
15:42:37 OCA PAD INITIATION - PROJECT HEADER INFORMATION 10/13/87 

Act ive 
Pro j ect*#£^6z$7V*y*J 
Center # : R6401-0A0 

Cost share #: 
Center shr #: 

Cont rac t^ ! 
Prime 

Subprojects ? : N 
Main p r o j e c t //: 

Mod #: 

Rev #: 0 
OCA f i l e #: 
Work type : RES 
Document : GRANT 
Contract e n t i t y : GTRC 

Projec t un i t : 
Pro jec t d i r e c t o r ( s 
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doing on case-based reasoning over the past six months. As you can see, our 
major topics of concern were integrating case-based reasoning with other 
reasoning methods to achieve a planner that combines opportunistic and 
reactive behavior (Hinrich's paper and Turner's two papers), creating a 
memory for cases that run on a parallel machine (my paper), and adapting an 
old solution to fit a new one through a kind of analogy that creates an 
abstraction of the old and new case as part of the adaptation process 
(Shinn's two papers). We also have a student who has been looking at using 
case-based reasoning for scheduling a flexible manufacturing system (David 
Wood). When he has something written up, I will send you a copy. 

The money has been quite useful to us. Thank you for your support. 

Sincerely, 
I 

Janet L. Kolodner 
Associate Professor 
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ILetrieviiig Invents "from Case "Memory: 
A Parallel Implementation1 

Janet L. Kolodner 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, GA 30332 

Abstract 

Perhaps the most important support process a case-based reasoner needs is a memory for 
cases. In this paper, we describe a parallel retrieval algorithm that can be used to retrieve cases 
from a hierarchically organized memory for cases given the description of some new case as a 
retrieval probe. We also describe the structure o f the memory it works on. The organization of 
cases in memory is based on previous work by Schank and Kolodner. The retrieval algorithm 
is a concept refinement search algorithm and is based on work by Riesbeck and Martin that is 
implemented in DMAP. It is implemented in a program called PARADYME (Parallel Dynamic 
Memory) that is designed to work alongside a case-based problem solving program. There are 
four parts to PARADYME: a hierarchically-organized memory for cases, a concept refinement 
retrieval process, heuristics for choosing the best out o f several retrieved cases, and heuristics 
for respecifying a retrieval probe when it is over- or under-specified. 

1 Introduction 

Perhaps the most important support process a case-based reasoner needs is a memory for cases. 
The memory must make cases accessible when appropriate retrieval cues are provided to it and it 
must incorporate new cases into its structures as they are experienced, in the process maintaining 
accessibility of the items already in the memory. It must be able to handle cases in all of their 
complexity, and it must be able to manage thousands of cases in its memory. In this paper, we 
discuss a parallel retrieval scheme for a conceptual memory based on previous research into memory 
organization and retrieval methods (e.g., Kolodner, 1983, Kolodner Sz Cullingford, 1986, Schank, 
1982, Reiser, 1983, Martin & Riesbeck, 1986). While the abstract principles of the previous work 
remain the same, the details have been modified in several ways. The model to be presented, called 
PARADYME, has four parts: 

1. a hierarchical organization of knowledge and cases 

2. a parallel memory retrieval process that uses a concept refinement approach to retrieval 

3. a set of transformation rules that transform and elaborate a retrieval probe to get a better 
"best match" than is possible from the original set of cues 

1 This research was supported in part by DARPA under Contract No. N0039-87-C-0026 to Thinking Machines, 
in part by NSF under grant No. IST-8608362, and in part by Georgia Tech, the Georgia Tech Foundation, and 
Lockheed AI Center. This work was done while the author was on sabbatical at Thinking Machine I nr., Cambridge, 
Mass. Thanks to Thinking Machines for providing machine and programming support for the pr<>i< < t. Programming 
was done by Eyal Yaari. Thanks also to Alex Kass, Phyllis Koton, Chris Owens, Chris Riesbeck. .mil Robert Thau 
for enlightening comments made during discussion of my scheme. A shorter version of this papt r was submitted to 
AAAI-88. 
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4. m *et of heuristics that choose the best matching case from those that axe activated 

PARADYME is implemented on the Connection Machine, a SIMD parallel machine, in a 
program by the same name. Because we want PARADYME to be able to work akmg with *. 
problem solving system, we have given it knowledge and cases from a case-based reasoning system 
that is under development. Thus, PARADYME currently uses JULIA's (Hinrichs, 1988, Kolodner, 
1987a, b, Shinn, 1988) knowledge structures and cases. Because the cases are some that JULIA 
has processed, the cases are full problem solving experiences represented in their entirety. JULIA's, 
and therefore PARADYME's, domain is meal planning. 

2 Background 

There are several requirements we put on a memory for cases: 

1. Best matching cases must be retrieved using a set of retrieval cues that provide a partial 
description of the item to be retrieved. 

2. Memory should return small numbers of cases rather than large numbers. If large numbers 
of cases match an underspecified description, then either a prototype, a generalization, or a 
request for more information should be returned by memory. 

3. Retrieval should be fast. It is done in the context of reasoning and we want reasoning to be 
fast. Therefore, it is preferable to have the hard work done at memory update time rather 
than at retrieval time. Retrieval processes should be fairly uncomplicated. 

4. Retrieval time should not increase as the memory grows. 

5. Generalizations and cases should be equally accessible. 

Retrieving appropriate cases from a case memory is essentially a massive search problem 
that requires retrieval of a best match rather than an exact match. Given a partial description 
of a situation, it is up to the case memory to recall the case from memory that best matches the 
new situation. In our initial work on this problem, we chose to take our inspiration from people 
(Kolodner, 1983, 1984, Schank, 1982). The models that came from these studies, Schank's (1982) 
dynamic memory and Kolodner's (1983, 1984) CYRUS, hypothesized several things: 

1. Memory categories are associated with concrete types of situations. Each category holds 
general information about the contents of such situations, the relationships between charac­
ters, props, and actions in such situations, and the causal and temporal consequences and 
antecedents of the situations. These categories are arranged in abstraction hierarchies and 
packaging hierarchies (Schank, 1982). 
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2. Tlwse raemoiy categories, caBed MOTs, also organize indexing structures. Indexes associated 
with each category differentiate items in the category from each other. When several items 
share the same set of indexes, a more specialized category (a subMOP) is formed and items 
are organized in the same way within those categories. Physically, in our implementations-, 
items m categories were organized in multiple redundant discrimination nets (Kolodner, 1984, 
Lebowitz, 1983). 

3. Items are found in memory by first choosing a small set of categories to confine search to and 
then using the features of the specified event to designate which branches of the organizational 
structure should be traversed. Traversal happens in parallel among indexes at the same level 
of memory, and traversal finishes when an appropriate item or set of items with a subset of 
the specified features is found. (Kolodner, 1984 explains in more detail.) 

4. There are several circumstances under which such search does not succeed, and there are 
retrieval strategies to deal with each of these search problems. One kind of strategy identifies 
categories for search if none is designated in a retrieval probe. Another elaborates retrieval 
probes if memory traversal fails before a particular event is found. Another creates context 
for the retrieval probe and directs traversal functions to search in a different part of memory 
for items with this created context. 

5. Memory update functions choose indexes for events by choosing those features from an event 
that specialize or violate norms of the category the event is being indexed in and lead to unan­
ticipated consequences within that category. These functions create specialized categories by 
a similarity-based induction method: When several items are indexed by the same feature or 
set of features, the similarities of those items is extracted and a new category is formed. 

The search method embodied here is a "concept refinement" method, which provides much 
more control over the portions of memory that get activated than does an intersection search.2 

In concept refinement search, a concept is not "turned on" until its parent in the abstraction 
hierarchy is accessed and some feature that specializes it with respect to the parent is specified. 
CYRUS (Kolodner, 1983, 1984), IPP (Lebowitz, 1983), and MOPTRANS (Lytinen, 1986) did this 
through a "locked network" in which traversal to a lower level of an abstraction hierarchy could 
not be done unless the higher level had already been accessed and the label associated with the 
index to the item at the next lower level was specified. DMAP (Riesbeck & Martin, 1986; Martin & 
Riesbeck, 1986), which our method is based on, implements concept refinement in another way. An 
item can be accessed if one of its antecedents in the abstraction hierarchy is activated by the probe, 
if that abstraction predicts another concept, and if some specialization of the predicted concept is 
specified in the probe. DMAP's method has the advantage of not requiring a redundant indexing 
scheme. The predictions DMAP makes are linguistic, but we have generalized them for searching 
a conceptual memory for events. 

3 M B R (StanfiU, 1987) is a massively parallel search technique that uses intersection search. It also runs on the 
Connection Machine. Its representations are both flat and monolithic (homogeneous). MBR broadcasts to each item 
in its memory in parallel. Its major activity is running a similarity metric to measure how close each of the items in 
memory is to what it is looking for. MBR has been run on large databases but never on hierarchical, heterogeneousm, 
or distributed structures. 
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In tbe wiicmc t o be "presented, -we nave created a memory system that upholds the princi­
ples presented above in a parallel implementation. While memory remains hierarchical, we have 
decoupled the retrieval procedures themselves from memory's organization. Memory organizes 
generalizations but does not require that the organization be used to access memory. While in 
CYKUiT implementation, indexes were used to block passage through memory, insuring that only 
relevant nodes were accessed, in PARADYME, predictions made by memory's knowledge struc­
tures identify which cases are good candidates for retrieval. We have also changed representations 
significantly. While in CYRUS, events were monolithic structures, PARADYME has a distributed 
representation. 

3 Representing Knowledge and Cases 

Representation in PARADYME is similar to that described in Schank's Dynamic Memory (1982). 
That is, the details of any particular event (case) are distributed throughout memory in two ways. 
First, they are distributed in an abstraction hierarchy associated with the kind of situation the 
event is an instance of (i.e., its type). Thus, a particular Mexican meal with death chili as its main 
course will have its description distributed in "meal", which says this kind of event has several 
eating scenes (only some are shown in Figure 1), that the participants want to satisfy hunger, that 
the main event is ingesting the main dish of the main course, etc.; "mexican meal", which says this 
kind of event has food of mexican cuisine, that a particular set of spices can be expected, that the 
drink of choice is Mexican beer, that food tastes spicy, etc.; and "death-chili-meal", which gives 
the details of this meal, e.g., who the eaters are, that they are mostly people who like very spicy 
food, where the meal took place. The center of Figure 1 illustrates this. 

Second, details of events (cases) are distributed throughout abstraction hierarchies associated 
with scenes of the event. Schank (1982) called this a packaging hierarchy. In the case of meals, its 
scenes include food preparation, eating the appetizer, eating the main course, etc. Thus, details 
about what was served in the death-chili-meal appear in memory in knowledge structures describing 
meal scenes. The fact that the main course was death chili is distributed through the abstraction 
hierarchy of "meal-main-scene', as shown on the right side of Figure 1, while the fact that the 
appetizer was guacamole is distributed through "meal-appetizer-scene's" hierarchy, on the left side 
of Figure 1. "Meal's" other scenes are not shown. 

We distribute representations in this way to allow the case-based reasoner to use small chunks 
of cases in its reasoning rather than having to wade through large cases and to allow generalization 
across scenes common to several kinds of situations (Schank, 1982). A retrieval probe might 
activate a full event with its scenes or only the representation for a particular scene. With a flat 
representation (i.e., no abstraction), generalizations must be recreated each time they are needed. 
With a monolithic structure (i.e., all aspects of the event in one hierarchy), it would be hard to 
make generalizations across different types of events. 

There are several things to notice about this representational scheme that will be significant in 
judging the retrieval process. First, general knowledge (e.g., about meals and mexican meals) and 
details of particular cases are organized in the same structures. Thus both are equally accessible 
and accessible by the same retrieval methods. Second, we provide retrieval algorithms with a 
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EAT-EVEIT So-

(<i»|Bl» *mact«x» tdijfems) 
tactars: % group of •parson* 
Adishes: a group of *di«h* 

APPETIZER-SC 
part-of: meal 
Adishes: 

s ize: small 
number: variable 

(*s-hunger• Aeaters) 
(*«njoy-eat* teatere) 

maincon: (•ingests Aeaters Afood) 
characters: Aeaters 
props: Afood 
locale: dining room or kitchen of 

a house 
Aeaters: a group of *person* 
Afood: a group of *dish*, 

members are appetizer-dishes, 
main-dishes, . . . 

cuisine: something of type *cuisine* 
ingredients: a l i s t of *food* 
taste: something of type *taste* 

\5CL 

MAII-SC 
isa: eat-event 
part-of: meal 
Adishes: 

members: tmains Asides 
Amains: a group of 

•dish* 
ingredients: 

•protein-food* 
s ize: large 
number: 1 to 3 

Asides: a group of *dish* 
ingredients: 

*vegetable* 
*carbo-food* 

number: 2 
s ize: small 

MEXICAI-MEAL 

HEX-APPETIZER-SC 

ft cuisine; 
Adishes: 

*guaci 

•mexican* 
(one of 

•ole* *nachos*) 

cuisine: *raexican* 
taste: *spicy* 
ingredients beans, t o r t i l l a s , avocado, 

cheese, tomatoes 
seasonings: 
drink: *beer* 

A-

DEATH-CHILI-MEAL 

MEXICAI-MAII-SC 
cuisine: *mexican* 
Adishes: (choose from 

•burito* *chi l i -
releno* *chili* 
*taco* *faj i ta* 
*enchalada*) 

Asides: *refried-beans* 
•spanish-rice* 

ft 

DCH-APPETIZER-SC 
Aeaters: *jlk's-research-group* 
Adishes: guacamolel Aeaters: *jlk's-research-group* 

preferences: 
taste: *spicy* 

locale: *rec's-house* 
taste: *very-spicy* 

DCM-MAII-SC 
Aeaters: *jlk's-research-

group* 
Amains: ch i l i l 

isa: *ehili* 
taste: •very-

spicy* 
Asides: saladl 
events: 

(not (*ingest* *tom* 
Amains)) 

explanation: 
•torn* 

member-of: Aeaters 
preferences: 

taste: *mild* 

Figure 1 
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nartrnral "way of kxHywrng if there are a large number of cases that partially match its retrieval probe 
without requiring it to activate all those cases. This is possible because details that appear high 
in the hierarchy do not get repeated lower in the hierarchy. This will allow memory to either 
return general knowledge that is activated by a probe or to ask for more specific knowledge to 
differentiate between the items with a given description. In a memory with many similar cases, 
this is an advantage. 

The memory scheme also imposes a hard problem on the retrieval functions. The problem 
is that during retrieval, retrieval cues might hit event descriptors in several different structures. 
There must be a way to put those structures back together again. We shall see that the "concept 
refinement" step of the retrieval algorithm addresses that issues. 

4 Retrieval Probes 

Retrieval probes partially describe an event to be retrieved by specifying a subset of the target 
event's features. Let us consider, for example, some of the ways the "death chili meal" might be 
partially described. 3 

1. a meal with chili 

(and (? isa meal) (? dishes c h i l i ) ) 

2. a mexican meal with very spicy chili 

(and (? isa meal) (? cuisine mexican) (and (? dishes c h i l i ) (? dishes 
( tas te v e r y - s p i c y ) ) ) ) 

3. a mexican meal with very spicy food 

(and (? isa meal) (? cuisine mexican) (? dishes ( tas te ve ry - sp icy ) ) ) 

4. a meal with chili as the main course 

(and (? isa meal) (? appetizer-scene (dishes guacamole))) 

5. a mexican meal with avocado 

(and (? isa meal) (? cuisine mexican) (? dishes (ingredients avocado))) 

6. a mexican meal with guacamole and very spicy chili 
3 W e do not discuss here how this translation happens. A phrase-based analyzer such as DMAP (Riesbeck, 1986) 

or PHRAN (Arens, 1981) could do it easily. Were DMAP used, it could be easily integrated with what we describe 
here. A very well integrated system, however, would probably do the language and memory retrieval work at the 
same time without the need to explicitly create these queries. Their equivalent would have to be created internally, 
however. 
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dishes c h i l i ) ( ? dishes ( tas te v e r y - s p i c y ) ) ) ) 

The important thing to notice in these representations is that they do not distinguish which 
scene of the specified meal holds the specified descriptors unless that fact is given explicitly in a 
query. While it is easy to determine that prepared dishes (e.g., chili and guacamole) referred to in 
a query about a meal refer to its dishes, it requires a lot more knowledge to determine in which 
scene those dishes were served. In fact, it requires the full extent of knowledge represented about 
meals in the memory. It would be inefficient to first disambiguate and then find matches since both 
use the same knowledge. And some of the ambiguity is useful. Instead, disambiguation happens at 
retrieval time as a byproduct of the retrieval process. 

One might ask whether such ambiguous probes will be made by a problem solver that is in 
control of what gets asked of memory. Sometimes probes to memory made by a problem solver 
will specifically mention a scene and sometimes they will not. If the problem solver is trying to 
plan a particular scene, it will be specified. But if the problem solver is trying to deal with a vague 
statement by a user, the probes may be as above. Suppose, for example, that a user asking JULIA 
to plan a meal said "Let's serve something with avocado". The problem solver might send a probe 
to memory that looks like (5) above in order to get ideas about how to use avocado in the meal. 

5 The Retrieval Process 

During retrieval, each of the features of the memory probe is broadcast into memory. Each item in 
memory with a broadcast feature is activated. As in DMAP's (Martin & Riesbeck, 1986) memory 
access process, each time an item is activated, it sends activation to each item above it in the 
abstraction hierarchy and it sends predictions to items that are normally seen in the context of the 
activated item. When those messages meet at a node, the concept that sent the prediction gets 
refined (specialized) to the level of detail of the concept that sent the activation. The algorithm 
has the following steps: 

1. Each item (cue) in the memory probe is transmitted to memory (a serial process) and each 
is broadcast through the whole memory in parallel. Memory is activated as follows: 

(a) If the probe names a memory concept, (e.g., is of the form (? is-a x)) , then the named 
concept (x) is activated. 

(b) If the probe is descriptive (e.g., is of the form (? property-name property-value)), any 
item that holds that description is activated. 

2. As in DMAP, each node that is activated sends prediction messages to the things it predicts. 
At present, events predict their sequence of events. This is in keeping with observations 
of people that show that more concrete descriptions are better for reminding (Kolodner & 
Cullingford, 1986). By predicting the parts of an event, we are predicting its concrete features. 
A prediction message in PARADYME has three parts: 4 its source, its target, and the 
relationship between them. 

4 In DMAP, it has four. 
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1. Also as in DMAP, each activated node sends an activation message to each of its antecedents 
in the abstraction hierarchy. The activation message contains the source of the activation 
and instructs the nodes it is sent to to activate themselves. 

4. When predictions and activations meet each other, * concept refinement" happens. During 
concept refinement in PARADYME, 5 the concept that sent the prediction gets specialized to 
the level of detail of the concept that sent the activation. This is done by finding the node that 
has the same relationship to the concept that sent the activation that the predicting concept 
has to the predicted one. "Meal-main-sc", for example, is related to "meal" through "meal" 's 
"sequence of events". If "meal" is activated and predicts "meal-main-sc" and "dcm-main-sc" 
is activated and activates "meal-main-sc", then "meal" is refined by finding the item whose 
"sequence of events" "dcm-main-sc" is in ("death chili meal"). Extra activation is then given 
to those nodes taking part in the concept refinement to distinguish them from other activated 
nodes in memory. 

An example will illustrate. Consider, for example, a probe of the memory shown in Figure 1, 
using the probe "a meal with chili", represented as follows: 

(and (? isa meal) (? dishes chili)) 6 

Step 1 will activate the "meal" node and each node with chili specified as a dish. The "death-chili-
main-scene" will be activated by the chili probe, as will mexican-main-sc and any other eating scene 
where chili was a dish. In step 2, "meal" will predict its scenes and "death-chili-main-scene" and 
other activated scenes will predict their sequence of events. In step 3, "death-chili-main-scene" and 
other activated scenes will activate "meal-main-scene", which will activate anything above it. "Meal 
will also activate anything above it. In step 4, the connection between "meal" and "death-chili-
main-scene" will be made (as well as connections between "meal" and any other eating scenes with 
chili). Because "meal" predicts "meal-main-scene" and "death-chili-main-scene" activates it, and 
because the relationship of "meal" and "meal-main-scene" is through sequence of events, memory 
activates the item that has "death-chili-main-scene" in its sequence of events, specifically "death-
chili-meal". "Death-chili-meal" and the constellation of nodes that contributed to its activation 
receive extra activation. 

Let us go back to the algorithm and examine what it does in each step. At the end of step 
1, every item in memory that partially matches the retrieval probe is activated. This step is linear 
in the size of the retrieval probe. After step 1, all possible candidates are activated, but we do not 
yet know the connections between them. Some are descriptions of situations (MOPs) and some are 
descriptions of scenes. We want to retrieve those situations that have had concrete features of their 
scenes described in the retrieval probe. The next three steps make those connections. 

In step 2, situations predict their scenes while scenes predict their events. Each is predicting 
its more concrete parts. We do not currently do this recursively, so this is a one-step process. 

5 This is somewhat more limited than in DMAP, where an arbitrary function can be executed to refine the concept. 
We will add additional capabilities of this type as we find we need them. 

6 We ignore the fact that chili is embedded in the representation for now. The program can take care of that, and 
in terns of complexity, it adds a number of cycles equal to the depth of the embedding. 
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Figure 2 

In step 3, each activated item sends activation up its abstraction hierarchy, in essense notifying 
more abstract nodes that it was described in a probe. This step is linear in the depth of the longest 
hierarchy being traversed. 

Step 4 collects up those predictions that were fulfilled, usually scenes that were described. 
For each fulfilled prediction, the abstract concept that made the prediction is specialized to the 
level at which it meshes with the scene that was activated. The full event (case) that is retrieved 
(given high activation) is the specialized concept that is both of the right type (e.g., meal) and at 
a level of specificity consistent with the scene descriptions specified in the retrieval probe. This 
number of cycles required here is the depth of the abstraction hierarchy between the abstract node 
and the refined one. 

While we can see from this small example how connections between different parts of the 
memory get made, it is hard to appreciate the full power of this algorithm from the examples 
given. We give one more example from a different domain to show how the concept refinement step 
narrows down the set of candidate matches to only those that are in the right ballpark. Consider a 
memory that knows about restaurant visits and buying. The structure of the memory is shown in 
Figure 2. We can see that the "ordering" scene is shared by both "restaurant visit" and "buying", 
and that the "ordering scene" holds instances of ordering bluefish in a restaurant and ordering 
bluefish over the counter in a supermarket. Suppose the query is "remember when we ordered 
bluefish in that restaurant in Boston". Step one of the query would activate "restaurant visit" and 
each of the instances of ordering bluefish, among other things. Because "restaurant visit" predicts a 
particular type of "ordering", namely "restaurant ordering", that ordering scene and the restaurant 
visit will be hooked up during concept refinement, and the supermarket ordering scene will not get 
further activated. In a memory with a lot of instances of ordering bluefish at a supermarket and 
only a small number of instances ordering bluefish in a restaurant, concept refinement will narrow 
the set of retrieved cases to only the relevant ones. In other words, it confines search to the specified 
context. 
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6 What Gets Itetrrraed 

The result of running this retrieval algorithm on the memory is that several constellations of memory 
nodes are highly activated. Each constellation represents a case or set of related cases that partially 
match the retrieval probe. A case in memory is represented by a constellation of nodes spread over 
several abstraction hierarchies. The cases that are accessed by this method can be found by finding 
the most specific nodes in the hierarchy whose top is of the type requested in the retrieval probe. 
Sometimes the most specific active node in a hierarchy will be a generalized description of several 
cases (e.g., "mexican meal"). If so, memory returns the generalization in lieu of the myriad of cases 
it organizes. Sometimes there will be several most specific nodes highlighted in a hierarchy. If there 
are a small number (1 - 3), memory returns them all. If there is a large number, memory has a 
choice of returning some generalized description that subsumes them all (if one exists), creating 
and retruning a generalized description that subsumes them (if none exists), returning the entire 
set, or returning a message saying that more information is needed. Based on our experiences with 
case-based reasoners, the generalized description that subsumes them all plus the message saying 
that more information is needed would be most helpful. 

7 Choosing the Best Case 

While "concept refinement" insures that recalled events are in the right ballpark, it does not by 
itself choose which is the best match. A fully automated case-based problem solver needs to know 
which of the many events made available to it is the best to use for problem solving. This could be 
done by some sort of counting scheme or weighted counting scheme in which the match between 
the retrieval probe and each activated item gets points for each match to the retrieval probe and 
loses points for each mismatch. Such a method is problematic, however, for two reasons. First, 
if the evaluation function is static, it doesn't allow for dealing with the changing importance of 
features in context. Second, such a method requires a principled way of determining how to weight 
the features. Although we do not present the choice of a best match as a weighting scheme, one 
could think of our approach as addressing the problem of how to choose weightings for the features. 

There are two major ways people are addressing this problem in the case-based reasoning 
community. Some people are addressing it by trying to determine how to best choose indices (e.g., 
Hammond, 1986, Hunter, 1988, Kolodner, 1983) so that only the best cases will be retrieved from 
the memory. Addressing the problem this way, the work happens at memory update time and 
retrieval remains a fast process. Others have filtering methods that are used after retrieval (e.g., 
Koton, 1988, Owens, 1988, Riesbeck, 1988, Stanfill, 1987). Others combine those two methods 
(e.g., Simpson, 1985, Barletta, 1988). 

Our approach to choosing the best case borrows from both methods. In PARADYME, cases 
are analyzed for their most important features at memory update time, and conjunctions of predic­
tive features are marked as important. At retrieval time, selection processes working after concept 
refinement prefer those events with full matches in those conjunctions of features. In this way, best 
events are chosen not merely by counting the number of features that match or even by ranking 
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features with respect t o each other, but Tather by taking into account which features or combina­
tions of features have been found to be most important in the past. In principle, this allows the 
importance of features to be judged in context, where context is provided by the retrieval probe 
and the items that are retrieved by applying a concept refinement retrieval algorithm to it-

Conjunctions of features that are marked as important in PARADYME are those that predict 
solutions or solution methods. The reason for this is that PARADYME is designed to work along 
with a problem solver, and these are the kinds of predictions a problem solver needs. There are 
two kinds of conjunctive feature sets PARADYME uses. 

1. Goals, constraints on these goals, and environmental features that went into choosing the 
method or solution for achieving the goal or goal set are marked. 

A set of features may include one goal or several goals. It includes one if the solution that 
was chosen for that goal did not involve other goals. It includes several if their solution was 
integrated. Constraints and descriptors on these goals are also included, as are features of 
the world or features of the problem that determined which of several possible solutions or 
solution methods was chosen. If all of the features in one of these conjunctive feature sets is 
designated in a retrieval probe, the solution or solution method used in the previous case can 
be predicted. 

2. Outcomes that arose using some solution or applying some solution method are marked. 

When outcomes of previous cases match desired outcomes of a current case, the solution or 
solution method from the previous case can be predicted. 

For any particular case, there may be several conjunctive feature sets associated with it. If 
memory is aware of the goal(s) the problem solver is attempting to achieve, it can choose from 
among the cases that are retrieved by preferring those where goals and constraints match and full 
conjunctive feature sets are specified. 

While we do not yet have a complete implementation of the choice process, and we do not 
yet know the priorities of the preference rules we've proposed, PARADYME has several preference 
heuristics for choosing a best-matching case. Some of the preference heuristics are implemented as 
part of the retrieval process presented above (e.g., 1 and 2). The others are used to choose between 
those items retrieved using that algorithm. 

1. Prefer predicted pieces of memory over those that are not predicted. 

2. Prefer the most specific of those in the same hierarchy. 

3. Prefer items that match a retrieval probe completely. 

4. If a probe describes specific details, prefer items that have those details. 

5. Prefer items that share a major goal or set of goals and constraints on those goal. 

6. Prefer those items whose full set of salient features are specified in the retrieval probe. 
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1. Prefer those items wlieie fhe goals and ujnbUaints of a TuBy matched conjunctive feature set 
match current goals and constraints of the problem being solved. 

8. Prefer those items with more full sets of salient features specified in the retrieval probe. 

9. Prefer those items that match on dimensions that are known to be difficult to fix. 

8 Cue Elaboration 

The process we have presented is appropriate when the retrieval probe accurately describes an 
item or several items in the memory. Some retrieval probes, however, are unsuitable for finding 
matches, either because of the complexities of representational embeddings in memory's structures 
or because they are too vague or overly-specific. We have identified four circumstances under which 
a retrieval probe or part of a retrieval probe is unsuitable for retrieval: 

1. The retrieval probe might not directly specify a type of situation. A retrieval probe might 
describe features of a situation without naming the type of situation. We have no examples 
of this in JULIA's domain. In CYRUS' domain, questions such as "Has Vance ever talked 
to Woodward or Bernstein?" and "Has Vance's wife ever met Mrs. Begin?" are examples of 
this. A probe that does not include an "isa" clause, or whose "isa" clause points to a kind 
of event that happens in many different contexts falls into this category. We will introduce a 
condensation heuristic to deal with this problem. 

2. The retrieval probe may describe a situation that is not stored in memory but that is a "near 
miss" to something stored in memory. Memory, for example, might have a description of a 
"meal in a particular small Italian restaurant in which eggplant-filled manicotti was served". 
A probe of "remember the time we had eggplant-filled stuffed-shells for dinner in a little 
Italian restaurant" would be a near miss to this event. If enough of the rest of the event is 
describe to make it unique among the other events in memory, the near miss event can be 
retrieved anyway (e.g., if this was the only visit to a small Italian restaurant where something 
with eggplant filling was served), but if not, the probe will not retrieve it (e.g., if in may 
restaurant visit eggplant was eaten as the filling for something). This situation exists when a 
retrieval probe provides concrete features but memory retrieves only a generalized node that 
does not mention the concrete features or when memory retrieves many cases that match the 
retrieval probe, but none match exactly and none are better matches than the rest. A cue 
transformation heuristic that expands a cue into a set of cues conjunctively describing it will 
solve this problem. 

3. The retrieval probe might describe a character or a prop without naming it or its type. The 
embedding of memory's frame-like structures makes it hard to directly activate events whose 
features are vaguely described. Memory recognizes this if an event is requested, nodes describ­
ing particular characters or props are highly activated, and no such features are highlighted 
in the events that have been activated. Condensation heuristics will deal with this problem 
too by recognizing a particular character or prop that has been described and then probing 
memory using the particular character or prop as a replacement for its description. 
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A. The retrieval probe might describe a relation that is specified more finely In memory's rep­
resentations than in the retrieval probe. "A meal with a dish with spinach in it" is one 
example of such a probe. In memory's representations, ingredients of dishes are divided into 
"mains", "secondaries", and "seasonings", a useful distinction for the problem solver- This 
fine distinction may not be made in a probe, however. While it is easy to distinguish spices 
as "seasonings" and sometimes an ingredient is specified or implied to be the "main" one or 
a "secondary" one, more often this information is not known at the beginning of problem 
solving and it is memory that must provide this information to the problem solver. Mem­
ory knows which of its descriptors are represented this way and recognizes specific situations 
in which this happens. A cue transformation heuristic that expands a cue into its set of 
disjunctive descriptors will solve this problem. 

In each of these cases, heuristics are used to redescribe the retrieval probe and retrieval is attempted 
again with the set of newly-defined cues. We describe these heuristics below. 

1. Cue Transformation 

Cue transformation expands a cue to create a larger set of reasonable cues. These new cues 
might describe the original one conjunctively, provide a disjunction of descriptions equivalent 
to the original cue, or provide additional information associated with the original cue but not 
part of it. 

(a) Replace cue by a conjunct of descriptors 
As stated above, this type of cue transformation is used when a retrieval probe specifies 
something quite concrete but the best that can be found in memory is a generalized node 
that does not mention the concrete feature (e.g., if a search for a meal with stuffed shells 
returns "Italian meals"). In that case, the specific feature that was not accounted for in 
the set of retrieved nodes is replaced by its description. "Stuffed shells" in the example 
would be replaced by a set of cues stating that the food had pasta, ricotta cheese, and 
tomato sauce in its ingredients, that the structure of it was (shell-shaped) pasta filled 
with ricotta mixture, topped with tomato sauce and cheese, etc. As a result of replacing 
an item by its description, "near-miss" matches can be found. For example, replacing 
stuffed shells by its description might result in retrieval of a meal with manicotti, a close 
match to stuffed shells. 

(b) Replace cue by a disjunct of descriptors 
This type of cue transformation is used when a particular cue is known to have several 
ways of being described. For example, ingredients can be found as main ingredients, 
secondary ingredients, and seasonings. If "dishes with tomatoes" are requested in a 
probe, there is no way to know a priori whether the tomatos are to be main ingredient, 
a secondary ingredient, or a seasoning of the dish. "Dishes with tomatoes" will be 
transformed to a disjunct of cues: "dishes with main ingredients tomatoes", "dishes 
with secondary ingredients tomatoes", "dishes with tomatoes as seasoning". Expanding 
cues in this way will allow each of these descriptors of a dish to combine with other 
cues in the retrieval probe so that the best match that takes all of the descriptors into 
account can be found. 
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(c) Add a closely associated feature to tfce set of ewes 
This type of cue elaboration is equivalent to CYRUS 1 component-to-component instan­
tiation strategies, and their usefulness is discussed in Kolodner (1983, 1984). In short, a 
feature that is not yet part of the retrieval probe but that is closely associated with some 
cue in the retrieval probe is added. An example of this is adding a place associated with 
an identified person or organization to the retrieval probe. This can help to distinguish 
between several events that have been equally activated, where each partially matches 
the retrieval probe, and there is no clear way to distinguish which is the best. 

2. Cue Condensation 
Cue condensation heuristics condense a set of cues to a single one that describes a larger unit. 
This process looks for concepts whose marked features are all, or almost all, mentioned in the 
retrieval probe. It is useful if a type of event has not been specified but has been described, or 
if features of an event being specified have not been directly named but have been abstractly 
described. A set of cues describing a dish with shell-shaped pasta filled with ricotta would be 
replaced by one cue stating that the dish is stuffed shells using cue condensation. An event 
described as one where people swim in a contest and later get awards would be replaced by 
one cue stating that the event is a swim-meet using cue condensation. 

Cue elaboration is an automatic process done by memory after retrieval. After elaboration, 
retrieval is attempted again using the newly-defined set of cues. We are still working on probe 
elaboration methods. While we know many of the heuristics for elaborating a probe, we have not 
yet experimented with them enough to know exactly how to control their application, nor do we 
know yet how to fully control their interaction with retrieval processes. 

Cue elaboration is similar in spirit to CYRUS' instantiation strategies. CYRUS (Kolodner, 
1983, 1984) had two types of elaboration strategies to take care of these problems, each used at a 
different point in the retrieval process: component-to-context instantiation rules were used prior 
to memory traversal to infer a context for search, and component-to-component instantiation rules 
were used after traversal was attempted to elaborate a retrieval probe that did not retrieve a 
particular event. PARADYME also has two kinds of cue elaboration heuristics, but they are both 
used after retrieval is attempted and their functions are not exactly the same. PARADYME's cue 
transformation heuristics perform the function of CYRUS' component-to-component instantiation 
rules in a more expansive way than was done in CYRUS, and PARADYME's cue condensation 
heuristics perform the function of CYRUS' component-to-context instantiation rules and also help 
with cue transformation rules define a better set of descriptive cues. 

9 Discussion 

The parallel algorithm presented runs in linear time on a SIMD parallel machine, and its runtime 
does not vary significantly with the size of the memory as long as memory does not exceed the size of 
the machine. 7 It works on a hierarchically organized memory where events are stored across several 

Specifically, its run-time is A N + 2 B + 1 . A is a number designating the overhead of dealing with embedded 
representations and is 1 plus the depth of an embedding. For the examples we have run, it ranges between 1 and 
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hierarchies. "The concept refinement search method limits retrieval to only reasonable parts of the 
memory and allows memory probes to describe events by describing features of their substructures. 
The basic algorithm forms the core of a case retrieval process, but it is not complete. While it 
finds many fewer events than an intersection search would, it does not address the choice of a best 
case(s) from those that are retrieved; nor does it include a capability for automatically elaborating 
a retrieval probe that is poorly specified. To take care of these problems, we have introduced 
preference heuristics for choosing the best set of cases from those retrieved and we have introduced 
probe elaboration heuristics for redefining a poorly-specified or near-miss probe. 

As an added advantage, we have been able to do away with CYRUS' redundant indexing 
structure. This means the memory takes up considerably less space in the machine. Were we to 
run CYRUS (Kolodner, 1983, 1984) or the memory parts of any of our case-based reasoners (e.g., 
MEDIATOR (Kolodner, et al., 1985, Simpson, 1985), JULIA (Hinrichs, 1988, Kolodner, 1987a,b, 
Shinn, 1988)) using the new algorithm and memory structures, we would get significant speedup, 
would use much less memory space, and would retrieve exactly the same items as under the serial 
scheme. 

Problems remain to consider, however. First, due to the architecture of the Connection 
Machine, we have not done an exact translation from our old retrieval scheme to the new one. 
CYRUS' retrieval scheme (the old one) was linear in the depth of memory's hierarchies, a much 
smaller number than the length of a retrieval probe. It would be interesting, from an algorithmic 
point of view, to attempt implementation of CYRUS' algorithms on a MIMD machine. It would 
also be interesting from a psychological point of view to have a parallel algorithm whose speed is 
independent of the length of the retrieval probe. 

Second, the algorithm we have implemented requires full connectivity between nodes in the 
hierarchies of MOPs and scenes. Because generalizations must be made independently in each 
abstraction hierarchy, however, that connectivity may need to be recomputed during retrieval. 
The "instruction" portion of the prediction messages in DMAP provide one way that is not very 
elegant. Some other way to overcome this problem must be found. And, of course, it will add to 
the complexity of the algorithm. 

Third, we have hardly considered memory update procedures. They, of course, must be inte­
grated into the memory scheme so that we can insure that memory's structure and the accessibility 
of events is maintained as the memory gets large. 
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Our model of analogical reasoning is based on the view that it is necessary to grasp 
the abstraction common to two analogous problems in order to know exactly what 
can be transferred from one problem to another. The model consists of two major 
steps. First, create an abstract schema that represents what source and target 
cases have in common. The abstract schema consists of a problem schema and 
its solution schema. The problem schema is created by analogically mapping the 
source problem to the target problem, then its solution schema is created using 
the source case. Second, apply the solution schema to the target problem. We call 
such a model of analogical reasoning abstractional analogy. 

Abstractional analogy provides a way of extracting all knowledge from a source 
that can be transferred to a target. Transfer can be of reasoning methods and/or 
of generalized results. Both types of knowledge are learned in the form of solu­
tion schemas as a natural byproduct of abstractional analogy. Abstract schemas 
together with cases can be organized into abstraction hierarchies. Thus, abstrac­
tional analogy is a unifying model of three different aspects of cognition: problem 
solving by analogy, learning of both declarative (generalized results) and procedu­
ral (reasoning methods) knowledge, and memory organization. 
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1 Introduction 
Expeiiential Tensoiiuig plays a. major Toie 221 lnmwm "problem sorrisg "and 
learning. Jardine [Jar74] quotes Francis Bacon: 

New knowledge is discovered by ingenious adaptation of existing 
knowledge, rather than by formal inference from fundamental 
principles. 

Analogical reasoning is one way of adapting existing knowledge to solve a 
new problem. 

Although a number of models of analogical reasoning have been at­
tempted, two contradicting views currently coexist on the process of ana­
logical transfer [Dar83,Ros86]: 

1. Direct transfer of knowledge from source to target 
Analogy is identified by establishing correspondences between source 
and target and then interpreting knowledge about the source in the 
target domain. 

2. Indirect transfer via common abstraction 
Analogy is identified as a common abstraction and then knowledge 
transfer is done via the abstraction. 

Traditionally, researchers have viewed analogy as direct transfer, and most 
AI programs that do analogical reasoning employ that method (e.g., [Win80] 
[Car86]). However, the view of indirect transfer recently has received more 
attention (e.g., [Pol54,Gen80,GH83,CM85,Der85,And86]). Genesereth [Gen80] 
states that "the problem of understanding an analogy becomes one of rec­
ognizing the shared abstraction." 

This is a problem which leads to completely different models of problem 
solving and learning. That is, does learning by generalization occur dur­
ing problem solving (i.e., as part of making the analogy) or does it occur 
afterwards? The direct transfer view implies that generalization occurs af­
ter problem solving, while the indirect view suggests that it occurs during 
problem solving. Ross [Ros86] points out that, while some researchers have 
seen that generalization is forced by analogical mapping, no one has clearly 
stated their temporal relationship. We suspect this confusion is caused by 
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failure to understand in detail the process involved in making an analogy. 
This paper presents a model called abstractional analogy based an the in­
direct transfer approach and also provides nonw 1iHiipirtafaonal accounts of 
this method. 

Another important issue on analogical reasoning is that of what knowl­
edge is transferred and how. Polya [Pol45] identifies two types of knowledge 
transferred during analogical problem solving. These are the method used 
and the result. Transfer of a previous result — possibly with some minor 
modification — shortcuts the reasoning involved for a similar problem by 
reducing its search for a solution. When result transfer is not appropriate, 
reasoning can be transferred. These two transfer methods are applied in 
different stages of problem solving. Abstractional analogy integrates these 
two types of analogy transfer. 

The process of abstractional analogy is implemented as the case-based 
reasoning (CBR) part of the JULIA system [CK86,Kol87b,Kol87a], de­
signed to be a caterer's assistant. JULIA's task is to interactively plan 
a meal with a client user who provides constraints for the meal. Some 
constraints are given early on. The need for specification of others is deter­
mined during problem solving. JULIA's problem solver includes constraint 
propagation and satisfaction, a goal-based reduction planner, and CBR 
modules. The reasoning described in this paper is JULIA's CBR method. 
JULIA uses CBR 2 whenever a previous similar case is made available to it 
by its memory. Examples from JULIA will be used throughout this paper. 

2 The Process of Abstractional Analogy 

Our model of analogical reasoning, abstractional analogy, consists of two 
major steps, analogy abstraction and then abstraction application. Anal­
ogy abstraction is achieved in two substeps. First, an abstract problem 
schema is created by analogically mapping the source problem to the tar­
get problem. Then, a solution schema is created for the problem schema 
using the source case. The two abstract schemas formed this way uniquely 

2Although the JULIA system uses the general term "case-based reasoning" to indicate 
a method of reasoning with previous cases, in this paper the term "analogical reasoning" 
will be used instead to emphasize the role of analogy in knowledge transfer. 
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represent the analogy existing between the analogues. In the next step, the 
solution schema is applied to the target problem, A n additional step refines 
the solution obtained by analogy to fit constraints of the new 'problem that 
were not covered. 

In later problem solving with a new problem, whenever an existing 
schema fits the new problem, the schema is applied to the problem: if the 
generalized result of the schema is available, it is transferred; otherwise the 
reasoning method is applied. This process will be discussed here in detail. 

2.1 Representing Problems and Cases 

JULIA uses frame representations [Min75,Wil86] for describing problem 
and solution structures. In JULIA, a natural language processing (NLP) 
system [TC88] interprets a problem description into a frame. Suppose a 
target problem is 

Find a Thanksgiving main dish for 16 vegetarians. The dining 
room can accommodate only 10 people. What and how should 
it be served? 

The NLP would first identify goals of a problem, and then take everything 
else, which constrains the goals, and make it into a constraint. Figure 1 
shows the result. 

Problem: 
goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) 

c-number-of-guests(16) c-dining-space(lO)] 

(Note: Information such as host, guests, location, and time are omitted.) 

Figure 1: Problem C50 

Each case in JULIA has problem and solution parts. The problem 
part describes its problem functionally in terms of goals and constraints 
while the solution part contains a solution plan and the reasoning history. 
The representation of a case supports hierarchical structure: a case may 
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be decomposed into subcases which may be again decomposed and so on; 
tfoiMt cases at all levels have the same structure so that they can be viewed 
as independent cases. Tins leuuibive representation facilitates knowledge 
transfer at any level. 

2.2 Analogical Mapping 

Our analogical mapping algorithm accommodates Gentner's systematicity 
principle ([Gen83]) in that it transfers "a system of connected knowledge, 
not a mere assortment of independent facts". In other words, during map­
ping between structures, even the highest order predicates may not be 
mapped separately from their lower level entities. However, in dealing with 
similarity, we do not accept Gentner's entire theory of structure mapping. 
In our mapping scheme, two relations which are functionally similar (i.e., 
their current partonomic roles in both structures are the same) will not be 
thrown out. 

For example, according to Gentner, two relations equals[add(a,b),add(b,a)] 
and equals [multiply (a,b),multiply (b,a)f are not mappable to each other be­
cause the highest level predicates are identical, but not the lower level 
predicates (i.e., add and multiply). On the other hand, in our scheme, 
these are mappable because their high order predicates are the same while 
the low level predicates "add" and "multiply" are functionally similar due 
to their same functional roles in the whole structures. Burstein [Bur86] 
demonstrates with his system CARL the necessity of mapping between non-
identical relations, criticizing Gentner's structure mapping [Gen83] which 
fails on this kind of similarity. 

Another characteristic of our mapping scheme is hierarchical mapping. 
This is frequently used when problems are represented in hierarchical struc­
ture. In fact, analogy between problems usually exists at an abstract level. 
Thus, mapping starts at the highest level first and proceeds to the next 
lower level and so on until analogy breaks down. Holyoak [Hol85] also 
identified hierarchical mapping as a practical necessity. 

Thus, in our scheme, the entire mapping process is a recursive appli­
cation of two-step hierarchical mapping: first identify the next lower level 

3Polya's analogy example [Pol54] 
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structures, and then map them systematically under functional similarity. 
Xet's apply our general mapping scheme to a problem from JULIA's 

domain. As an example, given the target problem C50 (Figure 1), JULIA 4 

is reminded of case C38 (Figure 2): "a vegetarian Thanksgiving main dish 
for 4 people, all seated and served." Case C38, which had two goals, 
g-know(menu) and g-know(presentation), was decomposed into two sub­
cases C381 and C382, one for each goal. Since cases are represented in 
hierarchical structure, JULIA begins mapping with the top level problem 
structures. Then, it identifies functional similarity. In a frame-based repre­
sentation, a problem is already analyzed into a problem structure [Wil86]. 
Thus, it is straightforward to identify the same functional components (e.g., 
goals and constraints). Next, it starts mapping with goals: if goals fully 
match, the mapping proceeds to constraints; in case of a partial match, 
which means some goals match but others do not, only the matched goals 
will be considered for possible transfer; otherwise, the mapping fails. Map­
ping then proceeds to constraints on only the matched goals to establish 
correspondences between them. For example, JULIA identifies correspon­
dence between c-number-of-guests(l6) and c-number-of-guests(4) because 
their functional roles in the problems are the same. 

2.3 Problem Abstraction 

Problem abstraction is the process of building a problem schema as a com­
mon abstraction of two analogous problems. A similarity is a commonality 
at a higher level of abstraction and an identity is a commonality at the 
same level. Thus, the commonalities abstracted from similarities together 
with identities form a problem schema. 

Similarities can be identified by using an abstraction hierarchy. One 
hierarchy, which frame-based representations (as in JULIA) support, is an 
ISA hierarchy. In this hierarchy, given a pair of objects, a common ab­
straction is found by simply identifying their immediate common ancestor 
(e.g., "fruit" for "apple" and "orange"). In JULIA, if the existing hierar­
chy does not contain a common ancestor for the pair of objects, then an 
abstract object is created by introducing a new symbol. The new object 

4 t JULIA' usually refers to the entire problem solving system but often is used to refer 
to only the analogical reasoner, as in this case. 
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C36: 
^Problem: 

goals: [g-kaow(MAIN-DISH) g-know(MEAL-PRESENTATION)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) 

c-number-of-guests(4) c-dining-space( > 4) ] 
Solution: [C381 C382] 
Reasoning: 

1. OP: plan for each subcase 

C381: 
Problem: 

goal: [g-know(MAIN-DISH)] 
constraints: [c-season(THANKSGIVING) c-diet( VEGETARIAN) c-number-of-guests(4)] 

Solution: STUFFED-SQUASH 
ingredients: 

2 squashes with filling: 
1/2 cup chopped onion, 1 clove garlic, 1 stalk celery, 
1/4 cup walnuts, 1/4 cup sunflower seeds, 1/4 cup raisins, 
1/2 tsp. sage, 1/2 tsp. thyme, 1/2 lemon juice, 
3 tbs. butter, 1 cup wheat bread, 1 /2 cup cheddar cheese 

Recipe Source: Moosewood Cookbook (by Mollie Katzen, 1977, Ten Speed Press) 

C382: 
Problem: 

goals: [g-know(MEAL-PRESENTATION)] 
constraints: [c-number-of-guests(4) c-dining-space(>4)] 

Solution: SERVICE 
Reasoning: 

1. OP: "Since the number of guests was less than the dining space, 
the eating configuration was SEATED." 

Input: [c-number-of-guests(4) c-dining-space(>4)] 
Output: [c-eating-configuration(SEATED)] 

2. OP: "Since the eating configuration was SEATED, 
the meal presentation was SERVICE." 

Input: [c-eating-configuration(SEATED)] 
Output:[c-meal-presentation(SERVICE)] 

Figure 2: Case C38 
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will be given as its property: the set of common properties (i.e., the union 
of the set of identical properties and the set of abstractions of pairs of 
similar properties). T^ote that the existence of an entity does not require 
its lexicalization in language. This method of commonality abstraction is 
also applicable to mathematical objects such as variables [Der85,Der86]. 
For example, the pair [c-number-of-guests(16) c-number-of-guests(4)] cre­
ates a common constraint c-number-of-guests(?X) and ? X will be given as 
its property "number". 

A75: 
Problem: 

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) 

c-number-of-guests(?X) c-dining-space(?Y)] 
Solution: [A751 A752] 

A751: 
Problem: 

goal: [g-know(MAIN-DISH)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(?X)] 

A752: 
Problem: 

goals: [g-know(MEAL-PRESENTATION)] 
constraints: [c-number-of-guests(?X) c-dining-space(?Y)] 

Figure 3: Problem schema A75 

Now, consider creation of a problem schema for problems C38 (Figure 2) 
and C50 (Figure 1). JULIA first creates an abstract problem A75 (Figure 
3) at the top-level with the commonalities found between C38 and C50. 
Next, JULIA checks the next lower level of the source schema to see if it 
was divided into subproblems; if so, it creates subproblems in the same 
manner recursively. Here, it creates two subproblems A751 and A752 at 
the lower level, one for each common goal. 
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2.4 Solution Abstraction 
A solixtinn schema, is an abstraction of the source solution "thai is at "the 
same level of abstraction as the problem schema. Figure 4 outlines our 
solution abstraction algorithm. 

Consider, first, transfer of reasoning. JULIA assumes a reasoning his­
tory is well maintained in the form of an operator with its preconditions and 
justifications, input, and output for each step. For each step, JULIA checks 
to see if the current state of the schema meets the preconditions of the op­
erator of this step. If the preconditions are not met, the schema needs 
to be transformed. In general, however, there is no domain-independent 
method for transformation. The transformation problem can be viewed as 
another separate problem to which analogical reasoning can be applied. If 
the preconditions are met, the operator is generalized to fit the schema. 
The generalized operator also needs to be justified using the previous jus­
tifications. 

However, since the schema includes variables, there may exist more than 
one reasoning path depending on the value of input data at that step. This 
could happen, for example, when the operator is " c o m p a r e two values ? X 
and ? Y " . 

If application of the generalized operator to the input of this step always 
leads to the same reasoning path as that of source case, the applied result 
will be kept in the schema for the output of that step. If it has more than 
one alternative reasoning path on this input, JULIA needs to generalize 
the operator as follows: for the same alternative as that of the source 
case, JULIA generalizes the operation as in the above case; for the other 
alternatives, JULIA generalizes the operation in one of the following ways: 
if an existing schema was retrieved and it has a reasoning path for this 
alternative, then use it; if the previous justifications similarly fit these other 
alternatives, then generalize the operator along the similar line; otherwise 
use domain theory. 

Next, consider transfer of result 5. The source result is generalized to 
fit the problem schema by considering the generalized requirements in the 
problem schema and the requirements in the source problem but not in the 

6 There are some applications where, even when a reasoning history is available, transfer 
of result is desirable [Kol87b]. 
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Input: Problem schema, source case, and analogy map 
Output: Solution schema 
Method: 
(The analogy map provides the correspondence information between the problem 
schema and the source case.) 

if a reasoning history is not available for the source case 
then do transfer of result: 

generalize the result to fit the problem schema; 
store the generalized result in the schema 

else do transfer of reasoning: 
for each step of the reasoning history of source case do: 
if the current state of the schema meets the preconditions of the operator 
then 

if there is only one alternative on the input of the schema 
then 

generalize the operator up to the abstract level of the schema; 
store the operator in the schema for this step; 
apply the operator to the current state of the schema 
and keep the result in the schema for this step; 

else if there exist more than one alternative 
then 

generalize the operator for each alternative similarly; 
store the generalized operator in the schema for this step; 

else 
transform the schema to make it meet the preconditions of this operator 

if transformation is successful 
then apply the above method 
else abandon this case for another 

Figure 4: Solution Abstraction Algori thm 
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problem schema. Space does not permit more discussion of this method 
[Cax63,Tur87]; it will be briefly discussed with a simple example below. 

Let's now apply the abstraction algorithm to case C38 (Figure 2) For the 
problem schema (Figure 3) . This is split into two subproblems. Consider, 
first, subschema A751 with subcase C381. Since subcase C381 does not 
have a reasoning history, JULIA uses the transfer of result. Using the 
analogy map, JULIA knows the source result needs to be generalized to 
fit constraint c-number-of-guests(?X). In this case, generalization is done 
by using the domain knowledge: "The quantity of food is proportional to 
the number of guests (say, DK22)." JULIA applies this knowledge to the 
source result and multiples the quantity of each ingredient of the dish by 
? X / 4 . The generalized result 6 is shown in Figure 5. 

Next, apply the abstraction algorithm to subschema A752 and subcase 
C382. Since the reasoning history is available for subcase C382, JULIA 
uses it to generalize the subschema. For each step of the reasoning history, 
JULIA checks if it is applicable to the current state of the schema. JULIA 
finds that the first step requires the constraints [c-number-of-guests(?X) 
c-dining-space(?Y)] as input. Next, JULIA checks if the reasoning step is 
general enough to fit into the problem schema. In the source case, since 
the number of guests was less than or equal to the dining capacity, the 
eating-configuration was SEATED. But, in the schema, since the number 
of guests may or may not be greater than the dining capacity, this step 
of operation in the source case should be generalized, considering both al­
ternatives for the schema. For the case in which the number of guests is 
less than or equal to the dining capacity, the schema will use the same 
reasoning as that of the source case (i.e., if 7NO-GUESTS < 7DINING-
CAPACITY, then 7EATING-CONFIGURATION is SEATED). But, for 
the other alternative (i.e., 7NO-GUESTS > 7DINING-CAPACITY), the 
operation needs to be generalized using one of the above mentioned gener­
alization techniques. One method is to use the domain knowledge: "The 
eating-configuration is either SEATED or STANDING." After a simple 

6 T h e generalized result in this case only mediates transfer between source and target 
cases and may not be interpreted by any means as a solution formula for every case that 
has the same set of requirements as this case, because it is only one of many possible 
solutions. There may, however, be times when the generalized result will indeed be a 
solution formula. 
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ATS: 
Problem: 

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) 

c-number-of-guests (? X) c-dining-space (?Y) ] 
Solution: [A751 A752] 
Reasoning: 

1. OP: plan for each subcase 

A751: 
Problem: 

goal: [g-know(MAIN-DISH)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(?X)] 

Solution: STUFFED-SQUASH 
ingredients: 

1/2 ?X squashes with the filling: 
1/8 ?X cup chopped onion, 1/4 ?X clove garlic, 1/4 ?X stalk celery, 
1/16 ?X cup walnuts, 1/16 ?X cup sunflower seeds, 1/16 ?X cup raisins, 
1/8 ?X tsp. sage, 1/8 ?X tsp. thyme, juice from 1/8 ?X lemon, 
3/4 ?X tbs. butter, 1/4 ?X cup wheat bread, 1/8 ?X cup cheddar cheese 

Reasoning: (justifications: case C381 and domain knowledge DK22) 

A752: 
Problem: 

goals: [g-know(MEAL-PRESENTATION)] 
constraints: [c-number-of-guests(?X) c-dining-space(?Y)] 

Solution: 
Reasoning: 

1. OP: If ?NO-GUESTS < ?DINING-CAPACITY 
then ?EATING-CONFIGURATION is SEATED 
else 7EATING-CONFIGURATION is STANDING 

2. OP: If 7EATING-CONFIGURATION is SEATED 
then ?MEAL-PRESENTATION is SERVICE 
else 7MEAL-PRESENTATION is BUFFET 

Figure 5: Abstract schema A75 

11 



computation, we get "If 7NO-GUESTS > 7DINING-CAPACITY, then 
?EAHNG-CONFIGUEATION is STANDING™ Similarly, the next step 
will also be generalized using the domain knowledge: T h e meal-presentation 
is either SERVICE or BUFFET." Figure 5 shows the schema so obtained. 

2.5 Abstraction Application 

After an abstract schema is created, it is applied to the target problem. 
The basic idea for schema application is to apply the generalized result if 
one exists, otherwise apply the reasoning method. 

Application of schema A75 (Figure 5) to problem C50 (Figure l ) gen­
erates two subproblems. The subproblem for goal g-know(MAIN-DISH) is 
solved by applying the generalized result of subschema A751 which requires 
instantiating the variable ? X to 16. On the other hand, the subproblem for 
goal g-know(MEAL-PRESENTATION) is solved by applying the reasoning 
method, step by step. The variables ? X and ? Y are bound to 16 and 10, 
respectively, and each step is applied; the eating configuration is STAND­
ING after the first step; the meal presentation is BUFFET after the second 
step. The resultant target case is shown in Figure 6. 

2.6 Solution Refinement 

Application of a schema to the target problem may not lead to a final so­
lution because the instantiated result does not always meet all the require­
ments. If it is the case, the result of schema application must be refined. 
In general, the problem of refinement can be viewed as an independent 
problem where its goal is transforming the current result to make it satisfy 
the remaining requirements. This means that either an analogical problem 
solver or other problem solvers can be applied here. In JULIA, refinement 
with extra constraints is done by using the same reasoning method used 
for the other constraints. 

3 Analogy-Based Learning 

Analogical problem solving per se is one form of learning because it learns 
from previous experience how to solve similar problems. Another form of 
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C50: 
Problem: 

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) 

c-number-of-guests(16) c-dining-space(lO)] 
Solution: [C501 C502] 
Reasoning: (justification: Schema A75) 

1. OP: plan for each subcase 

C501: 
Problem: 

goal: [g-know(MAIN-DISH)] 
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(16)] 

Solution: STUFFED-SQUASH 
ingredients: 

8 squashes with the filling: 
2 cup chopped onion, 4 clove garlic, 4 stalk celery, 
1 cup walnuts, 1 cup sunflower seeds, 1 cup raisins, 
2 tsp. sage, 2 tsp. thyme, juice from 2 lemon, 
12 tbs. butter, 4 cup wheat bread, 2 cup cheddar cheese 

Reasoning: (justification: Schema A751) 

C502. 
Problem: 

goals: [g-know(MEAL-PRESENTATION)] 
constraints: [c-number-of-guests(l6) c-dining-space(lO)] 

Solution: BUFFET 
Reasoning: (justification: Schema A752) 

Figure 6: Case C50 
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learning occurs as a byproduct of problem solving in the form of schemas. 
A g r t l p m a contains two types of general knowledge: procedural (reasoning 
method) and declarative (generalized result). This section will discuss the 
latter form of general learning and the related issues: where and how the 
acquired knowledge is stored and how it is used later. 

3.1 Learning During Solution Abstraction 

As shown in the previous section, solution abstraction can be viewed as the 
process of extracting an embedded algorithm out of the reasoning part of 
a previous case and/or a generalized result out of the solution part. As a 
result, a solution schema contains a reasoning method and/or a generalized 
result for a given problem schema. From the learning point of view, a solu­
tion schema represents exactly what is learned from a particular analogy. 

We should note, however, that the generalized result of a solution schema 
may not always be interpreted as a solution formula. If the result is proven 
to be unique it can be used as a solution formula for any case that is an 
instance of the problem schema. On the other hand, if the result is just one 
among many possible solutions (e.g., A751), it should be interpreted solely 
as a mediator of transferring the source solution to the target problem. If 
this gets used frequently, it may become a prototypical solution, but not a 
solution formula. Thus, the generalized result is a potential source of either 
a solution formula or a prototypical solution. 

A n a l o g y - b a s e d genera l iza t ion vs Exp lana t ion -based general iza­
t ion 

Schema abstraction (i.e., problem abstraction plus solution abstraction) 
is a kind of analogy-based generalization (ABG) . A B G and explanation-
based generalization (EBG) (see [DM86,MKK86]) are as different as they 
are similar. 

If a reasoning history is not available for a solved case and needs to be 
built, it can be done either by using EBG (because a reasoning history for 
a case in A B G corresponds to an explanation for an example in EBG) or by 
applying A B G recursively to another analogous case with a reasoning his­
tory (see [KL87] for case-based explanation). The problem of constructing 
an explanation using the domain theory is similar to a state space search 
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problem if we view a problem as an initial state and its solution as a final 
state. jELBG, in this case, has no strategy of controlling the search space. 
A B C , on the other hand, can significantly constrain the search space using 
the reasoning history of another similar case. 

In addition, since EBG generalizes on a single case, the generalized 
explanation accommodates only the one possible alternative that the par­
ticular case followed. As a result, EBG fails to consider other potential 
alternatives so that EBG by itself is not capable of learning general reason­
ing methods. On the other hand, two cases give A B G a chance to explore 
more than one alternative in problem solving (as we have seen in Section 
2.4). This leads A B G to incrementally learn a general method. 

3.2 Organizing Memory with Cases 

When a target problem is solved, both the target and source cases are stored 
in memory as specializations of the abstract schema created by abstrac-
tional analogy. The schema itself is stored, replacing the previous source 
case, and both cases will be made children of this schema. In this way, ab­
straction^ analogy forms memory into abstraction hierarchies, where each 
node represents a specific or generalized case. 

A retrieval algorithm similar to that described in Kolodner [Kol84] can 
be used to find the most specific partially matching schema or case, when 
a new problem is being solved. If a schema has already been created and is 
recalled from memory, the analogical reasoner uses it to solve the problem 
directly. If a case more similar than available schemas is recalled, abstrac-
tional analogy is applied to it to solve the problem. 

4 Summary 
Our goal has been to develop a computational model of analogical reasoning 
based on abstractional analogy. The process of abstractional analogy pro­
ceeds as follows. First, given a new problem, an analogous case is retrieved 
from memory. Second, analogy abstraction creates an abstract schema 
that represents what source and target cases have in common. A n abstract 
schema consists of a problem schema and its solution schema. In order to 
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The Hole of Mapping j h A nalpgaral ̂ Transfer1 
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Abstract 

This paper aims to provide a view of the role of analogical mapping in the entire process of 
analogical problem solving. In many models, analogical mapping is responsible for identifying 
the analogy between two problems by considering structural and semantic similarities. However, 
given a non-trivial analogy problem, success of mapping does not always guarantee successful 
transfer of analogy. In fact, there exist many analogy problems, which succeed on analogical 
mapping but which fail on analogical transfer. While a potential mapping between problems can 
be generated, that mapping might not be justifiable until transfer from one problem to another 
is attempted. 

We present our analogical mapping method and show how it works for inter-domain and 
tntra-domain analogies. We demonstrate several analogy problems in which a mapping can be 
generated that cannot be transferred. We also compare our method to Gentner's SME and to 
Holyoak's ACME, and show that it performs at least as well, and sometimes better than either 
of those methods. 

Key Words: analogical problem solving, analogical mapping. 

1 Introduction 

This paper aims to provide a view of the role of analogical mapping in the entire process of 
analogical problem solving. Analogical problem solving contains at least the following components 
[Shi88,CM85,HT88]: retrieval of a plausibly analogous case, analogical mapping, and analogical 
transfer. The step of analogical transfer may involve modification of a previous solution and 
justification of the result obtained before the result is transferred [Shi88]. 

In many models, analogical mapping is responsible for identifying the analogy between two 
problems by considering structural and semantic similarities. However, given a non-trivial analogy 
problem, analogical mapping by itself does not always guarantee that an analogy will be successful. 
While it can produce a potential mapping between problems, a mapping might not be justifiable 
until transfer from one problem to another is attempted. 

In this paper, we illustrate the role of mapping in analogical problem solving and we present a 
hierarchical method of analogical mapping that is based primarily on similarity of structures. The 
method uses relatively little semantic information. Instead, it relies on the analogical transfer step 
to determine the merit of a potential analogical mapping. 

We show how our method works for inter-domain and intra-domain analogies. We demonstrate 
several analogy problems in which a mapping can be generated that cannot be transferred. We 
also compare our method to Gentner's SME and to Holyoak's ACME, and show that it performs 
at least as well, and sometimes better than either of those methods. 

xThis research has been supported in part by the Army Research Institute under Contract No. MDA-903-86-C-
173, is currently supported in part by NSF under Grant No. IST-8608362, and in part by Lockheed AI Center under 
Grant No. DTD 09-25-87. 
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3, -Analogical Mapping Algnrathm 
Before introducing our algorithm, we need to clarify the problem of analogical mapping. Polya 
[Pol54] views "analogy" as a systematic correspondence between two systems preserving certain 
relations. For his basic type of analogy, Polya defines analogy as "similarity of relations", where 
relations are similar if they are governed by the same laws. He illustrates this -with an example: 
the multiplication of numbers multiply (x,y) is analogous to the addition of numbers add(x,y) in 
the sense that both multiplication and addition are commutative. In other words, two relations 
multiply (a, b) and add(a,b) are similar because they are governed by the same commutative law: 
equals[OP(a,b),OP(b,a)J. Interpreting Polya's definition of similarity in analogical problem solving, 
"similarity" in problems is what leads to similar effects on their solutions. The problem here 
is that, without knowing beforehand what the similarity's effect will be on the solution to the 
target problem, we must find that similarity which can be used in deriving the solution. Thus, 
what analogical mapping does is to find the most probable similarity candidates before transfer of 
knowledge from source to target is attempted. 

Our analogical mapping algorithm follows Gentner's systematicity principle ([Gen83], p. 163) 
in that it transfers "a system of connected knowledge, not a mere assortment of independent facts". 
In other words, during mapping between structures, even the highest order predicates may not be 
mapped separately from their lower level entities. 

In dealing with similarity, however, we do not accept Gentner's entire theory of structure 
mapping. In our mapping scheme, two relations which are structurally similar (i.e., the current 
partonomic roles in both structures are the same) will not be thrown out. For example, according 
to Gentner, two relations equals[multiply(a,b),multiply(b,a)J and equals[add(a,b),add(b,a)J are not 
mappable to each other because the highest level predicates are identical (i.e., equals), but not 
the lower level predicates (i.e., add and multiply). On the other hand, in our scheme, these are 
mappable because their high order predicates are the same while the low level predicates "add" and 
"multiply" are structurally similar due to their similar roles in the whole relations. Burstein [Bur86] 
demonstrates with his system CARL the necessity of mapping between nonidentical relations, 
criticizing Gentner's structure mapping which fails on this kind of similarity. 

Another characteristic of our mapping scheme is hierarchical mapping. This is frequently used 
when problems are represented in hierarchical structure. In fact, analogy between problems usually 
exists at an abstract level. Thus, mapping starts at the highest level first and proceeds to the next 
lower level and so on until analogy breaks down. 

In our scheme, the entire mapping process is a recursive application of a two-step hierarchical 
mapping: first map the two problem structures systematically under structural similarity and then 
decompose them into the next lower level structures (see Figure 1). Structural similarity is found 
not only in physical structures but also in functional structures. Functional structures are described 
by functional objects and relations such as functions, purposes, goals, constraints, conditions, and 
states. For example, an air conditioner is like an electric fan because their top level functions 
are the same (i.e., excite-air). Another example of analogy is found between society and organism 
because they are similar in their functional organizations. 

As a result of analogical mapping, an analogy map is generated for two cases showing correspon­
dences between both relations and their objects. An analogy map represents a common structure 
between source and target structures with a binding list between source and target elements. The 
common structure represents a common problem schema which is used as a medium of transfer in 
analogical problem solving [Shi88,CM85]. For example, analogical mapping between multiply(a,b) 
and add(a,b) generates the analogy map as a common structure OP(a,b) with the binding list [(OP 
multiply add)] meaning that there is one binding OP and it binds to multiply in the source and to 
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"Input: A~Bonrcc case anil a'target piubtem 
Output: An analogy map (AMAP) 
Algorithm-

Recursive application of two-step hierarchical mapping: 
given two problem structures, 

1. Map them systematically under structural similarity: 
identify components whose partonomic roles in both structures are the same; 
map components as specifically as possible under the current AMAP; 
if mappable 
then add correspondences between components to AMAP 
else return AMAP 

2. Hierarchical refinement: 
decompose the current level into the next lower level structures; 
pair them in the same partonomic roles 

Figure 1: Analogical Mapping Algorithm 

add in the target. 

3 Related Work 

Gentner's structure mapping theory with its implementation, Structure-Mapping Engine (SME) 
[FFG86], demonstrates the importance of systematicity in interpreting an analogy. But, it is often 
criticized because of its syntactic approach. 

Many recent models consider semantic and pragmatic characteristics of analogy as well as syn­
tactic information to guide analogical mapping [FFG86]. For instance, Burstein [Bur86] introduces 
some top-down constraints on relations and primarily relates objects in terms of their functional 
roles in analogical mapping. Winston's mapping is driven by importance-dominated matching 
[Win80,Win82]; importance is mainly determined by causal relations in the situations. 

Holyoak and Thagard's mapping theory [HT88] attempts to take into account all three di­
mensions of analogy: syntax, semantics and pragmatics. Their program called ACME computes 
an analogical map by means of constraint-satisfaction based on five heuristic constraints: logical 
compatibility, uniqueness, relational consistency, semantic similarity, and role identity. Semantic 
and pragmatic information help to constrain the search for the most plausible mapping. But, the 
problem with this approach is that there exist many analogy problems on which such heuristics do 
not work (an example will be shown in Section 5.1). 

Our mapping algorithm is similar to SME in that both enforce systematicity (as shown in the 
previous section), but different in that ours maps predicates under similarity by functional roles 
while SME maps under identity. Ours is also similar to Burstein's and ACME in that it maps 
components by considering part-whole relationships. However, unlike ACME and Winston's, much 
of the semantic information is not explored during mapping. Rather, it will be checked when the 
knowledge to be transferred is justified in the transfer step. 
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4 Applications ol Analngiral Mapping 
Analogical mapping is a step of predicting a plausible analogy, which will be tried for transfer. 
During the actual transfer attempt, mapping results are filtered considering semantic similarity. 
The following applications show how these processes are performed 

The first two applications of our mapping algorithm Tery on similarity in physical structures: 
Section 5.1 shows analogy examples between different domains, while Section 5.2 compares analogies 
within the same domain. These examples are also used to compare our algorithm to two general 
analogical mapping mechanisms, SME and ACME. In Section 5.3, an application from the JULIA 
project shows an example in functional structures. 

4.1 Inter-Domain Examples 

Applying our analogical mapping algorithm, let's solve the problem ^-[sinx — lnx] using the fol­
lowing case: 

Problem: f[ex + l]dx 
Solution: ex + x + C 
Reasoning steps: f[ex + 1] dx f ex dx + / 1 dx ex + x + C 

When the mapping algorithm, in the first cycle, is applied to the top level structures (i.e., ^[s inx — 
lnx] and / [ c* + 1] dx), it successfully produces the analogy map 

?[f(x) OPg(x)\ 

with bindings [(7 ^ / ) (OP h) ( / ( e ) sinx ex) {g{x) lnx 1)]. Since the first reasoning step of 

the source case predicts the following analogy (in an abstract form): 

T[f(x) OPg(x)] = T[f(x)]OP?[g(x)\ 

the target problem reduces as follows: 
d r • i i d • d i —Ism x — In xl = — sin x — — In x 

dx dx dx 
In the next cycle, the mapping between the next lower level structures / ex dx and £ sin x succeeds, 
but analogical transfer between these two fails. This is the level where the analogy breaks down 
and the mapping process halts. Thus, the analogy between the above two cases resides only at the 
top level. This example shows the utility of hierarchical mapping in identifying analogy, since the 
analogy at higher levels of abstraction can be used even though there does not exist a complete 
analogy. 

Consider another problem 
c 2 x + 3 

using the same source case. It is similar to the first example in that mapping predicts 

However, this hypothesis is not correct; the correct transformation is c 2 x + 3 = c 2 x * c 3 . This example 
shows that successful analogical mapping may not guarantee the existence of analogy when semantic 
similarity is missing. The semantic similarity is checked using reasonings similar to those of the 
source case. This is done during the process of analogical transfer to justify the hypothesized 
analogy. (See [Shi88] for more discussion of the justification problem.) 

Let us apply SME and ACME to the first analogy problem: 
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Source: J]e*-}-l]iz 
SME fails to recognize this analogy because the two high level predicates ^ and / are not identical. 
This example shows that structural mapping under predicate identity is too strong. In case of 
ACME, the logical compatibility requires the second arguments h z and 1 to be the same logical 
kind (e.g., constants to constants) so that ACME also fails on this analogy. This case suggests that 
semantic and pragmatic information should be used cautiously because of their heuristic nature. 

4.2 Intra-Domain Examples 

Given a problem 

r l 
dy 

consider analogical mapping problems with each of the following three cases. 

Case 1: 

Problem: f > 1 „ dy 

Solution: s inh - 1 -J- + C 

Case 2: 

Problem: / -^JL^dx 
Solution: s in - 1 x + C 

Case 3: 

Problem: f > 1 j dz 
Solution: s in - 1 ^ - + C 

All three mappings succeed with our mapping algorithm because the three cases are all structurally 
similar to the target problem. 

In the first case, analogy transfer from case 1 to the target problem is not possible (because the 
previous reasoning of case 1 is not applicable to the target problem). In the second case, transfer 
from the source case is not possible until some modification is performed. That is, in order to apply 
the solution of case 2 to the target problem, the form y/a — z2 embedded in the target problem 
needs be transformed to the form y/1 — x2 in case 2. In the third case, the source solution can be 
transferred to the target domain so the target solution will be s in - 1 ^= + C. 

The success of analogical mapping leads directly to analogy transfer in the third example. The 
first example shows, however, that the success of mapping may not guarantee successful analogy 
transfer. (It only predicts a possibility of transfer which should subsequently be verified.) Further­
more, the second example shows that even when analogical mapping eventually leads to analogy 
transfer, successful analogical mapping may not directly dictate what is to be transferred from the 
source case to the target problem. (It may only hint at what is to be transformed in order to reach 
a transferable state.) So, the role of analogical mapping is to identify a plausible analogy based on 
known similarity before transfer of analogical knowledge from the source case to the new problem 
is attempted [Shi88]. 

Note that SME and ACME are similar to our mapping algorithm in that they will come up with 
successful mappings with all three cases. This shows that, even when ACME considers semantic 
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and fgagmatic accomta, it is n o t able I d djstmgnish gTmlryrw -which lead I d amaScapcal irramfirr 
( ie . , case "S) fium analogies -which do not (Le., cases 1 and 2). m other -words, ACME is not -more 
powerful than SME and ours in dealing with these three. 

4*3 A n .Application i n JTTTJA 

Our analogical mapping mechanism is part of the case-based reasoner [Shi88] in JULIA, an in­
telligent caterer's advisory system [CK86,Kol87]. Each problem case in JULIA has problem and 
solution parts. The problem part describes its problem functionally in terms of goals and constraints 
while the solution part contains a solution plan and the reasoning history. 

Since problem cases are represented in a hierarchical structure, JULIA maps the top level 
problem structures first. It tries to identify similarity between two functional structures. In a 
frame-based representation, it is straightforward to identify the same functional components (e.g., 
goals and constraints). JULIA starts mapping with goals between problems: if the goals fully 
match, the mapping proceeds to constraints; in case of a partial match, which means some goals 
match but others do not, only the matched goals will be considered for possible transfer; otherwise, 
the mapping fails. Mapping then proceeds to constraints on only the matched goals to establish 
correspondences between them. For example, JULIA would consider two cost constraints LOW-
COST and INEXPENSIVE2 similar, because they are functionally the same in that they both 
constrain the cost. Then, should LOW-COST and EXPENSIVE be considered similar, too? JULIA 
views that they, too, are functionally similar due to the same reason. However, these do not have 
as much in common semantically as LOW-COST and INEXPENSIVE. 

This problem will be resolved during actual transfer and there the degree of semantic similarity 
determines the degree of learning involved. Suppose the source case made the following inference 
during its problem solving: 

If c-cost(LOW-COST) 
then c-ingredient-cost(LOW-COST) and c-cooking(LOW-COST) 
because cost of dish is cost of ingredients plus cooking cost 

Then, during analogical transfer, JULIA will try to transfer the previous inference rule with the 
similar concept INEXPENSIVE using its justification ("because") clause. In other words, JULIA 
hypothesizes a rule substituting LOW-COST in the rule for INEXPENSIVE, seeing if the justifi­
cation previously used is similarly applicable. Since the justification also holds for the target case, 
the new rule will be transferred: 

If c-cost(INEXPENSIVE) 
then c-ingredient-cost(INEXPENSIVE) and c-cooking(INEXPENSIVE) 
because cost of dish is cost of ingredients plus cooking cost 

However, if it were EXPENSIVE, the similar inference may not be true because not every ingredient 
needs to be expensive to make a dish expensive. 

5 Summary and Conclusions 

We have shown that successful mapping may not guarantee successful transfer of analogy. Ana­
logical mapping only predicts a possibility of transfer which should subsequently be verified. Even 

2INEXPENSIVE ranges from low cost to moderate cost so that its meaning is slightly broader than that of 
LOW-COST. 
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when analogical inapping eventually leads to analogy transfer, mr*»j»«ifol ynnlnĝ f-al Trmjijmi^ may 
not directly dictate "what is to be transferred uom the source case to the target problem. 

An analogical mapping algorithm has been introduced as a recursive application of two-step hi­
erarchical mapping: first map the two problem structures systematically under structural similarity 
and then decnmpowe them into the next lower level structures. Structural similarity is identified 
during this mapping process, while semantic similarity is checked during analogical transfer. These 
two processes together guarantee the correctness of analogy transfer. 
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Abstract 

A major problem for both human and computer diagnosticians is representing and organizing 
problem-solving knowledge in such a manner that the knowledge can be quickly accessed and 
easily used. Some researchers (e.g., [Lesgold et al., 1981] and [Feltovich et al., 1984] feel that expert 
medical diagnosticians have at least some of their problem-solving knowledge in a schematic form— 
procedures, or plans and scripts—that can efficiently be brought to bear on diagnostic problems. 

In this research, we present an approach to diagnostic reasoning, called schema-based reasoning, 
that allows a reasoner to access and use the most specific procedural information available for the 
problem at hand. Our approach represents the problem solver's knoweldge as schemata: packets 
of procedural knowledge about how to achieve a goal or set of goals. Schemata are organized in 
memory by the category of diagnostic problem they are useful for and along hierarchies defined by 
features of the schemata. When presented with a new problem, the reasoner retrieves schemata 
based on features of and goals present in the problem; the schemata are then applied by the reasoner 
to achieve its goals. 

The process of schema-based reasoning was designed with an eye towards learning from ex­
perience; we discuss some initial ideas along these lines in this paper, specifically comparing our 
approach to case-based reasoning [e.g., Ashley, 1986; Kolodner, 1987; Kolodner et al., 1985; Simp­
son, 1985]. 

Our approach is implemented in the MEDIC program, a schema-based diagnostic reasoner whose 
domain is puhnonology. 

1 Introduction 

One of the major differences between a novice and an 
expert is that the expert has his or her knowledge in 
a readily accessible and usable form. The novice at 
medical diagnosis—a medical student—does not nec­
essarily suffer from a lack of facts; rather, the novice 
does not have the facts organized in a fashion that 
allows them to be brought to bear quickly and effi­
ciently on a problem. In addition, the novice does not 
have available the procedural knowledge necessary to 
allow him or her to quickly and easily solve diagnostic 
problems. The novice's knowledge, in other words, is 
not operational 

In order to operationalize a diagnostician's knowl­
edge, he or she is given cases to solve, either practice 

'This research has been funded in part by NSF Grants IST-
831771 and IST-8608362 and a grant DTD 09-25-87 from the 
Lockheed Al Center. 

or reaL As cases are solved, the student learns what 
is important in the problem-solving environment, and 
learns what knowledge to use to solve which kinds 
of problems. Part of the learning process consists 
of converting "book knowledge" of signs, symptoms, 
and diseases into procedural knowledge: schemata 
for solving diagnosis problems (cf. [Lesgold et al., 
1981]). Another part of the learning process is orga­
nizing the information learned—new facts as well as 
new schemata—in a form that allows it to be brought 
to bear efficiently on future problems. 

The problem of how to represent and organize diag­
nostic knowledge has been studied in several artificial 
intelligence projects. In CENTAUR [Aikins, 1980], for 
instance, problem-solving knowledge is represented in 
the form of prototypes (frames) with associated rules; 
this has the effect of clustering the rules used around 
the contexts in which they are useful. MDX [Gomez 
and Chandrasekaran, 1982] is similar, in that its 

1 
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ner and Kolodner [1987] proposed a scheme in which 
knowledge used in diagnosis is stored in episodes and 
generalized episodes in a dynamic memory [Schank, 
1962]. Thai approach has several benefits: (1) d«e 
to the properties of the dynamic memory, the most 
specific knowledge possible for a particular problem 
can be retrieved; (2) previous cases of problem solv­
ing are available for use in similar situations; and (3) 
the general knowledge, and the organization of the 
memory, is changed as new cases are added to the 
memory. 

Though all these approaches organize the rea­
soner's knowledge in a form that is readily accessi­
ble, they tend to ignore the procedural knowledge 
necessary to perform diagnosis. That is left in the 
program itself and does not reside in the reasoner's 
knowledge structures. This assumes that one gen­
eral method of performing diagnosis, using many 
specialized pieces of knowledge, can allow the rea­
soner to effectively diagnose problems. However, 
many researchers (e.g., [Lesgold et al., 1981] and [Fel-
tovich et al., 1984]) believe that as diagnosticians 
become more expert, they increasingly use schema­
like information—procedures, or plans and scripts— 
to perform diagnosis, and that this procedural knowl­
edge is gained from experience. By using schema­
like information, the reasoner can bring specialized 
problem-solving procedures to bear on diagnostic 
problems. 

In this paper, we discuss a means of memory orga­
nization and retrieval that allows a reasoner to find 
the most specific problem-solving procedures avail­
able for a particular problem, then to use that infor­
mation to solve the problem. Our work is based, to 
some extent, on preliminary work which was done 
on the SHRINK project some years ago [Kolodner, 
1983]. In our approach, we represent the problem 
solver's knowledge as schemata, which are packets 
of procedural knowledge much like SHRINK's "pro­
cess MOPs". Schemata are organized in memory 
by many different hierarchies of features present in 
the schemata, and are retrieved by indexes composed 
from features present in the problem being solved. 
When retrieved, a schema guides the reasoner in se­
lecting actions to perform to solve a problem. Our 
approach, which we call schema-based reasoning, is 
implemented in the MEDIC program, a diagnostic rea­
soner whose domain is pulmonology. 

Our research was begun with the idea that the 
results should lend themselves to making use of 

prohtan-scivhig experience. "We "will also fliynro in 
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as the relationship of our work to a form of reason­
ing from experience called case-based reasoning [e.g., 
Ashley, 1986; Kolodner, 1987; Kolodner et al., 1985; 
SimpMJui, 19BS]. 

2 Schemata 

According to Bartlett, a schema is: 

...an active organization of past reac­
tions, or of past experiences, which must 
always be supposed to be operating in any 
well-adapted organic response [Bartlett, 
1932]. 

This is very similar to how we view schemata: a 
schema is knowledge that tells a reasoner how to re­
spond to a particular situation.1 A schema is basi­
cally a packet of procedural knowledge, represented 
in a declarative form, that can achieve a goal or set of 
goals; it is somewhat like a program with procedures. 
A diagnostic reasoner should have many schemata, 
for the many different situations and goals it will 
encounter. When the reasoner is confronted with a 
problem, it retrieves a schema for some portion of the 
problem, then interprets, or applies, the schema by 
taking the actions it describes. 

Figure 1 shows a simplified picture of what one of 
MEDIC's schemata looks like, in this case a schema 
that can be used to interpret a finding of dyspnea. In 
addition to the actions to be taken in following the 
schema (the schema's steps), the schema contains in­
formation about goals it can be used to achieve, fea­
tures of situations in which it is useful, preconditions 
or restrictions on its use, and the expected results of 
using it. 

Each of the steps of a schema is composed of three 
parts: an action, a goal, and information used to 
choose the next step. The action is either a primitive 
action the reasoner can perform or another schema. 
The goal is a goal that the step is meant to achieve. 
The "next step" information consists of tests to per­
form against the state of the world and steps to be se­
lected if the tests are true. This information is used to 
order the steps of a schema; there can be several dif­
ferent orderings, depending on the state of the world 
at the time the schema is used, including optional 

1 Though this research does not address how schemata come 
to exist, they can be thought of as being the result of past 
experiences, whether of the program or of the human expert 
who gave them to the program. 

2 



Patient: any patient 
Findings: dyspnea 
Preconditions: there is a finding of dyspnea 
Actions: 

Al: actios: ask how many stairs patient can climb 
Coal: ih tin mii severity at dyapsMa 
" ' i j t cam cttmb flight of atafa* AS 

else =*• A2 
A3: action: ask how far patient can walk 

goal: determine severity of dyspnea 
next: A3 

A3: action: estimate the severity of the dyspnea 
goal: determine severity of dyspnea 

A10: action: postulate hypotheses of pulmonary disease, 
cardiac disease 
goal: explain dyspnea 
next: done 

Indices: 
patient/PATIENTl SCENE2 

Figure 1: sc-dyspnea—a schema for interpreting a 
finding of dyspnea. 

steps. If the action portion of a step is omitted, then 
the step suggests a goal that should be satisfied at 
that particular point in schema application. 

In many ways, a schema is similar to traditional 
reasoning knowledge structures. For example, if each 
step in the schema has an action that is a primi­
tive action, then the schema is equivalent to a script 
[Schank and Abelson, 1977] with tracks [Cullingford, 
1981]. If, on the other hand, all of the steps of a 
schema have actions that are either schemata or prim­
itive actions, the schema can be viewed as a abstract 
plan or as equivalent to one of NASL's [McDermott, 
1978] tasks. Finally, we can view a schema as a packet 
of rules, perhaps similar to MDX's concepts or spe­
cialists. In this view, the rules' "antecedents" would 
consist of the information in the schema—findings, 
characteristics of the patient, etc.—(excluding the 
schema's steps); the "consequents" would be the ac­
tions that are specified by the schema. 

There are several differences between schemata and 
these other knowledge structures, however. First, 
schemata are more general, in effect subsuming the 
functionality of the others. Second, new schemata 
can, in principle, be created by applying old schemata 
to new situations, then generalizing the result. This 
would allow schemata to be created for situations not 
anticipated when the reasoner was given its knowl­
edge; the reasoner could adapt to its environment by 
operationalizing its problem-solving knowledge. And 
third, schemata are active participants in memory 

reganjxatioa, as will be Satcwaed below. This crg*-
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portion of a problem to be retrieved and applied to 
that problem.2 

3 3£B trie v l u g Schemata. 
Since a reasoner will encounter many different goals 
in many different situations, it should have a wealth 
of schemata at its disposal. The reasoner's memory 
must organize these schemata in such a way that the 
most specific schema available to achieve a particular 
goal can be found when the reasoner needs it. In 
order to do this, the schemata must be linked to one 
another in memory so that retrieval is facilitated. 

MEDIC's memory organizes its schemata in two gen­
eral ways: by the category of diagnostic situation in 
which they are useful, and by the use of specialization 
hierarchies of schemata. Figure 2 shows a portion of 
MEDIC's memory. There are four types of memory 
structure present in the figure (and in MEDIC's mem­
ory): 

1. diagnostic memory organization packets (dx-
MOPs) (cf. the memory organization packets 
(MOPs) of [Schank, 1982])—representing gen­
eralized sessions of diagnosis; 

2. cases—representing individual (presumably un­
usual) cases of diagnosis that the reasoner knows 
about; 

3. schemata; and 

4. scenes—representing portions of diagnostic ses­
sions in which a schema was used; in other 
words, a scene represents an instantiation of a 
schema in a particular case. 

The dxMOPs and cases provide contexts against 
which a current problem can be matched (cf. the 
diagnostic categories of [Kolodner and Kolodner, 
1987])—i.e., they allow the reasoner to categorize the 
current problem. These memory structures contain 
information about the findings which occur in par­
ticular types of problems, the hypotheses that are 
usually considered, patient characteristics, and, most 
importantly, schemata that can be used to achieve 
goals arising in consultations of this type. For exam­
ple, the dxMOP "dx-consult" in Figure 2 represents 
a generalized consultation. It contains the informa­
tion that consultations involve a patient, a doctor, 

3 MDX's specialists also participate in its memory organiza­
tion; however, schemata are different from specialists both in 
the type of information they contain and in the way they are 
used by the reasoner. 
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Qt9j and hypotheses "wiB. %e Lonsidaed. A. dxMOr* 
also contains pointers to schemata that can be used 
to achieve goals expected in the type of consultation 
the dxMOP represents: e.g., "sc-finding" to handle 
goals %t> uitcipKt 'findings, "̂ stwhyputhesjs* "to has\> 
die hypotheses, and so forth. A case, though much 
more specific than a dxMOP, contains basically the 
same type of information; instead of representing a 
category or prototype of a diagnostic situation, how­
ever, it represents an exemplar of a particular kind 
of diagnostic session. Its scenes represent instances 
of schemata having been applied in the past to solve 
particular goals in the situation represented by the 
case. 

MEDIC's memory is organized in a manner simi­
lar to that described by [Kolodner, 1984] for episodic 
memory structures. The memory is basically an in­
terconnected set of discrimination nets, or hierar­
chies, in which the leaf nodes are cases and scenes, 
and the interior nodes are dxMOPs or schemata. 
Memory nodes are linked by indices, each of which 
is a feature/value pair, where the "feature" is drawn 
from the more abstract memory structure of the two, 
and the "value" is the value, in the more specific 
structure, of the feature. Features are selected based 
on their predictiveness, or ability to point to useful 
specializations. For instance, one of the indices be­
tween adx-consult" and adx-cc-dyspnea" (represent­
ing consultations in which the chief complaint is dys­
pnea) is "chief complaint/dyspnea." 

DxMOPs and schemata both serve to organize por­
tions of memory. A dxMOP organizes other (less ab­
stract) dxMOPs and cases along dimensions defined 
by the features of the consultation described by the 
dxMOP. Schemata organize more specific schemata 
and instances of schemata having been applied; this 
organization is along features of the schemata: goals 
it achieves, characteristics of the situations in which 
it is useful, etc. The two types of organization 
hierarchies—by dxMOP and by schemata—are con­
nected by links between dxMOPs and the schemata 
useful in the situations they describe, and between 
cases and the scenes (instances of schema applica­
tion) that occurred in them. 

Retrieval consists of using features present in the 
current problem (characteristics of the patient, find­
ings present, and problem-solving goals) to traverse 
[Kolodner, 1984] the indexing structure of the mem­
ory to find the most specific schemata available that 
fit the current situation. The actual process of re­
trieval is beyond the scope of this paper; it is basically 

the jaenseas that described in [Kolodner, 1964]. 
As an ample of retrieval, suppose "the reasoner 

is working on a problem in which there is a find­
ing of dyspnea on exertion. One of the reasoner's 
goals would be to interpret the finding: to flesh it 
uul awl 'to explain, its occurrence. The schema thai 
contains the information necessary to do this is la­
beled *sc-DOE" in Figure 2. The reasoner can find 
this schema by two paths. It can traverse the in­
dices of adx-consult", using information about the 
finding present in the problem, to first find adx-cc-
dyspnea", then "dx-cc-DOE". From here, "sc-DOE" 
can be found by using information about how to sat­
isfy the goal of interpreting DOE. Or the reasoner can 
begin by looking in asc-consult" for a schema which 
achieves the general goal: in this case, "interpret a 
finding." The indices of this schema can then be tra­
versed, through asc-dyspnea" to asc-DOE". 

Multiple paths to the same schema serve the pur­
pose of helping ensure that a good schema can be 
found for specific situations. Since there are redun­
dant paths to each schema, the reasoner can still 
find a schema even if there is not enough information 
present in the current problem to allow it to traverse 
some paths. 

4 Applying Schemata 

Schema application is somewhat analogous to pro­
gram interpretation. First, a step is selected. If the 
step's action is a primitive action, the reasoner exe­
cutes it directly; if the action is a schema, then the 
reasoner recursively applies it. If the action fails, or 
if no action is specified, the reasoner attempts to find 
and apply another schema to achieve the goal of the 
step. A new step is then selected by using informa­
tion contained in the "next step" portion of the step, 
and the process continues. 

There are several control problems that are beyond 
the scope of this paper. For instance, the reasoner 
should react to new information as it is discovered by 
retrieving schemata to handle it: e.g., when a find­
ing is discovered, the reasoner should find a schema 
that can interpret the finding, and when a hypothesis 
is proposed, the a schema to evaluate the hypothesis 
should be found. At any particular time, there may 
be several active schemata. The problem of select­
ing the schema to apply at a particular time is one 
of focusing the reasoner's attention; it depends on 
(among other things) the reasoner's current goal and 
the importance of the findings and hypotheses under 
consideration. 
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Figure 2: A portion of MEDIC's memory. 
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3 Medic 
Our approach to diagnostic reasoning is implemented 
in the MEDIC program, a schema-based reasoner 
working in the domain of puhnonology. MEDIC con-

ory (STM). The memory is organised as we have de­
scribed in this paper. The reasoner is a bit more 
complex, in that it is able to respond (to a limited 
extent) to new information as it occurs. The rea­
soner operates at all times under the direction of a 
schema. 

Conceptually, MEDIC has two types of schemata in 
its memory: global schemata and local schemata. A 
global schema is one that can direct the reasoner in 
performing large segments of a consultation. Exam­
ples are: "sc-consult", which directs the entire course 
of a consultation; "sc-getlnfo", which gathers infor­
mation from the user; and "sc-formDx", which forms 
a diagnosis from the hypotheses present in STM. A 
local schema is one that can direct the reasoner to 
achieve very specific goals, such as interpreting a find­
ing or evaluating a hypothesis. Examples are: "sc-
finding", an abstract schema which interprets any 
finding; "sc-dyspnea", which interprets a finding of 
dyspnea; "sc-dzHypothesis", which can evaluate any 
disease hypothesis; "sc-pulmDz", a specialization of 
sc-dzHypohthesis for pulmonary disease; and "sc-
RPE", a further specialization for evaluating recur­
rent pulmonary embolism. 

Having very specialized schemata allows the rea­
soner to act in a more focused manner than if it had 
only more abstract schemata. For example, a schema 
for interpreting dyspnea can be used to directly ask 
the user questions aimed at eliciting specific infor­
mation to evaluate the severity: "How far can the 
patient walk?" or "How many stairs can the patient 
climb?" If a more abstract schema were used, a way 
would have to be found to gather the information and 
fill in the severity. Further specializations can be used 
to make even finer interpretations, or interpretations 
in rare but important contexts: e.g., a schema for in­
terpreting dyspnea in someone who is restricted to a 
wheelchair should cause the reasoner to ask different 
questions than a schema for interpreting dyspnea in 
someone who is ambulatory. 

Currently, MEDIC can diagnose very simple cases of 
pulmonary disease. Its basic algorithm is described 
in Figure 3. When the user asks for a consultation 
with MEDIC, the program attempts to find a dxMOP 
which describes the situation. This dxMOP is then 
the source of schemata to achieve goals arising dur­
ing the consultation. In addition, the reasoner re-

Wait until user requests a consultation; 
Add goal of diagnosing patient to short-term 

memory; 
Retrieve dxMOP using goal; 
Use strategy from dxllOP, it possible; 
Select a schema from tbe dxMOP to satisfy 

goal, add it to agenda; 
loop until done: 

Select a schema from agenda using strategies, 
local information in the dxMOP; 

Apply one action of the schema; 
if there was an interruption then: 

Handle interruption; 
fl; 
Specialize current dxMOP; 
if specialization succeeded then: 

Set current dxMOP to be the 
specialization; 

fl; 
end loop; 
Accept and process feedback; 
Update memory; 

end loop; 
end. 

Figure 3: Basic schema-based reasoning algorithm. 

trieves a strategy from the dxMOP; the strategy is 
used by the reasoner to select from among its active 
schemata. An example of a strategy can be seen in 
Figure 4; this strategy provides a goal ordering to 
the reasoner which causes the reasoner to perform 
a crude form of hypothetico-deductive reasoning: se­
lect goals (schemata) related to hypotheses first, then 
select those that relate to findings (with the hope of 
generating hypotheses), etc. 

Situation: any 
Goal ordering: 

select goals related to hypotheses 
select goals related to findings 
select goals for gathering information 
select goal for forming diagnosis 

Figure 4: Strategy "st-HD-Reas" for hypothet­
ico-deductive reasoning style. 

Let's look at an example of a consultation with 
MEDIC, a portion of which is shown in Figure 5. Sup­
pose a user requests a consultation. The reasoner 
looks in memory for a way of satisfying the goal of di­
agnosing a patient and finds a dxMOP, "dx-consult", 
representing how consultations are generally done. 
This is made the current dxMOP, and it is used as 
a source both of a strategy and of schemata to sat­
isfy active goals. The strategy it contains is "st-HD-
reasoning", the strategic schema mentioned above 
which provides a goal ordering to induce hypothetico-
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T̂pVttea* (mT female)' (Te%kt (vsl«ê 04)) (kcajftft 
(value 64)) (imce white)) 

Adding information about patient to STM. 
What is the chief complaint? 
: (finding (entity (dyspnea (duration (yean 2)) (chancier profMMive)))) 
A^At^g chief complaint to 5TM—adding findhag af 

<DYSP1TOA0> to STM. 
How many flights of stairs can the patient climb? 
: (less-than 1) 
How far can the patient walk on level ground? 
: (yards 20) 
I judge the qualitative value of SEVERITY of <DYSPNEA0> 

to be SEVERE. 
(same for cardiac disease)... 

...explaining dyspnea... 
Processing <HYPOTHESIS0> [pulmonary disease); 

relating to other hypotheses... 
...generating expectations given <HYPOTHESIS0>... 
...I'm scoring hypothesis <HYPOTHESIS0> (<PULM-DZ0>) 
...hypothesis explains: (<FINDING0>) [dyspnea]... 
...failed predictions for hypothesis: — 
...hypothesis doesn't explain: — 
...trying to specialise the hypothesis of 

<HYPOTHESIS0> (<PULM-DZ0>).. . 
...specialized <HYPOTHESIS0> to <HYPOTHESISl> 

(<RPE>) [recurrent pulmonary embolism] 
...generating expectations given <HYPOTHESISl>.. . 

Is there a finding of <SYNCOPE>? 
: Yes 

Enter information (<return> if no more). 

My diagnosis is: Recurrent pulmonary embolism. 

Figure 5: Part of a consultation with MEDIC. 

deductive reasoning. The only goal active is one to 
diagnose the patient; the schema to achieve this in 
dx-consult is "sc-consult". This is added to the rea­
soner's agenda. 

The reasoner now selects a schema from its agenda, 
using the goal ordering provided by the current strat­
egy; the use of specific information from the dxMOP 
is not currently implemented. The only schema to se­
lect is sc-consult, so the reasoner selects that and be­
gins to apply it. The user is asked for some initial in­
formation about the patient, including a description 
of the patient (a white female who is overweight)3 

and the chief complaint (progressive dyspnea). The 
information is added to STM. Adding the chief com­
plaint causes the reasoner to be interrupted, and it 
searches memory for a schema to interpret the find­
ing. Schema "sc-dyspnea" is found and activated. 

Since the strategy in use dictates that goals related 
to findings have precedence over goals for gathering 
information or forming a diagnosis, sc-dyspnea is se­
lected and used. This schema is a specialized version 

3 Input to MEDIC is in a version of Conceptual Dependency 
[Schank & Abelson, 1977]; there is currently no natural lan­
guage interface. 

af a. general yhema to interpret findings; mgfatad of 
asfciwg general ^nestana, however, the schema can 
ask very specific things related to dyspnea (e.g., ask­
ing how many stairs the patient can climb as a mea­
sure of the severity). The last step of this schema is to 
explain *the'finding bypostulatzng diseases *thai could 
cause it; using this step, the reasoner postulates hy­
potheses of pulmonary disease and cardiac disease. 
Adding these hypotheses to STM again interrupts 
the reasoner, which finds and adds to the agenda 
schemata to evaluate the hypotheses: "sc-pulmDz" 
and "sc-cardiacDz". 

The strategy orders goals related to hypotheses be­
fore any others; hence, one of the two schemata just 
added is selected, in this case, sc-pulmDz. The rea­
soner uses this schema to score the hypothesis of pul­
monary disease,4 and then tries to specialize the hy­
pothesis using information that is in STM. One pos­
sible specialization, based on the fact that the pa­
tient is overweight, is recurrent pulmonary embolism 
(RPE); this is hypothesized, resulting in a schema 
("sc-RPE") being activated to evaluate it. 

The reasoner then selects sc-RPE and begins to 
evaluate the hypothesis of pulmonary embolism. 
Eventually, it will have evaluated all the hypotheses 
it can and will have exhausted the information the 
use can give it. The main schema, sc-consult, will 
then suggest the step of forming a diagnosis, which 
will be attempted.5 In this case, the best hypothesis 
is recurrent pulmonary embolism, and that will be 
proposed to the user. 

The current implementation of MEDIC is incom­
plete in several ways. For example, MEDIC does not 
have a principled way of choosing from among several 
active schemata the one to follow at any particular 
point in diagnosis; Le., there is currently no theory 
addressing the control of the reasoner's attention. In 
addition, there is currently neither the domain knowl­
edge nor the variety and number of schemata present 
in memory to allow very sophisticated diagnoses to 
be made; gathering this knowledge from our domain 
expert is one of the next steps in this project. 

Learning is currently not addressed, either. We 
cannot expect to give a diagnostic reasoner operat­
ing in a sophisticated domain all of the knowledge 
that it will need to solve all of the problems presented 
it [Kolodner and Kolodner, 1987]; instead, if the pro­
gram's knowledge is to be made as operational as pos­
sible for the domain, the program will need to be able 

4 Using a scoring scheme very similar to that of INTERNIST-1 
[Miller et al, 1982]. 

5 Again, using a method similar to that of INTERNIST-1. 
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learning is not a focus of our work, we have tried to 
formulate the schema-based reasoning approach (and 
design MEDIC) in such a way that learning could be 
added at a later 'time. We discuss this m the next 
section. 

6 Relationship to Case-based 
Reasoning 

Though we do not explicitly address learning in our 
work, this research was begun with the idea that the 
style of reasoning which would evolve from it would 
be amenable to learning from past problem-solving 
experience. In this section, we discuss one approach 
to this type of learning, called case-based reasoning. 

Case-based reasoning [e.g., Kolodner, 1987; Kolod­
ner et a/., 1985; Simpson, 1985] involves reusing in­
formation from past problem-solving episodes to help 
solve a new problem. Case-based reasoning (CBR) 
basically provides reasoning short-cuts: problem-
solving that went on in similar previous cases is re­
trieved and reused in a new problem. CBR has been 
successfully applied to several different planning tasks 
[Simpson, 1985; Sycara, 1987; Hammond, 1986], to 
advice-giving [Kolodner, 1986; Turner, 1987a, 1987b; 
Cullingford and Kolodner, 1986], and, in one instance 
(and in a somewhat limited way), to diagnosis [Kol­
odner, 1983; Kolodner and Kolodner, 1987]. 

In our approach, "cases" correspond to consulta­
tions that have been performed by the reasoner.6 

When a consultation is finished, the reasoner would 
represent the result as a case and store it in memory. 
It would be indexed from the dxMOP or dxMOPs 
that were used in the consultation it represents, since 
it is a specialization of those dxMOPs. For example, 
a consultation involving a young alcoholic man with 
lung cancer might be solved using information from 
a dxMOP representing consultations involving alco­
holic patients and from a dxMOP representing con­
sultations involving patients with lung cancer. The 
new case representing the consultation would then 
be indexed by both of these dxMOPs, using features 
that differentiate it from them. 

A case has information about the patient involved 
in the consultation, findings that occurred, hypothe­
ses that were considered, the diagnosis, and any feed-

6 The cases we mentioned earlier in the paper are given to 
the program by a human. However, they can be used in the 
same way as the cases described in this section. 

back about the coasaftataoa that was obtained from 
the um.i. Most hupui Unity, fcuwun, a t » e xxmt-
tains the actions that were performed to diagnose the 
patient in that consultation; these actions, as men­
tioned, comprise the scenes of the case. 

There are ftnii ways that mse bawd Teasonmg can 
be used in our approach: 

1. the results of reasoning done in the past can be 
reused; 

2. a case can suggest schemata to use in a similar 
situation; 

3. a case can provide information to allow the cre­
ation of new schemata; and 

4. the process of storing cases in memory can pro­
duce useful changes in the reasoner's general 
knowledge structures, including the specializa­
tion of existing schemata. 

When a reasoner is faced with a new problem, it 
may be reminded [Schank, 1982; Kolodner, 1984] of 
a previous consultation—i.e., a case representing the 
previous consultation may be retrieved from memory 
using the features of the new problem. In this situa­
tion, the old case can be used as a source of reasoning 
short-cuts in the new problem; this is how case-based 
reasoners usually use cases.7 For example, consider­
able reasoning effort may have been expended in the 
old consultation to interpret a particular finding; if 
the same finding occurs in the new problem, the rea­
soner can reuse the interpretation from the old con­
sultation instead of repeating the reasoning that was 
done. One advantage of this was mentioned in [Kol­
odner & Kolodner, 1987]: an old case can be used as 
a source of hypotheses about a new problem. 

Similarly, a previous case may suggest actions the 
reasoner can use to achieve goals in a new problem. 
In our approach, the scenes of a case generally rep­
resent instantiatiations of schemata; thus, the scenes 
of an old case can suggest schemata to use in a new 
problem. In addition, the reasoner may choose to in­
stantiate a schema in a particular way, based on how 
it was instantiated in the old consultation. 

The reasoner may choose to create new schemata 
from the scenes of a case, rather than using the 
schemata that were instantiated in the case. One 
reason for this to occur would be if the old case and 
the new problem are quite similar, but not identical, 

7 W e have not addressed in any detail how these short-cuts 
are transferred to the new problem. However, a reasonable 
approach, given the nature of schema-based reasoning, would 
be to give the reasoner schemata which it can use to perform 
case-based reasoning. 
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ample, suppose a scene of the old case was concerned 
with interpreting dyspnea, and the patient was in a 
wheelchair. In this scene, the usual dyspnea schema 
-would have been modified to take into account that 
the patient could not walk Le., questions such as 
"How far can the patient walk on level ground? 0, that 
would normally be asked, may have been changed to 
questions that are more useful for that patient. If 
the new problem involves a patient who walks with 
crutches, then it is likely that the goal of interpreting 
dyspnea can be achieved in the new problem using a 
slight generalization of the actions performed in the 
old scene. One method of performing this type of 
generalization is abstractional analogy, described in 
[Shinn & Kolodner, 1988]; alternatively, some sort of 
explanation-based learning [DeJong, 1983; DeJong & 
Mooney, 1986] could be used. Once a new schema 
is formed, it would be indexed from the schema it 
is a specialization of. It could then be used to solve 
similar problems in future. 

An old case may have scenes that are not instan­
tiations of schemata, but represent instead the end 
result of some sort of "from-scratch" problem-solving 
that was carried out in lieu of an appropriate schema 
to achieve a goaL When the reasoner recalls such a 
case and has a similar goal, it may choose to create 
a new schema by generalizing the actions that were 
performed in the previous scene. Abstractional anal­
ogy or explanation-based learning could be used here, 
too, and the new schema would be stored in memory 
for future use. 

New generalized knowledge, including new 
schemata, would also be created during the process of 
storing cases in memory. It is a relatively short jump 
from the memory described in this paper to a full-
fledged dynamic memory [Schank, 1982] of the kind 
implemented in CYRUS [Kolodner, 1984] and used in 
several case-based reasoning approaches [e.g., Ham­
mond, 1986; Kolodner, 1983; Simpson, 1985; Sycara, 
1987]. The differences are that in a dynamic memory: 
(1) new information can be added; and (2) as infor­
mation is added, both the existing memory structures 
as well as the organization changes to facilitate future 
retrieval. 

As mentioned, a new case would be indexed from 
those dxMOPs it represents a specialization of, us­
ing features that differentiate it from those dxMOPs. 
One of three things can happen for each index in 
each dxMOP. The index may not currently be used 
in that dxMOP; in this situation, the case will simply 

be stored asang that index. The index might, how-
erer, already point to another dxMOP; in this situar-
tion, the new case will be indexed from the dxMOP 
residing at that index. Finally, there may already 
be a case at index: in this situation, a collision is 
said to have occtnred. Following {Kolodner, 1964], 
the procedure in this situation would be first to cre­
ate a new dxMOP by generalizing both cases, then 
to store the new dxMOP using the index. The two 
cases—the one that was stored at the index and the 
new one being added—are then indexed from the new 
dxMOP by their differences from it.8 The new dx­
MOP represents a generalization of the two cases and 
a specialization of the parent dxMOP from which the 
old case was indexed. 

The process of storing cases in memory effectively 
causes a reasoner to learn new specializations of ex­
isting diagnostic categories, based on consultations 
it has seen. As cases are being added to memory, 
causing new specialized dxMOPs to be created, we 
would like for the reasoner to learn specializations of 
its problem-solving knowledge, too. Each case, recall, 
represents a consultation the program has had with 
a user; as such, it contains scenes that represents the 
actions taken to achieve one goal or set of goals— 
i.e., instantiations of schemata for the situation faced 
in that consultation. It would make sense to store 
the scenes of a consultation in memory by indexing 
them beneath the schemata they are instantiations 
of. In this way, new schemata would be created in 
the same way dxMOPs are created during memory 
update. These new schemata would represent spe­
cializations of existing schemata which were created 
based on experience using those schemata to solve 
problems. 

The results of creating new dxMOPs and schemata 
are twofold. First, by creating new dxMOPs, the rea­
soner learns about new categories of consultations. 
This allows it to know how to apply its schemata 
in different situations, since each dxMOP has use­
ful schemata associated with it. By doing this, the 
reasoner would learn in which types of consultation 
specific schemata are useful: in other words, the rea­
soner would be learning the conditions under which 
its procedural knowledge is applicable. Second, new 
schemata are produced, allowing the reasoner to solve 
problems which are similar to the new schemata 
more quickly, better, or both. In effect, the reasoner 
is adapting its problem-solving knowledge to better 

8In [Kolodner, 1984], similarity-based learning was used; for 
a medical domain such as this, however, SBL should probably 
be augmented with some sort of explanation-based techniques. 
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In summary, then, case-based reasoning techniques 
would add much to a schema-based reasoner. Cases 
provide a way of finding schemata for goals present 
in new sxtnatxans that are wrmilar to pie? kjnsly-Be.es 
consultations. A case can also suggest new a schema, 
which can be formed by generalizing the instantiation 
of a schema or a sequence of actions used to achieve 
a goal in that case. Finally, storing cases in memory 
affects the schemata the reasoner has available to it: 
as a case is stored, new schemata and dxMOPs are 
formed. The new schemata can be used to solve new 
problems; information from the new dxMOPs can be 
used to decide when schemata are applicable. 

7 Related Work 

As we mentioned, our work is based on preliminary 
research along the same lines done on the SHRINK 
program some years ago [Kolodner, 1983; Kolod­
ner & Kolodner, 1987]. In its most specific and 
mature form, the approach taken by that research 
was to perform diagnosis using information from 
an experientiaUy-modified memory consisting of two 
kinds of structures: DIAGNOSTIC MOPs and PRO­
CESS MOPs. 

The DIAGNOSTIC MOPs in SHRINK are similar 
to our dxMOPs, in that they are memory structures 
that represent generalized information used during 
diagnosis. However, there are some major differ­
ences. Although DIAGNOSTIC MOPs are meant to 
be derived from experience, using a process similar to 
that outlined above for dxMOPs, they are not truly 
episodic structures: that is, they contain no refer­
ences to actions. Instead, they represent disease cat­
egories, in much the same way as do MDX's [Gomez 
& Chandrasekaran, 1982] specialists; the difference 
is that DIAGNOSTIC MOPs are dynamic structures 
that are updated from experience, whereas specialists 
are static. In contrast, dxMOPs represent categories 
of consultations rather than of diseases; though a dx­
MOP may refer to diseases as hypotheses, it contains 
other information relating to the consultation as a 
whole. An example of this would be a dxMOP rep­
resenting consultations involving alcoholic patients. 
Though not representing a disease, this dxMOP holds 
information which helps the reasoner to diagnose this 
type of patient. For example, anemia is generally 
a fairly important finding; however, the dxMOP for 
alcoholic patients would contain information which 
would allow the reasoner to ascribe the finding of 

anemia in fur & jpjitifnt. to ?V**>fr**>1wwn xathex than 
seal (Jung lis. sunt utlm t i n t rn addition, dxMOPs 
do refer to procedural knowledge: a dxMOP refers to 
a set of schemata that are useful for achieving goals 
that are likely to arise during consultations of the 
type described by the dxMOP. 

PROCESS MOPs are similar in some ways to our 
schemata, though more closely related to scripts. As 
new cases use a PROCESS MOP, "compiled paths" 
[Kolodner, 1983] are added to it, analogous to the 
tracks in a script. Schemata, on the other hand, are 
more general than scripts, as we have mentioned. A 
schema allows some "compiled paths" to be repre­
sented as variations in the ordering of the steps due 
to its steps' "next" information. However, the degree 
of freedom here is limited by the constraint that the 
schema, no matter what path is taken, should sat­
isfy a particular goal or set of goals; which path is 
taken depends on the environment. We allow spe­
cialized versions of schemata to exist to handle re­
lated or specialized goals, and these are organized in 
a manner that facilitates their retrieval in particular 
situations. PROCESS MOPs were meant to be spe-
cializable and to participate in memory organization 
[Kolodner, personal communication]; however, they 
were not a major focus of the research on SHRINK, and 
this aspect of their use was not fully implemented. 

The manner in which the reasoner uses each kind 
of procedural information also differs. PROCESS 
MOPs are recalled and followed by the reasoner from 
start to finish; only one is active at once. Many 
schemata, each being used to satisfy a goal, can be 
active at once, and the reasoner need not completely 
apply any schema before switching to another. This 
allows a degree of flexibility that SHRINK does not 
have to respond to changes in the task during diag­
nosis. 

Our approach also differs from work relying on a 
strict interpretation of the term "case-based reason­
ing:" that the reasoner uses information only from 
cases and not from any generalized structures. The 
MEDIATOR [Simpson, 1985] is an example of such 
a case-based reasoner. Though it has Generalized 
Episodes (GEs) present in its memory as a result of 
storing cases of problem-solving, it uses this informa­
tion only for the organization and retrieval of cases. 
In contrast, the use of generalized knowledge struc­
tures is central to our approach: schemata and dx­
MOPs are used preferentially to cases, representing 
as they do compiled problem-solving information. 

Our knowledge structures and memory organiza­
tion superficially resemble those of MDX. However, 
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run- schemata am XO0RJ ajeaflCal tha& MDJC'* >JWf |li 
ists is. being able to lepiwwrnt scripts and pians as"well 
as rules. This allows MEDIC to represent procedural 
knowledge of bow to perform diagnosis, in addition 
to domain knowledge, directly and d<rrlaratrveiy. 

8 Conclusion 

The schema-based reasoning process outlined in this 
paper is one approach towards providing a diagnos­
tic reasoner with information that is operational for 
its problem-solving environment. Schemata are re­
trieved by the reasoner and used to achieve goals 
present in diagnostic problems: interpret a finding, 
evaluate a hypothesis, etc. Schemata are stored in 
a memory that organizes them in two ways: by the 
situations for which they are appropriate, and along 
hierarchies defined by their features. The reasoner re­
trieves schemata by using goals in and feature of the 
current problem to traverse memory, then applies the 
schemata to achieve its goals. 

Our approach was developed keeping in mind the 
eventual need for learning in a problem solver for real-
world problems. If we were to allow cases of problem 
solving to be added to our memory in the manner de­
scribed above, several benefits would accrue: (l) the 
reasoner's knowledge of consultations would increase; 
(2) it would learn about situations in which its pro­
cedural knowledge is applicable; and (3) its store of 
schemata would increase, with the overall effect that 
the program's procedural knowledge would adapt to 
the task environment as problem solving is done. 

Our ideas are being tested in MEDIC, a schema-
based diagnostic reasoner whose domain is pul-
monology. There is no reason to believe, however, 
that diagnosis is the only domain in which schema-
based reasoning is worthwhile. The basic idea is quite 
general, and should be applicable to other domains 
and other types of problem-solving tasks. 
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Opportmustic Use of Schemata for 
Medical Diagnosis1 

Roy M. Turner 
(roytOgatectt,cdn) 
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Abstract 

Medical diagnosis can be considered to be a kind of planning task in which the goals are such things 
as "interpret a finding" and "evaluate a hypothesis," and in which the operators are such things as 
asking for information and drawing inferences. However, diagnosis is unlike many typical planning 
tasks, planning and plan execution proceed simultaneously. New information, arising as a result of 
an action taken by the reasoner, may impact the reasoner's future behavior. To cope with this, 
the diagnostician must be able to respond to changes in its environment as they occur: it must be 
opportunistic. 

In this paper, we describe an approach to opportunistic reasoning in medical diagnosis. Our ap­
proach, called schema-based reasoning, uses packets of procedural knowledge—schemata—to direct the 
reasoner to solve goals as they arise during problem solving. Several schemata can be active at once, 
and the reasoner can switch between using them as the situation demands. The reasoner selects which 
schema to follow at any given time by using information about the type of consultation it is performing, 
and by using strategies represented as strategic schemata. Our approach is implemented in the M E D I C 

program, a schema-based diagnostic reasoner whose domain is pulmonology. 

1Thi« research has been funded in part by NSF Grants IST-831771 and IST-8608362 and grant DTD 
09-25-87 from the Lockheed Al Center. 
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Medical diagnosis can be considered a planning 
task. This is not the traditional view, however. 
For example, Gomez and Chandrasekaran [Gomez & 
Chandrasekaran, 1982] and others view diagnosis as 
a classification task: a problem, consisting of a set 
of signs and symptoms, is classified as being an in­
stance of a disease or set of diseases. However, this 
viewpoint overlooks the fact that actions are per­
formed in order to classify a disease: in other words, 
planning and plan execution must be done as part 
of the classification process. When viewed as plan­
ning, goals in diagnosis are such things as "diagnose 
the patient," "interpret a finding," and "evaluate a 
hypothesis." Operators, at the lowest level, are such 
things as asking questions, requesting tests be per­
formed, and making inferences based on information 
known about the patient and the reasoner's general 
knowledge of the domain. 

Medical diagnosis is unlike many traditional plan­
ning tasks in that an initial, complete statement of 
the problem is generally impossible. Instead, the di­
agnostician must gather information about the prob­
lem as part of the process of performing diagnosis. 
The result of this is that the diagnostician cannot 
formulate a plan for diagnosis, then carry it out: the 
problem statement would change as the plan for per­
forming diagnosis is executed. The effect of execut­
ing one step (e.g., asking a question) would likely al­
ter the assumptions upon which later steps are based 
(e.g., a new finding might radically alter the diseases 
considered as diagnoses, or might suggest specialized 
methods for interpreting the finding). The problem 
for a diagnostician, then, is to be able to interleave 
planning and execution (cf. [McDermott, 1978]) so as 
to make use of new information as it becomes avail­
able. In other words, a diagnostician should be op­
portunistic. 

'This research has been funded in part by NSF Grants IST-
831771 and IST-8608362 and grant DTD 09-25-87 from the 
Lockheed Al Center. 

Our approach to this problem makes use of pack­
ets of procedural information called schemata, which 
are retrieved from memory in response to goals aris­
ing from changes in the problem solver's environ­
ment: e.g., new findings, new hypotheses, etc. Most 
schemata can achieve very specific goals, such as "in­
terpret a finding" or "evaluate a hypothesis"; others 
control larger parts of the reasoner's processing, such 
as directing the reasoner in the overall consultation. 
Schemata are flexible enough to encode several vari­
ations of how to achieve their goal; in addition, spe­
cializations of schemata provide the reasoner with in­
formation about how to satisfy specific goals or goals 
arising in specific contexts. 

When a goal arises that can be achieved by a 
schema, that schema is retrieved from memory and 
made active. As the reasoner may have many goals 
simultaneously, there may be many active schemata 
at any time. The reasoner must decide which goal 
to focus on, and hence, which schema to apply. In 
our approach, the reasoner uses information from two 
sources to help it focus its attention. One source 
is from memory structures representing generalized 
consultations similar to the current problem. Infor­
mation from these generalized consultations, such as 
information about which findings are generally im­
portant in this context, can be used by the reasoner to 
help it select a goal to achieve. The second source is 
from packets of procedural knowledge, called strategic 
schemata, which contain generally useful strategies in 
the form of goal orderings: e.g., a medical reasoner 
would have strategies for performing hypothetico-
deductive reasoning, reasoning under time pressure, 
etc. 

In this paper, we discuss our approach to oppor­
tunism in medical diagnosis. Our approach is called 
schema-based reasoning. Our ideas are being tested 
in MEDIC [Turner, 1988], a schema-based diagnostic 
reasoner whose domain is pulmonology. 
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Opportunism involves responding to changes in the 
task environment as they arise during problem solv­
ing. There are at least three rapabiTrtirn a Teasaner 
must have in order for it to respond to changes; it 
must be able: 

1. to interleave planning to achieve a goal and exe­
cution of that plan; 

2. to respond immediately to new information ap­
pearing in the environment; and 

3. to select the appropriate goal to pursue at each 
point in problem solving—that is, it must be able 
to focus its attention. 

Traditional planners do not interleave planning 
and execution. Instead, the planner formulates a 
plan, then applies it. On the other hand, rule-based 
problem solvers and purely reactive planners such as 
PENGI [Agre & Chapman, 1987] do not really perform 
planning per se. The problem with these approaches 
is that there is very little coherence in their actions; 
consequently, their behavior may seem strange and 
unintuitive to a user. This presents a problem, es­
pecially in a medical domain, since a user is unlikely 
to accept a system if he or she cannot understand its 
reasoning. 

A middle ground is needed between traditional 
planners and purely reactive planning. In our ap­
proach, problem solving is carried out by retrieving 
packets of procedural knowledge from memory, then 
applying them. These packets, or schemata, can be 
thought of as small plans or pieces of plans that 
achieve a goal; for instance, a reasoner may have a 
schema which can interpret a finding or one that can 
evaluate the likelihood of a hypothesis that a particu­
lar disease is present. Figure 1 shows a simplified view 
of a schema for interpreting a finding of dyspnea.1 A 
schema contains steps to be performed by the rea­
soner in order to satisfy a particular goal. 

Our approach is more flexible than traditional 
planning for three reasons. First, the order of the 
steps of a schema is not completely fixed ahead of 
time, but rather depends, to some extent, on the sit­
uation at the time of schema execution. For exam­
ple, the step labeled "Si" contains information that 
allows the reasoner to select the next step based on 
the answer to the question asked in SI. 

1 Shortness of breath. 

(mimh iufcujMLl a-frnrtwss; nf AJsjiimi Patient: any patient findings: dyspnea Preconditions: there is a finding; of dyspnea Steps: SI: action: ask how many stairs patient can climb goal: detexmiae seventy of dyspnea next: if pt. can climb flight of stairs S3 else => S2 S2: action: ask how far patient can walk goal: determine severity of dyspnea next: S3 S3: action: estimate the severity of the dyspnea goal: determine severity of dyspnea 

S10: action: postulate hypotheses of pulmonary disease, cardiac disease goal: explain dyspnea next: done 
Indices: 

patient/PATIENTl — SCENE2 
Figure 1: sc-dyspnea—a schema for interpret­
ing a finding of dyspnea. 

The second source of flexibility in our approach is 
also due to the nature of a schema's steps. In ad­
dition to specifying actions that should be taken— 
either primitive actions or other schemata—a step in 
a schema usually specifies the goal that the step is to 
satisfy. If the step fails, the reasoner can attempt to 
find another way of satisfying the step at run time. 
In addition, a step does not necessarily specify an 
action. Instead, it can specify only a goal, thus forc­
ing the reasoner to attempt to satisfy the goal at run 
time. 

The third reason our approach is flexible is that 
a single plan is not formulated for all of the goals 
in a problem, then executed. Instead, individual 
schemata are retrieved and applied to satisfy goals. 
As the situation changes, which schemata are active 
will also change. For example, as new goals arise dur­
ing problem solving, new schemata can be found and 
activated to satisfy them. 

In order to exhibit opportunism, a reasoner must 
be able to notice and respond to new information as 
it becomes available. In the context of a diagnosis 
program, new information comes from the user; in­
formation may be volunteered, or it may come from 
answers to questions asked by the system. In either 
case, when new information becomes available, the 
reasoner should interrupt what it is doing and incor­
porate the information into what it knows; the new 
information may also cause the reasoner to alter the 
course of its problem-solving behavior. 
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fmutation u/nlained in schemata; tins, to handle a 
piece of information, a schema most be found and ac­
tivated. When a new item of information is encoun­
tered, the reasoner interrupts what it is doing and 
looks for n schema that can satisfy the goal created 
by the occurrence of the information: e.g., if the in­
formation is a finding, the goal will be to interpret it. 
When a schema is found, it is activated. The reasoner 
can then either return to what it was doing (i.e., to 
the schema it was applying), or it can choose, based 
on the altered state of the environment, to pursue 
a different goal (i.e., to apply a different schema— 
perhaps the one just activated). 

There may be many goals present for a given diag­
nostic problem: e.g., goals to interpret findings, eval­
uate hypotheses, and to produce a diagnosis. Each 
of these will lead to one or more schemata being ac­
tivated. In addition, information learned during di­
agnosis will result in more schemata being activated, 
as discussed above. Once we allow the reasoner to 
have more than one schema active at a time, we face 
the need for ability (3) above: the reasoner must be 
able to select the appropriate schema to apply at each 
point in problem solving;2 i.e., the reasoner must de­
cide on which goal to focus its attention. 

This is not an easy task, since the importance of 
a goal varies with context. For example, in one sit­
uation, a goal to explain a severe rash may be quite 
important; however, in another situation involving 
both a severe rash and hemoptysis,3 the goal of ex­
plaining the hemoptysis should take precedence over 
the goal of explaining the rash. 

One approach to this problem is to use knowl­
edge about the type of consultation the reasoner is 
performing. This information, in our approach, is 
present in memory structures called diagnostic mem­
ory organization packets, or dxMOPs (cf. [Schank, 
1982], [Kolodner, 1985], and the diagnostic categories 
of Kolodner and Kolodner [1987]). These structures 
participate in memory organization, and provide one 
way for the reasoner to retrieve schemata from mem­
ory (see [Turner, 1988] for details). Each dxMOP 
represents a particular class of consultations, and pro-

3 We do not allow schemata to be applied in parallel. This is 
because we are trying, as far as possible, to model the behavior 
of human diagnosticians, who generally act as though they are 
thinking of one thing at a time. There are two reasons for 
modeling humans: (1) if the reasoner behaves similarly to a 
human, then the user is more likely to understand its reasoning, 
and hence, accept it; and (2) reasoning in a manner similar to 
that of a human should make explanations easier (though we 
do not currently address explanation). 

3Blood in the sputum. 

Gmmk liltiiMi t h * y t i e a r t 
T a t i e s f c a n alcohofic p a t i e a t 
Chief complaint: dyspnea 
findings: 

anemia: low importance, explained by 
alcoholism 

atmnim- lam importance, crplainnrl by 
•lmhollra 

Hypotheses: TB, sarcoid, generalised pulmonary or heart 
disease 

Schemata: 
sc-consult: for goal of diagnosing patient 
sc-nnding: for generic findings 
sc-TB: for evaluating TB 

Indices: 

finding/mass-on-X-ray—•• dxMOP3 

patient/PATIENT4 — dxMOP2 

Figure 2: A d x M O P for consultations involv­
ing alcoholics with dyspnea. 

vides information about goals, actions, etc., that can 
be expected in such a consultation. Information from 
a dxMOP can be used to decide which goal—and 
hence, which schema—to pursue. For example, sup­
pose the dxMOP is the one shown in Figure 2; this 
dxMOP represents consultations involving alcoholics 
whose chief complaint is dyspnea. Among the ex­
pected findings are anemia and ataxia,4 which are 
both explained by alcoholism. If the reasoner discov­
ers that the patient indeed has anemia, it would not 
need to follow it up, since the finding is anticipated 
by the dxMOP and marked with a low importance. 

Information contained in a dxMOP can help the 
reasoner order goals; but what if there is no such in­
formation present in the dxMOP retrieved from mem­
ory? Or what if there are constraints associated with 
the current problem that are not anticipated in the 
dxMOP, such as time being limited? 

In order to focus the reasoner's attention in this 
type of situation, we use the idea of meta-reasoning 
[e.g., Davis & Buchanan, 1984]: reasoning that takes 
place to guide planning. In our approach, meta-
reasoning information is present in the form of strate­
gic knowledge structures called strategic schemata. 
A strategic schema is a packet of information which 
represents a strategy for the reasoner's behavior; 
since the reasoner's behavior is determined by which 
schemata it chooses to apply, a strategy is equivalent 

'Poor motor coordination. 
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Goal ordering: 
•elect goal* related to .hypotheses 
select goals related to findings 
select goals for gathering information 
select goal for forming diagnosis 

Tl&ure 7s A simple elrate&y for IrypoCbe-
tico-deductive reasoning style. 

Situation: time is short 
Goal ordering*. 

select goal related to chief complaint 
select goals related to hypotheses 
select finding goal only if very important 
select goals of forming diagnosis 

Figure 4: A simple strategy for reasoning un­
der time pressure. 

to an ordering of the schemata applied. Strategic 
schemata are useful for representing general strate­
gies such as hypothetico-deductive reasoning or rea­
soning under time pressure. The reasoner can then 
use information, if available, from a dxMOP to mod­
ify its use of these strategies for a specific situation. 

A simple example of a strategic schema is shown 
in Figure 3. This schema provides a goal order­
ing for the reasoner that induces a crude form of 
hypothetico-deductive reasoning: select any goals 
(i.e., select their corresponding schemata) that relate 
to hypotheses first; if there are none, then select goals 
related to findings in the hope of producing hypothe­
ses; if none, then select goal of gathering information 
from the user; and finally, if that cannot be done, se­
lect the goal of forming a diagnosis. Figure 4 shows 
a simple strategic schema for reasoning under time 
pressure: follow up the chief complaint, if possible; 
evaluate hypotheses; only select goals related to find­
ings if the findings are very important; and finally, 
when all else fails, form a diagnosis. 

The overall algorithm for schema-based reasoning, 
including opportunism, is shown in Figure 5. Note 
that the reasoner can be interrupted; these interrup­
tions can include interruptions both by the user and 
by schema application, as new information is added 
to STM. 

M E D I C 

Our approach to diagnostic reasoning is being imple­
mented in the MEDIC program, a schema-based rea­
soner which performs diagnosis in the domain of pul-
monology. MEDIC consists of three major modules: a 

Wait until nser requests a consultation; 
Add goal of diagnosing patient to short-term 

memory; 
Retrieve dxMOP using goal; 
U m strategy trass dscMOP, if possible; 
Select« srhema frasn the dxMOP to satisfy 

goal, add H to agenda; 
loop until done: 

Select a schema from agenda using strategies, 
local information in the dxMOP; 

Apply one action; 
If there was an interruption then: 

Handle interruption; 
fl; 
Specialise current dxMOP; 
if specialisation succeeded then: 

Set current dxMOP to be the 
specialisation; 

fl; 
end loop; 
Accept and process feedback; 
Update memory; 

end loop; 
end. 

Figure 5: Basic schema-based reasoning algo­
rithm. 

long-term memory, which is organized as described in 
[Turner, 1988]; a short-term memory (STM); and a 
schema-based reasoner, which is directed at all times 
by schemata. 

Conceptually, there are three types of schemata 
in MEDIC's memory: global, local, and strategic 
schemata. A global schema is one that directs a major 
portion of a consultation; an example is the schema 
which contains information that the reasoner can use 
to conduct the consultation: ask for a patient descrip­
tion, ask about the chief complaint, gather informa­
tion, then form a diagnosis. Gathering information 
and forming a diagnosis are also directed by global 
schemata. A local schema is one which directs the 
reasoner in achieving very specific goals: e.g., inter­
pret a finding of dyspnea or evaluate the hypothesis 
of lung cancer. Strategic schemata represent general 
reasoning strategies and are described above. 

Currently, MEDIC can diagnose very simple cases of 
pulmonary disease. MEDIC follows an algorithm very 
similar to that in Figure 5. Let's look at an example 
of a consultation with MEDIC, a portion of which is 
shown in Figure 6. Suppose a user requests a consul­
tation. The reasoner looks in memory for a way of 
satisfying the goal of diagnosing a patient and finds 
a dxMOP, adx-consult", representing how consulta­
tions are generally conducted. The reasoner then uses 
this dxMOP as a context for diagnosis: it is used as 
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.- ( p a t i e n t ( n z f e m a l e ) ( w e i g h t frralT304)) ( J 
( v a l u e 6 4 ) ) ( r a c e w h i t e ) ) 

A d d i n g information a b o u t p a t i e n t to S T V f . 
W h a t U the chief complaint? 
: ( f i nd ing ( e n t i t y (dyspnea (duration ( y e a r s 2)) 

( c h a r a c t e r p r o g r e s s i v e ) ) ) ) 
A d d i s * c h i e f c o m p l a i n t to S T U addhsg fia d ing a t 

< D Y S P N * A O > t o S T M . 
H o w m a n y n i g h t s of s t a i r s c a n t h e p a t i e n t c l i m b ? 
: (less-than 1) 
How far can the patient walk on level ground? 
: (yards 20) 
I judge the qualitative value of SEVERITY of <DYSPNEA0> 

to be SEVERE. 
. . . (same for cardiac disease)... 

...explaining dyspnea... 
Processing <HYPOTHESIS0> [pulmonary disease]; 

relating to other hypotheses... 
...generating expectations given <HYPOTHESIS0>... 
...I'm scoring hypothesis <HYPOTHESIS0> (<PULM-DZ0>) 
...hypothesis explains: (<FINDING0>) [dyspnea]... 
...failed predictions for hypothesis: — 
...hypothesis doesn't explain: — 
...trying to specialise the hypothesis of 

<HYPOTHESIS0> (<PULM-DZ0>).. . 
...specialised <HYPOTHESIS0> to <HYPOTHESISl> 

(<RPE>) [recurrent pulmonary embolism] 
...generating expectations given <HYPOTHESISl>... 

Is there a finding of <SYNCOPE>? 
: Yes 

Enter information (<return> if no more). 

My diagnosis is: Recurrent pulmonary embolism. 

Figure 6: Part of a consultation with MEDIC. 

a source both of a strategy and of schemata to sat­
isfy active goals. The strategy it contains is "st-HD-
reasoning", the strategic schema mentioned above 
which provides a goal ordering to induce hypothetico-
deductive reasoning. The only goal active is one to 
diagnose the patient; the schema to achieve this in 
dx-consult is "sc-consult". This is added to the rea­
soner's agenda of active schemata. 

The reasoner now selects a schema from its agenda, 
using the goal ordering provided by the current strat­
egy; the use of specific information from the dxMOP 
is not currently implemented. The only schema to se­
lect is sc-consult, so the reasoner selects that and be­
gins to apply it. The user is asked for some initial in­
formation about the patient, including a description 
of the patient (a white female who is overweight)6 

and the chief complaint (progressive dyspnea). The 
information is added to STM. Adding the chief com­
plaint causes the reasoner to be interrupted, and it 
searches memory for a schema to interpret the find­
ing. Schema "sc-dyspnea" is found and activated. 

P&rtct: thf tttx its u in aar fhi* g"§V rffc 
to "findings hzve 'precedence wer goals far gathering 
information or forming a diagnosis, sc-dyspnea is se­
lected and used. This schema is a specialized version 
of a general schema to interpret findings; instead of 
anting general questions, the schema can ask very 
specific things Telated to dyspnea (e.g., asking how 
many stairs the patient can climb as a measure of the 
severity). The last step of this schema is to explain 
the finding by postulating diseases that could cause 
it; using this step, the reasoner postulates hypothe­
ses of pulmonary disease and cardiac disease. Adding 
these hypotheses to STM again interrupts the rea­
soner, which finds and adds to the agenda schemata 
to evaluate the hypotheses: "sc-pulmDz" and "sc-
cardiacDz". 

The strategy orders goals related to hypotheses 
before any others; hence, one of the two schemata 
just added is selected, in this case, sc-pulmDz. The 
reasoner uses this schema to score the hypothesis of 
pulmonary disease,6 and then tries to specialize the 
hypothesis using information that is in STM. One 
possible specialization, based on the fact that the pa­
tient is overweight, is recurrent pulmonary embolism7 

(RPE); this is hypothesized, resulting in a schema 
("sc-RPE") being activated to evaluate it. 

The reasoner then selects sc-RPE and begins to 
evaluate the hypothesis of pulmonary embolism. 
Eventually, it will have evaluated all the hypotheses 
that it can and will have exhausted the information 
the user can give it. The main schema, sc-consult, 
will then suggest the step of forming a diagnosis, 
which will be attempted.8 In this case, the best hy­
pothesis is recurrent pulmonary embolism, and that 
will be proposed to the user. 

There is still much work to be done on MEDIC. 
At the present, the program has very little domain 
knowledge, and relatively few schemata. Additional 
thought must also be given to the form and content 
of the strategic schemata, which are currently quite 
simple; eventually, we would like for them to specify 
actions for the reasoner to perform in order to select a 
goal to pursue, making them more like the reasoner's 
other schemata. MEDIC also does not make use of 
context-specific information in dxMOPs to focus its 
attention. 

5Input to MEDIC is in a version of Conceptual Dependency 
[Schank and Abelson, 1977]; there is currently no natural lan­
guage interface. 

eU8ing a scoring scheme very similar to that of INTERNIST-1 
[Miller et aL, 1982]. 

7Blood clots occurring in the lungs. 
8Again, using a method similar to that of INTERNIST-1. 
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Opportunistic reasoning has been addressed in the 
blackboard approach to problem solving of HEARSAY -
II [Erman et al., 1980] and OPM [Hayes-Roth, 
1965]. These piugiam's Knowledge Sonne* (KS's) 
are atomic, rule-like specialists that are invoked in re­
sponse to some arbitrary condition occurring. They 
correspond only loosely to schemata. Schemata are 
larger-grained than KS's, and capable of being in­
terrupted. Schemata also serve to cluster actions to 
be taken to achieve a goal; many KS's, on the other 
hand, may be needed to achieve a single goal. The 
use of schemata should allow the reasoner to behave 
in a manner that a reasoner can understand: e.g., 
question-asking should be more focused. Schemata 
should also facilitate explanation, since the actions 
taken to achieve a goal, though possible temporally 
disjoint, can still be explained in relation to one an­
other. 

The VISIONS Schema System [Weymouth, 1986] 
uses an approach similar to ours for interpreting vi­
sual scenes. Their schemata are specialists in partic­
ular vision tasks and can work in parallel to inter­
pret a scene. Unlike our schemata, theirs are largely 
represented using procedures written in a program­
ming language; it is therefore not possible for their 
program to reason about or modify their schemata, 
as is potentially possible using our representation of 
schemata. In addition, parallel execution of schemata 
is not feasible in our domain, given the goals of fo­
cused question-asking and modeling a human diag­
nostician's behavior. 

The NASL [McDermott, 1978] program concen­
trated on the interaction of planning and execution. 
In many respects, our schemata are similar to NASL's 
tasks: both are hierarchical, bottoming out at the 
primitive action or primitive task level. However, our 
schemata are somewhat more flexible than NASL's 
tasks, and we make explicit use of goals; the latter 
allows the potential of specifying the goal of a task 
without necessarily specifying the steps to achieve it, 
thus allowing the reasoner to make such decisions at 
run-time. 

We face some of the same problems as did NASL, 
too, in the chore of selecting which schemata to pur­
sue at each point in problem solving. NASL made use 
of choice rules, which contained the strategic knowl­
edge of that system. Our strategic schemata can be 
viewed in the current implementation as packages of 
such choice rules. However, the ultimate goal is to 
make them less rule-like and more schema-like, spec­
ifying steps for the reasoner to perform in order to 

.select .schemata toappjy. 
"Pnby f 19B7] is also Liuiuanefl irifli inteileafgig 

planning and execution in environments that change 
during planning. The behavior of his RAP planner 
is quite similar to that of our reasoner. However, 
n\APs would seem to be somewhat uime simple than 
our schemata, and oriented towards real-time con­
trol rather than diagnosis. In addition, we extend 
the idea of using packets of control knowledge to the 
meta-level by using strategic schemata to direct the 
reasoner's attention. 

C O N C L U S I O N 

Medical diagnosis can be fruitfully viewed as a plan­
ning task in which planning is interleaved with di­
agnosis. New information may be discovered during 
diagnosis which should impact the future problem-
solving behavior of the diagnostician. The diagnos­
tician must be opportunistic in order to take notice 
of and respond to this new information as it becomes 
available. 

Schema-based reasoning is one approach to this 
problem. By representing problem-solving knowl­
edge as packets of procedural information designed 
to achieve a goal, the reasoner can activate schemata 
as goals for dealing with changes in the environment 
arise. By storing schemata in a memory based on 
the goals they achieve and the situations in which 
they are useful, the reasoner can find the appropriate 
schemata for goals as they arise. 

Schemata are flexible, and enhance the reasoner's 
ability to respond to changes in the environment in 
two ways: (1) the order of their steps need not be 
completely determined—this allows the reasoner to 
select the next step of a schema based on the state of 
the world resulting from the application of the pre­
vious step; and (2) steps may specify goals, which 
the reasoner can attempt to satisfy at run-time by 
retrieving schema specific to the current situation. 

Schemata are selected for application based on the 
reasoner's focus of attention—Le., the goal the rea­
soner is trying to achieve. Goals are selected by 
the reasoner based on information from two sources: 
general goal-ordering information, stored in strate­
gic schemata; and specific goal-ordering information, 
stored in the dxMOP representing consultations sim­
ilar to the current one. 

Though this research addresses medical diagnosis, 
we believe that schema-based reasoning can be use­
fully applied to other tasks. Our approach should be 
useful for any task in which planning and execution 
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mast be iiilri htfwnd, nria mairft all isatamce of ike 
problem cannot lie anown at the start tf the prob­
lem. 

Many thanks to Janet Kolodner, Hong Shinn, and 
Elise Turner for their comments on earlier drafts of 
this paper, and to our domain expert, Eric Honig, of 
Emory University and Grady Memorial Hospital. 
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Abstract 

Problem solving in open worlds involves 
the management of inconsistency, impre­
cision, and lack of knowledge. In this pa­
per we examine some specific problems 
that arise in open worlds and describe 
inferences that are needed to deal with 
them. We present a problem solving 
architecture that integrates case-based 
reasoning and constraint propagation to 
achieve flexibility in open domains. This 
architecture is implemented in a com­
puter program called JULIA. 

1 Introduction 

Problem solvers must often work with incom­
plete or inconsistent knowledge, either because 
the domain is unbounded, continually chang­
ing, or not well understood. Two general tech­
niques for dealing with such situations are: 1) to 
postpone commitment until more information is 
available, and 2) to make an assumption, or edu­
cated guess, about the missing information. In­
dividually, these techniques may be insufficiently 
flexible: If a problem is under-constrained, de­
layed commitment by itself may never solve it. 
On the other hand, a problem solver that always 
leaps to conclusions may fail to exploit informa­
tion that arrives late. To remedy these prob­
lems, we are exploring an approach that inte­
grates both methods in the form of constraint 
propagation and case-based reasoning. 

*This research was funded in part by NSF Grant No. 
IST-8608362, in part by ARO contract No. DAAG-29-85-
K-0023, and in part by Lockheed Grant No. DTD09-25-87 

Case-based reasoning involves recalling pre­
vious problem solving episodes, or cases, that 
are similar to the current situation and adapt­
ing parts of those cases to fit the new prob­
lem. In this paper, we describe a problem solving 
architecture which integrates case-based reason­
ing with constraint propagation in order to sup­
port reasoning in open worlds. We have imple­
mented this architecture in a program called JU­
LIA [Cullingford et al. 1986], which is an inter­
active catering advisor that helps users to plan 
meals. 

In the following section, we use the meal plan­
ning domain to illustrate some problems that 
arise in open worlds and techniques that address 
them. Section 3 describes the problem solving 
process with an extended example and section 4 
presents a layered architecture which implements 
this process. 

2 Open Worlds 

An open world is any domain for which a prob­
lem solver has incomplete or inconsistent knowl­
edge. Typical situations in which open worlds 
arise are: 1) interactive problem solving, 2) 
under-constrained problems, 3) incomplete do­
main theories, and 4) problems of ill-defined 
scope. In this section, we will discuss each of 
these situations and show how they involve rea­
soning with incomplete knowledge. 

1 



2.1 Interactive Problem Solving 

Problem specifications are often incomplete. 
Many problem adven cope with thai by ask­
ing rraestions and accepting advice from a user. 
To be effective, such interactive problem solvers 
must meet two criteria: they must be reac­
tive and they must reason opportunist really. 
A reactive problem solver is one which re­
sponds dynamically to changes in its environ­
ment [Kaelbling 1986]. An opportunistic prob­
lem solver exploits serendipitous features of the 
environment to satisfy multiple goals or con­
straints [Hayes-Roth et al. 1979]. These criteria 
are illustrated in the following hypothetical dia­
log: 

Caterer: How much do you want to spend? 
Client: Let's have something cheap like Mexi­

can food. I'm on a diet though, so it 
should be a light meal. 

Caterer: How about a taco salad? 

In this exchange, the client answers the origi­
nal question, changes the focus of the conversa­
tion, and volunteers additional information. The 
problem solver, in turn, must react to the shift in 
focus and assimilate the new information oppor­
tunistically to derive a solution which satisfies 
the goals and constraints. 

In addition, the requirements of interactive 
problem solving prohibit chronological back­
tracking. First, because the focus shifts dynam­
ically, the search space cannot be explored hier­
archically. Second, responsibility for decisions is 
shared between the system and the user, and the 
system must not unilaterally revoke the user's 
decisions. Therefore each decision must be indi­
vidually justified to permit dependency-directed 
backtracking, and the problem solving architec­
ture must include truth maintenance. 

2.2 Under-Constrained Problems 

Sometimes a problem has no single right answer, 
or even an optimal one. There may be many 
solutions that satisfy the given constraints; for 
example, there are usually many possible menus 

that will be acceptable for a given meal. How 
ran a problem solver generate these potential so­
lutions, how «b^o]d it rfrrwaj* among them? 

Often, it tb not practical to generate the com­
plete search space. For instance, the class of all 
dishes is both too large and too poorly defined 
to omiTTiArflfA A better strategy is to generate 
a small subset of possibilities, use constraints to 
filter out unacceptable values, and choose among 
the remaining satisficing candidates. 

One way to generate candidates is to recall 
them from previous cases [Kolodner et al. 1985]. 
If the problem solver is reminded of cases which 
were similar to the current one, this provides a 
limited set of candidate values among which to 
choose. Using case-based reasoning in this way 
amounts to a kind of early commitment which 
complements the delayed commitment of con­
straint propagation. 

2.3 Incomplete Domain Theories 

When a problem solver does not know all of the 
relationships that hold in a domain, it may make 
incorrect inferences or fail to make any inferences 
at all. Sometimes the only recourse is to make an 
assumption about what is probably true. For in­
stance, a caterer can usually assume that money 
is important to a client and should be conserved. 
This may not be true, however, if the goal of the 
meal is to impress a guest. Determining when 
such assumptions apply is difficult when the do­
main theory is incomplete. 

To complicate matters, these assumptions may 
change over time. In the short term, a prob­
lem solver must revise its assumptions as new 
information becomes available. For example, if 
a problem solver plans an inexpensive meal and 
later learns that the boss is coming to dinner, 
then it must retract the 'conserve money' as­
sumption and its consequences, and make new 
assumptions about cost, ease of preparation, and 
formality. In other words, the problem solver 
must ensure that the plan is consistent with its 
assumptions. This consistency can be enforced 
by constraint propagation and truth mainte­
nance. 
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Assumptions may also change over the long 
term, a* a problem solver learns when an as­
sumption does or does not apply. Such learn­
ing is srmpfified if the "problem solver can recall 
previous cases, and if those cases contain feed-
bach indicating why they succeeded or failed. 
For instancp, a meal may fail because the plan­
ner neglected to provide for vegetarian guests. 
In the future, the planner should be reminded of 
this failure and try to determine whether or not 
there will be vegetarians present. Over time, this 
should be generalized to accomodate any special 
case eaters. Case-based reasoning of this sort can 
offset an incomplete domain theory by helping 
a problem solver to recognize implicit assump­
tions, thereby allowing it to anticipate and avoid 
failure [Hammond 1986,Kolodner 1987]. 

2.4 Ill-defined Problem Scope 

Real world problems are seldom stated in terms 
of an initial state, a goal state and a set of oper­
ators. Usually, a problem solver must infer the 
nature and scope of the problem and the de­
sired specificity of the solution. For instance, 
if a client says: "I'm having a party for my re­
search group..." a catering advisor must first 
assume the existence of a meal based on its own 
role as caterer. Next, it must look at the con­
text of this meal in order to propose relevant 
constraints, such as cost and formality. As the 
solution evolves, the problem solver must also 
decide how specific to be. For example, a dish 
might be specified as a salad or more particu­
larly as a waldorf salad. The locale of a meal 
might be sufficiently specified with an address, 
or it might be necessary to indicate a particular 
room. The required level of specificity is seldom 
given explicitly, and must often be inferred from 
previous cases and constraints. 

In addition to determining the specificity of 
the solution, the problem solver may also have 
to infer how specific its own operators should be. 
In particular, a case-based reasoner may be able 
to adapt and modify previous solutions at differ­
ent levels of granularity. For example, situations 
such as Thanksgiving Dinner are sufficiently tra­

ditional that menus from previous cases may be 
adapted almost intact. More often, bits and 
pify*»ff of cases be mjy^-d and matched to de­
rive a satasncmg solution. Sometimes, however, 
the repertoire of known dishes isn't quite suf­
ficient. In this situation, it may be possible to 
modify recipes by substituting one ingredient for 
another to satisfy a constraint. Thus, the gran­
ularity of problem solving operators never really 
bottoms out. The adaptation of previous cases 
just becomes progressively more like reasoning 
cfrom-scratch\ 

3 Problem Solving in JULIA 

JULIA solves open world problems by reasoning 
from previous cases and propagating constraints 
to refine a problem statement (see figure 1). We 
illustrate this process with a portion of an exe­
cution trace in which the problem is to plan a 
party for about 20 guests. First, the problem 
solver posts a goal to refine the problem and re­
trieves a plan to achieve it: 

GOAL « REFINE (PR0T0C0L3) 
PLAN » REFINE-SOCIAL-OCCASION 

The scope of this problem is ill-defined because 
it is not explicitly stated whether JULIA should 
plan the entire party, the meal by itself, or just 
the menu. The problem solver hedges initially 
by assuming that the problem is to plan a meal 
in the context of the party: 

Assuming problem i s to refine meal. 
GOAL = REFINE (MEAL-1) 
PLAN • REFINE-MEAL 

This problem is under-constrained because there 
are an infinite number of possible solutions. 
Therefore, rather than immediately working on 
the menu, JULIA asks for information which 
could constrain the search: 

How much do you want to spend? 
-> (cheap-meal Mexican-cuisine p-diet) 

The user's reply is a list of desired features: 
cheap-meal is a range of costs per person, 
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Sext goal 

Formulate 
constraints 

Process 
remindings 

Choose one 

Propagate 
constraints 

no 

Suspend 
current goal 

Backtrack via 
constraints 

Post new goals 

yes 

Figure 1: Abbreviated Problem Solving Algorithm 
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Mexican-cuisine is a description of a typical 
Mexican meal, and p-di«t is a preservation 
g/omL Therefore, the English translation would 
he *I would Eke a cheap, Mexican meal which 
is also low-calorie." Not only has the user an­
swered the question, but he has also volunteered 
new information. In order to opportunistically 
nee this information, the problem solver formu­
lates and propagates constraints on the new fea­
tures. When it does, a contradiction is found 
between the default meal structure (appetizer, 
salad, main course, and dessert), the structure 
of a typical Mexican meal (omit salad), and the 
structure of a typical diet meal (a single main 
course). JULIA assumes that p-diet , an explicit 
goal, is more important than Mexican-cuisine, 
a descriptor, and therefore chooses the single 
course: 

Withdrawing plan step 7REFINE-APPETIZER 
Withdrawing plan step 7REFINE-SALAD 
Withdrawing plan step 7REFINE-DESSERT 

Thus, JULIA reacts to the user's input by re­
vising its own problem-solving plan as well as 
the meal plan. At this point the problem 
solver starts to look for a main dish. Although 
the problem is still under-constrained, there is 
enough information available for the case-based 
reasoner to retrieve similar cases: 

GOAL - FIND-VALUE (MAIN-DISHES) 
Reminded of case: DECEMBER-MEAL 
Reminded of case: LO-CAL-DINNER 
Reminded of case: DEATH-CHILI-MEAL 

I remember the DEATH-CHILI-MEAL which 
fa i l ed because Tom didn ' t eat spicy 
food. Will th is be a problem in the 
current s i tuat ion? 
-> yes 

To avoid repeating a previous mistake, the prob­
lem solver adds a constraint to reject any dish 
whose taste is spicy: 

adding constraint: 
(DIFFERENT (7DISHES TASTE) SPICY) 

The case-based reasoner ranks the meals it re­

members by similarity and suggests values from 
the most similar case. When it finds a value that 
Fr'tiffi"0 thr crnetra'mt*, ft- M^g^tn it to the user: 

Would you like a taco-salad? 
-> yes 

If a taco-salad were unacceptable, the problem 
solver would try to relax constraints on other 
candidates, and failing that it would postpone 
this goal in the hope that other features would 
generate new remindings and suggest other can­
didates. The problem solver continues on from 
here to fill in other descriptors and dishes until 
the meal plan is complete. 

4 Architecture 

The preceeding example suggests some of the 
functions that are needed to reason with in­
complete knowledge. Specifically, there must be 
some means of: 1) selecting a goal or focus of at­
tention, 2) formulating, propagating, and relax­
ing constraints, 3) retrieving cases from mem­
ory, analyzing failures, and transferring values 
and constraints, and 4) modifying the problem 
structure and justifying individual decisions. 

Ideally, these functions should be integrated 
as much as possible in order to minimize redun­
dancy and maximize constructive interaction. 
At the same time, good software engineering 
practice dictates information hiding and modu­
larity. These requirements are reconciled in JU­
LIA with a layered architecture which consists 
of four modules, as shown in Figure 2. 

The goal scheduler and TMS are fairly tra­
ditional. The goal scheduler is a problem 
reduction problem solver, and the TMS is 
a justification-based truth maintenance system 
based on [Doyle 1979], In the next sections, we 
discuss the constraint propagator and the case-
based reasoner, which form the core of the prob­
lem solving architecture. 

5 



G o a l S c h e d u l e r 

Constraint Propagator Case-Based Reasoner 

T r u t h M a i n t e n a n c e S y s t e m ( T M S ) 

Figure 2: The Problem Solving Architecture 

4.1 Cons t r a in t P r o p a g a t o r 

The constraint propagator has two main func­
tions. First, it evaluates and filters sug­
gested values in a manner similar to Mol-
gen [Stefik 1981]. Second, it propagates val­
ues and constraints through a network as in 
the constraint propagators of [Waltz 1972] and 
[Steele 1980]. 

Constraints in JULIA consist of a type, argu­
ments, and an importance. The constraint type 
is a frame with slots containing a predicate and 
a generator function, as in ISIS [Fox 1983] and 
PRIDE [Mittal et al. 1986]. An argument may 
be either a constant or a path to a slot. The im­
portance indicates whether or not the constraint 
may be relaxed. For example, the constraint to 
rule out spicy dishes looks like: 

(d i f ferent (?main-dishes taste) spicy 
required) 

where dif ferent is the constraint type, the first 
argument is a path, the second argument is a 
constant, and the importance is required. 

Constraints reside under slots. This permits a 
constraint to be triggered when its slot receives 
a value, and it also determines the scope of the 
constraint. For instance, if the not-spicy con­
straint is stored under the ACTIVITIES slot of 
the meal, then all courses inherit it. If, on the 
other hand, it were stored under a subslot of this 
such as MAIN-COURSE, then only the main course 
would be required to be non-spicy. 

4.2 C a s e - B a s e d R e a s o n e r 

Two important elements of case-based reason­
ing are: 1) recalling similar cases in previous 
situations and 2) adapting parts of those cases 
to fit the new situation. In JULIA, the case-
based reasoner retrieves previous cases from a 
dynamic memory [Schank 1982,Kolodner 1984]. 
It then ranks them in order of similarity to the 
current problem, weighing similar goals more 
heavily than similar descriptors. The reasoner 
suggests values from the most similar cases by 
constructing TMS nodes that package the values 
along with the reasons for and against them. The 
Constraint Propagator checks the suggested val­
ues and rules out those that violate constraints. 

Another function of the case-based reasoner 
is failure avoidance. Previous cases con­
tain feedback from the user in a slot called 
Actual-Events. The feedback is a sketchy 
causal chain which indicates l ) a goal which ei­
ther succeeded or failed, 2) an event which re­
sulted in the success or failure of the goal, and 3) 
a reason which is either a theme or a constraint 
which enabled (or disabled) the event. When 
the case-based reasoner detects a previous goal 
failure, it tries to determine whether or not it 
is relevant by comparing the default function of 
the object of the event with the current focus of 
attention. Thus, in the example in section 3 the 
failure event was that Tom didn't eat chili. The 
default function of chili is to serve as a main dish, 
so when the problem solver is looking for a main 
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dish, this failure will be considered potentially 
relevant. 

At t&ss paint, the anient rrrrplfTnrntatinn of 
JULIA simply asks the user whether the Failure 
is in fact relevant, and if so it transfers the con­
straint in the reason slot. A more sophisticated 
approach would be to .analyze the T°T c r r r i itself 
to determine how the failure is relevant and how 
to best avoid it in the current situation. 

5 Discussion 

Although constraint propagation and case-based 
reasoning are not new in and of themselves, their 
integration provides a novel approach to problem 
solving in open worlds. In particular, it allows a 
problem solver to deal with incomplete informa­
tion in five ways: 

• The problem solver can react to a user or to 
a dynamic environment by triggering con­
straints when new information arrives. 

• The problem solver can opportunistically 
satisfy multiple goals and constraints by 
combining the bottom-up inferences of con­
straint propagation with the top-down ex­
pectations of case-based reasoning and goal 
scheduling. 

• The case-based reasoner can help reduce 
the search space when a problem is under-
constrained by suggesting values from pre­
vious cases. 

• The problem solver can deal with an incom­
plete domain theory by making plausible as­
sumptions based on previous successes and 
failures. 

• The case-based reasoner can help the prob­
lem solver to infer the scope of a problem 
by referring to previous similar cases. 

These capabilities suggest several ways in 
which constraint propagation and case-based 
reasoning are complementary: 

• Commitment . Constraint propagation is 
a form of delayed commitment; inferences 

are made as information arrives. Alterna­
tively, case-based reasoning can be viewed 
as a. kind of early c-JUH 'ni^'r* 1* beranfle it 
provides a way to make plausible assump­
tions about missing information. 

• Rate of adaptation. Constraint propaga­
tion permits a problem solver to react imme­
diately to new information. Reacting within 
a problem-solving session like this can be 
thought of as short-term adaptation. Case-
based reasoning, on the other hand, reacts 
by altering behavior between sessions, thus 
adaptation is long-term. 

• Source of information Information pro­
vided by one technique is used by the other: 
constraints index cases, and in turn, cases 
suggest additional constraints. 

Because constraint propagation and case-based 
reasoning are complementary, their integration 
is a first step towards an architecture for open 
world problem solving. 
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