maximal force 

decreases less in women during intermittent (Russ & Kent-Braun, 2003; Hunter et al., 2006) 

and sustained (Martin & Rattey, 2007) MVC protocols and after ≥2 h cycling (Glace et al., 

2013) and running (Glace et al., 1998). In Glace et al. (1998), the decreased maximal knee 

extension and flexion strength evaluated at 60°·s-1 after 2 h running at ventilatory threshold in 

men was remarkably not present in women. Several studies have suggested that the proportion 

of fatigue attributable to peripheral and central mechanisms varies with men and women 

(Russ & Kent-Braun, 2003; Martin & Rattey, 2007; Keller et al., 2011; Glace et al., 2013) 

with contradictory results. The diversity of protocols employed suggests that factors such as 

the type of protocol (e.g. intermittent versus continuous), exercise (e.g. isometric contractions 

versus dynamic whole-body exercise) and muscles investigated (e.g. elbow flexors versus 

knee extensors) may contribute to the variable results. Glace et al. (2013) reported that 

following a 2-h cycling bout at ventilatory threshold immediately preceding a 3-km time-trial, 

MVC loss is attributable solely to central mechanisms in women while both central and 

peripheral mechanisms contribute in men. Whether this difference applies to running and 

longer running and cycling bouts remains to be determined. The two studies that investigated 

supraspinal sex differences failed to observe any (Hunter et al., 2006; Keller et al., 2011). 

Since both studies employed isometric contraction protocols, future investigations must 

examine whether this is also the case with whole-body exercise. Although initial analysis of 

the data from Study 4 suggested that there were no differences between men and women for 

any analysed parameter, further analyses are planned to account for performance differences. 

An important and developing area that fell outside the scope of this thesis is the use of 

TMS to evaluate training adaptations. Previous resistance training studies have shown neural 

adaptations with TMS in both the upper (Carroll et al., 2002; Jensen et al., 2005) and lower 

limbs (Beck et al., 2007; Griffin & Cafarelli, 2007). These adaptations have been primarily 

changes in MEP amplitude at a given contraction intensity. More recent studies have 

suggested that the interaction between training-induced changes in MEP amplitude and CSP 
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duration can also be modulated (Kidgell & Pearce, 2010; Kidgell et al., 2010) depending on 

the type of training performed (i.e. maximal isometric contractions versus high-intensity 

speed-controlled contractions). The influence of strength training on neural adaptation is 

further supported by a recent study that demonstrated that 3 weeks of arm immobilization (15 

h·day-1) resulted in decreased MEP amplitude at various stimulus intensities during voluntary 

contraction of the biceps brachii (Pearce et al., 2012). Conversely, MEP amplitude was 

unchanged in both a control group and a group that underwent arm immobilization in 

conjunction with thrice weekly heavy-load strength training, indicating that strength training 

may counteract inactivity and prevent negative neural changes. 

 Little is known about whether aerobic training causes neural adaptations in healthy 

subjects. In one of the few studies to examine the effects of aerobic training on neuromuscular 

parameters, Cafarelli et al. (1995) observed EMG·force-1 to increase during 20 min of single-

leg cycling at 70% VO2max before a training program. After an 8-week single-leg cycling 

training program, EMG·force-1 remained stable throughout the 20-min cycling bout at the 

same power output (70% pre-training VO2max) despite unchanged pre- to post-training 

program EMG during brief cycling bouts at various submaximal intensities. The authors 

concluded that changes in muscle activation occur due to an increased capacity of the muscle 

to perform prolonged exercise. More recently, Vila-Cha et al. (2010) observed that 6 weeks of 

either endurance or strength training caused increased motor unit conduction velocity during 

knee extensor contractions at 30% MVC in both conditions. Meanwhile, motor unit discharge 

rate decreased after endurance training and increased after strength training.  

To date there have been no published studies investigating the effects of 

aerobic/endurance exercise training on TMS-evoked parameters in this population. Several 

studies have investigated whether neural adaptations occur in populations affected by 

Parkinson disease and after the occurrence of a stroke (Forrester et al., 2006; Fisher et al., 

2008; Yang et al., 2010). These studies have all observed neural changes as demonstrated by 

changes in TMS parameters. In patients with Parkinson disease, Fisher et al. (2008) observed 

increased maximal CSP duration in the first dorsal interosseous without change in the TMS 

intensity to elicit a CSP of half maximal duration or the slope of a CSP stimulus-response 

curve after 8 weeks of high- but not low-intensity body-weight-supported treadmill training. 

This finding is significant because shorter CSPs are consistently associated with increased 

Parkinson symptom severity (Lefaucheur, 2005) and because this neural adaptation was found 

in a muscle that was not trained. In stroke patients after 4-week body weight-supported 

treadmill training program, Yang et al. (2010) reported decreased RMT in the abductor 
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hallucis in patients <6 months but not in patients >12 months post-stroke. More interesting is 

that they also found that both population groups increased the map area (i.e. the area where 1 

of 4 stimuli at 110% RMT elicited a MEP), indicating cortical plasticity and that this increase 

was much greater than with a general exercise program. Meanwhile, Forrester et al. (2006) 

only found exercise training-induced changes in TMS parameters in the paretic side in a 

group of 3 stroke patients. In this case, vastus medialis MEP amplitude increased after a 

single 20-min treadmill walking bout whereas it was unchanged in the non-training group. 

The type of exercise training programs evaluated in these clinical populations were adapted to 

the target populations and are very different from the aerobic/endurance training programs in 

healthy and athletic populations. Further research is required to determine whether an 

aerobic/endurance exercise training program induces neural adaptions similar to those seen 

with resistance training programs and also the possible neural adaptations of more commonly-

employed mixed training programs (i.e. combination of resistance and aerobic training). Any 

neural adaptations may be dependent upon the type of training program employed, similar to 

effects of different resistance-only training interventions (Kidgell & Pearce, 2011). 

All subjects in Study 4 were trained ultra-endurance runners that had completed a number of 

qualifying races of prescribed distance and elevation change in order to be eligible to compete 

at the North Face® Ultra-Trail du Mont-Blanc® 2012. Time to complete the ultra-trail was not 

correlated with the changes in VAc, CSP or MEP (data not presented) suggesting that 

differences in performance did not influence changes in TMS-induced parameters. This may 

also be related to the high level of fitness required of all subjects. Similarly, all subjects in 

Study 3 were trained, as were subjects in many of the studies evaluating supraspinal fatigue 

with whole-body exercise (Goodall et al., 2012; Klass et al., 2012; Girard et al., 2013). Only a 

couple studies employed moderately active subjects (Sidhu et al., 2009b; Fernandez-del-Olmo 

et al., 2013). This raises the question of whether these findings are applicable to the general 

population although Study 4 would have been impossible to conduct in an untrained 

population. More importantly, can aerobic/endurance training facilitate neural adaptations and 

would any such neural adaptations have a role to play in developing healthy lifestyles and/or 

reducing risk factors for disease? Or, returning to Booth and Laye (2009) and in light of the 

results of Pearce et al. (2012), should we look at endurance- and/or resistance-trained 

individuals as a normal baseline? From this point, one can ask if a lack of aerobic physical 

activity causes corticospinal de-adaptation. 
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DISCUSSION GENERALE ET PERSPECTIVES 

  

DISCUSSION 
 

Cette thèse est composée de deux parties principales, une partie méthodologique (Etudes 1 et 

2) et une autre partie appliquée à l'exercice extrême (Etudes 3 et 4). Les deux premières 

études contribuent au développement méthodologique de la TMS pour évaluer la fatigue. Le 

résultat principal de l'Etude 1 est qu’une contraction maintenue à un niveau de force stable 

est indispensable avant l’application d'une impulsion TMS. Ceci est impératif pour toutes les 

autres études qui appliquent la TMS pendant des contractions volontaires, en particulier à 

faibles intensités de contraction. Le résultat principal de l'Etude 2 est que les méthodes 

fréquemment utilisées pour déterminer l’intensité de TMS conduisent à la sélection 

d’intensités de stimulation différentes. Ce résultat indique la nécessité de choisir une méthode 

de détermination de l'intensité de TMS liée aux objectifs spécifiques de l'étude, ce qui a été 

réalisé dans le cadre des Etudes 3 et 4. De plus, l'emploi d'une deuxième intensité de 

stimulation plus faible dans ces études s’est justifié par le fait que des changements de 

l’excitabilité ou de l’inhibition corticospinales réels peuvent ne pas être pris en compte si 

seulement une intensité correspondant à une réponse maximale sur la courbe stimulus-

réponse est sélectionnée. L'identification des vraies modifications de la courbe stimulus-

réponse peut être entravée du fait de l'absence d’un nombre suffisant de points sur la courbe 

ou de la sélection d’un seul point de données inapproprié. Les résultats opposés quant aux 

modifications de MEPs et CSPs dans l'Etude 4 avec les deux intensités de TMS sélectionnées 

et l'absence de différence avec les MEPS aux deux intensités de TMS sélectionnées dans 

l'Etude 3 soulignent cette importance. L’Étude 3 pose aussi la question des différences de 

développement de la fatigue entre les trois muscles du quadriceps mesurés. Alors que l'Etude 

2 n'a pas observé de différence à intensité de stimulation optimale entre ces muscles, les 

changements d'excitabilité corticospinale observés dans l’Étude 3 étaient différents entre les 

muscles. 

Les différences de résultats entre les Etudes 3 et 4 concernant l’impact de l’intensité 

de TMS sur les paramètres mesurés peuvent être liées à des différences de distance, durée 

et/ou au type d’exercice réalisé. Elles suggèrent aussi que des changements peuvent se 

produire au niveau des courbes stimulus-réponse. Du fait du long temps d’évaluation 

nécessaires pour la réalisation de courbes stimulus-réponse et du fait de la récupération 
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rapide des paramètres mesurés par TMS, l'utilisation de plusieurs intensités de TMS peut être 

intéressant pour mieux comprendre la commande supraspinale en direction des muscles et ses 

modifications avec la fatigue. Dans l’évaluation de la fatigue, VA est utilisé pour identifier un 

déficit central. Aussi, une intensité de TMS qui induit un MEP de l’amplitude maximale est 

considérée comme essentielle pour l'évaluation de VAc. Du fait de la différence de réponses 

des MEPs et CSPs selon l'intensité de TMS dans l’Etude 4, il reste à déterminer si l’intensité 

de stimulation la plus faible qui induit des MEPs maximales est appropriée pour étudier 

d'autres paramètres centraux telles le VAc. Les différences dépendantes de l'intensité de TMS 

observées dans cette thèse n'ont pas toujours été observées dans d’autres études et appellent 

à des recherches supplémentaires sur cette question. 

L’observation d'une diminution de VAc avec l'exercice d'endurance est conforme à de 

précédentes études. Les Études 3 et 4 sont cependant les premières à rapporter une 

augmentation de l'amplitude des MEPs après un exercice d'endurance et les changements de 

CSP observées dans ces deux études sont nouveaux. Toutes les études faites en course à pied 

ou vélo ont trouvé une CSP inchangée à intensité de TMS optimale. Dans l’Etude 4, la CSP 

induite par intensité de TMS sub-optimale a augmenté et est restée inchangée à intensité de 

TMS optimale. Bien que des protocoles isométriques fatigants rapportent une augmentation 

de la durée de CSP, cela n'a pas été observé précédemment avec un exercice locomoteur. 

L’Etude 3 est la seule étude publiée qui a observé une réduction de la durée de la CSP après 

un exercice aigu. La combinaison de la durée, de l’intensité et/ou le mode d'exercice ainsi que 

l'intensité de la TMS sont des facteurs qui peuvent expliquer les réponses contradictoires de 

CSP. Dans l’Etude 4, il y avait un délai relativement important avant les mesures après 

exercice. Les changements observés dans cette étude suggèrent que la durée de l’exercice 

pourrait influencer le temps de persistance des effets induits par la TMS après la fin de 

l’exercice. Enfin, on peut conclure qu’avec l’exercice d'endurance et d'ultra-endurance, il 

existe des preuves de présence de fatigue supraspinale et des changements de l'excitabilité et 

de l’inhibition corticospinale. La pertinence de ces observations et le rôle de l'intensité de la 

TMS dans l'évaluation de la fatigue restent à élucider. 

 

PERSPECTIVES 
 

Il y a de nombreux domaines de recherche intéressants en lien avec la TMS, la fatigue 

supraspinale et des changements et/ou adaptations neuromusculaires qui restent à explorer et 
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élucider. Bien qu'il y ait beaucoup d’intérêt envers les situations cliniques, l’homme sain et 

actif reste un modèle très intéressant. Cette population doit jouer un rôle important dans le 

développement d’approches méthodologiques solides pour évaluer la fatigue et les 

changements corticospinaux associés à l’exercice. Cette population doit également 

représenter un groupe de comparaison afin que des altérations potentielles dans des 

populations de patients ou de sujets sédentaires puissent être identifiées. Dans le cadre de 

cette population de sujet sain, les perspectives suivantes sont d'un intérêt personnel. 

Un facteur important qui influence l'interprétation des résultats de l'évaluation de la 

fatigue est le délai entre les mesures après l’intervention et la fin de de l'exercice. Les 

résultats des protocoles isométriques montrent que les modifications observées par TMS 

récupèrent rapidement après l'arrêt de l'exercice. Des recherches supplémentaires sont 

nécessaires pour déterminer si la cinétique de récupération de tous les paramètres évalués 

par TMS sont similaires ainsi que pour évaluer les effets de la durée, de l'intensité et du type 

d'activité sur la cinétique de récupération. Récemment, l'évaluation par TMS au cours du 

pédalage sur vélo a été utilisée pour explorer les effets de la fatigue. Ceci permet d’éviter le 

problème de la récupération rapide des paramètres évalués par TMS et autorise une 

meilleure compréhension de la fatigue au cours même de l'exercice. Ces études doivent être 

développées pour inclure la marche et la course à pied en raison de leur importance 

fonctionnelle dans la vie quotidienne. Les limites principales actuelles à l’utilisation de la 

TMS pendant la locomotion sont d'ordre méthodologique ; par conséquent, la recherche doit 

à l’avenir développer des solutions pour que la TMS soit un outil viable pour explorer ces 

conditions. 

La plupart des études ont évalué des sujets exclusivement masculins. Peu d’éléments 

sont disponibles concernant le développement et l'évolution de la fatigue centrale et 

supraspinale chez les femmes et l’existence de différences entre les sexes. Les études qui 

comparent la force maximale et le développement de la fatigue ont observé des différences de 

sexe, mais la diversité des protocoles utilisés ne permet pas de conclusions définitives. Les 

seules études qui ont étudié les différences supraspinales en fonction du sexe n'en n’ont pas 

mis en évidence de différences au cours de protocoles isométriques. Les investigations futures 

doivent examiner si ceci est également vrai lors de locomotions. Bien que l'analyse initiale 

des données de l'Etude 4 suggère qu'il n'y a pas de différences entre les hommes et les femmes 

pour tous les paramètres analysés, des analyses supplémentaires sont prévues pour tenir 

compte des différences de performance. 
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Un domaine important qui est en train de se développer est l'utilisation de la TMS 

pour évaluer les adaptations liées à l’entrainement. Des études ont montré des adaptations 

neuromusculaires identifiées par TMS suite à un entraînement en force. Des études plus 

récentes ont suggéré que l'interaction entre les changements de MEP et CSP induits par 

l’entrainement sont dépendent du type d’entrainement effectué et que l’entraînement en force 

peut contrer les effets de l'inactivité et les altérations neurales associées. Peu d’éléments sont 

disponibles quant aux adaptations neurales provoquées par l’entraînement en endurance chez 

le sujet sain. Aucune étude publiée ne s’est intéressé aux effets de l'entrainement physique de 

type aérobie sur les paramètres TMS dans cette population. Des recherches sont nécessaires 

pour déterminer si l'entrainement physique de type aérobie induit des adaptations neurales 

similaires à celles d’associées à l’entraînement en force. Il reste aussi à déterminer la 

possibilité d’adaptations neurales spécifiques à des programmes d’entrainement de type 

mixtes tels que souvent employées. Tous les sujets des Etudes 3 et 4 étaient bien entrainés de 

même que les sujets de la plupart des études évaluant la fatigue supraspinale. Cela pose la 

question de l’applicabilité de ces résultats à la population générale. Plus important encore, 

l’entrainement de type aérobie/endurance pourrait faciliter les adaptations neurales et en 

conséquence jouer un rôle dans le développement d’une meilleure qualité de vie et/ou réduire 

les facteurs de risque de certaines maladies ? Faut-il considérer des individus entrainés en 

endurance et/ou en force comme norme de comparaison? Ainsi, on peut se demander si un 

manque d'activité physique de type aérobie provoque une désadaptation corticospinale. 
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Abstract—This review aims to characterize fatigue-related

changes in corticospinal excitability and inhibition in healthy

subjects. Transcranial magnetic stimulation (TMS) has been

extensively used in recent years to investigate modifications

within the brain during and after fatiguing exercise. Single-

pulse TMS reveals reduction in motor-evoked potentials

(MEP) when measured in relaxed muscle following sustained

fatiguing contractions. This modulation of corticospinal

excitability observed in relaxed muscle is probably not spe-

cific to the fatigue induced by the motor task. Duringmaximal

and submaximal fatiguing contractions, voluntary activation

measured by TMS decreases, suggesting the presence of

supraspinal fatigue. The demonstration of supraspinal fati-

gue does not eliminate the possibility of spinal contribution

to central fatigue. Concomitant measurement of TMS-

induced MEP and cervicomedullary MEP in the contracting

muscle, appropriately normalized to maximal muscle com-

pound action potential, is necessary to determine the relative

contribution of cortical and spinal mechanisms in the devel-

opment of central fatigue. Recent studies comparing electro-

myographic (EMG) responses to paired-pulse stimuli at the

cortical and subcortical levels suggest that impaired moto-

neuron responsiveness rather than intracortical inhibition

may contribute to the development of central fatigue. This

review examines the mechanical and EMG responses elicited

by TMS (single- and paired-pulse) and cervicomedullary

stimulation both during and after a fatiguing exercise. Partic-

ular attention is given to the muscle state and the type of

fatiguing exercise when assessing and interpreting fatigue-

induced changes in these parameters. Methodological con-

cerns and future research interests are also considered.

� 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: cervicomedullary stimulation, corticospinal excit-

ability, fatiguing muscular contractions, motoneurons, motor
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INTRODUCTION

Fatigue is a common non-specific symptom experienced
by many people and associated with many health
conditions. Often described as a feeling of weariness or
lack of energy, it relates to the difficulty in performing
voluntary tasks. Fatigue can be classified as mental,
referring to the cognitive or perceptual aspects of
fatigue, or physical, referring to the performance of the
motor system. Muscle fatigue can be defined as an
exercise-induced reduction in the ability of a muscle or
muscle group to generate maximal force or power
(Gandevia, 2001). It can originate at different levels of
the motor pathway and is usually divided into central
and peripheral components. Peripheral fatigue is
produced by changes at or distal to the neuromuscular
junction. It can be demonstrated by a reduction in twitch
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or tetanic force elicited by peripheral nerve stimulation in
the relaxed muscle. Mechanisms related to peripheral
fatigue are often insufficient to explain the entire fatigue-
related decrease in maximal voluntary force (Millet and
Lepers, 2004; Taylor and Gandevia, 2008), thus, some
fatigue must be related to modifications within the
central nervous system. Central fatigue is defined as a
progressive failure to voluntarily activate the muscle and
it can originate at both the spinal and supraspinal levels.
The peripheral and central components of muscle
fatigue are intrinsically related since the recruitment of
motoneurons depends on the descending drive from
supraspinal sites and the central drive is controlled
through a combination of excitatory and inhibitory reflex
inputs from muscles, joints, tendons and cutaneous
afferents (Millet, 2011). Maximal voluntary activation
(VA), as estimated using twitch interpolation (Merton,
1954) is the most conventional technique to assess
central fatigue during exercise (Gandevia, 2001; Millet
et al., 2003). It involves artificially generating action
potentials to propagate along the axons of lower
motoneurons by supramaximal stimulation of the
peripheral nerve during a maximal voluntary contraction
(MVC). If lower motoneurons are not recruited during
the MVC or are not firing fast enough, then the stimulus
will evoke additional force production, termed
superimposed twitch (SIT). The ratio between SIT and a
potentiated twitch elicited in the relaxed muscle allows
the quantification of VA. A decrease in VA during or
after sustained contraction suggests that the failure to
drive the muscle occurs at or above the stimulation site
on the axons of the lower motoneurons (i.e. central fatigue)
(Allen et al., 1998). However, twitch interpolation does not
quantify the descending drive to the lower motoneurons
nor does it take into account the source of this drive. The
part of central fatigue resulting from deficient motor cortical
output (i.e. supraspinal fatigue) is thus unknown. Other
neurostimulation techniques are required to investigate the
corticospinal component of fatigue.

Transcranial magnetic stimulation (TMS) is a non-
invasive, pain-less and safe technique to investigate the
human motor cortex (Ridding and Rothwell, 2007). TMS
is often used to characterize alterations in central motor
pathways in neurological diseases (e.g. multiple
sclerosis, stroke, chronic fatigue syndrome) and to

attempt to link self-reported fatigue to neuromuscular
deficiencies in these pathologies (Sacco et al., 1999;
Liepert et al., 2005; Knorr et al., 2011). During brief
contractions, TMS over the motor cortex can elicit
additional force production, i.e. SIT, despite maximal
volitional effort (Gandevia et al., 1996). This implies that
motor cortical output is suboptimal and therefore
insufficient to fully activate all motor units and generate
maximal muscular force. Thus, an increase in SIT
elicited by TMS during a sustained fatiguing contraction
indicates that some fatigue is related to supraspinal
mechanisms (Gandevia et al., 1996). However, the
presence of supraspinal fatigue does not eliminate the
possibility of spinal contribution to central fatigue.
Recent studies using TMS investigated modulation in
cortical excitability with fatigue. Single-pulse TMS
reveals changes in motor-evoked potential (MEP)
characteristics during and after a fatiguing exercise.
MEP changes can originate at different levels of the
motor pathway and appropriate normalization to spinal
and peripheral indices is needed to determine the
contributions of each. The concomitant use of different
neurostimulation techniques is thus required. The main
techniques utilized and their resultant evoked
parameters are summarized in Table 1. One difficulty is
to decide whether these changes are associated with
central fatigue and which alterations actually contribute
to the decrease in voluntary force. Another is that
exercise-related changes in corticospinal excitability
may depend on the intensity of the fatiguing task (i.e.
maximal vs. submaximal), the functional characteristics
of the investigated muscle (i.e. extensor vs. flexor) and
the muscle state at the moment of stimulation (i.e.
contracted vs. relaxed). Thus, changes in corticospinal
excitability during and after a fatiguing exercise must be
delineated according to these specific conditions.

This review considers the fatigue-related changes of
parameters usually measured with TMS in healthy
subjects and analyzes the relationship between cortical
excitability and central fatigue. Our approach examines
changes in mechanical and electromyographic (EMG)
parameters elicited by single-pulse and paired-pulse
TMS during and after different fatiguing tasks (i.e.
submaximal and maximal) involving different muscles
(i.e. of the upper and lower limbs). Studies examining

Table 1. Main neurostimulation techniques used to evaluate muscle fatigue

Stimulation Techniques Variables Parameters measured

Transcranial magnetic stimulation Single pulse MEP Corticospinal excitability

SP Duration of intracortical GABAB-mediated inhibition

SIT Supraspinal deficit

ERT Estimated resting twitch used to quantify cortical VA

Cortical VA Cortical maximal voluntary activation

Paired pulses SICI Magnitude of intracortical GABAA-mediated inhibition

LICI Magnitude of intracortical GABAB-mediated inhibition

Cervicomedullary stimulation CMEP Motoneuronal excitability

Peripheral nerve stimulation Mmax Sarcolemmal excitability

Twitch Skeletal muscle contractility

VA Maximal voluntary activation

CMEP, cervicomedullary motor-evoked potentials; ERT, estimated resting twitch; LICI, long-interval intracortical inhibition; MEP, motor-evoked potential; Mmax, maximal

muscle compound action potential; SICI, short-interval intracortical inhibition; SIT, superimposed twitch; SP, silent period; VA, voluntary activation.
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EMG responses evoked in the relaxed muscle and during
brief contractions are separated as the muscular state
appears to be a crucial factor in explaining
discrepancies between studies (Gandevia and Taylor,
2006; McNeil et al., 2009). With the aim to differentiate
between spinal and supraspinal mechanisms, changes
in cervicomedullary stimulation-induced EMG responses
with fatigue are also incorporated. Some important
methodological concerns, including methods of
normalization and quantification of EMG and mechanical
parameters elicited by TMS, are also considered.

SINGLE-PULSE TMS

Measurements in relaxed muscle

MEP changes after fatiguing exercise were first observed
by Brasil-Neto et al. (1993) following an exhaustive
exercise of the wrist. A reduction in MEP amplitude
relative to the baseline in relaxed muscle, termed post-
exercise depression, was found. This result was not
associated with changes in maximal muscle compound
action potential (Mmax) or H-reflex (i.e. an index of
a-motoneuron excitability and/or modulation of its pre-
synaptic inhibition) amplitudes and was thus interpreted
as decreased cortical excitability or efficiency in the
generation of the motor command. This MEP
depression was confirmed in subsequent studies
following single-joint maximal (Pitcher et al., 2005) and
submaximal (Khedr et al., 2007; Milanovic et al., 2011)
isometric muscular contractions and whole-body
exercise such as running (Hollge et al., 1997) and
rowing (Fulton et al., 2002). This depression generally
peaks within 5 min after exercise cessation and
recovers several minutes thereafter (McKay et al., 1995;
Zanette et al., 1995). Probably influenced by the lack of
diminution of Mmax and H-reflex amplitudes with
exercise as observed by Brasil-Neto et al. (1993), the
aforementioned studies often attributed changes in MEP
amplitude to a cortical mechanism without appropriately
addressing the question of peripheral and spinal fatigue.
Indeed, many studies did not report any measure of
peripheral signal transmission (Brasil-Neto et al., 1994;
Samii et al., 1996; Lou et al., 2003; Humphry et al.,
2004; Perretti et al., 2004; Thickbroom et al., 2008)
whereas others reported Mmax characteristics from a
separate experiment (Lentz and Nielsen, 2002),
a different muscle (Hollge et al., 1997) or in only a

subgroup of subjects (Cerri et al., 2010). Significant
MEP depression associated with non-significant
decrease in Mmax can lead to unchanged MEP/Mmax
ratios. Thus, to account for activity-dependent changes
in peripheral signal conduction, it is essential to
systematically normalize MEP to concomitant Mmax
(cMmax, i.e. elicited nearby in time) (Kalmar and
Cafarelli, 2004). A study found a reduced MEP/cMmax
ratio following exercise (Gandevia et al., 1999) whereas
another one did not (Zijdewind et al., 2000) (Table 2).

MEP depression without significant changes in
F-wave (i.e. an index of spinal excitability) or H-reflex
amplitudes has been reported after fatiguing exercise
(Brasil-Neto et al., 1993; Zanette et al., 1995),
suggesting an absence of lower motoneuron
involvement. To further investigate the role of spinal
excitability in MEP changes, electrical stimulation at the
cervicomedullary junction (between the mastoids) can
be used to evoke single excitatory corticospinal volleys
(cervicomedullary motor-evoked potential – CMEP)
(Ugawa et al., 1991b). Unlike the H reflex, CMEP are
thought to be unaffected by presynaptic inhibition
(Nielsen and Petersen, 1994), thus making transmastoid
stimulation a direct approach to evaluate motoneuron
excitability. Although cervicomedullary stimulation
primarily activates axons in the corticospinal tract,
caution is necessary when interpreting CMEP studies as
the stimulus may also activate other structures.
Antidromic volleys in Ia afferents (Taylor et al., 2001),
vestibular afferents (Watson and Colebatch, 1998) and
the cerebellum (Ugawa et al., 1991a) may have minor
influences on CMEP responses evoked by electrical
transmastoid stimulation (Taylor and Gandevia, 2004;
Taylor, 2006). Gandevia et al. (1999) observed a
simultaneous reduction of CMEP/cMmax and MEP/
cMmax areas in the relaxed muscle following a
sustained MVC of the elbow flexors, suggesting that
diminished motoneuron excitability may contribute to the
MEP depression. Thus, it is likely that peripheral and/or
spinal limitation contributed to the MEP depression in
some of the aforementioned studies, leading to
overestimation of cortical deficit. Table 3 summarizes
studies that have measured MEP in the relaxed muscle
and reported indices of peripheral or spinal transmission
before and after a fatiguing exercise.

The MEP depression observed in the relaxed muscle
may not only be the consequence of mechanisms
originating within the motor cortex, it may also be

Table 2. Summary of changes in EMG and mechanical parameters elicited by single-pulse TMS during and after fatiguing exercise from the current

literature

Variables Kinetics during exercise (from start to task failure) After exercise (relative to pre-exercise)

Maximal Submaximal Relaxed muscle Contracted muscle

MEP/cMmax Increase Progressive linear increase Depressed or unchanged Lack of consensusa

SP Rapid increase and then plateau Progressive increase N/A Facilitated

SIT Increase Progressive increase N/A Facilitated

Cortical VA Decrease Progressive decrease N/A Depressed

cMmax, concomitant maximal muscle compound action potential; MEP, motor-evoked potential; SIT, superimposed twitch; SP, silent period; VA, voluntary activation.
a MEP/cMmax changes after exercise are largely dependent on how and when post-exercise measurements are conducted (see text for details).

386 M. Gruet et al. / Neuroscience 231 (2013) 384–399



Table 3. MEP measured in the relaxed muscle after a fatiguing exercise

References n Fatiguing task characteristics Task duration Main muscle MEP responses Peripheral and/or spinal

indices

Gandevia

et al.

(1999)

7 Isometric MVC of elbow flexors 2 min Biceps

brachii

MEP/cMmax area depression that did not recover for

over 12 min PEa

CMEP/cMmax area

depression that recovered

within 2 min PE

Brasil-Neto

et al.

(1993)

6 Wrist flexion–extension until exhaustion while

holding a 3.4 kg dumbbell weight

Unknown Flexor carpi

radialis

MEP depression of �60% during the first 1 min PEa Unchanged Mmax or H reflex

Zanette

et al.

(1995)

11 Abduction–adduction of the thumb against the little

finger at maximal rate

1 min Thenar

eminence

MEP depression of �55% (maximal at �5 min PE) that

recovered by 35 min PE

Unchanged Mmax or F wave

Zijdewind

et al.

(2000)

10 Isometric abduction of the index finger at 50%MVC �2 min First dorsal

interosseous

Unchanged MEP/cMmax Unchanged Mmax

Pitcher and

Miles

(2002)

12 Isometric abduction of the first dorsal interosseous:

(1) MVC, (2) supramaximal motor point stimulation

2 min First dorsal

interosseous

(1) MEP depression of �50% immediately PE, and

�25% at 20 min PE (2) MEP facilitation during the first

10 min PE, followed by a MEP depression of �25% at

20 min PE that recovered by 50 min PE

Reduced Mmax immediately

PE for both tasks (recovery

by 20 min PE), Unchanged F

wave/Mmax ratio

Khedr et al.

(2007)

10 Opening a binder clip by 10 mm (mean force

required: 30 N) using index finger and thumb

10 min First dorsal

interosseous

MEP depression immediately PE that recovered by

20 min

Reduced Mmax immediately

PE that recovered by 20 min

Kluger

et al.

(2012)

20 (1) Isometric handgrip at force above 75% MVC as

long as possible and then MVC until force

decreases below 40% MVC, (2) Finger tapping

(thumb against index) at maximal rate

(1) 116 ± 46 s,

(2) 10 min

First dorsal

interosseous

(1) Unchanged MEP at 0, 2 and 4 min PE (2) MEP

depression of 24% only at 2 min PE

Unchanged Mmax for both

tasks

McKay

et al.

(1995)

5 Isometric MVC of ankle dorsiflexors, until force

decreased to 50% MVC

80 ± 7 s Tibialis

anterior

Mean MEP depression of 51% over the 30-min PE

period

Unchanged Mmax or H reflex

Lentz and

Nielsen

(2002)

20 Isometric ankle dorsilexion: (1) from 100% to 75%

MVC, (2) from 100% to 50% MVC, (3) from 100%

to 25% MVC, (4) from 50% to 25% MVC

(1) 21 ± 6 s,

(2) 57 ± 19 s,

(3) 147 ± 49 s,

(4) 204 ± 53 s

Tibialis

anterior

MEP depression of a similar range for the four tasks

that did not recover for over 10-min PE

Reduced Mmax area only for

the 50–25% MVC task

CMEP, cervicomedullary motor-evoked potentials; cMmax, concomitant Mmax; MEP, motor-evoked potential; Mmax, maximal muscle compound action potential; MVC, maximal voluntary contraction; n, number of subjects (for the main

part of the experiment); PE, post-exercise. When not specified, amplitude values are reported in the last two columns.
a No information about statistical significance.
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caused by afferent input from the contracting muscle.
Pitcher and Miles (2002) measured MEP changes
before and after two fatiguing tasks of the first dorsal
interosseous: a sustained 2-min MVC and 2 min of low-
frequency electrical stimulation evoked at the motor
point. MEP and Mmax depression were induced by both
voluntary and electrically-evoked contractions and MEP
recovery occurred before that of Mmax. F wave and
Mmax changed in parallel after both protocols so that
the F-wave/Mmax ratio remained unchanged, indicating
that MEP depression may not be mediated by a
decrease in lower motoneuron excitability. However, F

waves present limitations in evaluating changes in lower
motoneuron excitability (Espiritu et al., 2003). For
instance, it is unclear whether changes in F waves
reflect lower motoneuron responses to synaptic input
(Hultborn and Nielsen, 1995) because they only test a
fraction of the motoneuron pool. The depression in
CMEP/cMmax area observed by Gandevia et al. (1999)
in the relaxed elbow flexors following a 2-min MVC
recovered to baseline values within 2 min whereas
MEP/cMmax remained depressed for more than 10 min.
Thus, it is likely that reduced spinal excitability
contributes to the early phase of MEP/cMmax
depression (i.e. first 2 min post-exercise) and has little
to no influence thereafter. Therefore, the post-exercise
MEP depression observed in the relaxed muscle may
be, at least in part, induced by afferent discharges from
the exercising muscle that alter cortical excitability and
possibly motoneuron excitability. The nature of afferent
contribution to MEP depression in the relaxed muscle
remains unclear. Muscles are innervated by many
small-diameter unmyelinated afferents, called group III
and IV afferents, that respond to various chemical (e.g.
lactic acid, extracellular ion concentrations) and
mechanical (e.g. distension of the peripheral vascular
bed) changes in the muscle (Rotto and Kaufman, 1988;
Haouzi et al., 1999). The maintenance of muscle
ischemia is an effective technique to analyze the reflex
effects of group III and IV afferents (Kaufman et al.,
1984). To determine whether MEP depression in the
relaxed muscle could be maintained by the continued
firing of group III and IV afferents, (Taylor et al., 2000c)
measured MEP responses in elbow flexors that were
held ischemic after a 2-min MVC. To compare ischemic
changes in response to motor cortical stimulation to
those under non-ischemic conditions, the authors used
control data from the same subjects obtained from
another study separated by approximately one week
(Gandevia et al., 1999). The time course of the MEP
following exercise (i.e. gradual decrease over 2 min and
depression maintained for more than 10 min) was
unaffected by post-contraction ischemia, indicating that
group III and IV muscle afferents do not mediate post-
exercise MEP depression. As suggested by Taylor et al.
(2000b), Golgi tendon organs and non-spindle group II
afferents might act at the cortical level during a
sustained fatiguing contraction and regulate the
descending drive in response to changes in muscular
force output. In that case, the firing of such afferents
may contribute to the MEP/cMmax depression observed

in relaxed muscle after voluntary contraction (Taylor
et al., 2000c) and to the MEP depression after
electrically-induced fatiguing contractions (Pitcher and
Miles, 2002).

Another crucial question is whether MEP depression
in the relaxed muscle is specific to the fatiguing aspect
of the motor task. Teo et al. (2012) recently recorded
MEP amplitude from the first dorsal interosseus muscle
following 10 s of index finger flexion–extension
performed at three different rates: maximal voluntary
rate (MVR), moderate sustainable rate (MSR) and a
rate half that of MSR (MSR/2) (Fig. 1). They found
significant MEP facilitation after MVR and significant
MEP depression after all tasks with greater and longer-
lasting reductions after MSR and MSR/2 tasks. Although
these results are difficult to explain, they suggest that
MEP changes following exercise may not only be
specific to the fatiguing aspect of the motor task and
can also reflect central plastic changes associated with
repetitive movements. Kluger et al. (2012) measured
MEP changes in the relaxed first dorsal interosseous
muscle before and after an imagined hand-grip task.
The subjects were asked to imagine squeezing
something with their dominant hand as hard as possible
for a 2-min period. Surface EMG was used to ensure
that the muscle was fully relaxed. Significant MEP
depression of �20% was observed, suggesting that
central initiation of motor programs can also induce
post-exercise decreases in cortical excitability in the
absence of motor fatigue.

In summary, MEP depression can occur in the relaxed
muscle following a fatiguing exercise. Its origins may
involve afferent input from the fatigued muscle.
However, this modulation in cortical excitability is not
necessarily related to the fatiguing aspect of the motor
task. It is also important to note that in the studies in
which TMS is delivered to the relaxed muscle, central
fatigue cannot be directly proved as no mechanical
measurements (i.e. SIT and VA, see below) are
reported. Consequently, it is unknown whether central
fatigue was implicated in these studies, and thus
whether MEP changes were associated with insufficient
cortical drive to the muscle.

Measurements in contracting muscle

SIT and cortical VA. During a sustained isometric
MVC, the SIT evoked by motor nerve stimulation
increases, suggesting the development of central fatigue
(Table 2) (Gandevia et al., 1996; Taylor and Gandevia,
2008). Similarly, the SIT elicited by TMS also increases,
indicating that some fatigue is related to supraspinal
mechanisms (Gandevia et al., 1996). Initially
demonstrated during a 2-min MVC of the elbow flexors
(Gandevia et al., 1996), the increase in SIT produced by
TMS during maximal contractions was confirmed in
various muscle groups (i.e. of the upper and lower
limbs) and several exercise paradigms, i.e. continuous
and intermittent maximal and submaximal contractions
(Todd et al., 2005; Sogaard et al., 2006; Smith et al.,
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2007; Hunter et al., 2008; Lee et al., 2008; Sidhu et al.,
2009a; Mileva et al., 2012). Cortical VA decreases
during sustained maximal (Hunter et al., 2006; Szubski
et al., 2007) and submaximal (Smith et al., 2007)
isometric fatiguing contractions (Table 2), indicating the
progressive development of supraspinal fatigue. Cortical
VA is also reduced compared to baseline values
following whole-body fatiguing exercise (Ross et al.,
2007; Sidhu et al., 2009b; Fernandez-Del-Olmo et al.,
2011; Goodall et al., 2012).

The assessment of cortical VA using TMS is more
complicated than standard twitch interpolation with
peripheral stimulation (Todd et al., 2003). First, it is
inappropriate to normalize the SIT elicited during
voluntary contractions to that evoked in the relaxed
muscle because the motoneuron output evoked by TMS
cannot be compared between resting and contracting
muscular conditions. This is due to the large increase in
corticospinal excitability during the transition from rest to
voluntary muscular contraction (Di Lazzaro et al., 1998).
Todd et al. (2003) proposed to extrapolate the linear
relationship between SIT and voluntary force between
50% and 100% MVC to estimate the size of the resting
twitch that would be produced by TMS under
comparable conditions of corticospinal excitability.
Originally applied in the elbow flexors (Todd et al.,
2003), the validity and reliability of extrapolating the
relationship between TMS-evoked SIT and voluntary
forces at 50%, 75% and 100% MVC has been
confirmed in other muscle groups (Lee et al., 2008;
Goodall et al., 2009; Sidhu et al., 2009a; Mileva et al.,
2012). It is accepted that this method can quantify
cortical VA in fresh and fatigued muscles although some
methodological concerns remain. The regression of
voluntary torque and the SIT is almost always linear in
control (i.e. without fatigue) conditions, allowing the
estimation of resting twitch amplitude and thus cortical

VA (Todd et al., 2003; Hunter et al., 2006; Cahill et al.,
2011). However, this relation is frequently non-linear
(r< 0.9) (e.g. 33% in Hunter et al. (2006)) during or
after a fatigue protocol, preventing the estimation of the
resting twitch in some subjects (del Olmo et al., 2006;
Hunter et al., 2006). To obtain a valid linear
extrapolation, it is essential that the stimuli activate most
of the motoneurons, which is possible at high levels of
force (i.e. >50% MVC) (Goodall et al., 2009). Indeed,
TMS is less effective at activating motoneurons at lower
contraction levels because of the reduction in
corticospinal excitability (Todd et al., 2003). This is
characterized by a curvilinear relationship between SIT
and voluntary torque when using contraction strengths
below 50% MVC (del Olmo et al., 2006; Lee et al.,
2008). It may also be impossible to obtain a SIT at high-
contraction intensities (>75% MVC) (del Olmo et al.,
2006). Therefore, if a SIT can be evoked at high-
contraction intensities and if the relationship between
SIT and force (50–100% MVC) appears to be linear
(rP 0.9), then it is appropriate to estimate resting twitch
amplitude and calculate cortical VA.

The decline in cortical VA indicates supraspinal
fatigue but does not eliminate the possibility of spinal
contribution to central fatigue. The investigation of
central excitability and inhibitory parameters measured
in contracting muscle before, during and after a fatiguing
motor task may help in understanding the origins of
central fatigue as characterized by SIT and cortical VA.

MEP. Several recent studies delivered TMS during
brief contractions at different levels of force before,
during and following exhaustive exercise to assess MEP
changes (Szubski et al., 2007; Iguchi and Shields, 2011;
Mileva et al., 2012; Sidhu et al., 2012). This
methodology has several advantages over assessing

Fig. 1. Change in first dorsal interosseus MEP (expressed as % of baseline values) after each movement task. Comparison of MEP% following a
10-s index finger flexion–extension task at maximal voluntary rate (MVR), moderate sustainable rate (MSR) and a rate half that of MSR (MSR/2).
⁄ Indicates significant difference (P< 0.05) from the baseline and the gray region indicates significant difference between MVR and the submaximal
tasks (MSR and MSR/2). From Teo et al. (2012).
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MEP changes in relaxed muscle. First, it has been shown
that MEP variability is lower during contractions than in
relaxed muscle (Darling et al., 2006), leading to a more
reliable estimate of MEP changes with fatigue. Second,
analysis of the behavior of the motor cortex during a
fatiguing contraction with TMS delivered in relaxed
muscle (i.e. during the ‘‘off phase’’ of an intermittent
exercise) is questionable because motor cortical
excitability is greatly modified when muscle is in the
contracted state. Thus, it would be more appropriate to
analyze MEP kinetics throughout a fatiguing contraction
with TMS delivered at intervals during the contraction,
i.e. in the condition where central fatigue may occur.
Although the majority of recent studies report MEP/
cMmax (Sogaard et al., 2006; Smith et al., 2007; Klass
et al., 2008, 2012; Levenez et al., 2008; Hoffman et al.,
2009), this is not always the case (Endoh et al., 2005;
Hunter et al., 2008; Iguchi and Shields, 2011), leading
to problems interpreting MEP changes with fatigue.

MEP kinetics during submaximal fatiguing contrac-

tions. During sustained submaximal isometric
contractions, MEP/cMmax increases in the upper- (e.g.
elbow flexors) (Sogaard et al., 2006; Smith et al., 2007;
Klass et al., 2008; Levenez et al., 2008) and lower-limb
(e.g. plantar flexors) (Hoffman et al., 2009) muscles
(Table 2). The simultaneous progressive increase in
volitional EMG activity is generally interpreted as an
augmentation of the central drive to the lower
motoneuron pool in order to maintain a constant level of
force despite the development of peripheral fatigue
(Sogaard et al., 2006; Smith et al., 2007). These
observations are consistent with increased corticospinal
excitability in submaximal fatiguing contractions. To
assess whether these effects were mediated at the
spinal and/or cortical levels, two recent studies
compared changes in MEP/cMmax with changes in
CMEP/cMmax (Levenez et al., 2008; Hoffman et al.,
2009). Hoffman et al. (2009) observed a large increase
in MEP/cMmax and only a slight increase in CMEP/
cMmax during a sustained 30% MVC of the plantar
flexors. This result suggests a small contribution of
spinal factors to the increase in corticospinal excitability
during submaximal fatiguing contractions. Conversely,
during a 50% MVC of the elbow flexors to task failure,
Levenez et al. (2008) found similar MEP/cMmax and
CMEP/cMmax kinetics (i.e. increasing over the first 40%
of the task to a plateau), indicating that central changes
almost entirely occurred at the spinal level. These
disparities in corticospinal responses to fatigue may be
due to differences in neural control mechanisms
between upper- and some lower-limb muscles. Indeed,
the corticospinal projections onto soleus are probably
weaker than those to many other muscles including
biceps brachii, hand muscles and tibialis anterior (de
Noordhout et al., 1999; Petersen et al., 2003; Martin
et al., 2008). Martin et al. (2008) demonstrated that it
was not possible to evoke large MEP in the soleus,
even with high-intensity electrical stimulation over the
thoracic spine. In this study, thoracic MEP were evoked
in tibialis anterior in 75% of the subjects whereas only

38% had responses in the soleus. These findings may
explain the absence of increased CMEP/cMmax in the
soleus during submaximal sustained contractions of the
plantar flexors (Hoffman et al., 2009) and emphasize
differences in neural control between muscles.

McNeil et al. (2011a) used a different paradigm to
investigate corticospinal modulation during a
submaximal fatiguing contraction. MEP/cMmax and
CMEP/cMmax areas were investigated during a 10-min
sustained contraction of the elbow flexors at 25% of the
maximal EMG signal, i.e. at iso-EMG level. MEP/cMmax
did not change with exercise, whereas CMEP/cMmax
area decreased and was smaller than baseline values at
8 and 10 min of exercise. These results are in contrast
with the responses elicited during constant torque
contractions (Levenez et al., 2008; Hoffman et al.,
2009). Because volitional EMG increased progressively
during tasks performed at constant force level in the
aforementioned studies while in McNeil et al. (2011a)
EMG remains constant (i.e. force decreases), it appears
that changes in evoked corticospinal responses should
be interpreted in relation to changes in volitional EMG
that may intrinsically influence the evoked EMG
responses.

Sidhu et al. (2012) were the first to publish changes in
corticospinal excitability during submaximal whole-body
exercise. They measured MEP/cMmax and CMEP/
cMmax responses from the knee extensors (i.e. vastus
lateralis and rectus femoris) every 3 min during 30 min
of cycling at 75% maximum aerobic workload and every
minute during subsequent exercise at 105% maximum
aerobic workload until exhaustion. Neither MEP/cMmax
nor CMEP/cMmax changed significantly during exercise.
However, when normalized to volitional EMG during
cycling, the CMEP remained unchanged whereas the
MEP were reduced from 10 min to task failure. These
results suggest a tendency toward reduced cortical
excitability, both during steady-state exercise at 75%
maximal workload and at exhaustion. These changes
are in contrast with findings from submaximal single-
joint isometric contractions (Levenez et al., 2008;
Hoffman et al., 2009). The higher cardiorespiratory and
metabolic demands during whole-body exercise in
comparison to single-joint exercise may lead factors
such as temperature regulation, glucose availability,
catecholamine concentration and cerebral oxygenation
to have a greater influence on the responses of cells in
the motor cortex and within the corticospinal tract (Todd
et al., 2005; Hasegawa et al., 2008; Secher et al., 2008;
Rupp et al., 2012; Verges et al., 2012).

MEP kinetics during maximal fatiguing contrac-

tions. During a sustained MVC, MEP has been reported
to increase during the first seconds and then level off
(Taylor et al., 2000a; Hunter et al., 2006, 2008),
increase linearly (Szubski et al., 2007) or remain stable
(Iguchi and Shields, 2011), depending on the protocol
used (i.e. continuous vs. intermittent) and the muscle
investigated (Table 4). Unlike during submaximal
contractions, the high level of ongoing EMG activity
during fatiguing maximal contractions may induce
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Table 4. MEP kinetics during maximal fatiguing contractions

References n Fatiguing task characteristics TMS timing Task

duration

Main muscle MEP responses Peripheral and/or spinal indices

Taylor

et al.

(1996)

7 Isometric MVC of elbow flexors Every 10–15 s 2 min Biceps

brachii

Increase in MEP area (156% of control

values, essentially over the first 30 s, before

reaching a plateau)

Unchanged CMEP area

Taylor

et al.

(1999)

8 Isometric MVC of elbow flexors Every 10 s 2 min Biceps

brachii

Increase in MEP area (153% of control

values, greater than the increase in Mmax

area), essentially over the first 20–40 s and

maintained over the remainder of the 2-min

Increase in Mmax area (87% of

control values), essentially over

the first 20–40s and maintained

over the remainder of the 2-min

Taylor

et al.

(2000a)

9 Intermittent isometric MVC of

elbow flexors: (1): 5-s on 5-s off, (2)

15-s on 5-s off, (3) 15-s on 10-s off,

(4) 30-s on 5-s off

(1): Every 30 s, (2), (3)

and (4): 2 s after the

start and 2 s before the

end of each MVC

(1) 7 min

30 s, (2)

4 min, (3)

5 min, (4)

3 min 30 s

Biceps

brachii

Increase in maximal MEP area by >50% in

all protocolsa
N/A

Hunter

et al.

(2008)

13 Six intermittent isometric MVC (22-

s on 10-s off) of elbow flexors

2 s after the start and

2 s before the end of

each 22-s MVC

192 s Biceps

brachii

Increase in MEP area from 58% (first MVC)

to 118% of baseline Mmax (last MVC)

N/A

Szubski

et al.

(2007)

12 Isometric MVC of index-finger

abductors

Every 20 s 90 s First dorsal

interosseous

Increase in MEP/cMmax (241% of pre-

fatigue values)

N/A

Iguchi and

Shields

(2011)

10 45 Intermittent isometric MVC

(9 � 5 MVC: 7-s on 3-s off) of

plantar flexors. After the 5th MVC

of each epoch: 10 s at 10% MVC

On the 3rd MVC of

each epoch and at the

end of the 10 s at 10%

MVC

About 9 min Soleus Increase in MEP at 10% MVC (253% of pre-

fatigue values) and no change in MEP at the

3rd MVC of each epoch

Decrease in H-reflex to 66% of

pre-fatigue values after the first

epoch and no further changes.

Mileva

et al.

(2012)

11 Intermittent isometric MVC of ankle

dorsiflexors (2-s on 1-s off) until

voluntary force decreased to 50%

of the initial MVC or below

On the 1st MVC and

each 10th MVC

368 ± 51 s Tibialis

anterior

Increase in MEP of 49% at the end of

exercise

N/A

McKay

et al.

(1996)

6 Isometric MVC of ankle

dorsiflexors

2 s After the onset of

the MVC and each 15 s

2 min Tibialis

anterior

Trend toward an increase in MEP

(P< 0.13)

Unchanged Mmax

CMEP,cervicomedullary motor-evoked potentials; cMmax, concomitant Mmax; MEP, motor-evoked potential; Mmax, maximal muscle compound action potential; MVC, maximal voluntary contraction; n, number of subjects (for the main

part of the experiment); N/A, not applicable. When not specified, amplitude values are reported in the last two columns.
a No information about statistical significance.
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variability in MEP recordings, contributing in part to the
substantial differences between studies. Also,
concomitant reporting of MEP changes with indices of
peripheral transmission is essential as Mmax amplitude
and area can increase, decrease or remain unchanged
during a sustained MVC (Mills and Thomson, 1995;
McKay et al., 1996; Taylor et al., 1999; Taylor and
Gandevia, 2001). Increasing MEP/cMmax during a
sustained MVC has been observed in the biceps brachii
(Taylor et al., 1999) and first dorsal interosseus
(Szubski et al., 2007) (Table 2). In contrast, CMEP/
cMmax decreased in the final 30 s of a sustained 2-min
MVC of the elbow flexors (Butler et al., 2003). A
decrease in spinal excitability was also recently
observed during intermittent isometric MVC of plantar
flexors (Iguchi and Shields, 2011) although the
underlying mechanisms remain disputed. Following a 2-
min MVC of the elbow flexors, CMEP/cMmax recovered
within 15 s even when the discharge of group III and IV
afferents was maintained by holding the elbow flexors
ischemic after the contraction (Butler et al., 2003).
Conversely, a 2-min MVC of the elbow extensors
induced CMEP/cMmax reduction that persisted
throughout 2 min of maintained ischemic (Martin et al.,
2006), indicating that inputs from group III and IV
afferents may contribute to lower motoneuron inhibition
during fatigue of this muscle group. It is important to
determine whether the differential effect of these
afferents on lower motoneurons of extensor and flexor
muscles is similar in other muscles groups (e.g.
extensors and flexors of the knee and ankle) in humans.
It is also important to note that unlike sustained
submaximal exercise during which a constant force
output is maintained and volitional EMG increases, both
EMG activity and force decline during a sustained MVC
(Gandevia, 2001; Iguchi and Shields, 2011). Thus, the
progressive decline of CMEP/cMmax during a sustained
MVC may also be due to the concomitant decrease in
EMG activity.

MEP responses in contracting muscle after fatiguing

contractions. MEP measured during brief contractions
after fatiguing exercise have also been reported and
compared with baseline MEP. Post-exercise MEP are
usually recorded immediately following a sustained
fatiguing isometric contraction. Thus, they must be
interpreted in conjunction with the MEP kinetics during
the fatiguing contraction. As previously described, MEP
and MEP/cMmax generally increase during a sustained
contraction and are thus larger at task failure than at the
baseline (Smith et al., 2007; Szubski et al., 2007; Taylor
and Gandevia, 2008). MEP/cMmax measured
immediately after exercise is also increased and
progressively returns to baseline values within several
minutes (Sogaard et al., 2006; Smith et al., 2007;
Szubski et al., 2007; Klass et al., 2008). However, in
contrast to the MEP or MEP/cMmax depression
observed in relaxed muscle (Table 3), the MEP
measured during a voluntary contraction remains above
the baseline values (Sogaard et al., 2006; Smith et al.,
2007; Iguchi and Shields, 2011; Keller et al., 2011). It is

likely that the voluntary effort required to perform a
contraction transiently overcomes the decreased motor
cortical excitability that commonly leads to MEP
depression in relaxed muscle.

Following whole-body endurance or high-intensity
exercise, MEP size mainly depends on the delay
between the end of the task and the beginning of post-
exercise measurements. Ross et al. (2007) reported
depressed MEP in the tibialis anterior following a
marathon. The fact that post-marathon measurements
occurred up to 20 min post-exercise and that decreased
MEP amplitude was associated with a non-significant
decrease in Mmax does not allow the drawing of clear
conclusions on MEP/cMmax changes. Unchanged MEP/
cMmax has been reported in the rectus femoris
following eight 5-min bouts of cycling at 80% of
maximum workload (Sidhu et al., 2009b) and in the
vastus lateralis following a constant load cycling trial at
�80% of maximal work rate performed to exhaustion
(Goodall et al., 2012). In contrast, Fernandez-Del-Olmo
et al. (2011) reported an increase in MEP/cMmax area
in the vastus lateralis after two Wingate tests. The
differences between this study and the former two might
reflect specific central adaptations to submaximal and
maximal exercise (Taylor and Gandevia, 2008). A more
likely explanation is that the submaximal isometric
contractions in Fernandez-Del-Olmo et al. (2011) were
performed at the same absolute force across the
experimental session (i.e. based on percentages of the
baseline MVC). Thus, the increase in MEP observed in
this study may be interpreted as a compensatory
mechanism to generate the required motor output and
overcome the reduced peripheral force production
(Fernandez-Del-Olmo et al., 2011). Conversely, the
unchanged MEP areas observed by Sidhu et al. (2009b)
and Goodall et al. (2012) may be related to their being
measured at the same relative strength levels (i.e.
taking into account the post-exercise MVC reduction).

Silent period. When single-pulse TMS is delivered
during a voluntary contraction, the elicited MEP is
followed by a period of near-silence in the EMG signal,
termed silent period (SP). This period of EMG
suppression is believed to be mediated by the activation
of long-lasting GABAB receptors (McDonnell et al.,
2006). It is acknowledged that spinal mechanisms
contribute to the early part of the SP (Inghilleri et al.,
1993). Since the EMG interruption continues beyond the
recovery of motoneuron excitability, the later part of the
SP is thought to be mediated through intracortical
inhibitory mechanisms (Inghilleri et al., 1993).

The SP lengthens during a fatiguing contraction and
the time to recover increases with increasing task
duration (Taylor et al., 2000a; Sogaard et al., 2006;
Smith et al., 2007; Taylor and Gandevia, 2008). An
increase in SP during sustained contraction has been
found in a range of muscles, including hand (Szubski
et al., 2007), upper-limb (Hunter et al., 2006; Levenez
et al., 2008) and lower-limb (McKay et al., 1996; Iguchi
and Shields, 2011) muscles. Overall, the SP lengthens
gradually during submaximal contraction whereas it
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increases rapidly over the first seconds of a sustained
MVC with no further change until task failure (Table 2)
(Taylor et al., 1996; Todd et al., 2005; Sogaard et al.,
2006; Smith et al., 2007; Levenez et al., 2008; Iguchi
and Shields, 2011). As SP prolongation following
cervicomedullary stimulation-induced CMEP is less than
that occurring after MEP, the increase in SP following
MEP likely includes additional inhibition at the
supraspinal level (Taylor et al., 1996; Levenez et al.,
2008).

Hilty et al. (2011b) observed an increase in SP
following a fatiguing exercise of knee extensors.
However, the post-exercise SP remained unchanged
when firing of group III–IV muscle afferents was
attenuated via intrathecal fentanyl injection. This result
suggests that central projections of group III–IV muscle
afferents may facilitate the fatigue-induced increase in
SP in knee extensors. In contrast, change in SP after
fatiguing contractions of the elbow flexors has been
shown to be independent of ischemia-induced increase
in firing of these afferents (Gandevia et al., 1996; Taylor
et al., 2000c). Similar to the differential influence of
group III–IV afferents on the lower motoneurons
innervating extensor and flexor muscles (Butler et al.,
2003; Martin et al., 2006), it is possible that the role of
these afferents on fatigue-induced increases in
intracortical inhibition depends on the investigated
muscle group.

Many factors can induce variability in SP. First, the
subject instructions greatly influence SP and these were
not reported in many studies. Mathis et al. (1998)
demonstrated that SP was unpredictable when the
subjects were left without precise post-TMS instructions.
They also found significantly longer SP when the
subjects were instructed to relax quickly than when they
were instructed to quickly regain the target force.
Second, the SP has large inter-examiner variability
(Reid et al., 2002). The low level of EMG present during
the SP (due to spinal reflex facilitation by muscle
spindle afferents) (Butler et al., 2012) and the immediate
post SP increase in EMG activity, termed burst (Chin
et al., 2012) may also confound the determination of the
SP. With the aim to overcome these difficulties,
Saisanen et al. (2008) recently provided guidelines to
obtain a more stable SP. These recommendations
notably include a TMS intensity of 110–120% of resting
motor threshold delivered during contractions at 40–
60% MVC.

Relationship between cortical excitability/inhibition and

VA changes with fatigue. In his seminal review published
in 2001, Gandevia raised some arguments to suggest that
progressive development of activation deficit (i.e.
increase in SIT) may not necessitate altered motor
cortical excitability (Gandevia, 2001). When the elbow
flexors are held ischemic near the end of or after a
sustained MVC, activation deficit remains present while
EMG responses to TMS (i.e. MEP and SP) begin to
recover (Gandevia et al., 1996; Taylor et al., 1999,
2000a,c). Taylor et al. (2000a) observed that different
types of fatiguing exercise induced similar central

activation deficit but different patterns of SP lengthening.
Although these findings appear to challenge the link
between central fatigue and cortical excitability, they
must be interpreted with caution. First, there is high
inter-individual variability in exercise-induced SP
increase (Cerri et al., 2010). Second, subjects in the
aforementioned studies performed sustained isometric
contractions and activation deficit was derived indirectly
from the increment in force produced by TMS relative to
the ongoing force. This method leads to an
overestimation of activation failure (Gandevia et al.,
1996), possibly partially accounting for its slow recovery
compared to indices of corticospinal excitability. Recent
studies reported exercise-induced reduction in cortical
VA, either with simultaneous increases in MEP and SP
during sustained isometric contractions (Hunter et al.,
2008; Keller et al., 2011; Mileva et al., 2012) or with
unchanged MEP after whole-body exercise (Sidhu et al.,
2009b; Goodall et al., 2012). These opposing results
suggest a complex relationship between central fatigue
and cortical excitability.

Kalmar and Cafarelli (2006) used an original approach
to examine the relationship between MEP and central
fatigue. The authors demonstrated that caffeine
ingestion (6 mg/kg body mass 1 h before the
measurements) induced MEP facilitation (TMS delivered
during 3% MVC contraction) early in the fatigue protocol
(i.e. submaximal intermittent contractions of knee
extensors) and eliminated the MEP depression
observed at task failure in the placebo trial (Fig. 2). This
increase in central excitability did not reduce the fatigue-
related decrease in VA or voluntary force. It is difficult to
explain this finding as the same voluntary output (i.e.
VA) was found in two conditions (i.e. placebo and
caffeine trial) despite different outputs (i.e. MEP) elicited
by the same input (TMS). Several reasons may explain
this phenomenon. First, VA was not determined by
TMS, leading to limited information about corticospinal
pathway involvement. Furthermore, the modulation of
corticospinal excitability following caffeine ingestion was
demonstrated with TMS delivered during low-force
contractions. It is possible that MEP elicited during weak
contractions are unrelated to responses during maximal
voluntary force production and that caffeine-induced
increases in corticospinal excitability do not apply at
high levels of force (Gandevia and Taylor, 2006).
Further studies are needed to replicate the findings of
Kalmar and Cafarelli (2006) with accepted means of
evaluating cortical VA (Todd et al., 2003) and then to
establish whether this ability to manipulate cortical VA
and/or cortical excitability occurs with different motor
tasks and at higher contraction intensities.

PAIRED-PULSE TMS

Single-pulse TMS studies have suggested intracortical
inhibition as a potential contributor to the development
of muscle fatigue. Until recently, its evaluation had been
limited to changes in SP and associated limitations (see
SP section). Different levels of intracortical inhibition can
also be explored using paired-pulse TMS. At intensities
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above the motor threshold, a conditioning pulse and a test
pulse delivered to the motor cortex through the same coil
induce a facilitation of the test response at interstimulus
intervals of 25–50 ms while the response is inhibited at
50–200 ms intervals (long-interval inhibition, LICI) (Valls-
Sole et al., 1992). Pharmacological studies indicate that
LICI, similar to SP, is mediated by the activation of
GABAB inhibitory networks (McDonnell et al., 2006).
However, they may respond differentially to GABAB

activity enhancement (McDonnell et al., 2006),
suggesting that different processes may underlie LICI
and SP. SP refers to the duration of the inhibition
whereas LICI should be considered as an estimate of
the magnitude of inhibition. It is also possible to
measure short-interval intracortical inhibition (SICI) by
applying, at short interstimulus intervals (i.e. 2–5 ms), a
subthreshold conditioning pulse followed by a
suprathreshold test pulse (Kujirai et al., 1993). The

interaction between conditioning and test pulses is
thought to occur at the cortical level and be directly
related to GABAA intracortical inhibitory activity
(Ziemann et al., 1996; Di Lazzaro et al., 2005).

In an attempt to overcome the limitations of single-
pulse TMS and notably to better understand the role of
different intracortical inhibitory circuits in the development
of central fatigue, recent studies investigated EMG
responses to sustained volitional contractions with paired
TMS pulses. However, studies that investigated SICI and
LICI modulation with fatigue are often difficult to interpret
for several reasons. First, some studies measured
paired-pulse parameters only before and following
exercise or commenced post-testing beyond the time at
which acute changes might be detected (Tergau et al.,
2000; Liepert et al., 2005). Furthermore, in the majority
of studies, SICI and LICI measurements were made in
relaxed muscle (Tergau et al., 2000; Benwell et al.,

Fig. 2. Changes in MEP amplitude and maximal voluntary activation (nerve stimulation) during fatigue and recovery. The MEP amplitude (A) and
percent voluntary activation (B) are expressed as a percentage of the prefatigue (postcapsule) value in the caffeine trial (d) and placebo trial (s).
(A) ⁄Significant difference from the postcapsule value within a drug treatment, P < 0.05; §Significant difference between drug treatments,
P< 0.016. (B) ⁄Significant difference from the postcapsule value for the pooled caffeine and placebo data, P< 0.05. Adapted from Kalmar and
Cafarelli (2006).
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2006, 2007; Boerio et al., 2012) and thus may not be
representative of motor cortical behavior during fatiguing
contractions.

Benwell et al. (2006) delineated the time course of
SICI during 10 min of intermittent maximal contractions

of the first dorsal interosseus muscle with paired TMS
pulses delivered in the relaxed muscle. Despite an
increase at the onset of the exercise, SICI decreased
progressively thereafter in parallel with force. In a
subsequent study, the same authors observed similar

Fig. 3. Individual traces of biceps brachii EMG recorded from a single subject in brief control of maximal voluntary contractions (MVC) and a
sustained 2-min MVC. Responses obtained during the three brief control MVC with paired conditioning-test stimulation are overlaid. The time course
of stimulation during the 2-min MVC and the recovery period is indicated between the two sets of traces. The dashed box surrounds the conditioned
test MEP (left) and CMEP (right) evoked in the silent period following the conditioning TMS stimulus. The continuous vertical lines indicate the timing
of the conditioning and test stimuli. For this subject, conditioned MEP and CMEP are completely abolished at 30 s into the sustained contraction.
From McNeil et al. (2009).

M. Gruet et al. / Neuroscience 231 (2013) 384–399 395



changes in LICI (Benwell et al., 2007). In both studies,
these decreases (suggesting reduced intracortical
inhibition) were associated with increased SP. The
authors interpreted the dissociation between these
measures of long-lasting inhibition by arguing that SP
and LICI probably reflect processes occurring in
different neuron pools (Benwell et al., 2007). A major
concern with this interpretation is that the SP was
measured during MVC whereas LICI was measured in
the relaxed muscle.

McNeil et al. (2009) recently investigated changes in
LICI during a 2-min MVC of elbow flexors. In an attempt
to investigate the role of spinal mechanisms, the same
protocol was repeated with the TMS test pulse replaced
by cervicomedullary stimulation. Both conditioned MEP
and CMEP decreased rapidly with fatigue (i.e. indicating
increased LICI) and were almost completely suppressed
within 30 s (Fig. 3). Moreover, the recovery was slower
for conditioned MEP and CMEP (i.e. 90 s) in
comparison to unconditioned responses (i.e. 30 s). The
simultaneous abolishment of conditioned MEP and
CMEP indicates that there is a major spinal component
in LICI changes. Two possible mechanisms may
contribute to the decrease in lower motoneuron
excitability: a disfacilitation caused by a decline in
muscle spindle firing rates and changes in intrinsic
motoneuron properties (Butler et al., 2003). McNeil et al.
(2011b) recently investigated whether the former could
explain the reduction in conditioned CMEP during
fatiguing contractions. They tested whether excitatory
input from muscle spindles produced by tendon vibration
affected the conditioned CMEP during a sustained 2-min
MVC of the elbow flexors. The conditioned CMEP
decreased rapidly with fatigue but was unaffected by
tendon vibration. This result suggests that CMEP
depression during a sustained maximal contraction does
not depend on altered descending drive (as it is
transiently suppressed in the SP) and is minimally
affected by reduced input from muscle spindle
discharge. Thus, changes in intrinsic motoneuron
properties are the most likely explanation for reduced
CMEP during sustained maximal contractions. It is of
note that the increase in LICI observed by McNeil et al.
(2009) and thought to be mediated by a spinal
component was associated with a concomitant increase
in SP. This finding suggests that SP may not be a
specific index of intracortical inhibition as frequently
claimed, rather reflecting the inhibition of upper
motoneuron activity in the spinal cord. This remains to
be confirmed by comparing the kinetics of SP and LICI
during different fatiguing tasks and in other muscle
groups.

McNeil et al. (2011a) also found a similar reduction of
conditioned MEP and CMEP during a sustained
submaximal contraction of the elbow flexors, confirming
that impaired spinal mechanisms rather than
intracortical inhibition account for the fatigue-related
changes in LICI. The authors compared MEP and
CMEP responses to low-intensity (i.e. intensity to evoke
conditioned CMEP of �15% Mmax) and high-intensity
(i.e. �50% Mmax) stimuli. The high-intensity test stimuli

resulted in less inhibition of both conditioned MEP and
CMEP, suggesting that high-threshold upper
motoneurons are less affected by sustained submaximal
contractions. It would be beneficial to determine whether
similar reductions in conditioned MEP and CMEP could
be observed in a muscle in which spinal factors are
thought to contribute little to the increase in corticospinal
responses during fatiguing contractions (e.g. plantar
flexors (Hoffman et al., 2009)).

CONCLUSION

In isolation, TMS is useful to detect the supraspinal
component of muscle fatigue. To determine the relative
contribution of cortical and spinal mechanisms in central
nervous system changes during fatiguing exercise, this
method must be combined with other neurostimulation
techniques (i.e. cervicomedullary and peripheral nerve
stimulation). Significant changes in corticospinal
excitability can be observed during sustained fatiguing
contractions. The role of these changes in relation to
central activation deficit remains to be elucidated.
Pharmacological interventions aimed at modifying
cortical excitability (e.g. caffeine) or manipulating central
projection of muscle afferents (e.g. fentanyl) used in
conjunction with TMS may aid in clarifying the
relationship between changes in corticospinal excitability
and central fatigue.

TMS over the motor cortex only provides information
on transmission along the corticomotor tract. When
considering the complexity of the phenomena preceding
the execution of the motor command and the
subsequent activation of motor cortical cells (Tanaka
and Watanabe, 2012), it is likely that additional
mechanisms upstream from the motor cortex contribute
to central fatigue. Using techniques such as
corticomuscular coherence and functional magnetic
resonance imaging, recent evidence suggests that
different neural systems may exchange information and
increase and synchronize their activities during fatiguing
contractions (e.g. Ushiyama et al., 2011; Hilty et al.,
2011a). Motor cortical functioning is thus probably
influenced by other brain regions (e.g. prefrontal cortex,
somatosensory cortex) that may contribute to the
development of central fatigue during exercise.
Integration of neuroimaging and corticomuscular
coherence methods (e.g. EEG–EMG) with
neurostimulation techniques may allow better
identification of specific sites associated with
supraspinal failure during exercise. Future research
must overcome the methodological difficulties in
coupling these techniques during a given muscular
exercise and acknowledge the limits imposed by motor
task specificity in fatigue-induced changes in brain
activity.
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Alpes Region.

REFERENCES

Allen GM, McKenzie DK, Gandevia SC (1998) Twitch interpolation of

the elbow flexor muscles at high forces. Muscle Nerve

21:318–328.

Benwell NM, Sacco P, Hammond GR, Byrnes ML, Mastaglia FL,

Thickbroom GW (2006) Short-interval cortical inhibition and

corticomotor excitability with fatiguing hand exercise: a central

adaptation to fatigue? Exp Brain Res 170:191–198.

Benwell NM, Mastaglia FL, Thickbroom GW (2007) Differential

changes in long-interval intracortical inhibition and silent period

duration during fatiguing hand exercise. Exp Brain Res

179:255–262.

Boerio D, Lefaucheur JP, Bassez G, Hogrel JY (2012) Central and

peripheral components of exercise-related fatigability in myotonic

dystrophy type 1. Acta Neurol Scand 125:38–46.

Brasil-Neto JP, Pascual-Leone A, Valls-Sole J, Cammarota A, Cohen

LG, Hallett M (1993) Postexercise depression of motor evoked

potentials: a measure of central nervous system fatigue. Exp

Brain Res 93:181–184.

Brasil-Neto JP, Cohen LG, Hallett M (1994) Central fatigue as

revealed by postexercise decrement of motor evoked potentials.

Muscle Nerve 17:713–719.

Butler JE, Taylor JL, Gandevia SC (2003) Responses of human

motoneurons to corticospinal stimulation during maximal voluntary

contractions and ischemia. J Neurosci 23:10224–10230.

Butler JE, Petersen NC, Herbert RD, Gandevia SC, Taylor JL (2012)

Origin of the low-level EMG during the silent period following

transcranial magnetic stimulation. Clin Neurophysiol 123:

1409–1414.

Cahill F, Kalmar JM, Pretorius T, Gardiner PF, Giesbrecht GG (2011)

Whole-body hypothermia has central and peripheral influences on

elbow flexor performance. Exp Physiol 96:528–538.

Cerri G, Cocchi CA, Montagna M, Zuin M, Podda M, Cavallari P,

Selmi C (2010) Patients with primary biliary cirrhosis do not show

post-exercise depression of cortical excitability. Clin Neurophysiol

121:1321–1328.

Chin O, Cash RF, Thickbroom GW (2012) Electromyographic

bursting following the cortical silent period induced by

transcranial magnetic stimulation. Brain Res 1446:40–45.

Darling WG, Wolf SL, Butler AJ (2006) Variability of motor potentials

evoked by transcranial magnetic stimulation depends on muscle

activation. Exp Brain Res 174:376–385.

de Noordhout AM, Rapisarda G, Bogacz D, Gerard P, De Pasqua V,

Pennisi G, Delwaide PJ (1999) Corticomotoneuronal synaptic

connections in normal man: an electrophysiological study. Brain

122(Pt 7):1327–1340.

del Olmo MF, Reimunde P, Viana O, Acero RM, Cudeiro J (2006)

Chronic neural adaptation induced by long-term resistance

training in humans. Eur J Appl Physiol 96:722–728.

Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A,

Mazzone P, Tonali P, Rothwell JC (1998) Effects of voluntary

contraction on descending volleys evoked by transcranial

stimulation in conscious humans. J Physiol 508(Pt 2):625–633.

Di Lazzaro V, Oliviero A, Saturno E, Dileone M, Pilato F, Nardone R,

Ranieri F, Musumeci G, Fiorilla T, Tonali P (2005) Effects of

lorazepam on short latency afferent inhibition and short latency

intracortical inhibition in humans. J Physiol 564:661–668.

Endoh T, Nakajima T, Sakamoto M, Komiyama T (2005) Effects of

muscle damage induced by eccentric exercise on muscle fatigue.

Med Sci Sports Exerc 37:1151–1156.

Espiritu MG, Lin CS, Burke D (2003) Motoneuron excitability and the

F wave. Muscle Nerve 27:720–727.

Fernandez-Del-Olmo M, Rodriguez FA, Marquez G, Iglesias X,

Marina M, Benitez A, Vallejo L, Acero RM (2011) Isometric knee

extensor fatigue following a Wingate test: peripheral and central

mechanisms. Scand J Med Sci Sports http://dx.doi.org/10.1111/

j.1600-0838.2011.01355.x. [Epub ahead of print].

Fulton RC, Strutton PH, McGregor AH, Davey NJ (2002) Fatigue-

induced change in corticospinal drive to back muscles in elite

rowers. Exp Physiol 87:593–600.

Gandevia SC (2001) Spinal and supraspinal factors in human muscle

fatigue. Physiol Rev 81:1725–1789.

Gandevia SC, Taylor JL (2006) Supraspinal fatigue: the effects of

caffeine on human muscle performance. J Appl Physiol

100:1749–1750.

Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal

factors in human muscle fatigue: evidence for suboptimal output

from the motor cortex. J Physiol 490(Pt 2):529–536.

Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired

response of human motoneurones to corticospinal stimulation

after voluntary exercise. J Physiol 521(Pt 3):749–759.

Goodall S, Romer LM, Ross EZ (2009) Voluntary activation of human

knee extensors measured using transcranial magnetic

stimulation. Exp Physiol 94:995–1004.

Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM (2012)

Supraspinal fatigue after normoxic and hypoxic exercise in

humans. J Physiol 590:2767–2782.

Haouzi P, Hill JM, Lewis BK, Kaufman MP (1999) Responses of

group III and IV muscle afferents to distension of the peripheral

vascular bed. J Appl Physiol 87:545–553.

Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T,

Meeusen R (2008) Influence of brain catecholamines on the

development of fatigue in exercising rats in the heat. J Physiol

586:141–149.

Hilty L, Langer N, Pascual-Marqui R, Boutellier U, Lutz K (2011a)

Fatigue-induced increase in intracortical communication between

mid/anterior insular and motor cortex during cycling exercise. Eur

J Neurosci 34:2035–2042.

Hilty L, Lutz K, Maurer K, Rodenkirch T, Spengler CM, Boutellier U,

Jancke L, Amann M (2011b) Spinal opioid receptor-sensitive

muscle afferents contribute to the fatigue-induced increase in

intracortical inhibition in healthy humans. Exp Physiol

96:505–517.

Hoffman BW, Oya T, Carroll TJ, Cresswell AG (2009) Increases in

corticospinal responsiveness during a sustained submaximal

plantar flexion. J Appl Physiol 107:112–120.

Hollge J, Kunkel M, Ziemann U, Tergau F, Geese R, Reimers CD

(1997) Central fatigue in sports and daily exercises. A magnetic

stimulation study. Int J Sports Med 18:614–617.

Hultborn H, Nielsen JB (1995) H-reflexes and F-responses are not

equally sensitive to changes in motoneuronal excitability. Muscle

Nerve 18:1471–1474.

Humphry AT, Lloyd-Davies EJ, Teare RJ, Williams KE, Strutton PH,

Davey NJ (2004) Specificity and functional impact of post-

exercise depression of cortically evoked motor potentials in

man. Eur J Appl Physiol 92:211–218.

Hunter SK, Butler JE, Todd G, Gandevia SC, Taylor JL (2006)

Supraspinal fatigue does not explain the sex difference in muscle

fatigue of maximal contractions. J Appl Physiol 101:1036–1044.

Hunter SK, Todd G, Butler JE, Gandevia SC, Taylor JL (2008)

Recovery from supraspinal fatigue is slowed in old adults after

fatiguing maximal isometric contractions. J Appl Physiol

105:1199–1209.

Iguchi M, Shields RK (2011) Cortical and segmental excitability

during fatiguing contractions of the soleus muscle in humans. Clin

Neurophysiol 123:335–343.

Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period

evoked by transcranial stimulation of the human cortex and

cervicomedullary junction. J Physiol 466:521–534.

Kalmar JM, Cafarelli E (2004) Central fatigue and transcranial

magnetic stimulation: effect of caffeine and the confound of

peripheral transmission failure. J Neurosci Methods 138:15–26.

M. Gruet et al. / Neuroscience 231 (2013) 384–399 397

http://dx.doi.org/10.1111/j.1600-0838.2011.01355.x
http://dx.doi.org/10.1111/j.1600-0838.2011.01355.x


Kalmar JM, Cafarelli E (2006) Central excitability does not limit

postfatigue voluntary activation of quadriceps femoris. J Appl

Physiol 100:1757–1764.

Kaufman MP, Rybicki KJ, Waldrop TG, Ordway GA (1984) Effect of

ischemia on responses of group III and IV afferents to contraction.

J Appl Physiol 57:644–650.

Keller ML, Pruse J, Yoon T, Schlinder-Delap B, Harkins A, Hunter SK

(2011) Supraspinal fatigue is similar in men and women for a low-

force fatiguing contraction. Med Sci Sports Exerc 43:1873–1883.

Khedr EM, Galal O, Said A, Abd-elsameea M, Rothwell JC (2007)

Lack of post-exercise depression of corticospinal excitability in

patients with Parkinson’s disease. Eur J Neurol 14:793–796.

Klass M, Levenez M, Enoka RM, Duchateau J (2008) Spinal

mechanisms contribute to differences in the time to failure of

submaximal fatiguing contractions performed with different loads.

J Neurophysiol 99:1096–1104.

Klass M, Roelands B, Levenez M, Fontenelle V, Pattyn N, Meeusen

R, Duchateau J (2012) Effects of noradrenaline and dopamine on

supraspinal fatigue in well-trained men. Med Sci Sports Exerc

44:2299–2308.

Kluger BM, Palmer C, Shattuck JT, Triggs WJ (2012) Motor evoked

potential depression following repetitive central motor initiation.

Exp Brain Res 216:585–590.

Knorr S, Ivanova TD, Doherty TJ, Campbell JA, Garland SJ (2011)

The origins of neuromuscular fatigue post-stroke. Exp Brain Res

214:303–315.

Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert

A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical

inhibition in human motor cortex. J Physiol 471:501–519.

Lee M, Gandevia SC, Carroll TJ (2008) Cortical voluntary activation can

be reliably measured in human wrist extensors using transcranial

magnetic stimulation. Clin Neurophysiol 119:1130–1138.

Lentz M, Nielsen JF (2002) Post-exercise facilitation and depression

of M wave and motor evoked potentials in healthy subjects. Clin

Neurophysiol 113:1092–1098.

Levenez M, Garland SJ, Klass M, Duchateau J (2008) Cortical and

spinal modulation of antagonist coactivation during a submaximal

fatiguing contraction in humans. J Neurophysiol 99:554–563.

Liepert J, Mingers D, Heesen C, Baumer T, Weiller C (2005) Motor

cortex excitability and fatigue in multiple sclerosis: a transcranial

magnetic stimulation study. Mult Scler 11:316–321.

Lou JS, Benice T, Kearns G, Sexton G, Nutt J (2003) Levodopa

normalizes exercise related cortico-motoneuron excitability

abnormalities in Parkinson’s disease. Clin Neurophysiol 114:

930–937.

Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL (2006)

Fatigue-sensitive afferents inhibit extensor but not flexor

motoneurons in humans. J Neurosci 26:4796–4802.

Martin PG, Butler JE, Gandevia SC, Taylor JL (2008) Noninvasive

stimulation of human corticospinal axons innervating leg muscles.

J Neurophysiol 100:1080–1086.

Mathis J, de Quervain D, Hess CW (1998) Dependence of the

transcranially induced silent period on the ‘instruction set’ and the

individual reaction time. Electroencephalogr Clin Neurophysiol

109:426–435.

McDonnell MN, Orekhov Y, Ziemann U (2006) The role of GABA(B)

receptors in intracortical inhibition in the human motor cortex. Exp

Brain Res 173:86–93.

McKay WB, Tuel SM, Sherwood AM, Stokic DS, Dimitrijevic MR

(1995) Focal depression of cortical excitability induced by

fatiguing muscle contraction: a transcranial magnetic stimulation

study. Exp Brain Res 105:276–282.

McKay WB, Stokic DS, Sherwood AM, Vrbova G, Dimitrijevic MR

(1996) Effect of fatiguing maximal voluntary contraction on

excitatory and inhibitory responses elicited by transcranial

magnetic motor cortex stimulation. Muscle Nerve 19:

1017–1024.

McNeil CJ, Martin PG, Gandevia SC, Taylor JL (2009) The response

to paired motor cortical stimuli is abolished at a spinal level during

human muscle fatigue. J Physiol 587:5601–5612.

McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL (2011a)

Behaviour of the motoneurone pool in a fatiguing submaximal

contraction. J Physiol 589:3533–3544.

McNeil CJ, Giesebrecht S, Khan SI, Gandevia SC, Taylor JL (2011b)

The reduction in human motoneurone responsiveness during

muscle fatigue is not prevented by increased muscle spindle

discharge. J Physiol 589:3731–3738.

Merton PA (1954) Voluntary strength and fatigue. J Physiol

123:553–564.

Milanovic S, Filipovic SR, Blesic S, Ilic TV, Dhanasekaran S,

Ljubisavljevic M (2011) Paired-associative stimulation can

modulate muscle fatigue induced motor cortex excitability

changes. Behav Brain Res 223:30–35.

Mileva KN, Sumners DP, Bowtell JL (2012) Decline in voluntary

activation contributes to reduced maximal performance of

fatigued human lower limb muscles. Eur J Appl Physiol

112:3959–3970.

Millet GY (2011) Can neuromuscular fatigue explain running

strategies and performance in ultra-marathons?: the flush

model. Sports Med 41:489–506.

Millet GY, Lepers R (2004) Alterations of neuromuscular function

after prolonged running, cycling and skiing exercises. Sports Med

34:105–116.

Millet GY, Martin V, Lattier G, Ballay Y (2003) Mechanisms

contributing to knee extensor strength loss after prolonged

running exercise. J Appl Physiol 94:193–198.

Mills KR, Thomson CC (1995) Human muscle fatigue investigated by

transcranial magnetic stimulation. Neuroreport 6:1966–1968.

Nielsen J, Petersen N (1994) Is presynaptic inhibition distributed to

corticospinal fibres in man? J Physiol 477(Pt 1):47–58.

Perretti A, Balbi P, Orefice G, Trojano L, Marcantonio L, Brescia-

Morra V, Ascione S, Manganelli F, Conte G, Santoro L (2004)

Post-exercise facilitation and depression of motor evoked

potentials to transcranial magnetic stimulation: a study in

multiple sclerosis. Clin Neurophysiol 115:2128–2133.

Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human

motor control by transcranial magnetic stimulation. Exp Brain Res

152:1–16.

Pitcher JB, Miles TS (2002) Alterations in corticospinal excitability

with imposed vs. voluntary fatigue in human hand muscles. J Appl

Physiol 92:2131–2138.

Pitcher JB, Robertson AL, Clover EC, Jaberzadeh S (2005)

Facilitation of cortically evoked potentials with motor imagery

during post-exercise depression of corticospinal excitability. Exp

Brain Res 160:409–417.

Reid A, Chiappa K (2002) Motor threshold, facilitation and the silent

period in cortical magnetic stimulation. In: Pascual-Leone A et al.,

editors. Handbook of TMS. New York: Oxford University Press. p.

97-111.

Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of

transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567.

Ross EZ, Middleton N, Shave R, George K, Nowicky A (2007)

Corticomotor excitability contributes to neuromuscular fatigue

following marathon running in man. Exp Physiol 92:417–426.

Rotto DM, Kaufman MP (1988) Effect of metabolic products of

muscular contraction on discharge of group III and IV afferents. J

Appl Physiol 64:2306–2313.

Rupp T, Jubeau M, Wuyam B, Perrey S, Levy P, Millet GY, Verges S

(2012) Time-dependant effect of acute hypoxia on corticospinal

excitability in healthy humans. J Neurophysiol 108:1270–1277.

Sacco P, Hope PA, Thickbroom GW, Byrnes ML, Mastaglia FL (1999)

Corticomotor excitability and perception of effort during sustained

exercise in the chronic fatigue syndrome. Clin Neurophysiol

110:1883–1891.

Saisanen L, Pirinen E, Teitti S, Kononen M, Julkunen P, Maatta S,

Karhu J (2008) Factors influencing cortical silent period: optimized

stimulus location, intensity and muscle contraction. J Neurosci

Methods 169:231–238.

Samii A, Wassermann EM, Ikoma K, Mercuri B, George MS, O’Fallon

A, Dale JK, Straus SE, Hallett M (1996) Decreased postexercise

398 M. Gruet et al. / Neuroscience 231 (2013) 384–399



facilitation of motor evoked potentials in patients with chronic

fatigue syndrome or depression. Neurology 47:1410–1414.

Secher NH, Seifert T, Van Lieshout JJ (2008) Cerebral blood flow and

metabolism during exercise: implications for fatigue. J Appl

Physiol 104:306–314.

Sidhu SK, Bentley DJ, Carroll TJ (2009a) Cortical voluntary activation

of the human knee extensors can be reliably estimated using

transcranial magnetic stimulation. Muscle Nerve 39:186–196.

Sidhu SK, Bentley DJ, Carroll TJ (2009b) Locomotor exercise

induces long-lasting impairments in the capacity of the human

motor cortex to voluntarily activate knee extensor muscles. J Appl

Physiol 106:556–565.

Sidhu SK, Cresswell AG, Carroll TJ (2012) Motor cortex excitability

does not increase during sustained cycling exercise to volitional

exhaustion. J Appl Physiol 113:401–409.

Smith JL, Martin PG, Gandevia SC, Taylor JL (2007) Sustained

contraction at very low forces produces prominent supraspinal

fatigue in human elbow flexor muscles. J Appl Physiol

103:560–568.

Sogaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006)

The effect of sustained low-intensity contractions on supraspinal

fatigue in human elbow flexor muscles. J Physiol 573:511–523.

Szubski C, Burtscher M, Loscher WN (2007) Neuromuscular fatigue

during sustained contractions performed in short-term hypoxia.

Med Sci Sports Exerc 39:948–954.

Tanaka M, Watanabe Y (2012) Supraspinal regulation of physical

fatigue. Neurosci Biobehav Rev 36:727–734.

Taylor JL (2006) Stimulation at the cervicomedullary junction in

human subjects. J Electromyogr Kinesiol 16:215–223.

Taylor JL, Gandevia SC (2001) Transcranial magnetic stimulation

and human muscle fatigue. Muscle Nerve 24:18–29.

Taylor JL, Gandevia SC (2004) Noninvasive stimulation of the human

corticospinal tract. J Appl Physiol 96:1496–1503.

Taylor JL, Gandevia SC (2008) A comparison of central aspects of

fatigue in submaximal and maximal voluntary contractions. J Appl

Physiol 104:542–550.

Taylor JL, Butler JE, Allen GM, Gandevia SC (1996) Changes in

motor cortical excitability during human muscle fatigue. J Physiol

490(Pt 2):519–528.

Taylor JL, Butler JE, Gandevia SC (1999) Altered responses of

human elbow flexors to peripheral-nerve and cortical stimulation

during a sustained maximal voluntary contraction. Exp Brain Res

127:108–115.

Taylor JL, Allen GM, Butler JE, Gandevia SC (2000a) Supraspinal

fatigue during intermittent maximal voluntary contractions of the

human elbow flexors. J Appl Physiol 89:305–313.

Taylor JL, Butler JE, Gandevia SC (2000b) Changes in muscle

afferents, motoneurons and motor drive during muscle fatigue.

Eur J Appl Physiol 83:106–115.

Taylor JL, Petersen N, Butler JE, Gandevia SC (2000c) Ischaemia

after exercise does not reduce responses of human

motoneurones to cortical or corticospinal tract stimulation. J

Physiol 525(Pt 3):793–801.

Taylor JL, Butler JE, Petersen NT, Gandevia SC (2001) Unexpected

reflex response to transmastoid stimulation in human subjects

during near-maximal effort. J Physiol 536:305–312.

Teo WP, Rodrigues JP, Mastaglia FL, Thickbroom GW (2012) Post-

exercise depression in corticomotor excitability after dynamic

movement: a general property of fatiguing and non-fatiguing

exercise. Exp Brain Res 216:41–49.

Tergau F, Geese R, Bauer A, Baur S, Paulus W, Reimers CD (2000)

Motor cortex fatigue in sports measured by transcranial magnetic

double stimulation. Med Sci Sports Exerc 32:1942–1948.

Thickbroom GW, Sacco P, Faulkner DL, Kermode AG, Mastaglia FL

(2008) Enhanced corticomotor excitability with dynamic fatiguing

exercise of the lower limb in multiple sclerosis. J Neurol

255:1001–1005.

Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary

activation of fresh and fatigued human muscles using transcranial

magnetic stimulation. J Physiol 551:661–671.

Todd G, Butler JE, Taylor JL, Gandevia SC (2005) Hyperthermia: a

failure of the motor cortex and the muscle. J Physiol

563:621–631.

Ugawa Y, Day BL, Rothwell JC, Thompson PD, Merton PA, Marsden

CD (1991a) Modulation of motor cortical excitability by electrical

stimulation over the cerebellum in man. J Physiol 441:57–72.

Ugawa Y, Rothwell JC, Day BL, Thompson PD, Marsden CD (1991b)

Percutaneous electrical stimulation of corticospinal pathways at

the level of the pyramidal decussation in humans. Ann Neurol

29:418–427.

Ushiyama J, Katsu M, Masakado Y, Kimura A, Liu M, Ushiba J (2011)

Muscle fatigue-induced enhancement of corticomuscular

coherence following sustained submaximal isometric contraction

of the tibialis anterior muscle. J Appl Physiol 110:1233–1240.

Valls-Sole J, Pascual-Leone A, Wassermann EM, Hallett M (1992)

Human motor evoked responses to paired transcranial magnetic

stimuli. Electroencephalogr Clin Neurophysiol 85:355–364.

Verges S, Rupp T, Jubeau M, Wuyam B, Esteve F, Levy P, Perrey S,

Millet GY (2012) Invited Review: Cerebral Perturbations During

Exercise in Hypoxia. Am J Physiol Regul Integr Comp Physiol

302:R903–916.

Watson SR, Colebatch JG (1998) Vestibular-evoked electromyographic

responses in soleus: a comparison between click and galvanic

stimulation. Exp Brain Res 119:504–510.

Zanette G, Bonato C, Polo A, Tinazzi M, Manganotti P, Fiaschi A

(1995) Long-lasting depression of motor-evoked potentials to

transcranial magnetic stimulation following exercise. Exp Brain

Res 107:80–86.

Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996) The effect of

lorazepam on the motor cortical excitability in man. Exp Brain Res

109:127–135.

Zijdewind I, Zwarts MJ, Kernell D (2000) Potentiating and fatiguing

cortical reactions in a voluntary fatigue test of a human hand

muscle. Exp Brain Res 130:529–532.

(Accepted 29 October 2012)
(Available online 3 November 2012)

M. Gruet et al. / Neuroscience 231 (2013) 384–399 399



Assessement of quadriceps strength, endurance and fatigue in FSHD

and CMT: Benefits and limits of femoral nerve magnetic stimulation

D. Bachasson a,b,c, J. Temesi d, C. Bankole d,f, E. Lagrange c,e, C. Boutte c,e, G.Y. Millet b,d, S. Verges a,b,⇑,
P. Levy a,b,c, L. Feasson d,e,f, B. Wuyam a,b,c

aUniversité Joseph Fourier, Laboratoire HP2, F-38000 Grenoble, France
b INSERM, U1042, F-38000 Grenoble, France
cCHU de Grenoble, Pole Locomotion, Rééducation & Physiologie, Clinique Physiologie, Sommeil et Exercice, F-38000 Grenoble, France
dUniversité de Lyon, Laboratoire de Physiologie de l’Exercice, F-42023 Saint-Etienne, France
eCentres Référent Maladies Neuromusculaires Rares Rhône Alpes, CHU de Grenoble, F-38000 Grenoble, France
fCHU de St Etienne, Unité de Myologie, F-42055 St. Etienne, France

a r t i c l e i n f o

Article history:

Accepted 1 August 2013

Available online xxxx

Keywords:

Fascioscapulohumeral dystrophy

Charcot-Marie-Tooth disease

Hereditary motor and sensory neuropathy

Femoral magnetic nerve stimulation

Muscle strength

Muscle fatigue

Muscle endurance

Neuromuscular diseases

Experienced fatigue

h i g h l i g h t s

� Reliable assessment of quadriceps strength, endurance and fatigue can be obtained over a single ses-

sion in patients with neuromuscular diseases by using the quadriceps intermittent fatigue (QIF) test.

� Femoral nerve magnetic stimulation exhibits limitations due to insufficient stimulation intensity in

�30% of patients with fascioscapulohumeral dystrophy (FSHD) and in all patients with Charcot-

Marie-Tooth disease (CMT).

� Patients with FSHD and CMT exhibit similar endurance and neuromuscular fatigue compared to

healthy controls during standardized isolated quadriceps contractions.

a b s t r a c t

Objectives: To (i) evaluate the feasibility and the reliability of a test assessing quadriceps strength, endur-

ance and fatigue in patients with fascioscapulohumeral dystrophy (FSHD) and Charcot-Marie-Tooth dis-

ease (CMT), (ii) compare quadriceps function between patients and healthy controls.

Methods: Controls performed the test once and patients twice on two separate visits. It involved progres-

sive sets of 10 isometric contractions each followed by neuromuscular assessments with FNMS.

Results: Volitional assessment of muscle strength, endurance and fatigue appeared to be reliable in FSHD

and CMT patients. Supramaximal FNMS was achieved in �70% of FSHD patients and in no CMT patients.

In FSHD patients, Femoral nerve magnetic stimulation (FNMS) provided reliable assessment of central

(typical error as a coefficient of variation (CVTE) < 8% for voluntary activation) and peripheral (CVTE < 10%

and intraclass coefficient correlation >0.85 for evoked responses) function. Patients and controls had sim-

ilar reductions in evoked quadriceps responses, voluntary activation and similar endurance.

Conclusions: This test provides reliable evaluation but FNMS exhibits limitations due to insufficient stim-

ulation intensity particularly in neurogenic conditions. It showed similar central and peripheral quadri-

ceps fatigability in patients and controls.

Significance: This test may be a valuable tool for patient follow-up although further development of mag-

netic stimulation devices is needed to extend its applicability.
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1. Introduction

In patients with neuromuscular disorders, muscle weakness

leads to severe impairment of functional capacities with negative

influence on physical activity and participation. Experienced fati-

gue (i.e. tiredness, lack of energy and feeling of exhaustion not nec-

essarily induced by exercise) is a common symptom in

neuromuscular diseases (Angelini and Tasca, 2012; Chaudhuri

and Behan, 2004). In addition to muscle weakness, enhanced sub-

jective muscle fatigability is also reported by patients (Feasson

et al., 2006). Availability of reliable and well-tolerated non-inva-

sive evaluation of neuromuscular function (i.e. strength, endurance

and fatigue) in patients with neuromuscular disorders is critical to

provide relevant outcomes for observational and interventional

studies.

Strength production embraces mechanisms within all levels of

the motor pathway from the brain to skeletal muscle and are clas-

sically classified as central (neural) or peripheral (muscular). Sim-

ilarly, neuromuscular fatigue (i.e. exercise-induced reduction in

voluntary strength (Bigland-Ritchie et al., 1978)) involves periphe-

ral (i.e. alterations in muscle contractility) and central (i.e. reduc-

tion in muscle activation during voluntary contractions caused

by a decrease in motoneuron output at the spinal or/and supraspi-

nal level (Gandevia, 2001)) mechanisms. Procedures to assess max-

imal voluntary strength are well-documented in both healthy

subjects (Hogrel et al., 2007) and patients (Horemans et al.,

2004) but exhibit numerous limitations (e.g. effects of patient

cooperation/motivation, fear of pain or muscle damage, joint dys-

function and lack of distinction between central and peripheral

factors). To overcome these limitations, artificial mechanical and

electrophysiological responses evoked via muscle or peripheral

nerve stimulation can be used to assess muscle contractility and

the degree of muscle activation before and throughout a fatiguing

task (see Millet et al. (2012) for review). However, the lack of stan-

dardized procedures concerning stimulation patterns and fatiguing

tasks often makes results difficult to interpret. For instance, Schil-

lings et al. (2007) used muscle electrical stimulation to assess bi-

ceps brachii muscle function in patients with myogenic or

neurogenic disorders. The authors reported impaired voluntary

activation at rest and smaller peripheral fatigue in patients (i.e.

smaller reduction in evoked muscular responses compared to

healthy controls) following a 2-min sustained isometric maximal

voluntary contraction (MVC). In this work, impaired initial activa-

tion level leading to lower strength production in patients during

the 2-min MVC might explain lower peripheral fatigue in patients

compared to controls. In addition, the use of uncomfortable 100-Hz

electrical stimulation trains was potentially responsible for sub-

maximal activation in patients and the use of submaximal unpot-

entiated (rather than supramaximal potentiated) evoked

responses while assessing peripheral fatigue (Kufel et al., 2002;

Millet et al., 2012) also raised methodological concerns.

We recently developed a new clinical test to assess quadriceps

function (Quadriceps Intermittent Fatigue test: QIF) involving

intermittent isometric contractions and repetitive neuromuscular

assessment via femoral nerve magnetic stimulation (FNMS). In

healthy subjects, FNMS provides similar results to electrical stimu-

lation as recently shown by our group (Verges et al., 2009) and is

better tolerated than electrical stimulation in patients (Szecsi

et al., 2010). The design of the QIF test has the advantage of (i) eval-

uating the changes in central and peripheral fatigue development

rather than a final measurement only, (ii) limiting the influence

of psychological and motivational confounding factors using pro-

gressive loading and multiple assessments, and (iii) limiting the

discomfort associated with stimulations by using single and dou-

blets stimulations rather than stimulation trains. We first showed

that the QIF test is reliable in healthy subjects (Bachasson et al.,

2013a) and then that it is well-tolerated and meaningful in pa-

tients with fibromyalgia syndrome (Bachasson et al., 2013b). The

reliability of a comprehensive procedure to assess quadriceps

strength, endurance and fatigue with the support of FNMS in pa-

tients with neuromuscular diseases remains to be evaluated.

Accordingly, we evaluated the feasibility and the reliability of

the QIF test in patients with neuromuscular disorders. We studied

patients with fascioscapulohumeral dystrophy (FSHD) and patients

with Charcot-Marie-Tooth disease (CMT), among the most preva-

lent genetically-inherited muscular dystrophies and polyneuropa-

thies in adults, respectively. We hypothesized that (i) the QIF test

and FNMS are safe and reliable in patients with neuromuscular dis-

orders, (ii) patients with neuromuscular disorders would have lar-

ger peripheral and central fatigue during the QIF test compared to

a group of healthy controls. To clarify the functional consequences

of muscle dysfunction in patients, we also assessed the relation-

ship between quadriceps function, exercise capacity, functional

capacities and experienced fatigue assessed by questionnaires.

2. Methods

2.1. Subjects

Nineteen FSHD patients (chromosome 4 linked) and eight CMT

(type IA) patients with confirmed genetic diagnosis and twenty-

three healthy controls volunteered to participate in this study.

Twenty-three healthy subjects were enrolled to build two control

groups (n = 19 and n = 8) matched for age, sex and BMI with the

two groups of patients. Main subjects characteristics are presented

in Table 1. All patients were able to walk and had neither contra-

indication for maximal exercise testing nor severe knee condition.

All subjects gave their written informed consent to participate in

this study. The study was conducted according to the Declaration

of Helsinki with approval from the local Committee on Human Re-

search (Comité de protection des personnes Sud-EST V).

2.2. Study design

During the first visit, patients and controls had a clinical exam-

ination and answered questionnaires. During the second visit, sub-

jects performed a 6-min walk test and, after one hour of rest, they

performed a maximal incremental exercise test on a cycle ergom-

eter. During the third visit, subjects performed a QIF test. Twelve

FSHD patients and all CMT patients had a fourth visit to repeat

the QIF test in order to assess between-day reliability.

2.3. Anthropometric measurements

Body fat percentage was assessed from four skin folds (Durnin

and Womersley, 1974). We estimated quadriceps volume based

on a truncated cone calculation using three thigh circumferences

and thigh skin fold (Jones and Pearson, 1969).

2.4. Questionnaires

Quality of life was evaluated with the Medical Outcomes Study

Short-Form (SF-36) (Aaronson et al., 1992). Experienced fatigue

was evaluated with the fatigue severity scale (Krupp et al., 1989).

2.5. Maximal cycling test

Subjects performed a standard maximal incremental exercise

test on a computer-controlled electrically braked cycle ergometer

(Ergometrics 800, Ergoline, Bitz, Germany) with breath-by-breath

gas analysis and electrocardiogram (Medisoft, Dinant, Belgium)
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(Balady et al., 2010) for the determination of peak workload and

peak oxygen consumption. A fingertip blood sample was obtained

3 min after exhaustion and analyzed for lactate concentration

(NOVA+, Nova Biomedical Corporation, Waltham MA, USA).

2.6. Quadriceps neuromuscular assessment

2.6.1. Experimental setup

Measurements were conducted on the right limb in controls

and on the strongest limb in patients. Subjects lay supine on a cus-

tomized chair. The knee was flexed at 90� and the hip angle was

130� to facilitate coil placement in the femoral triangle for FNMS.

Voluntary strength and evoked responses to FNMS were measured

with a strain gauge (SBB 200 kg Tempo Technologies, Taipei, Tai-

wan) connected to an inextensible ankle strap. Compensatory

movement of the upper body was limited by two belts across the

thorax and abdomen. Subjects were instructed to keep their hands

on their abdomen at all times. Visual feedback of both the force

produced and the target force levels (see below) was provided to

the subjects. Quadriceps surface EMG signal was recorded from

the vastus lateralis (as a surrogate for the whole quadriceps (Place

et al., 2007)) as described in detail previously (Verges et al., 2009).

EMG signals were amplified (BioAmp, ADInstruments, Sydney,

Australia) with a 5 to 500-Hz filter. EMG and force signals were

digitized (Powerlab, ADInstruments) at a sampling frequency of

2000 Hz and recorded (Labchart; ADInstruments).

2.6.2. Femoral Nerve Magnetic Stimulation (FNMS)

FNMS was performed with a 45-mm figure-eight coil powered

by two Magstim 200 stimulators (peak magnetic field 2.5 T, stim-

ulation duration 0.1 ms; Magstim, Whitland, United Kingdom)

linked by Bistim Module (Magstim), as previously described

(Verges et al., 2009). Single (twitch) and paired stimuli (10-Hz

and 100-Hz doublets) were delivered at maximal stimulator out-

put. The coil was positioned high in the femoral triangle in front

of the femoral nerve. The optimal position to evoke maximal

unpotentiated quadriceps peak strength and maximal vastus late-

ralis M-wave amplitude was determined and marked on the skin.

After 20 min of rest, stimulus supramaximality was assessed at

stimulator power outputs of 100%, 95%, 90%, 85% and 80% (see

Fig. 1). FNMS was considered to be supramaximal when the unpot-

entiated twitch at 80% of maximal power output was greater or

equal to 90% of unpotentiated twitch amplitude at 100% of maxi-

mal power output. Ninety percent (=100–10%) was used because

10% represents twice the twitch variability in a healthy population

(Bachasson et al., 2013a). Supramaximal stimulation is necessary

to avoid the confounding effect of nerve hyperpolarization induced

by muscle fatigue (Millet et al., 2012).

2.6.3. QIF test

Before starting the initial neuromuscular assessment, subjects

performed ten 5-s submaximal isometric quadriceps contractions

in order to warm up the quadriceps muscle and to familiarize

themselves with both visual feedback and soundtrack instructions

(see below). Then subjects performed three MVCs with 1 min of

rest between each MVC. Following these MVC, subjects performed

four submaximal contractions at 20%, 40%, 60% and 80% of MVC,

each with a 100 Hz doublet delivered during contraction in order

to evaluate the strength-activation relationship (See Fig. 2). Then

the baseline neuromuscular assessment was performed. It con-

sisted of a 5-s MVC superimposed with 100-Hz doublet followed

2 s later (i.e. in relaxed muscle) by two potentiated doublets at

100-Hz (Db100) and 10-Hz (Db10) delivered 4 s apart. Fifteen sec-

onds later the subject performed a second MVC followed after 2 s

by one potentiated single twitch (Twp). During all MVCs, subjects

were vigorously encouraged by the experimenter. Potentiated

(Kufel et al., 2002) evoked high- and low-frequency paired stimuli

allow assessment of both high- and low-frequency peripheral fati-

gue (Verges et al., 2009) and high-frequency superimposed stimuli

provide optimal resolution for central activation assessment (Place

et al., 2007).

Table 1

Characteristics of patients with fascioscapulohumeral dystrophy (FSHD), Charcot-Marie-Tooth disease (CMT) and controls.

FSHD (n = 19) Controls (n = 19) P values CMT (n = 8) Controls (n = 8) P values

Subjects characteristics

Sex (women/men) 5/14 5/14 – 5/3 5/3 –

Age (y) 41 ± 13 39 ± 14 0.64 41 ± 14 41 ± 15 1.0

Height (cm) 176 ± 9 172 ± 9 0.25 167 ± 7 168 ± 5 0.69

Body weight (kg) 74 ± 15 72 ± 13 0.65 69 ± 10 65 ± 13 0.51

BMI (kg m�2) 23.8 ± 4.0 24.5 ± 3.0 0.85 24.8 ± 3.4 22.9 ± 2.9 0.26

Body fat percentage (%) 24.5 ± 8.6 23.2 ± 8.9 0.66 31.3 ± 8.7 26.2 ± 2.9 0.17

6-min walking distance (m) 464 ± 147 683 ± 96 <0.001 456 ± 96 652 ± 75 <0.001

Maximal incremental cycling test

Peak workload (W) 122 ± 72 214 ± 61 <0.001 119 ± 32 184 ± 40 <0.01

VO2,peak (L min�1) 1.91 ± 0.66 2.61 ± 0.65 <0.01 1.73 ± 0.38 2.21 ± 0.44 <0.05

VO2,peak (mL min�1 kg�1) 26 ± 11 38 ± 9 <0.01 26 ± 6 35 ± 5 <0.01

Maximal HR (% predicted) 88 ± 10 94 ± 5 <0.05 95 ± 11 97 ± 3 0.63

[La]max (mmol L�1) 7.8 ± 2.9 10.1 ± 2.4 <0.05 7.2 ± 1.6 8.9 ± 1.9 0.10

Mean values ± SD; BMI, body mass index; VO2,peak, peak oxygen consumption; [La]max, maximal blood lactate at exhaustion; P values, statistical results of comparisons

between patients and controls.
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Fig. 1. Unpotentiated twitch amplitude (Twu) at different stimulator outputs in

patients with fascioscapulohumeral dystrophy (FSHD) and controls. Supramaximal

threshold corresponding to twice the Twu coefficient of variation is provided. All

subjects with Twu amplitude below this threshold at 80% of maximal stimulator

output were excluded from evoked response analysis.
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After baseline assessment, sets of 10 intermittent (5-s on/5-s

off) isometric contractions at submaximal target forces were per-

formed, starting at 10% MVC for the first set and increasing by

10% MVC each set until task failure. Subjects had visual feedback

of the target force level and listened to a soundtrack indicating

the contraction-relaxation rhythm. The range used for the target

force level was defined as ±2.5% of MVC. Task failure was defined

as two consecutive contractions below the target force level for

more than 2.5 s. Five seconds after the end of each 10-contraction

set and at exhaustion, neuromuscular assessments similar to base-

line assessments were performed. In FSHD patients, serum creatine

kinase was measured before and 24 h after the test.

2.7. Data analysis

The following parameters were calculated from the mechanical

responses to FNMS: peak force for unpotentiated twitch, Twp,

Db100,Db10 and the ratio Db10:Db100 (Db10:100 as an index of low fre-

quency peripheral fatigue) to characterize peripheral mechanisms

of neuromuscular function and peak force during superimposed

Db100 to calculate voluntary activation (characterizing central

mechanisms of the neuromuscular function). Peak-to-peakM-wave

amplitude, area and latency (from FNMS to firstM-wave peak) were

calculated from Twp to assess possible alterations of action poten-

tial propagation (Dimitrova and Dimitrov, 2003). Maximal rates of

force development and relaxation and the mechanical latency be-

tween FNMS and the beginning of the quadriceps mechanical re-

sponse were calculated from Twp to provide further insights into

muscle contractility and action potential propagation.Maximal vol-

untary activation (VA) during MVC was calculated as follows:

VA ¼ ½1� Superimposed Db100=Db100� � 100

A correction was applied to the original equation when the

superimposed stimulation was administrated before or after the

maximal MVC force (Strojnik and Komi, 1998). The same equation

was used in order to assess voluntary activation at submaximal

force levels (Fig. 2). The root mean squared calculated from vastus

lateralis EMG signal normalized to M-wave amplitude during MVC

(MVCRMS/M) was also calculated as another index of central activa-

tion (Millet et al., 2012). The following parameters were calculated

from submaximal contractions: total number of contractions (i.e.

endurance index) and force–time integral.

2.8. Statistical analysis

All variables are reported as mean ± standard deviation. Normal

distribution and homogeneity of variance analysis were confirmed

using the Kolmogorov–Smirnov and Skewness test, respectively.

Unpaired t-tests were conducted to compare patients and controls

for the following variables: subject characteristics, questionnaire

scores and neuromuscular function at baseline. To compare

changes in variables during the QIF test and differences between

groups, we used two-way repeated measures ANOVAs (time -

� group) and t-tests with Bonferroni correction for post hoc analy-

sis. Pearson’s correlations were used to determine relationships

between variables. To assess reliability of neuromuscular measure-

ments, we calculated change in the mean values of both sessions

with 95% confidence intervals and used paired t-tests for detection

of systematic bias (Atkinson and Nevill, 1998). Due to our sample

size, we used typical error expressed as a coefficient of variation

(CVTE) to study absolute reliability (Hopkins, 2000). Relative reli-

ability was assessed by intraclass correlation coefficient (ICC) with

95% confidence intervals of variation (Hopkins, 2002). ICCs were

not calculated for VA due to the ceiling effect associated with these

measurements (Clark et al., 2007; Place et al., 2007). The alpha le-

vel was set at 0.05 for all tests. All other statistical analyses were

performed with a statistical software package (NCSS, Kaysville,

Utah USA).

3. Results

3.1. Functional capacities and questionnaires

Data from maximal incremental cycling test are shown in

Table 1. During the maximal incremental cycling test, FSHD and

CMT patients had lower maximal workload and peak oxygen con-

sumption than controls. Maximal heart rate as a percentage of

maximal theoretical value and blood lactate concentration were

significantly lower in FSHD patients only compared to controls.

6-min walking distance was also reduced in patients. Scores of fa-

tigue severity scale and SF-36 questionnaires are shown in Table 2.

Eleven FSHD patients and five CMT patients reported significant

experienced fatigue (i.e. >36, (Amato et al., 2001)).

3.2. FNMS supramaximality

FNMS supramaximality data for FSHD patients and all controls

are shown in Fig. 1. FNMS was well-tolerated and no adverse ef-

fects were reported. In two FSHD patients, we were unable to ob-

tain M-wave or mechanical responses. FNMS supramaximality

was not confirmed in four other FSHD patients. These six patients

were excluded from further analysis involving FNMS responses. In

all other FSHD patients and controls, supramaximal stimulation

was achieved and therefore, FNMS data were analyzed in thirteen

patients compared to thirteen patient controls. In CMT patients, no

reproducible or supramaximal M-wave or mechanical responses

could be obtained. Consequently, FNMS data of CMT patients
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Fig. 2. Voluntary activation at 20, 40, 60, 80 and 100% of maximal voluntary

contraction (MVC) in patients with fascioscapulohumeral dystrophy (FSHD) and

healthy controls (n = 13 in both groups).

Table 2

Fatigue severity scale and quality of life in patients with fascioscapulohumeral

dystrophy (FSHD) and Charcot-Marie-Tooth disease (CMT).

FSHD (n = 19) CMT (n = 8)

Fatigue severity scale 38 ± 12 41 ± 7

SF-36 subscores

Role physical 69 ± 37 66 ± 20

Physical functioning 63 ± 28 66 ± 20

Bodily pain 62 ± 26 62 ± 26

Role emotional 80 ± 40 96 ± 12

Social functioning 69 ± 31 66 ± 21

Mental health 52 ± 23 60 ± 17

Vitality (Energy/Fatigue) 50 ± 23 54 ± 6

General health perception 51 ± 18 52 ± 23

Mean values ± SD; SF-36, Medical Outcomes Study Short-Form.
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during the quadriceps test were not analyzed and only mechanical

and EMG data during voluntary maneuvers were compared

between the eight CMT patients and eight patient controls.

3.3. Quadriceps assessments at baseline

Quadriceps neuromuscular characteristics at baseline in FSHD

patients and controls are shown in Table 3. Volitional and evoked

strength, both as absolute values and normalized to estimated

quadriceps volume, were significantly lower in FSHD patients com-

pared to controls. Higher Twp maximal rates of force development

and relaxation were observed in controls compared to FSHD pa-

tients but these differences disappeared when normalized to the

Twp amplitude (normalized maximal rate of force development,

P = 0.56; normalized maximal rate of force relaxation, P = 0.22).

FSHD patients showed significantly lower Db10:100 than controls.

M-wave amplitude and area were similar in patients compared

to controls. No differences in M-wave and mechanical latencies

were found between FSHD patients and controls. Concerning

central parameters, FSHD patients had significantly higher VA

and similar MVCRMS/M compared to controls. The strength-activa-

tion relationship also indicated a tendency for greater voluntary

activation at 20%, 40%, 60% and 80% of MVC in FSHD patients

compared to controls (P = 0.06; Fig. 2). In FSHD patients, significant

correlations were found between MVC (in Nm) and VA (r = �0.41;

P < 0.05). Also, MVC per kg of body weight was correlated with

6-min walking distance (r = 0.77; P < 0.001), peak oxygen con-

sumption per kg of body weight (r = 0.74; P < 0.001), maximal

workload during the cycling test (r = 0.82; P < 0.001), fatigue sever-

ity scale score (r = �0.65; P < 0.05) and the physical functioning

SF-36 subscore (r = 0.58; P < 0.01).

In CMT patients, volitional and evoked strength, both as abso-

lute values and normalized to estimated quadriceps volume, were

significantly lower compared to controls (see Table 4). MVC per kg

of body weight correlated with peak oxygen consumption per kg of

body weight (r = 0.71; P < 0.05).

3.4. Quadriceps endurance and fatigue

During the QIF test, the total number of submaximal contrac-

tions tended to be smaller in patients compared to controls (FSHD

55 ± 8 versus 60 ± 9, respectively, P = 0.06; CMT 53 ± 6 versus

58 ± 9, P = 0.13). Compared to controls, the ratio of the force

reached on the last submaximal contraction and the first following

MVC at exhaustion was significantly lower in FSHD patients

(0.89 ± 0.06 versus 0.96 ± 0.11; P < 0.05) and was similar in CMT

patients (0.88 ± 0.11 versus 0.90 ± 0.07; P = 0.64).

Changes in MVC in FSHD patients and controls are shown in

Fig. 3. Changes in Twp, Db100, Db10:100 and VA are shown in

Fig. 4. No significant differences were found between groups for

these variables (all P > 0.05). No significant changes over time or

between groups were found for MVCRMS/M, M-wave amplitude,

area and latency or mechanical latency (all P > 0.05, data not

shown). Change in MVC during the quadriceps fatigue test in

CMT patients and controls are shown in Fig. 3. No significant differ-

ence between groups was observed (P = 0.18).

3.5. Reliability of quadriceps neuromuscular assessments in patients

3.5.1. Endurance and muscular work

Mean number of submaximal contractions was similar in test

and re-test sessions for FSHD (54 ± 5 versus 56 ± 6; P = 0.17) and

CMT patients (53 ± 5 versus 52 ± 5 in CMT patients; P = 0.60). CVTE

was 4.4% and ICC 0.95 (95% CI: 0.56–0.95) in FSHD patients. In CMT

patients, CVTE was 4.5% and ICC 0.87 (95% CI: 0.60–0.97). Total

force–time product was similar between sessions in FSHD patients

(10178 ± 4752 versus 10595 ± 4660 Nm s; P = 0.14) and in CMT pa-

tients (8356 ± 2430 versus 8176 ± 2010 Nm s; P = 0.60).

3.5.2. Neuromuscular assessments

Among the twelve FSHD patients that performed a test–retest, 2

had unsatisfactory FNMS supramaximality and were excluded

from analysis involving evoked muscle responses. The reliability

of volitional and evoked quadriceps strength at baseline and set

50% are shown in Table 5. No significant differences were observed

between test and re-test sessions for any parameters. Serum crea-

tine kinase in FSHD patients was not significantly increased 24 h

after the quadriceps test (284 ± 136 versus 326 ± 140 IU l�1;

P = 0.48). The reliability of volitional strength at baseline and set

50% in CMT patients is shown in Table 6. No significant differences

were observed between test and re-test.

Table 3

Quadriceps function at baseline in patients with fascioscapulohumeral dystrophy

(FSHD) and controls.

FSHD Controls P

values

Estimated quadriceps volume (cm3) 755 ± 156 867 ± 171 <0.05

Voluntary strength (n = 19)

MVC (Nm) 114 ± 46 207 ± 68 <0.001

MVC/Estimated quadriceps volume

(Nm cm�3)

0.14 ± 0.05 0.25 ± 0.07 <0.001

Evoked responses (n = 13)

Potentiated single twitch

Twp (Nm) 35 ± 16 61 ± 15 <0.001

Twp/Estimated quadriceps volume

(Nm cm�3)

0.038 ± 0.018 0.073 ± 0.016 <0.001

Twp contraction time (ms) 72 ± 20 71 ± 11 0.96

Twp latency (ms) 24 ± 3 23 ± 2 0.57

TwpMRFD (Nm s�1) 351 ± 220 619 ± 210 <0.001

TwpMRFR (Nm s�1) �106 ± 59 �203 ± 82 <0.001

M-wave amplitude (mV) 9.3 ± 4.9 8.3 ± 3.7 0.57

M-wave area (mV ms) 0.084 ± 0.044 0.088 ± 0.029 0.85

M-wave latency (ms) 14.5 ± 1.9 13.8 ± 2.9 0.52

Potentiated doublets

Db100 (Nm) 53 ± 25 92 ± 26 <0.001

Db10 (Nm) 45 ± 23 87 ± 24 <0.001

Db10:100 0.85 ± 0.14 0.94 ± 0.06 <0.05

Central parameters (n = 13)

VA (%) 95.6 ± 3.5 90.6 ± 4.0 <0.05

MVCRMS/M 0.045 ± 0.020 0.048 ± 0.017 0.71

Mean values ± SD; MVC = maximum voluntary contraction; Db100 = peak potenti-

ated 100 Hz doublet; Twp = peak potentiated single twitch; MRFD = maximal rate of

force development; MRFR = maximal rate of force relaxation; Db10:100 = ratio of the

peak potentiated 10 Hz doublets/peak potentiated 100 Hz doublets; VA = voluntary

activation level; MVCRMS/M = root mean squared calculated from vastus lateralis

EMG signal normalized to M-wave amplitude during MVC.

Table 4

Quadriceps function at baseline in patients with Charcot-Marie-Tooth disease (CMT).

CMT

(n = 8)

Controls

(n = 8)

P

values

Estimated quadriceps volume (cm3) 731 ± 140 770 ± 197 0.66

Voluntary strength

MVC (Nm) 94 ± 34 149 ± 40 <0.05

MVC/Estimated quadriceps volume

(Nm cm3)

0.13 ± 0.04 0.20 ± 0.04 <0.05

Mean values ± SD; See Table 3 for abbreviations.
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4. Discussion

Our results show that the present test involving incremental

isometric intermittent loading and FNMS appears to be safe, feasi-

ble and reliable to assess quadriceps strength, fatigue and endur-

ance in patients with FSHD. Supramaximal FNMS was however

not achieved in �30% of FSHD patients. Valid quadriceps mechan-

ical responses evoked by FNMS could not be obtained in CMT pa-

tients but fatigue and endurance assessments using volitional

manoeuvers appear to be reliable. Contrary to our hypothesis, we

observed similar peripheral and central fatigability in patients

compared to controls. Quadriceps weakness correlated with func-

tional capacities and perceived fatigue in patients but quadriceps

fatigability did not.

4.1. Feasibility and reliability of FNMS and the QIF test in patients

4.4.1. FNMS supramaximality

Supramaximal stimulation was obtained in 68% of FSHD pa-

tients and 100% of controls. In two male FSHD patients, we were

unable to obtain a distinguishable M-wave or evoked response.

One of these patients had the second highest percentage body fat

amongst patients (34%) and the other had 24% body fat. Among

the four patients (one women and three men) with unsatisfactory

supramaximality (see Fig. 1), mean body fat percentage was

31 ± 2%. Increased distance between the coil and the femoral nerve

caused by subcutaneous fat interposition can lead to submaximal

stimulation as previously reported by our group (Tomazin et al.,

2011) and may explain, at least in part, the inability to reach supra-

maximal FNMS in these patients. We were unable to obtain supra-

maximal stimulation in any CMT patient, even those with low body

fat percentage. Altered nerve excitability properties (e.g. higher

resting excitability threshold, threshold electrotonus abnormali-

ties) previously reported in CMT disease (Meulstee et al., 1997;

Nodera et al., 2004) might partly explain these results but further

research is needed to clarify the mechanisms involved. As previ-

ously done in healthy subjects (Verges et al., 2009), comparison

of electrical and magnetic femoral nerve stimulation in neuromus-

cular patients could also be useful to better characterize advanta-

ges and limits of FNMS, in particular in neurogenic patients.

4.4.2. Feasibility and reliability

Our fatiguing protocol appeared to be safe since serum creatine

kinase concentrations before and 24 h after the test were similar

and since evoked and volitional strengths were similar between

test and re-test sessions in FSHD patients. FNMS was well-toler-

ated in patients as previously reported in other pathological condi-

tions (e.g. in COPD (Polkey et al., 1996), chronic heart failure

(Hopkinson et al., 2012), fibromyalgia syndrome (Bachasson

et al., 2013b)). Reliability of MVC and evoked muscular responses

at baseline were satisfactory (CVTE < 7% and ICC > 0.82). MVC and

Twp reliability was similar to the between-day reliability previ-

ously observed in COPD patients (Saey et al., 2003). Percentage

reductions in MVC and evoked muscular responses during the

QIF test appeared to be similar between the test and re-test ses-

sions. At set 50%, CVTE were <10% and ICC were >0.85 for both

MVC and evoked muscular responses. For VA, CVTE was <5% at

baseline and at set 50% but relative reliability was lower as shown

by large limits of agreement at baseline, influenced by one outlier

that showed a large VA reduction in the second session (�21%).

These results are in accordance with previous results showing rel-

atively large VA variability in healthy subjects (Morton et al., 2005;

Place et al., 2007) and in patients with neuromuscular disorders

(Horemans et al., 2004). MVCRMS/M was less reliable than VA as pre-

viously observed (Place et al., 2007). Muscle endurance assessed

with the total number of submaximal contraction was reliable

(CVTE < 5% and ICC > 0.95). Together, these results indicate that

the reliability of neuromuscular assessments in FSHD patients is

good and suitable for follow-up or interventional studies. MVC

measurements before (Solari et al., 2008) and during the QIF test

are suitable to evaluate strength and fatigability in patients with

CMT.

4.2. Quadriceps properties at baseline in patients versus controls

4.2.1. Voluntary strength and evoked responses

As expected, FSHD patients had lower MVC and evoked muscu-

lar responses compared to controls (�45%). When normalized to

estimated quadriceps volume, MVC and evoked muscular re-

sponses remained lower in patients. This result may reflect fibrosis

and lipid infiltration usually observed in dystrophic muscle (Fried-

man et al., 2012). Also, changes in myocyte ultrastructure (e.g.

atrophic myotubes) (Barro et al., 2010) and the loss of tendon-fiber

continuity during muscle fiber necrosis and regeneration (Gold-

stein and McNally, 2010) may contribute to the impaired

strength–volume relationship in FSHD patients. More accurate

measurements of muscle volume and structure with magnetic res-

onance imaging (Kan et al., 2009) are needed to confirm that

strength production per unit of muscle volume is reduced in FSHD

patients. Lower Db10:100 may indicate that the force–frequency

relationship in dystrophic muscle is influenced by factors such as

macroscopic and microscopic muscle abnormalities mentioned
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Fig. 3. Maximal voluntary strength (MVC) during the quadriceps fatigue test in patients with fascioscapulohumeral dystrophy (FSHD, n = 19, Panel A) and Charcot-Marie-

Tooth disease (CMT, n = 8, Panel B) compared to healthy controls. Baseline, initial measurement; 10–50, measurements after sets of 10 contractions at 10–50% of MVC; Exh,

measurement immediately after exhaustion; ⁄significantly different from baseline (P < 0.05).
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above (Barro et al., 2010; Friedman et al., 2012; Goldstein and

McNally, 2010). Conversely, similar M-wave characteristics indi-

cate that nerve conduction and action potential propagation are

preserved in FSHD patients. In CMT patients, MVC was significantly

reduced compared to controls (�37%) in line with previous reports

(Schillings et al., 2007). In CMT, proximal leg compartments usu-

ally display less atrophy and fatty infiltration than distal compart-

ments (Gallardo et al., 2006). Estimated quadriceps volume was

not significantly reduced in CMT patients and therefore MVC nor-

malized to estimated quadriceps volume was lower compared to

controls. As discussed above, accurate measurements of muscle

volume are needed and, in the absence of VA measurements, we

are unable to discriminate between central and peripheral factors

responsible for this weakness in CMT.

4.2.2. Central parameters

One unexpected result was the higher VA at baseline in FSHD

patients compared to controls. In both groups, mean VA was

>90% which is within the range usually observed in healthy human

quadriceps (O’Brien et al., 2008; Place et al., 2007). A tendency for

higher activation level at submaximal fraction of MVC was also

found in FSHD patients (see Fig. 2). Similar MVCRMS/M in patients

and controls do not support a difference in central activation be-

tween groups but this parameter may be insufficiently reliable to

detect small changes (Place et al., 2007). Higher VA in FSHD pa-

tients contrasts with the previous work of Schillings et al. (2007)

reporting large activation failure in biceps brachii of FSHD patients.

This discrepancy might be partly explained by the use of different

stimulation procedures (e.g.muscle electrical train stimulation ver-

sus FNMS) and differences in muscle groups. On the other hand,

normal activation has also been reported in other neuromuscular

disease such as post-polio syndrome (Allen et al., 1997). Schillings

et al. (2007) suggested that lower voluntary activation in patients

might reflect a protective mechanism to prevent muscle from fur-

ther damage. Previous findings however showed that intracortical

inhibition assessed with transcranial magnetic stimulation might

be reduced in FSHD and may reflect a compensatory phenomenon

of the central nervous system to overcome peripheral muscle

weakness (Di Lazzaro et al., 2004). This mechanism might underlie

the enhanced VA observed in FSHD in the present work although

the relationship between central inhibition/excitability and the le-

vel of activation assessed at the peripheral level is still to be clari-

fied (Gruet et al., 2013). Furthermore, the weakest FSHD patients

may be accustomed to recruiting a greater percentage of their

maximal muscle capacity in daily activities, thus accounting for

the inverse correlation between quadriceps strength and VA.

4.3. Quadriceps fatigability and endurance in patients versus controls

4.3.1. MVC, peripheral fatigability and endurance

Our results showed similar reductions in MVC and evoked mus-

cular responses in FSHD patients and controls during a standard-

ized fatigue protocol at identical relative intensities (i.e. identical

% of MVC). Reductions in Db10:100 were also similar indicating that

the amount of low-frequency fatigue was comparable in both

groups. M-wave characteristics did not change during the test

meaning that impairment of action potential propagation is not in-

volved in the fatigue induced by this protocol in either FSHD pa-

tients or controls. These results contrast with the study of

Schillings et al. (2007), which reported smaller reductions in

MVC and evoked muscular responses in patients after a 2-min sus-

tained MVC compared to controls. In this study, central activation
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Fig. 4. Potentiated twitch (Twp, Panel A) and potentiated 100-Hz doublet (Db100, Panel B) amplitudes evoked via magnetic femoral nerve stimulation, ratio of potentiated 10-

Hz on potentiated 100-Hz doublets (Db10:100, Panel C) and voluntary action (VA, Panel D) during the quadriceps fatigue test in patients with fascioscapulohumeral dystrophy

(FSHD) and healthy controls (n = 13 in both groups). See Fig. 3 for abbreviations. ⁄significantly different from baseline (P < 0.05).
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in patients was greatly impaired and therefore lower muscle

recruitment may have induced less fatigue. Our results also con-

trast with the work of Schulte-Mattler et al. (2003), who showed

increased contractile fatigue in dorsiflexors induced by intermit-

tent electrical neurostimulation in FSHD patients. However, these

results are difficult to compare with the present study because

the group of patients studied was particularly heterogeneous

involving various neurogenic and myopathic diseases (e.g. only

four patients with FSHD). FSHD patients showed a tendency to

have reduced muscle endurance (P = 0.06) as measured by the total

number of submaximal contractions. Turki et al. (2012) recently

reported increased oxidative stress and impaired mitochondrial

function in fifteen patients with FSHD compared to a group of

healthy controls. The authors reported that both quadriceps voli-

tional strength and endurance (i.e. time to exhaustion during dy-

namic contractions at 30% of MVC) correlate with these

abnormalities. Although quadriceps endurance was much shorter

in FSHD, time to exhaustion was highly variable in both groups

(384 ± 353 s in patients versus 603 ± 357 s in controls). Further-

more, the amount of fatigue induced was not measured. Since

peripheral fatigue kinetics were similar in FSHD patients and con-

trols in the present study, the tendency to lower endurance in

FSHD patients may be explained, in part, by the significantly lower

ratio of the force reached during the last submaximal contraction

and the first following MVC at exhaustion in patients, indicating

slightly submaximal effort. Lack of motivation, fear of pain and

muscle damage frequently observed in patients may also contrib-

ute to earlier task-failure in patients. The discrepancy between

our results and Turki et al. (2012) might partly rely on the type

of contraction since dystrophic muscle might be more sensitive

to muscle damage than healthy muscle during dynamic contrac-

tions (Dellorusso et al., 2001). In CMT patients, our result showed

similar reduction in MVC during the QIF test and non-significant

difference in terms of endurance. In previous studies exploring

quadriceps, similar observations have been made (Lindeman

et al., 1999; Menotti et al., 2012; Schillings et al., 2007) but these

results are difficult to compare because sustained maximal or sub-

maximal contractions were used rather than intermittent sub-

maximal contractions as in the present work. As discussed above,

measurements of fatigue using maximal force alone do not dis-

criminate between peripheral and central factors so we cannot dis-

tinguish peripheral and central (i.e. spinal and supraspinal but also

at the peripheral nerve trunk level) factors responsible for MVC

reduction in CMT patients. We recently showed that MVCs are

not able to detect small differences in muscle fatigue between pa-

tients and controls and that evoked responses are more sensitive

(Bachasson et al., 2013b). At last, we cannot exclude lack of statis-

tical power to detect differences between CMT and controls.

4.3.2. Central fatigability

Since no significant differences were observed in either VA or

MVCRMS/M during the quadriceps fatigue test, central fatigue ap-

peared to be similar in FSHD patients and controls in accordance

with the previous work of Schillings et al. (2007). Thus, central

activation impairments during a fatiguing task (sustained or inter-

mittent) do not seem to be a limiting factor in FSHD patients. As

previously mentioned, we cannot address the issue of central fati-

gability in CMT patients without VA assessment.

4.4. Relation between quadriceps function, functional capacities and

subjective fatigue in patients

Impaired exercise capacity during stationary cycling (in all pa-

tients) and 6-min walking distance (in FSHD patients only) ap-

peared to be related to quadriceps weakness rather than muscle

endurance or fatigue in line with previous findings (Alfano et al.,

2013). This weakness also seemed to impact negatively on physical

functioning (SF-36 subscore) and perceived fatigue (fatigue sever-

ity scale score) in FSHD patients. In the present study, FSHD pa-

tients and controls performed the quadriceps fatigue test at the

same relative intensity (i.e. at the same % of MVC). Patients proba-

bly have to work at a higher percentage of MVC compared to

healthy subjects due to significant muscle weakness during spon-

taneous activity. Therefore, they may develop larger amounts of fa-

tigue in their daily lives. This may explain, in part, why neither

central nor peripheral fatigue as assessed in the present study

(i.e. for the same relative workload) were related to impaired func-

tional capacities, physical functioning or subjective fatigue in FSHD

patients.

5. Conclusions

We showed that FNMS is feasible and reliable in �70% of FSHD

patients to assess central and peripheral neuromuscular function

at rest and during an isolated quadriceps fatiguing task. In CMT pa-

tients, FNMS showed a lack of power to achieve optimal stimula-

tion. Meanwhile, the QIF test appears to be safe and reliable to

Table 5

Between-day reliability values for volitional (n = 12), evoked quadriceps strength and

central parameters (n = 10) at baseline and at set 50% in patients with fascioscap-

ulohumeral dystrophy.

Change in mean (95 % CI) CVTE (95% CI) ICC (95 % CI)

Baseline

MVC (Nm) �0.8 (�3.2–1.5) 2.3 (1.6–3.9) 0.99 (0.99–

0.99)

Twp (Nm) �0.6 (�3.6–2.5) 7.7 (5.2–14.8) 0.98 (0.94–

0.99)

Db100 (Nm) 1.1 (�2.1–4.3) 5.3 (3.6–10.1) 0.99 (0.97–

0.99)

Db10:100 �0.05 (�0.11–0.01) 6.4 (4.3–12.3) 0.82 (0.40–

0.96)

VA (%) �1.9 (�6.4–3.1) 4.6 (3.3–9.5) /

MVCRMS/M 0.004 (�0.008–0.015) 16 (10.7–

26.0)

0.79 (0.49–

0.96)

Set 50%

MVC (% Pre) �1.6 (�8.2–5.0) 6.0 (3.9–13.3) 0.99 (0.92–

0.99)

Twp (% Pre) �1.6 (�8.0–4.7) 9.3 (6.3–17.7) 0.88 (0.57–

0.97)

Db100 (% Pre) 0.1 (�7.7–7.9) 9.9 (6.7–19.0) 0.85 (0.48–

0.96)

Db10:100 �0.09 (�0.16–0.02) 7.1 (4.7–14.4) 0.92 (0.66–

0.98)

VA (%) �1.23 (�8.0–5.5) 6.9 (4.6–13.1) /

MVCRMS/M 0.000 (�0.004–0.004) 7.9 (5.2–16.0) 0.91 (0.62–

0.98)

95% CI, 95% Confidence interval; ICC, intraclass correlation coefficient; CVTE, typical

error expressed as a coefficient of variation; MVC = maximum voluntary contrac-

tion; Db100, = peak potentiated 100 Hz doublet; Twp = peak potentiated single

twitch; Db10:100 = ratio of the peak potentiated doublets at 10 over 100 Hz;

VA = voluntary activation level; MVCRMS/M = root mean squared calculated from

vastus lateralis EMG signal normalized to M-wave amplitude during MVC.

Table 6

Between-day reliability values for volitional quadriceps strength at baseline and at set

50% in patients with Charcot-Marie-Tooth disease (n = 8).

Change in mean (95 % CI) CVTE (95% CI) ICC (95 % CI)

Baseline

MVC (Nm) �1.5 (�8.4–5.7) 5.8 (3.8–9.7) 0.98 (0.94–0.99)

Set 50%

MVC (% Pre) �0.6 (�2.9–1.8) 3.0 (2.1–3.8) 0.94 (0.82–0.98)

Mean values ± SD; See Table 4 for abbreviations.
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assess global fatigue and endurance with volitional measurements

in this population. Development of magnetic stimulation devices is

required to extend its applicability to all patients. Additional stud-

ies are needed to evaluate the feasibility and the relevance of the

QIF test in other neuromuscular diseases involving different path-

ophysiological mechanisms (e.g. metabolic myopathies, amyotro-

phic lateral sclerosis). We reported significant muscle weakness

and similar peripheral and central fatigability during intermittent

isometric contractions at identical relative force levels in FSHD pa-

tients compared to controls. Impairment of functional and subjec-

tive physical capacities and experienced fatigue in patients seems

to be related to muscle weakness rather than enhanced muscle

fatigability or reduced endurance. Further studies must be con-

ducted to assess neuromuscular fatigue induced by functional

exercise unrelated to individual MVC (e.g. walking, sit-to-stand

transfer) in order to clarify the impact of neuromuscular fatigue

on patients’ daily living activities.
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Abstract

Neuromuscular function can change under different conditions such as ageing, training/detraining, long-term spaceflight,
environmental conditions (e.g. hypoxia, hyperthermia), disease, therapy/retraining programs and also with the appearance of fatigue.
Neuromuscular fatigue can be defined as any decrease in maximal voluntary strength or power. There is no standardized method to
induce fatigue and various protocols involving different contraction patterns (such as sustained or intermittent submaximal isometric
or dynamic contractions on isokinetic or custom chairs) have been used. Probably due to lack of motivation/cooperation, results of
fatigue resistance protocols are more variable in patients than in healthy subjects. Magnetic and electrical stimulation techniques allow
non-invasive assessment of central and peripheral origins of fatigue. They also allow investigation of different types of muscle fatigue
when combining various types of stimulation with force/surface EMG measurements. Since maximal electrical stimuli may be
uncomfortable or even sometimes painful, several alternative methods have been recently proposed: submaximal muscle stimulation,
low/high-frequency paired pulses instead of tetanic stimuli and the use of magnetic stimulation at the peripheral level.
� 2012 Elsevier B.V. All rights reserved.

Keywords: Electrical and magnetic stimulation; Muscle and central fatigue; EMG; M-wave; Evoked forces

1. Introduction

Neuromuscular function, implying that of the muscle
and central nervous system, may change with ageing, train-
ing/detraining and long-term spaceflight. Neuromuscular
function evaluation may be useful in following the history
of a disease and evaluating the effect of a therapy/retrain-
ing program in patients. In addition to these chronic alter-
ations, changes can occur during acute conditions such as
exposure to different environmental conditions (e.g. hyper-
thermia, hypoxia) and fatigue. Neuromuscular fatigue is an

exercise-related decrease in the maximal voluntary force or
power of a single muscle or muscle group whether or not
the task can be sustained. This may involve processes at
all levels of the motor pathway from the brain to skeletal
muscle. Classically, alterations of neuromuscular function
due to fatigue are classified as central (neural) or peripheral
(muscular) in origin. It is well-recognized that these are
mutually dependent since recruitment of motoneurones
depends on the descending drive from supraspinal sites
and central drive is controlled through a combination of
influences including excitatory and inhibitory reflex inputs
from muscles, joints, tendons and cutaneous afferents. By
stimulating a contracting or relaxed muscle at various lev-
els of the neuromuscular system with different types of
stimulation, and by recording force or electromyographic
(EMG) responses, it is possible to non-invasively gain
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insight into neuromuscular fatigue. Among the various
artificial stimulus techniques that can be used to investigate
neuromuscular function in clinical and research fields, elec-
trical stimulation (ES) is probably the most widely used.
Magnetic stimulation (MS) has been recently introduced
at the peripheral level [1]. In particular, femoral nerve
MS is well-tolerated and appears more suitable than ES
in clinical practice. MS is also used at the cortical level to
measure supraspinal fatigue (e.g. [2]). The purpose of this
review is to address the potential interests and limits of dif-
ferent techniques used to assess neuromuscular fatigue in
the field of pathology. It must be recognized that fatigue
is not only defined as strength loss or EMG changes but
also as a perception. Sensations of fatigue include both
homeostatic and psychological (expectation, arousal, moti-
vation, and mood) factors [3]. Fatigue questionnaires will
not be considered in the present review and related infor-
mation can be found elsewhere [4]. Similarly, central fati-
gue is sometimes associated with alteration of cognitive
performance (e.g. declines in reaction times or deteriora-
tion in continuous performance tasks). Neither will this
aspect be treated in the present paper as central fatigue is
defined here as the reduction of maximal voluntary
activation.

2. Muscle (or peripheral) fatigue

After different types of exercise such as repetitive isomet-
ric or dynamic contractions on isokinetic ergometers or
custom chairs and whole-body exercise (e.g. walking, run-
ning, cycling), fatigue can be detected. Peripheral changes
can be investigated by stimulating the muscle in the relaxed
state, usually by ES, before, during and after the fatiguing
exercise. The standard method consists of first determining
the optimal stimulus intensity by progressively increasing
the intensity of the stimulus until increasing the intensity
does not increase the mechanical or electrical responses
(i.e. optimal intensity). Supramaximal intensity, generally
120–150% of optimal intensity, is classically chosen to
ascertain full spatial recruitment with small changes in elec-
trode position even if such a high intensity may induce co-
activation in some muscle groups, e.g. the triceps brachii
can be inadvertently stimulated if the stimulus intensity
applied to the biceps brachii is excessive. As explained
above, the use of MS for peripheral measurements (mainly
for quadriceps assessment) has recently gained popularity,
particularly with patients (e.g. [1]) in order to minimize dis-
comfort. We [5] ascertained the accord between ES (supra-
maximal intensity) and MS of the femoral nerve. However,
some limits to the ability of MS to produce supramaximal
stimuli exist, particularly in overweight subjects. We [6]
showed, in an overweight but not obese group (Body Mass
Index: 26.1 kg m�2; Body fat: 18.9%), that maximal
responses for both parameters could not be elicited when
intensity was 690% and 685% of maximal stimulator out-
put for twitch torque and M-wave amplitude respectively,
while maximal responses were obtained at 80% of maximal

stimulator output in the lean group. It was concluded that
the capacity of femoral nerve MS to deliver supramaximal
stimulation is altered when fat thickness below the coil
increases. Since it is recommended that optimal intensity
be increased by 20–50% to take into account movements
of the stimulating tool, the MS technique may be limited
by stimulator power. Also, a reduction of excitability
may be observed with fatigue, i.e. the activation threshold
of motor nerve axons increases after several minutes of
repetitive use. Thus, MS at the peripheral level may be lim-
ited by the stimulator output for fatigue studies even with
slightly overweight (i.e. fat) subjects.

Different types of stimuli can be evoked to non-
invasively investigate the (i) neuromuscular propagation
of action potentials along the sarcolemma (M-wave,
high-frequency fatigue), (ii) excitation–contraction
coupling (low-frequency fatigue (LFF)) and (iii) intrinsic
force (high-frequency stimulation at supramaximal inten-
sity). A single stimulus allows measurements of mechanical
(twitch) and EMG (M-wave) responses. However, the
mechanical response of every muscle cannot be measured
by nerve stimulation, possibly because the nerve is not
superficial enough. Another problem might be that some
nerves evoke responses in both agonist and antagonist
muscles. For instance, stimulation of the musculocutane-
ous nerve to evoke a motor response of the elbow flexors
induces co-contraction of the elbow extensors invalidating
the mechanical response. In this case, nerve stimulation can
be used to obtain the M-wave but motor point stimulation
is required to measure the mechanical response (e.g. [7]).
Another methodological point to be considered during
repeated contractions such as those used in fatiguing tasks
is the contradictory effects of potentiation and fatigue. The
change in twitch tension from before to after a sustained
contraction depends on potentiation (the primary mecha-
nism being phosphorylation of the myosin light chains that
is known to induce increased Ca2+ sensitivity), and
fatigue-associated effects. This is the reason it is always rec-
ommended to measure the baseline twitch in the fully
potentiated condition so as to not underestimate fatigue
[8]. Systematic use of fully potentiated twitches has not
been used in the literature. Other parameters such as mus-
culo-tendinous stiffness may also affect the mechanical
response to a single ES or MS pulse.

The force–frequency relationship is another tool used to
characterize contractile properties of a muscle, usually
from several stimulus trains at different frequencies [9].
During in vivo studies conducted in humans, it is possible
to use as few as two stimulus trains; one at low- (below
the fusion frequency, e.g. 10–20 Hz) and one at high-fre-
quencies (above the fusion frequency, e.g. 50–100 Hz).
From the ratio of the mechanical response at low- and
high-frequencies, the type of peripheral fatigue can be
determined. LFF is characterized by a higher relative loss
of force at low frequencies of stimulation and slow recov-
ery [9]. Because the term LFF is sometimes improperly
used to describe fatigue induced by low frequency
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stimulation, the term “prolonged low-frequency force
depression” has been proposed to avoid confusion [10].
LFF is usually associated with a failure in the excitation–
contraction coupling since intracellular measurements have
shown that LFF is due to a reduction in Ca2+ release [11].
LFF is seen after eccentric exercise [5] and this might be
due to a reduced level of junctophilins, the proteins
involved in transverse (T)-tubule and sarcoplasmic reticu-
lum membrane apposition [12]. Conversely, high-frequency
fatigue is characterized by an excessive loss of force at high
stimulus frequencies and is attributed, at least in part, to an
accumulation of extra-cellular K+. In high-frequency fati-
gue, rapid force recovery occurs when the stimulus fre-
quency is reduced. Changes in M-wave characteristics
have also been used to investigate the neuromuscular prop-
agation of action potentials along the sarcolemma [13] but
the direct correspondence between M-wave amplitude/
duration and neuromuscular propagation of action poten-
tials has been questioned.

Another option for assessing peripheral changes is to
induce high-frequency tetanus [14]. The problem with this
method when applied to large muscle groups is its brutal-
ity. Depending on the muscle group, this type of stimula-
tion may be painful and/or induce cramping or injury.
Alternatively, the use of an absolute electrically evoked
force when tetanus induced by nerve stimulation at supra-
maximal intensity (high-frequency stimulation) is superim-
posed on a maximal voluntary contractions (MVC) (i.e.
similar to the central activation ratio method) as an index
of “intrinsic” force [15] has been suggested. While this is
slightly less painful than high-frequency evoked tetanus
in a relaxed muscle [14], the level of discomfort remains
high. For example, it has been reported that a knee cap
was dislocated during such an experiment [16]. A compro-
mise for examining contractile response might be to use
high-frequency paired pulses [5,8], although this measure
is prone to be affected by potentiation and stiffness
changes.

Limits must be acknowledged when measuring muscle
fatigue with ES and MS in relaxed muscles. For instance,
the absence of modification of the low-to-high frequency
ratio could result from the combined effects of LFF, which
preferentially depresses low-frequency responses, and
hyperpolarization, which preferentially depresses high-
frequency responses. Also, tetanic stimuli may induce co-
activation that limits the significance of the response as
an index of maximal “intrinsic” force. Some magnetic
and electrical stimuli are not well tolerated because of dis-
comfort or pain, particularly nerve trunk stimulation of
large muscle groups. As a consequence, adaptations of
stimulation protocols are mandatory with patients or
elderly people. For instance, we have shown that LFF is
comparable when evaluated with nerve and muscle stimu-
lation [17]. Similarly, LFF could be evaluated by using
low- (10 Hz) and high-frequency (100 Hz) doublets [5].
One conceptual difficulty is the fact that in some subjects
a 10 Hz doublet has an amplitude virtually identical to that

of a 100 Hz doublet. However, changes in the ratio of peak
forces measured at 10 and 100 Hz with tetanic stimuli were
significantly correlated with changes measured with dou-
blets. This makes the use of low- and high-frequency dou-
blets relevant [5] even if further confirmation of this result
is needed. Important problems in the muscular fatigue
evaluation of patients are motivation and cooperation
since every evaluation assumes that the patient performs
to the best of his or her ability. It has been reported that
variation in performance for time-to-exhaustion protocols
is much higher in patients than controls and that patients
show greater variation in MVC force [18]. By using ES
(or MS) in relaxed muscle regularly during a test imposing
a given load (force or power), it could be possible to make
the results of muscle fatigability independent of patient will
and motivation. To the best of our knowledge, such a stan-
dardized test does not exist. To completely remove the
influence on the central nervous system, one solution is
to use repeated ES or MS and evaluate the decrement in
the kinetics of force. The assessment of muscle fatigability
by repetitive peripheral MS has been suggested to be well-
tolerated in a clinical study [19].

Finally, it must be considered that an absolute level of
peripheral fatigue is highly dependent on (i) the type of
stimulation induced and (ii) the time of recovery after the
end of the fatiguing task. In high-intensity protocols, a
small degree of muscle recovery can have a large effect on
the power output of fatigued muscles [20]. In other words,
pronounced recovery may occur in only a few seconds so
that recommendations of highly standardized protocol
must be given in clinical evaluation (unpublished personal
data).

3. Central fatigue

To explore central modifications with fatigue, the stan-
dard technique is the twitch interpolation method, consist-
ing of stimulating with single stimuli or high-frequency
paired pulses at maximal force during MVC and to com-
pare the superimposed mechanical responses to the poten-
tiated mechanical responses obtained in the relaxed muscle.
This allows calculation of the maximal voluntary activa-
tion level (%VA). Any reduction of %VA due to exercise
is considered central fatigue. This technique can be applied
to different nerves such as the femoral nerve (quadriceps)
or tibial nerve (plantar flexors).

The superimposition of high-frequency (e.g. 100 Hz)
paired pulses followed by high-frequency paired pulses in
the relaxed muscle has been proposed rather than the clas-
sical use of single stimuli. Behm et al. [21] found no signif-
icant difference in the sensitivity of the twitch interpolation
method using either single twitches, doublets or quintu-
plets. Nevertheless, superimposing high-frequency potenti-
ated paired-pulses is now recommended [8]. Whatever the
type of evoked stimulus, there remains debate as to
whether the twitch interpolation method provides a valid
measure of %VA. Small reductions in central fatigue may
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go undetected, thus the method is sometimes considered
semi-quantitative [22].

In the context of diseases, it is of interest to report that
muscle rather than nerve stimulation can be used to deter-
mine %VA. Rutherford et al. [23] compared the use of
twitch superimposition evoked by percutaneous stimula-
tion of the human quadriceps at maximally tolerated inten-
sities with stimulation of the femoral nerve. These authors
found that the relationship between the extra force gener-
ated by the twitch and the level of voluntary contraction
was independent of the proportion of the muscle stimu-
lated, i.e. the technique was valid at the muscular level
for both healthy controls and patients with musculo-
skeletal disorders. This submaximal technique seems valid
whatever the method used to determine the stimulus
intensity; for instance, other authors have used an absolute
intensity of 100 mA [24] or an intensity to obtain high-
frequency tetanus equal to 50% of subject MVC [17]. As
explained previously, this technique is also recommended
for some muscle groups because nerve stimulation activates
both agonist and antagonist muscles. This is the case for
elbow flexors since stimulation of the musculocutaneous
nerve activates both biceps brachialis and triceps

brachialis. It is essential to note that electrical stimulation
of the muscle selectively activates nerve-endings within
the muscle, and not the muscle fibers directly.

During an exhausting task, the increment of force
(superimposed twitch) evoked by motor nerve stimulation
during an isometric MVC can increase, suggesting the
development of central fatigue. The same concept applies
to a superimposed twitch elicited by transcranial magnetic
stimulation (TMS). Initially demonstrated during a 3-min
MVC of the elbow flexors [25], the increase in superim-
posed twitch produced by TMS during a maximal contrac-
tion was confirmed in various muscle groups and several
exercise paradigms. These studies indicate that some fati-
gue is related to supraspinal mechanisms even if alteration
of the neural drive may be located upstream of the motor
cortex [25]. The method of calculating cortical %VA is
derived from the twitch interpolation technique although
the resting twitch is not directly measured as for nerve stim-
ulation. Instead, it is extrapolated from the linear regres-
sion between the superimposed twitch and voluntary
force at different force levels >50% MVC. It is not appro-
priate to normalize the superimposed force elicited during
voluntary contraction to one evoked in the relaxed muscle

Fig. 1. Schematic view of the main electrical and magnetic stimulation techniques allowing investigation of neuromuscular fatigue. Adapted from Millet

et al. [27]. ES: electrical stimulation; TMS: transcranial magnetic stimulation; PMS: peripheral magnetic stimulation; %VAcort: maximal cortical

voluntary activation; CAR: central activation ratio; %VAper: maximal voluntary activation measured from motor nerve stimulation; RMS � � � M�1: EMG

(root mean square) measured during MVC normalized to M-wave amplitude; H � � � M�1: H reflex normalized to M-wave amplitude; CMEP � � � M�1:

cervicomedullary motor-evoked potential normalized to M-wave amplitude; M-wave: EMG response to single motor nerve stimulation; HFtet: high

frequency tetanic stimulation (>50 Hz); Db100: force evoked by paired-pulse at high frequency (usually 100 Hz); LF/HFmax & submax: ratio of force

evoked with low-frequency stimulation (usually 10–20 Hz) to force evoked with high-frequency stimulation (>50 Hz), either submaximally in the muscle

(submax) or supramaximally by the nerve (max); Pt: peak twitch, force evoked by a singlepulse; MVC: maximal voluntary contraction. � means suitable

for clinical populations.
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because corticospinal excitability dramatically increases
between rest and contractions.

The twitch interpolation technique (either cortical or
peripheral) is not the only method used to detect central
fatigue. Alternative methods include (i) superimposing a
train of stimuli, i.e. central activation ratio [15,16,23], (ii)
comparing the MVC response to the force evoked by
high-frequency tetanus [14] or (iii) examining the change
in maximal EMG response (e.g. root mean square, RMS)
during voluntary contractions, normalized to maximal
M-wave, i.e. EMG response to a single stimulus. This
RMS � � � M�1 index is less reproducible than other meth-
ods but allows the examination of modified activation
(maximal EMG activity) in the individual muscles of a
muscle group, a measure that is not feasible with any other
technique based on force measurement. For instance, RMS
� � � M�1 of the vastuslateralis, vastusmedialis and rectus

femoris can be measured while only %VA of knee extensors
may be quantified. In addition, EMG measurements may
represent the only way to assess central changes during bal-
listic contractions. A limit of all these techniques is that
they require a MVC which may be problematic with
patients or subjects unfamiliar with maximal contractions.

To investigate changes at the spinal level with fatigue,
different techniques have been used: Hoffmann reflex
(H-reflex), cervicomedullary motor-evoked potentials
(CMEP) or F-waves. Because (i) afferents and alpha moto-
neurones are modulated by presynaptic mechanisms that
may change with fatigue (e.g. from group III and IV affer-
ent fibers) and (ii) F-waves test only a small portion of the
alpha motoneurones pool [26], CMEPs have recently been
popularized to detect deteriorated motoneuronal excitabil-
ity with fatigue since they are not subject to pre-synaptic
inhibition. CMEPs must be normalized to M-wave
responses to account for any peripheral alteration of the
EMG signal, particularly during fatigue studies since
M-wave properties are influenced by the type of fatigue
and differ between muscles.

It is tempting to consider the fact that EMG levels at the
end of a sustained exhausting task remain below maximal
EMG as an index of central fatigue. However, the relation
between surface EMG amplitude and muscle force varies
during fatiguing contractions meaning the neural drive
cannot be reliably estimated from EMG amplitude during
fatiguing contractions [3].

In conclusion, electrical and magnetic stimulation are
extensively used in research to measure alterations in neu-
romuscular function with fatigue; however, they are still
not common in clinical practice. One reason is likely that
analysis of the force and EMG signals measured either dur-
ing the test or pre/post the exhausting exercise exceeds time
availability; thus, physicians are more prone to assess
patients’ perceptions of fatigue. We believe that these tech-
niques can help to non-invasively investigate central and
peripheral origins of fatigue (Fig. 1) so that clinicians
should be encouraged to use them in order to better assess

their patients, particularly their resistance to fatigue in
their daily life. Clinical use would be aided by a standard-
ized test to measure patients’ fatigability.

4. Conflict of interest

None.

References

[1] Polkey MI, Kyroussis D, Hamnegard CH, et al. Quadriceps strength

and fatigue assessed by magnetic stimulation of the femoral nerve in

man. Muscle Nerve 1996;19:549–55.

[2] Taylor JL, Butler JE, Allen GM, Gandevia SC. Changes in motor

cortical excitability during human muscle fatigue. J Physiol

1996;490(Pt 2):519–28.

[3] Enoka RM. Muscle fatigue – from motor units to clinical symptoms.

J Biomech 2012;45:427–33.

[4] Feasson L, Camdessanche JP, El Mandhi L, Calmels P, Millet GY.

Fatigue and neuromuscular diseases. Ann Readapt Med Phys

2006;49:289–300, 375–284.

[5] Verges S, Maffiuletti NA, Kerherve H, et al. Comparison of electrical

and magnetic stimulations to assess quadriceps muscle function. J

Appl Physiol 2009;106:701–10.

[6] Tomazin K, Verges S, Decorte N, et al. Fat tissue alters quadriceps

response to femoral nerve magnetic stimulation. Clin Neurophysiol

2011;122:842–7.

[7] Todd G, Taylor JL, Gandevia SC. Measurement of voluntary

activation of fresh and fatigued human muscles using transcranial

magnetic stimulation. J Physiol 2003;551:661–71.

[8] Place N, Maffiuletti NA, Martin A, Lepers R. Assessment of the

reliability of central and peripheral fatigue after sustained maximal

voluntary contraction of the quadriceps muscle. Muscle Nerve

2007;35:486–95.

[9] Edwards RH, Hill DK, Jones DA, Merton PA. Fatigue of long

duration in human skeletal muscle after exercise. J Physiol

1977;272:769–78.

[10] Bruton JD, Place N, Yamada T, et al. Reactive oxygen species and

fatigue-induced prolonged low-frequency force depression in skeletal

muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol

2008;586:175–84.

[11] Hill CA, Thompson MW, Ruell PA, Thom JM, White MJ.

Sarcoplasmic reticulum function and muscle contractile character

following fatiguing exercise in humans. J Physiol 2001;531:871–8.

[12] Corona BT, Balog EM, Doyle JA, et al. Junctophilin damage con-

tributes to early strength deficits and EC coupling failure after

eccentric contractions. Am J Physiol Cell Physiol 2010;298: C365–76.

[13] Bigland-Ritchie B. EMG and fatigue of human voluntary and

stimulated contractions. Ciba Found Symp 1981;82:130–56.

[14] Millet GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing

to knee extensor strength loss after prolonged running exercise. J

Appl Physiol 2003;94:193–8.
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The use of transcranial magnetic stimulation in locomotor function: methodological 
issues and application to extreme exercise conditions 
 

Abstract: Transcranial magnetic stimulation (TMS) is a widely-used investigative technique in motor 
cortical evaluation. TMS is now being used in the investigation of fatigue to help partition the effects of 
central fatigue. Few studies have utilized this technique to evaluate the effects of locomotor exercise and 
none in conditions of extreme exercise. Therefore, the purpose of this thesis was twofold; first, to answer 
methodological questions pertaining to the use of TMS in fatigue evaluation, particularly of the quadriceps, 
and second, to investigate the effects of extreme exercise conditions on the development of central and 
supraspinal fatigue and corticospinal excitability and inhibition. In Studies 1 and 2, the effect of 
approaching a target force in different ways before the delivery a TMS pulse and the difference between 
commonly-employed methods of determining TMS intensity on the selection of optimal TMS intensity 
were investigated. In Study 3, the effect of one night sleep deprivation on cognitive and exercise 
performance and central parameters was investigated. The effect of a 110-km ultra-trail on the supraspinal 
component of central fatigue was evaluated in Study 4. The principal findings from this thesis are that 
during TMS evaluation during brief voluntary contractions, it is essential to deliver the TMS pulse once the 
force has stabilized at the target and that a stimulus-response curve at 20% MVC is appropriate for 
determining optimal TMS intensity in exercise and fatigue studies. Furthermore, while sleep deprivation 
negatively-impacted cognitive and exercise performance, it did not influence neuromuscular parameters nor 
result in greater central fatigue. Supraspinal fatigue develops and corticospinal excitability increases during 
endurance/ultra-endurance running and cycling, while the effects on inhibitory corticospinal mechanisms 
are equivocal and probably depend on exercise characteristics and TMS intensity. 
Keywords: transcranial magnetic stimulation, cortical voluntary activation, corticospinal excitability, 
intracortical inhibition, neuromuscular fatigue 
 

 

Utilisation de la stimulation magnétique transcrânienne dans l'évaluation de la fonction 
motrice : aspects méthodologiques et application à l'exercice extrême 
 

Resumé : La stimulation magnétique transcrânienne (TMS) est une technique d'investigation 
classiquement utilisée dans l'évaluation du cortex moteur. La TMS est utilisée dans l'étude de la fatigue 
afin de distinguer sa composante centrale. Peu d'études ont utilisé cette technique pour évaluer les effets de 
l'exercice locomoteur et aucune dans des conditions extrêmes. Ainsi, l'objectif de cette thèse était double: 
d'abord, répondre à certaines questions méthodologiques concernant l'utilisation de la TMS dans 
l'évaluation de la fatigue, en particulier du muscle quadriceps, et deuxièmement, étudier les effets de 
l'exercice en conditions extrêmes sur le développement de la fatigue centrale et supraspinal ainsi que sur 
l’excitabilité et l'inhibition corticospinales. Dans les Etudes 1 et 2, l'effet de différentes approches d'une 
force cible avant l’application d'une impulsion TMS ainsi que les différences entre les principales 
méthodes utilisées pour déterminer l'intensité optimale de TMS ont été étudiés. Dans l'Etude 3, l'effet d'une 
nuit de privation de sommeil sur les performances cognitives et physiques et les paramètres centraux a été 
étudié. L'effet d'un ultra-trail de 110 km sur la composante supraspinale de la fatigue centrale a été évalué 
dans l'Etude 4. Les conclusions principales de cette thèse sont, sur le plan méthodologique, i) que lors de 
l'évaluation par TMS pendant de brèves contractions volontaires, il est essentiel d’appliquer l'impulsion de 
TMS après que la force produite par le sujet se soit stabilisée à la valeur cible et ii) qu'une courbe 
stimulus-réponse à 20% de la force maximale volontaire est appropriée pour déterminer l'intensité de TMS 
optimale dans les études portant sur l'exercice et la fatigue. De plus, bien que la privation de sommeil ait 
des impacts négatifs sur les performances cognitives et à l'exercice, elle n'a pas d'influence sur des 
paramètres neuromusculaires ni ne provoque une plus grande fatigue centrale. Une fatigue supraspinale se 
développe et l’excitabilité corticospinale augmente au cours d’exercices d'endurance/ultra-endurance en 
course à pied et ne vélo, tandis que les effets sur les mécanismes inhibiteurs corticospinaux sont 
équivoques et probablement dépendent des caractéristiques de l'exercice et de l'intensité de la TMS. 
Mots clés : stimulation magnétique transcrânienne, activation volontaire corticale, excitabilité 
corticospinale, inhibition intracorticale, fatigue neuromusculaire 
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