
15:42:37 OCA PAD INITIATION - PROJECT HEADER INFORMATION 10/13/87

Act ive
Pro j ect*#£^6z$7V*y*J
Center # : R6401-0A0

Cost share #:
Center shr #:

Cont rac t^ !
Prime

Subprojects ? : N
Main p r o j e c t //:

Mod #:

Rev #: 0
OCA f i l e #:
Work type : RES
Document : GRANT
Contract e n t i t y : GTRC

Projec t un i t :
Pro jec t d i r e c t o r (s

Ĉ̂ JLLTNGFORD

ICS Unit code : 02.010.142

Sponsor /d iv is ion n a m e s ' ^ O ^ S & M ^ ^ M S ^ ^ ^ /
Sponsor /d iv is ion c o d e s ^ Z , 1 ^ / 009

Award per iod : ^ 8 7 0 ^ ^

Sponsor amount New th i s change Total to date
Contract value 50,000.00 50,000.00
Funded 50,000.00 50,000.00

Cost sharing amount 0.00

Does subcontract ing plan apply ? : N

c T i t l e : CASE-BASED REASONING: INFERENCE METHODS AND SUPPORT RESOURCES

PROJECT ADMINISTRATION DATA

OCA contact :**3onn" 'B ." ifSc^onk\

Sponsor technica l contact

BOB YATES
(415)424-2474
LOCKHEED MISSILES & SPACE COMPANY
3251 HANOVER STREET
PALO ALTO, CA 94304-1117

Securi ty c lass (U,C,S,TS)"Y.U \
Defense p r i o r i t y ra t ing : NONE
Equipment t i t l e ves t s with: Sponsor

894-4820

Sponsor issuing o f f i c e

SAME

ONR resident rep . i s ACO (Y/N): N
supplemental sheet

GIT X

Administrative comments -
PROJECT INITIATION
REFERENCE P.O. NUMBER SKPAH5640F ON CORRESPONDENCES AND INVOICES V?>

IEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date A/ i f l / f t f t

Project No. G-36-678 School$jg&;

Includes Subproject N o . (s) N ^ A 1

Project P i r e c t o r (s) J * L * Kolodner GTRC/GIT

Sponsor LOCKHEED - PALO ALTO

rit le CASE-BASED REASONING: INFERENCE METHODS AND SUPPORT RESOURCES

(Performance) Ef fec t ive Completion Date: cA x ° ^ ° (Performance) (Js I 0 Q (Reports)

Grant/Contract Closeout Act ions Remaining:

I I None

| j Final Invoice or Copy of Last Invoice Serving as Final

1 \ Release and Assignment

- | | Final Report o f Inventions and/or Subcontract:
Patent and Subcontract Questionnaire
Bent to Pro jec t Di rec tor [[

| | Govt. Property Inventory & Related C e r t i f i c a t e

| | C lass i f i ed Material Ce r t i f i ca t e

1 | Other

Continues Projec t No. Continued by Pro jec t No.

COPIES TO:

Pro jec t Di rec tor F a c i l i t i e s Management - ERB
Research Administrative Network Library
Research Property Management GTRC
Accounting Pro jec t F i l e
Procurement/GTRI Supply Services Other
Research Securi ty Services ~
Reports Coordinator (OCA)
Program Administration Div i s ion — — — — — — —
Contract Support Div i s ion

Georgia Institute of Technology
School of Information and Computer Science
Mianta, Georgia 30332-0296
404-094-3152

March 29. 1988

Ralph Barlet ta
Lockheed AI Center
Building 259
3251 Hanover Street
Palo Alto, CA 94304-1191

Dear Ralph:

The following papers will serve as the final report for the project on case-
based reasoning that you are supporting at Georgia Tech. These papers were
all submitted to the AAAI or Cognitive Science or DARPA Case-Based Reasoning
Workshop during the month of March, and they summarize the work we have been
doing on case-based reasoning over the past six months. As you can see, our
major topics of concern were integrating case-based reasoning with other
reasoning methods to achieve a planner that combines opportunistic and
reactive behavior (Hinrich's paper and Turner's two papers), creating a
memory for cases that run on a parallel machine (my paper), and adapting an
old solution to fit a new one through a kind of analogy that creates an
abstraction of the old and new case as part of the adaptation process
(Shinn's two papers). We also have a student who has been looking at using
case-based reasoning for scheduling a flexible manufacturing system (David
Wood). When he has something written up, I will send you a copy.

The money has been quite useful to us. Thank you for your support.

Sincerely,
I

Janet L. Kolodner
Associate Professor

Enclosures

An Equal Education and Employment Opportunity Institution A Unit of the University System of Georgia

ILetrieviiig Invents "from Case "Memory:
A Parallel Implementation1

Janet L. Kolodner
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

Abstract

Perhaps the most important support process a case-based reasoner needs is a memory for
cases. In this paper, we describe a parallel retrieval algorithm that can be used to retrieve cases
from a hierarchically organized memory for cases given the description of some new case as a
retrieval probe. We also describe the structure o f the memory it works on. The organization of
cases in memory is based on previous work by Schank and Kolodner. The retrieval algorithm
is a concept refinement search algorithm and is based on work by Riesbeck and Martin that is
implemented in DMAP. It is implemented in a program called PARADYME (Parallel Dynamic
Memory) that is designed to work alongside a case-based problem solving program. There are
four parts to PARADYME: a hierarchically-organized memory for cases, a concept refinement
retrieval process, heuristics for choosing the best out o f several retrieved cases, and heuristics
for respecifying a retrieval probe when it is over- or under-specified.

1 Introduction

Perhaps the most important support process a case-based reasoner needs is a memory for cases.
The memory must make cases accessible when appropriate retrieval cues are provided to it and it
must incorporate new cases into its structures as they are experienced, in the process maintaining
accessibility of the items already in the memory. It must be able to handle cases in all of their
complexity, and it must be able to manage thousands of cases in its memory. In this paper, we
discuss a parallel retrieval scheme for a conceptual memory based on previous research into memory
organization and retrieval methods (e.g., Kolodner, 1983, Kolodner Sz Cullingford, 1986, Schank,
1982, Reiser, 1983, Martin & Riesbeck, 1986). While the abstract principles of the previous work
remain the same, the details have been modified in several ways. The model to be presented, called
PARADYME, has four parts:

1. a hierarchical organization of knowledge and cases

2. a parallel memory retrieval process that uses a concept refinement approach to retrieval

3. a set of transformation rules that transform and elaborate a retrieval probe to get a better
"best match" than is possible from the original set of cues

1 This research was supported in part by DARPA under Contract No. N0039-87-C-0026 to Thinking Machines,
in part by NSF under grant No. IST-8608362, and in part by Georgia Tech, the Georgia Tech Foundation, and
Lockheed AI Center. This work was done while the author was on sabbatical at Thinking Machine I nr., Cambridge,
Mass. Thanks to Thinking Machines for providing machine and programming support for the pr<>i< < t. Programming
was done by Eyal Yaari. Thanks also to Alex Kass, Phyllis Koton, Chris Owens, Chris Riesbeck. .mil Robert Thau
for enlightening comments made during discussion of my scheme. A shorter version of this papt r was submitted to
AAAI-88.

1

4. m *et of heuristics that choose the best matching case from those that axe activated

PARADYME is implemented on the Connection Machine, a SIMD parallel machine, in a
program by the same name. Because we want PARADYME to be able to work akmg with *.
problem solving system, we have given it knowledge and cases from a case-based reasoning system
that is under development. Thus, PARADYME currently uses JULIA's (Hinrichs, 1988, Kolodner,
1987a, b, Shinn, 1988) knowledge structures and cases. Because the cases are some that JULIA
has processed, the cases are full problem solving experiences represented in their entirety. JULIA's,
and therefore PARADYME's, domain is meal planning.

2 Background

There are several requirements we put on a memory for cases:

1. Best matching cases must be retrieved using a set of retrieval cues that provide a partial
description of the item to be retrieved.

2. Memory should return small numbers of cases rather than large numbers. If large numbers
of cases match an underspecified description, then either a prototype, a generalization, or a
request for more information should be returned by memory.

3. Retrieval should be fast. It is done in the context of reasoning and we want reasoning to be
fast. Therefore, it is preferable to have the hard work done at memory update time rather
than at retrieval time. Retrieval processes should be fairly uncomplicated.

4. Retrieval time should not increase as the memory grows.

5. Generalizations and cases should be equally accessible.

Retrieving appropriate cases from a case memory is essentially a massive search problem
that requires retrieval of a best match rather than an exact match. Given a partial description
of a situation, it is up to the case memory to recall the case from memory that best matches the
new situation. In our initial work on this problem, we chose to take our inspiration from people
(Kolodner, 1983, 1984, Schank, 1982). The models that came from these studies, Schank's (1982)
dynamic memory and Kolodner's (1983, 1984) CYRUS, hypothesized several things:

1. Memory categories are associated with concrete types of situations. Each category holds
general information about the contents of such situations, the relationships between charac
ters, props, and actions in such situations, and the causal and temporal consequences and
antecedents of the situations. These categories are arranged in abstraction hierarchies and
packaging hierarchies (Schank, 1982).

2

2. Tlwse raemoiy categories, caBed MOTs, also organize indexing structures. Indexes associated
with each category differentiate items in the category from each other. When several items
share the same set of indexes, a more specialized category (a subMOP) is formed and items
are organized in the same way within those categories. Physically, in our implementations-,
items m categories were organized in multiple redundant discrimination nets (Kolodner, 1984,
Lebowitz, 1983).

3. Items are found in memory by first choosing a small set of categories to confine search to and
then using the features of the specified event to designate which branches of the organizational
structure should be traversed. Traversal happens in parallel among indexes at the same level
of memory, and traversal finishes when an appropriate item or set of items with a subset of
the specified features is found. (Kolodner, 1984 explains in more detail.)

4. There are several circumstances under which such search does not succeed, and there are
retrieval strategies to deal with each of these search problems. One kind of strategy identifies
categories for search if none is designated in a retrieval probe. Another elaborates retrieval
probes if memory traversal fails before a particular event is found. Another creates context
for the retrieval probe and directs traversal functions to search in a different part of memory
for items with this created context.

5. Memory update functions choose indexes for events by choosing those features from an event
that specialize or violate norms of the category the event is being indexed in and lead to unan
ticipated consequences within that category. These functions create specialized categories by
a similarity-based induction method: When several items are indexed by the same feature or
set of features, the similarities of those items is extracted and a new category is formed.

The search method embodied here is a "concept refinement" method, which provides much
more control over the portions of memory that get activated than does an intersection search.2

In concept refinement search, a concept is not "turned on" until its parent in the abstraction
hierarchy is accessed and some feature that specializes it with respect to the parent is specified.
CYRUS (Kolodner, 1983, 1984), IPP (Lebowitz, 1983), and MOPTRANS (Lytinen, 1986) did this
through a "locked network" in which traversal to a lower level of an abstraction hierarchy could
not be done unless the higher level had already been accessed and the label associated with the
index to the item at the next lower level was specified. DMAP (Riesbeck & Martin, 1986; Martin &
Riesbeck, 1986), which our method is based on, implements concept refinement in another way. An
item can be accessed if one of its antecedents in the abstraction hierarchy is activated by the probe,
if that abstraction predicts another concept, and if some specialization of the predicted concept is
specified in the probe. DMAP's method has the advantage of not requiring a redundant indexing
scheme. The predictions DMAP makes are linguistic, but we have generalized them for searching
a conceptual memory for events.

3 M B R (StanfiU, 1987) is a massively parallel search technique that uses intersection search. It also runs on the
Connection Machine. Its representations are both flat and monolithic (homogeneous). MBR broadcasts to each item
in its memory in parallel. Its major activity is running a similarity metric to measure how close each of the items in
memory is to what it is looking for. MBR has been run on large databases but never on hierarchical, heterogeneousm,
or distributed structures.

3

In tbe wiicmc t o be "presented, -we nave created a memory system that upholds the princi
ples presented above in a parallel implementation. While memory remains hierarchical, we have
decoupled the retrieval procedures themselves from memory's organization. Memory organizes
generalizations but does not require that the organization be used to access memory. While in
CYKUiT implementation, indexes were used to block passage through memory, insuring that only
relevant nodes were accessed, in PARADYME, predictions made by memory's knowledge struc
tures identify which cases are good candidates for retrieval. We have also changed representations
significantly. While in CYRUS, events were monolithic structures, PARADYME has a distributed
representation.

3 Representing Knowledge and Cases

Representation in PARADYME is similar to that described in Schank's Dynamic Memory (1982).
That is, the details of any particular event (case) are distributed throughout memory in two ways.
First, they are distributed in an abstraction hierarchy associated with the kind of situation the
event is an instance of (i.e., its type). Thus, a particular Mexican meal with death chili as its main
course will have its description distributed in "meal", which says this kind of event has several
eating scenes (only some are shown in Figure 1), that the participants want to satisfy hunger, that
the main event is ingesting the main dish of the main course, etc.; "mexican meal", which says this
kind of event has food of mexican cuisine, that a particular set of spices can be expected, that the
drink of choice is Mexican beer, that food tastes spicy, etc.; and "death-chili-meal", which gives
the details of this meal, e.g., who the eaters are, that they are mostly people who like very spicy
food, where the meal took place. The center of Figure 1 illustrates this.

Second, details of events (cases) are distributed throughout abstraction hierarchies associated
with scenes of the event. Schank (1982) called this a packaging hierarchy. In the case of meals, its
scenes include food preparation, eating the appetizer, eating the main course, etc. Thus, details
about what was served in the death-chili-meal appear in memory in knowledge structures describing
meal scenes. The fact that the main course was death chili is distributed through the abstraction
hierarchy of "meal-main-scene', as shown on the right side of Figure 1, while the fact that the
appetizer was guacamole is distributed through "meal-appetizer-scene's" hierarchy, on the left side
of Figure 1. "Meal's" other scenes are not shown.

We distribute representations in this way to allow the case-based reasoner to use small chunks
of cases in its reasoning rather than having to wade through large cases and to allow generalization
across scenes common to several kinds of situations (Schank, 1982). A retrieval probe might
activate a full event with its scenes or only the representation for a particular scene. With a flat
representation (i.e., no abstraction), generalizations must be recreated each time they are needed.
With a monolithic structure (i.e., all aspects of the event in one hierarchy), it would be hard to
make generalizations across different types of events.

There are several things to notice about this representational scheme that will be significant in
judging the retrieval process. First, general knowledge (e.g., about meals and mexican meals) and
details of particular cases are organized in the same structures. Thus both are equally accessible
and accessible by the same retrieval methods. Second, we provide retrieval algorithms with a

4

EAT-EVEIT So-

(<i»|Bl» *mact«x» tdijfems)
tactars: % group of •parson*
Adishes: a group of *di«h*

APPETIZER-SC
part-of: meal
Adishes:

s ize: small
number: variable

(*s-hunger• Aeaters)
(*«njoy-eat* teatere)

maincon: (•ingests Aeaters Afood)
characters: Aeaters
props: Afood
locale: dining room or kitchen of

a house
Aeaters: a group of *person*
Afood: a group of *dish*,

members are appetizer-dishes,
main-dishes, . . .

cuisine: something of type *cuisine*
ingredients: a l i s t of *food*
taste: something of type *taste*

\5CL

MAII-SC
isa: eat-event
part-of: meal
Adishes:

members: tmains Asides
Amains: a group of

•dish*
ingredients:

•protein-food*
s ize: large
number: 1 to 3

Asides: a group of *dish*
ingredients:

vegetable
carbo-food

number: 2
s ize: small

MEXICAI-MEAL

HEX-APPETIZER-SC

ft cuisine;
Adishes:

*guaci

•mexican*
(one of

•ole* *nachos*)

cuisine: *raexican*
taste: *spicy*
ingredients beans, t o r t i l l a s , avocado,

cheese, tomatoes
seasonings:
drink: *beer*

A-

DEATH-CHILI-MEAL

MEXICAI-MAII-SC
cuisine: *mexican*
Adishes: (choose from

•burito* *chi l i -
releno* *chili*
taco *faj i ta*
enchalada)

Asides: *refried-beans*
•spanish-rice*

ft

DCH-APPETIZER-SC
Aeaters: *jlk's-research-group*
Adishes: guacamolel Aeaters: *jlk's-research-group*

preferences:
taste: *spicy*

locale: *rec's-house*
taste: *very-spicy*

DCM-MAII-SC
Aeaters: *jlk's-research-

group*
Amains: ch i l i l

isa: *ehili*
taste: •very-

spicy*
Asides: saladl
events:

(not (*ingest* *tom*
Amains))

explanation:
•torn*

member-of: Aeaters
preferences:

taste: *mild*

Figure 1

5

nartrnral "way of kxHywrng if there are a large number of cases that partially match its retrieval probe
without requiring it to activate all those cases. This is possible because details that appear high
in the hierarchy do not get repeated lower in the hierarchy. This will allow memory to either
return general knowledge that is activated by a probe or to ask for more specific knowledge to
differentiate between the items with a given description. In a memory with many similar cases,
this is an advantage.

The memory scheme also imposes a hard problem on the retrieval functions. The problem
is that during retrieval, retrieval cues might hit event descriptors in several different structures.
There must be a way to put those structures back together again. We shall see that the "concept
refinement" step of the retrieval algorithm addresses that issues.

4 Retrieval Probes

Retrieval probes partially describe an event to be retrieved by specifying a subset of the target
event's features. Let us consider, for example, some of the ways the "death chili meal" might be
partially described. 3

1. a meal with chili

(and (? isa meal) (? dishes c h i l i))

2. a mexican meal with very spicy chili

(and (? isa meal) (? cuisine mexican) (and (? dishes c h i l i) (? dishes
(tas te v e r y - s p i c y))))

3. a mexican meal with very spicy food

(and (? isa meal) (? cuisine mexican) (? dishes (tas te ve ry - sp icy)))

4. a meal with chili as the main course

(and (? isa meal) (? appetizer-scene (dishes guacamole)))

5. a mexican meal with avocado

(and (? isa meal) (? cuisine mexican) (? dishes (ingredients avocado)))

6. a mexican meal with guacamole and very spicy chili
3 W e do not discuss here how this translation happens. A phrase-based analyzer such as DMAP (Riesbeck, 1986)

or PHRAN (Arens, 1981) could do it easily. Were DMAP used, it could be easily integrated with what we describe
here. A very well integrated system, however, would probably do the language and memory retrieval work at the
same time without the need to explicitly create these queries. Their equivalent would have to be created internally,
however.

6

dishes c h i l i) (? dishes (tas te v e r y - s p i c y))))

The important thing to notice in these representations is that they do not distinguish which
scene of the specified meal holds the specified descriptors unless that fact is given explicitly in a
query. While it is easy to determine that prepared dishes (e.g., chili and guacamole) referred to in
a query about a meal refer to its dishes, it requires a lot more knowledge to determine in which
scene those dishes were served. In fact, it requires the full extent of knowledge represented about
meals in the memory. It would be inefficient to first disambiguate and then find matches since both
use the same knowledge. And some of the ambiguity is useful. Instead, disambiguation happens at
retrieval time as a byproduct of the retrieval process.

One might ask whether such ambiguous probes will be made by a problem solver that is in
control of what gets asked of memory. Sometimes probes to memory made by a problem solver
will specifically mention a scene and sometimes they will not. If the problem solver is trying to
plan a particular scene, it will be specified. But if the problem solver is trying to deal with a vague
statement by a user, the probes may be as above. Suppose, for example, that a user asking JULIA
to plan a meal said "Let's serve something with avocado". The problem solver might send a probe
to memory that looks like (5) above in order to get ideas about how to use avocado in the meal.

5 The Retrieval Process

During retrieval, each of the features of the memory probe is broadcast into memory. Each item in
memory with a broadcast feature is activated. As in DMAP's (Martin & Riesbeck, 1986) memory
access process, each time an item is activated, it sends activation to each item above it in the
abstraction hierarchy and it sends predictions to items that are normally seen in the context of the
activated item. When those messages meet at a node, the concept that sent the prediction gets
refined (specialized) to the level of detail of the concept that sent the activation. The algorithm
has the following steps:

1. Each item (cue) in the memory probe is transmitted to memory (a serial process) and each
is broadcast through the whole memory in parallel. Memory is activated as follows:

(a) If the probe names a memory concept, (e.g., is of the form (? is-a x)) , then the named
concept (x) is activated.

(b) If the probe is descriptive (e.g., is of the form (? property-name property-value)), any
item that holds that description is activated.

2. As in DMAP, each node that is activated sends prediction messages to the things it predicts.
At present, events predict their sequence of events. This is in keeping with observations
of people that show that more concrete descriptions are better for reminding (Kolodner &
Cullingford, 1986). By predicting the parts of an event, we are predicting its concrete features.
A prediction message in PARADYME has three parts: 4 its source, its target, and the
relationship between them.

4 In DMAP, it has four.

7

1. Also as in DMAP, each activated node sends an activation message to each of its antecedents
in the abstraction hierarchy. The activation message contains the source of the activation
and instructs the nodes it is sent to to activate themselves.

4. When predictions and activations meet each other, * concept refinement" happens. During
concept refinement in PARADYME, 5 the concept that sent the prediction gets specialized to
the level of detail of the concept that sent the activation. This is done by finding the node that
has the same relationship to the concept that sent the activation that the predicting concept
has to the predicted one. "Meal-main-sc", for example, is related to "meal" through "meal" 's
"sequence of events". If "meal" is activated and predicts "meal-main-sc" and "dcm-main-sc"
is activated and activates "meal-main-sc", then "meal" is refined by finding the item whose
"sequence of events" "dcm-main-sc" is in ("death chili meal"). Extra activation is then given
to those nodes taking part in the concept refinement to distinguish them from other activated
nodes in memory.

An example will illustrate. Consider, for example, a probe of the memory shown in Figure 1,
using the probe "a meal with chili", represented as follows:

(and (? isa meal) (? dishes chili)) 6

Step 1 will activate the "meal" node and each node with chili specified as a dish. The "death-chili-
main-scene" will be activated by the chili probe, as will mexican-main-sc and any other eating scene
where chili was a dish. In step 2, "meal" will predict its scenes and "death-chili-main-scene" and
other activated scenes will predict their sequence of events. In step 3, "death-chili-main-scene" and
other activated scenes will activate "meal-main-scene", which will activate anything above it. "Meal
will also activate anything above it. In step 4, the connection between "meal" and "death-chili-
main-scene" will be made (as well as connections between "meal" and any other eating scenes with
chili). Because "meal" predicts "meal-main-scene" and "death-chili-main-scene" activates it, and
because the relationship of "meal" and "meal-main-scene" is through sequence of events, memory
activates the item that has "death-chili-main-scene" in its sequence of events, specifically "death-
chili-meal". "Death-chili-meal" and the constellation of nodes that contributed to its activation
receive extra activation.

Let us go back to the algorithm and examine what it does in each step. At the end of step
1, every item in memory that partially matches the retrieval probe is activated. This step is linear
in the size of the retrieval probe. After step 1, all possible candidates are activated, but we do not
yet know the connections between them. Some are descriptions of situations (MOPs) and some are
descriptions of scenes. We want to retrieve those situations that have had concrete features of their
scenes described in the retrieval probe. The next three steps make those connections.

In step 2, situations predict their scenes while scenes predict their events. Each is predicting
its more concrete parts. We do not currently do this recursively, so this is a one-step process.

5 This is somewhat more limited than in DMAP, where an arbitrary function can be executed to refine the concept.
We will add additional capabilities of this type as we find we need them.

6 We ignore the fact that chili is embedded in the representation for now. The program can take care of that, and
in terns of complexity, it adds a number of cycles equal to the depth of the embedding.

8

Figure 2

In step 3, each activated item sends activation up its abstraction hierarchy, in essense notifying
more abstract nodes that it was described in a probe. This step is linear in the depth of the longest
hierarchy being traversed.

Step 4 collects up those predictions that were fulfilled, usually scenes that were described.
For each fulfilled prediction, the abstract concept that made the prediction is specialized to the
level at which it meshes with the scene that was activated. The full event (case) that is retrieved
(given high activation) is the specialized concept that is both of the right type (e.g., meal) and at
a level of specificity consistent with the scene descriptions specified in the retrieval probe. This
number of cycles required here is the depth of the abstraction hierarchy between the abstract node
and the refined one.

While we can see from this small example how connections between different parts of the
memory get made, it is hard to appreciate the full power of this algorithm from the examples
given. We give one more example from a different domain to show how the concept refinement step
narrows down the set of candidate matches to only those that are in the right ballpark. Consider a
memory that knows about restaurant visits and buying. The structure of the memory is shown in
Figure 2. We can see that the "ordering" scene is shared by both "restaurant visit" and "buying",
and that the "ordering scene" holds instances of ordering bluefish in a restaurant and ordering
bluefish over the counter in a supermarket. Suppose the query is "remember when we ordered
bluefish in that restaurant in Boston". Step one of the query would activate "restaurant visit" and
each of the instances of ordering bluefish, among other things. Because "restaurant visit" predicts a
particular type of "ordering", namely "restaurant ordering", that ordering scene and the restaurant
visit will be hooked up during concept refinement, and the supermarket ordering scene will not get
further activated. In a memory with a lot of instances of ordering bluefish at a supermarket and
only a small number of instances ordering bluefish in a restaurant, concept refinement will narrow
the set of retrieved cases to only the relevant ones. In other words, it confines search to the specified
context.

9

6 What Gets Itetrrraed

The result of running this retrieval algorithm on the memory is that several constellations of memory
nodes are highly activated. Each constellation represents a case or set of related cases that partially
match the retrieval probe. A case in memory is represented by a constellation of nodes spread over
several abstraction hierarchies. The cases that are accessed by this method can be found by finding
the most specific nodes in the hierarchy whose top is of the type requested in the retrieval probe.
Sometimes the most specific active node in a hierarchy will be a generalized description of several
cases (e.g., "mexican meal"). If so, memory returns the generalization in lieu of the myriad of cases
it organizes. Sometimes there will be several most specific nodes highlighted in a hierarchy. If there
are a small number (1 - 3), memory returns them all. If there is a large number, memory has a
choice of returning some generalized description that subsumes them all (if one exists), creating
and retruning a generalized description that subsumes them (if none exists), returning the entire
set, or returning a message saying that more information is needed. Based on our experiences with
case-based reasoners, the generalized description that subsumes them all plus the message saying
that more information is needed would be most helpful.

7 Choosing the Best Case

While "concept refinement" insures that recalled events are in the right ballpark, it does not by
itself choose which is the best match. A fully automated case-based problem solver needs to know
which of the many events made available to it is the best to use for problem solving. This could be
done by some sort of counting scheme or weighted counting scheme in which the match between
the retrieval probe and each activated item gets points for each match to the retrieval probe and
loses points for each mismatch. Such a method is problematic, however, for two reasons. First,
if the evaluation function is static, it doesn't allow for dealing with the changing importance of
features in context. Second, such a method requires a principled way of determining how to weight
the features. Although we do not present the choice of a best match as a weighting scheme, one
could think of our approach as addressing the problem of how to choose weightings for the features.

There are two major ways people are addressing this problem in the case-based reasoning
community. Some people are addressing it by trying to determine how to best choose indices (e.g.,
Hammond, 1986, Hunter, 1988, Kolodner, 1983) so that only the best cases will be retrieved from
the memory. Addressing the problem this way, the work happens at memory update time and
retrieval remains a fast process. Others have filtering methods that are used after retrieval (e.g.,
Koton, 1988, Owens, 1988, Riesbeck, 1988, Stanfill, 1987). Others combine those two methods
(e.g., Simpson, 1985, Barletta, 1988).

Our approach to choosing the best case borrows from both methods. In PARADYME, cases
are analyzed for their most important features at memory update time, and conjunctions of predic
tive features are marked as important. At retrieval time, selection processes working after concept
refinement prefer those events with full matches in those conjunctions of features. In this way, best
events are chosen not merely by counting the number of features that match or even by ranking

10

features with respect t o each other, but Tather by taking into account which features or combina
tions of features have been found to be most important in the past. In principle, this allows the
importance of features to be judged in context, where context is provided by the retrieval probe
and the items that are retrieved by applying a concept refinement retrieval algorithm to it-

Conjunctions of features that are marked as important in PARADYME are those that predict
solutions or solution methods. The reason for this is that PARADYME is designed to work along
with a problem solver, and these are the kinds of predictions a problem solver needs. There are
two kinds of conjunctive feature sets PARADYME uses.

1. Goals, constraints on these goals, and environmental features that went into choosing the
method or solution for achieving the goal or goal set are marked.

A set of features may include one goal or several goals. It includes one if the solution that
was chosen for that goal did not involve other goals. It includes several if their solution was
integrated. Constraints and descriptors on these goals are also included, as are features of
the world or features of the problem that determined which of several possible solutions or
solution methods was chosen. If all of the features in one of these conjunctive feature sets is
designated in a retrieval probe, the solution or solution method used in the previous case can
be predicted.

2. Outcomes that arose using some solution or applying some solution method are marked.

When outcomes of previous cases match desired outcomes of a current case, the solution or
solution method from the previous case can be predicted.

For any particular case, there may be several conjunctive feature sets associated with it. If
memory is aware of the goal(s) the problem solver is attempting to achieve, it can choose from
among the cases that are retrieved by preferring those where goals and constraints match and full
conjunctive feature sets are specified.

While we do not yet have a complete implementation of the choice process, and we do not
yet know the priorities of the preference rules we've proposed, PARADYME has several preference
heuristics for choosing a best-matching case. Some of the preference heuristics are implemented as
part of the retrieval process presented above (e.g., 1 and 2). The others are used to choose between
those items retrieved using that algorithm.

1. Prefer predicted pieces of memory over those that are not predicted.

2. Prefer the most specific of those in the same hierarchy.

3. Prefer items that match a retrieval probe completely.

4. If a probe describes specific details, prefer items that have those details.

5. Prefer items that share a major goal or set of goals and constraints on those goal.

6. Prefer those items whose full set of salient features are specified in the retrieval probe.

11

1. Prefer those items wlieie fhe goals and ujnbUaints of a TuBy matched conjunctive feature set
match current goals and constraints of the problem being solved.

8. Prefer those items with more full sets of salient features specified in the retrieval probe.

9. Prefer those items that match on dimensions that are known to be difficult to fix.

8 Cue Elaboration

The process we have presented is appropriate when the retrieval probe accurately describes an
item or several items in the memory. Some retrieval probes, however, are unsuitable for finding
matches, either because of the complexities of representational embeddings in memory's structures
or because they are too vague or overly-specific. We have identified four circumstances under which
a retrieval probe or part of a retrieval probe is unsuitable for retrieval:

1. The retrieval probe might not directly specify a type of situation. A retrieval probe might
describe features of a situation without naming the type of situation. We have no examples
of this in JULIA's domain. In CYRUS' domain, questions such as "Has Vance ever talked
to Woodward or Bernstein?" and "Has Vance's wife ever met Mrs. Begin?" are examples of
this. A probe that does not include an "isa" clause, or whose "isa" clause points to a kind
of event that happens in many different contexts falls into this category. We will introduce a
condensation heuristic to deal with this problem.

2. The retrieval probe may describe a situation that is not stored in memory but that is a "near
miss" to something stored in memory. Memory, for example, might have a description of a
"meal in a particular small Italian restaurant in which eggplant-filled manicotti was served".
A probe of "remember the time we had eggplant-filled stuffed-shells for dinner in a little
Italian restaurant" would be a near miss to this event. If enough of the rest of the event is
describe to make it unique among the other events in memory, the near miss event can be
retrieved anyway (e.g., if this was the only visit to a small Italian restaurant where something
with eggplant filling was served), but if not, the probe will not retrieve it (e.g., if in may
restaurant visit eggplant was eaten as the filling for something). This situation exists when a
retrieval probe provides concrete features but memory retrieves only a generalized node that
does not mention the concrete features or when memory retrieves many cases that match the
retrieval probe, but none match exactly and none are better matches than the rest. A cue
transformation heuristic that expands a cue into a set of cues conjunctively describing it will
solve this problem.

3. The retrieval probe might describe a character or a prop without naming it or its type. The
embedding of memory's frame-like structures makes it hard to directly activate events whose
features are vaguely described. Memory recognizes this if an event is requested, nodes describ
ing particular characters or props are highly activated, and no such features are highlighted
in the events that have been activated. Condensation heuristics will deal with this problem
too by recognizing a particular character or prop that has been described and then probing
memory using the particular character or prop as a replacement for its description.

12

A. The retrieval probe might describe a relation that is specified more finely In memory's rep
resentations than in the retrieval probe. "A meal with a dish with spinach in it" is one
example of such a probe. In memory's representations, ingredients of dishes are divided into
"mains", "secondaries", and "seasonings", a useful distinction for the problem solver- This
fine distinction may not be made in a probe, however. While it is easy to distinguish spices
as "seasonings" and sometimes an ingredient is specified or implied to be the "main" one or
a "secondary" one, more often this information is not known at the beginning of problem
solving and it is memory that must provide this information to the problem solver. Mem
ory knows which of its descriptors are represented this way and recognizes specific situations
in which this happens. A cue transformation heuristic that expands a cue into its set of
disjunctive descriptors will solve this problem.

In each of these cases, heuristics are used to redescribe the retrieval probe and retrieval is attempted
again with the set of newly-defined cues. We describe these heuristics below.

1. Cue Transformation

Cue transformation expands a cue to create a larger set of reasonable cues. These new cues
might describe the original one conjunctively, provide a disjunction of descriptions equivalent
to the original cue, or provide additional information associated with the original cue but not
part of it.

(a) Replace cue by a conjunct of descriptors
As stated above, this type of cue transformation is used when a retrieval probe specifies
something quite concrete but the best that can be found in memory is a generalized node
that does not mention the concrete feature (e.g., if a search for a meal with stuffed shells
returns "Italian meals"). In that case, the specific feature that was not accounted for in
the set of retrieved nodes is replaced by its description. "Stuffed shells" in the example
would be replaced by a set of cues stating that the food had pasta, ricotta cheese, and
tomato sauce in its ingredients, that the structure of it was (shell-shaped) pasta filled
with ricotta mixture, topped with tomato sauce and cheese, etc. As a result of replacing
an item by its description, "near-miss" matches can be found. For example, replacing
stuffed shells by its description might result in retrieval of a meal with manicotti, a close
match to stuffed shells.

(b) Replace cue by a disjunct of descriptors
This type of cue transformation is used when a particular cue is known to have several
ways of being described. For example, ingredients can be found as main ingredients,
secondary ingredients, and seasonings. If "dishes with tomatoes" are requested in a
probe, there is no way to know a priori whether the tomatos are to be main ingredient,
a secondary ingredient, or a seasoning of the dish. "Dishes with tomatoes" will be
transformed to a disjunct of cues: "dishes with main ingredients tomatoes", "dishes
with secondary ingredients tomatoes", "dishes with tomatoes as seasoning". Expanding
cues in this way will allow each of these descriptors of a dish to combine with other
cues in the retrieval probe so that the best match that takes all of the descriptors into
account can be found.

13

(c) Add a closely associated feature to tfce set of ewes
This type of cue elaboration is equivalent to CYRUS 1 component-to-component instan
tiation strategies, and their usefulness is discussed in Kolodner (1983, 1984). In short, a
feature that is not yet part of the retrieval probe but that is closely associated with some
cue in the retrieval probe is added. An example of this is adding a place associated with
an identified person or organization to the retrieval probe. This can help to distinguish
between several events that have been equally activated, where each partially matches
the retrieval probe, and there is no clear way to distinguish which is the best.

2. Cue Condensation
Cue condensation heuristics condense a set of cues to a single one that describes a larger unit.
This process looks for concepts whose marked features are all, or almost all, mentioned in the
retrieval probe. It is useful if a type of event has not been specified but has been described, or
if features of an event being specified have not been directly named but have been abstractly
described. A set of cues describing a dish with shell-shaped pasta filled with ricotta would be
replaced by one cue stating that the dish is stuffed shells using cue condensation. An event
described as one where people swim in a contest and later get awards would be replaced by
one cue stating that the event is a swim-meet using cue condensation.

Cue elaboration is an automatic process done by memory after retrieval. After elaboration,
retrieval is attempted again using the newly-defined set of cues. We are still working on probe
elaboration methods. While we know many of the heuristics for elaborating a probe, we have not
yet experimented with them enough to know exactly how to control their application, nor do we
know yet how to fully control their interaction with retrieval processes.

Cue elaboration is similar in spirit to CYRUS' instantiation strategies. CYRUS (Kolodner,
1983, 1984) had two types of elaboration strategies to take care of these problems, each used at a
different point in the retrieval process: component-to-context instantiation rules were used prior
to memory traversal to infer a context for search, and component-to-component instantiation rules
were used after traversal was attempted to elaborate a retrieval probe that did not retrieve a
particular event. PARADYME also has two kinds of cue elaboration heuristics, but they are both
used after retrieval is attempted and their functions are not exactly the same. PARADYME's cue
transformation heuristics perform the function of CYRUS' component-to-component instantiation
rules in a more expansive way than was done in CYRUS, and PARADYME's cue condensation
heuristics perform the function of CYRUS' component-to-context instantiation rules and also help
with cue transformation rules define a better set of descriptive cues.

9 Discussion

The parallel algorithm presented runs in linear time on a SIMD parallel machine, and its runtime
does not vary significantly with the size of the memory as long as memory does not exceed the size of
the machine. 7 It works on a hierarchically organized memory where events are stored across several

Specifically, its run-time is A N + 2 B + 1 . A is a number designating the overhead of dealing with embedded
representations and is 1 plus the depth of an embedding. For the examples we have run, it ranges between 1 and

14

hierarchies. "The concept refinement search method limits retrieval to only reasonable parts of the
memory and allows memory probes to describe events by describing features of their substructures.
The basic algorithm forms the core of a case retrieval process, but it is not complete. While it
finds many fewer events than an intersection search would, it does not address the choice of a best
case(s) from those that are retrieved; nor does it include a capability for automatically elaborating
a retrieval probe that is poorly specified. To take care of these problems, we have introduced
preference heuristics for choosing the best set of cases from those retrieved and we have introduced
probe elaboration heuristics for redefining a poorly-specified or near-miss probe.

As an added advantage, we have been able to do away with CYRUS' redundant indexing
structure. This means the memory takes up considerably less space in the machine. Were we to
run CYRUS (Kolodner, 1983, 1984) or the memory parts of any of our case-based reasoners (e.g.,
MEDIATOR (Kolodner, et al., 1985, Simpson, 1985), JULIA (Hinrichs, 1988, Kolodner, 1987a,b,
Shinn, 1988)) using the new algorithm and memory structures, we would get significant speedup,
would use much less memory space, and would retrieve exactly the same items as under the serial
scheme.

Problems remain to consider, however. First, due to the architecture of the Connection
Machine, we have not done an exact translation from our old retrieval scheme to the new one.
CYRUS' retrieval scheme (the old one) was linear in the depth of memory's hierarchies, a much
smaller number than the length of a retrieval probe. It would be interesting, from an algorithmic
point of view, to attempt implementation of CYRUS' algorithms on a MIMD machine. It would
also be interesting from a psychological point of view to have a parallel algorithm whose speed is
independent of the length of the retrieval probe.

Second, the algorithm we have implemented requires full connectivity between nodes in the
hierarchies of MOPs and scenes. Because generalizations must be made independently in each
abstraction hierarchy, however, that connectivity may need to be recomputed during retrieval.
The "instruction" portion of the prediction messages in DMAP provide one way that is not very
elegant. Some other way to overcome this problem must be found. And, of course, it will add to
the complexity of the algorithm.

Third, we have hardly considered memory update procedures. They, of course, must be inte
grated into the memory scheme so that we can insure that memory's structure and the accessibility
of events is maintained as the memory gets large.

10 Bibliography

1. Arens, Y. (1981). Using language and context in analysis of text. Proceedings of IJCAI-81.

2. Barletta, R. (1988). Explanation-Based Indexing of Cases. Proceedings of the DARPA Work
shop on Case-Based Reasoning.

5. N is the length of the retrieval probe. B is the depth of the hierarchy that needs to be traversed in step 3 of the
algorithm. We assume a hierarchy of similar size gets traversed in step 4, thus we must add in B two times. B ranges
between 1 and 3 in the examples we have looked at, but the memory we have implemented is small. We expect it
to remain a small number and to be significantly smaller than N. The constant is the number of cycles necessary for
step 2 of the algorith. We expect N to dominate the expression.

15

3. Hammond, X . J- (1984). Indexing and Causality: The oiyanizution of plans and strategies m
memory. Report No. 351. Dept. of Computer Science. Yale University. New Haven, CT.

4. Hammond, K. J. (1986). Case-Based Planning: An integrated theory of planning, learning,
and memory. Ph.D. Thesis. Dept. of Computer Science. Yale University.

5. Hinrichs, T. (1988). Towards an architecture for open world problem solving. Proceedings of
the DARPA Workshop on Case-Based Reasoning.

6. Hunter, L. (1988). The Use and Discovery of Paradigm Cases. Ph.D. Thesis. Yale University.
Forthcoming.

7. Kolodner, J. L. (1983). Reconstructive Memory: A Computer Model. Cognitive Science, vol.
7.

8. Kolodner, J. L. (1984). Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model. Hillsdale, NJ: Lawrence Erlbaum Assoc.

9. Kolodner, J. L. (1985). Experiential Processes in Natural Problem Solving. Technical Re
port No. GIT-ICS/85/23. School of Information and Computer Science. Georgia Inst, of
Technology. Atlanta, GA.

10. Kolodner, J. L. & Cullingford, R. E. (1986). Towards a Memory Architecture that Supports
Reminding. Proceedings of the 1986 Conference of the Cognitive Science Society.

11. Kolodner, J. L. (1987a). Extending problem solver capabilities through case-based inference.
Proceedings of the 1987 International Machine Learning Workshop.

12. Kolodner, J. L. (1987b). Capitalizing on failure through case-based inference. Proceedings of
the 1987 Conference of the Cognitive Science Society.

13. Kolodner, J. L., Simpson, R. L., & Sycara, E. (1985). A Process Model of Case-Based
Reasoning in Problem Solving. Proceedings of IJCAI-85.

14. Koton, P. (1988). Reasoning about evidence in causal explanations. Proceedings of the
DARPA Workshop on Case-Based Reasoning.

15. Lebowitz, M. (1983). Generalization from natural language text. Cognitive Science, vol. 7.

16. Lytinen, S. (1984). Frame selection in parsing. Proceedings of AAAI-84-

17. Martin, C. h Riesbeck, C. (1986). Uniform parsing and inference for learning. Proceedings
ofAAAI-86.

18. Owens, C. (1988). Domain-Independent Prototype Cases for Planning. Proceedings of the
DARPA Workshop on Case-Based Reasoning.

19. Reiser, B. h Black, J. (1983). The roles of interference and inference in the retrieval of
autobiographical memories. Proceedings of the 1983 Conference of the Cognitive Science
Society.

16

20- "Riesbeck, C. k Martin, C. (1986). Toward Completely Integrated Parsing and Inference.
Proceedings of the 1986 Conference of the Cognitive Science Society.

21. Riesbeck, C. (1988). An Interface for Case-Based Knowledge Acquisition. Proceedings of the
DARPA Workshop on Case-Based Reasoning

22. Rissland, E. & Ashley, K. (1987). HYPO: A Case-Based Reasoning System. CPTM #18.
Department of Computer and Information Science. University of Massachusetts. Amherst,
MA.

23. Schank, R. C. (1982) Dynamic Memory. Cambridge: Cambridge University Press.

24. Shinn, H. (1988). Abstractional Analogy: A Model of Analogical Reasoning. Proceedings of
the DARPA Workshop on Case-Based Reasoning.

25. Simpson, R. L. (1985). A Computer Model of Case-Based Reasoning in Problem Solving.
Ph.D. Thesis. Technical Report No. GIT-ICS/85/18. School of Information and Computer
Science. Georgia Inst, of Technology. Atlanta, GA.

26. Stanfill, C. (1987). Memory-Based Reasoning Applied to English Pronunciation. Proceedings
of AAAI-87.

27. Sycara, E. (1987). Resolving Adversarial Conflicts: An approach integrating case-based and
analytic methods. Ph.D. Thesis. Technical Report No. GIT-ICS/87/26. School of Informa
tion and Computer Science. Georgia Inst, of Technology. Atlanta, GA.

17

Abstractional Analogy: A Model of
A-nnlogical Reasoning1

HONG S. SHINN (shiim@gatecli.eclu)
School of Information and Computer Science, Georgia Institute of Technology

Length of Paper (in words): 4 ,000

Main Topic: Cognitive Modeling
Subtopic: Analogical Reasoning
Secondary Topic: Machine Learning
Subtopic: Analogical Reasoning

Our model of analogical reasoning is based on the view that it is necessary to grasp
the abstraction common to two analogous problems in order to know exactly what
can be transferred from one problem to another. The model consists of two major
steps. First, create an abstract schema that represents what source and target
cases have in common. The abstract schema consists of a problem schema and
its solution schema. The problem schema is created by analogically mapping the
source problem to the target problem, then its solution schema is created using
the source case. Second, apply the solution schema to the target problem. We call
such a model of analogical reasoning abstractional analogy.

Abstractional analogy provides a way of extracting all knowledge from a source
that can be transferred to a target. Transfer can be of reasoning methods and/or
of generalized results. Both types of knowledge are learned in the form of solu
tion schemas as a natural byproduct of abstractional analogy. Abstract schemas
together with cases can be organized into abstraction hierarchies. Thus, abstrac
tional analogy is a unifying model of three different aspects of cognition: problem
solving by analogy, learning of both declarative (generalized results) and procedu
ral (reasoning methods) knowledge, and memory organization.

1 This research has been supported in part by the Army Research Institute under Con
tract No. MDA-903-86-C-173, is currently supported in part by NSF under Grant No.
IST-8608362, and in part by Lockheed AI Center under Grant No. DTD 09-25-87.

Atlanta, GA S0SS2, U.S.A. (404) 894-5550

Abstract

mailto:shiim@gatecli.eclu

1 Introduction
Expeiiential Tensoiiuig plays a. major Toie 221 lnmwm "problem sorrisg "and
learning. Jardine [Jar74] quotes Francis Bacon:

New knowledge is discovered by ingenious adaptation of existing
knowledge, rather than by formal inference from fundamental
principles.

Analogical reasoning is one way of adapting existing knowledge to solve a
new problem.

Although a number of models of analogical reasoning have been at
tempted, two contradicting views currently coexist on the process of ana
logical transfer [Dar83,Ros86]:

1. Direct transfer of knowledge from source to target
Analogy is identified by establishing correspondences between source
and target and then interpreting knowledge about the source in the
target domain.

2. Indirect transfer via common abstraction
Analogy is identified as a common abstraction and then knowledge
transfer is done via the abstraction.

Traditionally, researchers have viewed analogy as direct transfer, and most
AI programs that do analogical reasoning employ that method (e.g., [Win80]
[Car86]). However, the view of indirect transfer recently has received more
attention (e.g., [Pol54,Gen80,GH83,CM85,Der85,And86]). Genesereth [Gen80]
states that "the problem of understanding an analogy becomes one of rec
ognizing the shared abstraction."

This is a problem which leads to completely different models of problem
solving and learning. That is, does learning by generalization occur dur
ing problem solving (i.e., as part of making the analogy) or does it occur
afterwards? The direct transfer view implies that generalization occurs af
ter problem solving, while the indirect view suggests that it occurs during
problem solving. Ross [Ros86] points out that, while some researchers have
seen that generalization is forced by analogical mapping, no one has clearly
stated their temporal relationship. We suspect this confusion is caused by

1

failure to understand in detail the process involved in making an analogy.
This paper presents a model called abstractional analogy based an the in
direct transfer approach and also provides nonw 1iHiipirtafaonal accounts of
this method.

Another important issue on analogical reasoning is that of what knowl
edge is transferred and how. Polya [Pol45] identifies two types of knowledge
transferred during analogical problem solving. These are the method used
and the result. Transfer of a previous result — possibly with some minor
modification — shortcuts the reasoning involved for a similar problem by
reducing its search for a solution. When result transfer is not appropriate,
reasoning can be transferred. These two transfer methods are applied in
different stages of problem solving. Abstractional analogy integrates these
two types of analogy transfer.

The process of abstractional analogy is implemented as the case-based
reasoning (CBR) part of the JULIA system [CK86,Kol87b,Kol87a], de
signed to be a caterer's assistant. JULIA's task is to interactively plan
a meal with a client user who provides constraints for the meal. Some
constraints are given early on. The need for specification of others is deter
mined during problem solving. JULIA's problem solver includes constraint
propagation and satisfaction, a goal-based reduction planner, and CBR
modules. The reasoning described in this paper is JULIA's CBR method.
JULIA uses CBR 2 whenever a previous similar case is made available to it
by its memory. Examples from JULIA will be used throughout this paper.

2 The Process of Abstractional Analogy

Our model of analogical reasoning, abstractional analogy, consists of two
major steps, analogy abstraction and then abstraction application. Anal
ogy abstraction is achieved in two substeps. First, an abstract problem
schema is created by analogically mapping the source problem to the tar
get problem. Then, a solution schema is created for the problem schema
using the source case. The two abstract schemas formed this way uniquely

2Although the JULIA system uses the general term "case-based reasoning" to indicate
a method of reasoning with previous cases, in this paper the term "analogical reasoning"
will be used instead to emphasize the role of analogy in knowledge transfer.

2

represent the analogy existing between the analogues. In the next step, the
solution schema is applied to the target problem, A n additional step refines
the solution obtained by analogy to fit constraints of the new 'problem that
were not covered.

In later problem solving with a new problem, whenever an existing
schema fits the new problem, the schema is applied to the problem: if the
generalized result of the schema is available, it is transferred; otherwise the
reasoning method is applied. This process will be discussed here in detail.

2.1 Representing Problems and Cases

JULIA uses frame representations [Min75,Wil86] for describing problem
and solution structures. In JULIA, a natural language processing (NLP)
system [TC88] interprets a problem description into a frame. Suppose a
target problem is

Find a Thanksgiving main dish for 16 vegetarians. The dining
room can accommodate only 10 people. What and how should
it be served?

The NLP would first identify goals of a problem, and then take everything
else, which constrains the goals, and make it into a constraint. Figure 1
shows the result.

Problem:
goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN)

c-number-of-guests(16) c-dining-space(lO)]

(Note: Information such as host, guests, location, and time are omitted.)

Figure 1: Problem C50

Each case in JULIA has problem and solution parts. The problem
part describes its problem functionally in terms of goals and constraints
while the solution part contains a solution plan and the reasoning history.
The representation of a case supports hierarchical structure: a case may

3

be decomposed into subcases which may be again decomposed and so on;
tfoiMt cases at all levels have the same structure so that they can be viewed
as independent cases. Tins leuuibive representation facilitates knowledge
transfer at any level.

2.2 Analogical Mapping

Our analogical mapping algorithm accommodates Gentner's systematicity
principle ([Gen83]) in that it transfers "a system of connected knowledge,
not a mere assortment of independent facts". In other words, during map
ping between structures, even the highest order predicates may not be
mapped separately from their lower level entities. However, in dealing with
similarity, we do not accept Gentner's entire theory of structure mapping.
In our mapping scheme, two relations which are functionally similar (i.e.,
their current partonomic roles in both structures are the same) will not be
thrown out.

For example, according to Gentner, two relations equals[add(a,b),add(b,a)]
and equals [multiply (a,b),multiply (b,a)f are not mappable to each other be
cause the highest level predicates are identical, but not the lower level
predicates (i.e., add and multiply). On the other hand, in our scheme,
these are mappable because their high order predicates are the same while
the low level predicates "add" and "multiply" are functionally similar due
to their same functional roles in the whole structures. Burstein [Bur86]
demonstrates with his system CARL the necessity of mapping between non-
identical relations, criticizing Gentner's structure mapping [Gen83] which
fails on this kind of similarity.

Another characteristic of our mapping scheme is hierarchical mapping.
This is frequently used when problems are represented in hierarchical struc
ture. In fact, analogy between problems usually exists at an abstract level.
Thus, mapping starts at the highest level first and proceeds to the next
lower level and so on until analogy breaks down. Holyoak [Hol85] also
identified hierarchical mapping as a practical necessity.

Thus, in our scheme, the entire mapping process is a recursive appli
cation of two-step hierarchical mapping: first identify the next lower level

3Polya's analogy example [Pol54]

4

structures, and then map them systematically under functional similarity.
Xet's apply our general mapping scheme to a problem from JULIA's

domain. As an example, given the target problem C50 (Figure 1), JULIA 4

is reminded of case C38 (Figure 2): "a vegetarian Thanksgiving main dish
for 4 people, all seated and served." Case C38, which had two goals,
g-know(menu) and g-know(presentation), was decomposed into two sub
cases C381 and C382, one for each goal. Since cases are represented in
hierarchical structure, JULIA begins mapping with the top level problem
structures. Then, it identifies functional similarity. In a frame-based repre
sentation, a problem is already analyzed into a problem structure [Wil86].
Thus, it is straightforward to identify the same functional components (e.g.,
goals and constraints). Next, it starts mapping with goals: if goals fully
match, the mapping proceeds to constraints; in case of a partial match,
which means some goals match but others do not, only the matched goals
will be considered for possible transfer; otherwise, the mapping fails. Map
ping then proceeds to constraints on only the matched goals to establish
correspondences between them. For example, JULIA identifies correspon
dence between c-number-of-guests(l6) and c-number-of-guests(4) because
their functional roles in the problems are the same.

2.3 Problem Abstraction

Problem abstraction is the process of building a problem schema as a com
mon abstraction of two analogous problems. A similarity is a commonality
at a higher level of abstraction and an identity is a commonality at the
same level. Thus, the commonalities abstracted from similarities together
with identities form a problem schema.

Similarities can be identified by using an abstraction hierarchy. One
hierarchy, which frame-based representations (as in JULIA) support, is an
ISA hierarchy. In this hierarchy, given a pair of objects, a common ab
straction is found by simply identifying their immediate common ancestor
(e.g., "fruit" for "apple" and "orange"). In JULIA, if the existing hierar
chy does not contain a common ancestor for the pair of objects, then an
abstract object is created by introducing a new symbol. The new object

4 t JULIA' usually refers to the entire problem solving system but often is used to refer
to only the analogical reasoner, as in this case.

5

C36:
^Problem:

goals: [g-kaow(MAIN-DISH) g-know(MEAL-PRESENTATION)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN)

c-number-of-guests(4) c-dining-space(> 4)]
Solution: [C381 C382]
Reasoning:

1. OP: plan for each subcase

C381:
Problem:

goal: [g-know(MAIN-DISH)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(4)]

Solution: STUFFED-SQUASH
ingredients:

2 squashes with filling:
1/2 cup chopped onion, 1 clove garlic, 1 stalk celery,
1/4 cup walnuts, 1/4 cup sunflower seeds, 1/4 cup raisins,
1/2 tsp. sage, 1/2 tsp. thyme, 1/2 lemon juice,
3 tbs. butter, 1 cup wheat bread, 1 /2 cup cheddar cheese

Recipe Source: Moosewood Cookbook (by Mollie Katzen, 1977, Ten Speed Press)

C382:
Problem:

goals: [g-know(MEAL-PRESENTATION)]
constraints: [c-number-of-guests(4) c-dining-space(>4)]

Solution: SERVICE
Reasoning:

1. OP: "Since the number of guests was less than the dining space,
the eating configuration was SEATED."

Input: [c-number-of-guests(4) c-dining-space(>4)]
Output: [c-eating-configuration(SEATED)]

2. OP: "Since the eating configuration was SEATED,
the meal presentation was SERVICE."

Input: [c-eating-configuration(SEATED)]
Output:[c-meal-presentation(SERVICE)]

Figure 2: Case C38

6

will be given as its property: the set of common properties (i.e., the union
of the set of identical properties and the set of abstractions of pairs of
similar properties). T^ote that the existence of an entity does not require
its lexicalization in language. This method of commonality abstraction is
also applicable to mathematical objects such as variables [Der85,Der86].
For example, the pair [c-number-of-guests(16) c-number-of-guests(4)] cre
ates a common constraint c-number-of-guests(?X) and ? X will be given as
its property "number".

A75:
Problem:

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN)

c-number-of-guests(?X) c-dining-space(?Y)]
Solution: [A751 A752]

A751:
Problem:

goal: [g-know(MAIN-DISH)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(?X)]

A752:
Problem:

goals: [g-know(MEAL-PRESENTATION)]
constraints: [c-number-of-guests(?X) c-dining-space(?Y)]

Figure 3: Problem schema A75

Now, consider creation of a problem schema for problems C38 (Figure 2)
and C50 (Figure 1). JULIA first creates an abstract problem A75 (Figure
3) at the top-level with the commonalities found between C38 and C50.
Next, JULIA checks the next lower level of the source schema to see if it
was divided into subproblems; if so, it creates subproblems in the same
manner recursively. Here, it creates two subproblems A751 and A752 at
the lower level, one for each common goal.

7

2.4 Solution Abstraction
A solixtinn schema, is an abstraction of the source solution "thai is at "the
same level of abstraction as the problem schema. Figure 4 outlines our
solution abstraction algorithm.

Consider, first, transfer of reasoning. JULIA assumes a reasoning his
tory is well maintained in the form of an operator with its preconditions and
justifications, input, and output for each step. For each step, JULIA checks
to see if the current state of the schema meets the preconditions of the op
erator of this step. If the preconditions are not met, the schema needs
to be transformed. In general, however, there is no domain-independent
method for transformation. The transformation problem can be viewed as
another separate problem to which analogical reasoning can be applied. If
the preconditions are met, the operator is generalized to fit the schema.
The generalized operator also needs to be justified using the previous jus
tifications.

However, since the schema includes variables, there may exist more than
one reasoning path depending on the value of input data at that step. This
could happen, for example, when the operator is " c o m p a r e two values ? X
and ? Y " .

If application of the generalized operator to the input of this step always
leads to the same reasoning path as that of source case, the applied result
will be kept in the schema for the output of that step. If it has more than
one alternative reasoning path on this input, JULIA needs to generalize
the operator as follows: for the same alternative as that of the source
case, JULIA generalizes the operation as in the above case; for the other
alternatives, JULIA generalizes the operation in one of the following ways:
if an existing schema was retrieved and it has a reasoning path for this
alternative, then use it; if the previous justifications similarly fit these other
alternatives, then generalize the operator along the similar line; otherwise
use domain theory.

Next, consider transfer of result 5. The source result is generalized to
fit the problem schema by considering the generalized requirements in the
problem schema and the requirements in the source problem but not in the

6 There are some applications where, even when a reasoning history is available, transfer
of result is desirable [Kol87b].

8

Input: Problem schema, source case, and analogy map
Output: Solution schema
Method:
(The analogy map provides the correspondence information between the problem
schema and the source case.)

if a reasoning history is not available for the source case
then do transfer of result:

generalize the result to fit the problem schema;
store the generalized result in the schema

else do transfer of reasoning:
for each step of the reasoning history of source case do:
if the current state of the schema meets the preconditions of the operator
then

if there is only one alternative on the input of the schema
then

generalize the operator up to the abstract level of the schema;
store the operator in the schema for this step;
apply the operator to the current state of the schema
and keep the result in the schema for this step;

else if there exist more than one alternative
then

generalize the operator for each alternative similarly;
store the generalized operator in the schema for this step;

else
transform the schema to make it meet the preconditions of this operator

if transformation is successful
then apply the above method
else abandon this case for another

Figure 4: Solution Abstraction Algori thm

9

problem schema. Space does not permit more discussion of this method
[Cax63,Tur87]; it will be briefly discussed with a simple example below.

Let's now apply the abstraction algorithm to case C38 (Figure 2) For the
problem schema (Figure 3) . This is split into two subproblems. Consider,
first, subschema A751 with subcase C381. Since subcase C381 does not
have a reasoning history, JULIA uses the transfer of result. Using the
analogy map, JULIA knows the source result needs to be generalized to
fit constraint c-number-of-guests(?X). In this case, generalization is done
by using the domain knowledge: "The quantity of food is proportional to
the number of guests (say, DK22)." JULIA applies this knowledge to the
source result and multiples the quantity of each ingredient of the dish by
? X / 4 . The generalized result 6 is shown in Figure 5.

Next, apply the abstraction algorithm to subschema A752 and subcase
C382. Since the reasoning history is available for subcase C382, JULIA
uses it to generalize the subschema. For each step of the reasoning history,
JULIA checks if it is applicable to the current state of the schema. JULIA
finds that the first step requires the constraints [c-number-of-guests(?X)
c-dining-space(?Y)] as input. Next, JULIA checks if the reasoning step is
general enough to fit into the problem schema. In the source case, since
the number of guests was less than or equal to the dining capacity, the
eating-configuration was SEATED. But, in the schema, since the number
of guests may or may not be greater than the dining capacity, this step
of operation in the source case should be generalized, considering both al
ternatives for the schema. For the case in which the number of guests is
less than or equal to the dining capacity, the schema will use the same
reasoning as that of the source case (i.e., if 7NO-GUESTS < 7DINING-
CAPACITY, then 7EATING-CONFIGURATION is SEATED). But, for
the other alternative (i.e., 7NO-GUESTS > 7DINING-CAPACITY), the
operation needs to be generalized using one of the above mentioned gener
alization techniques. One method is to use the domain knowledge: "The
eating-configuration is either SEATED or STANDING." After a simple

6 T h e generalized result in this case only mediates transfer between source and target
cases and may not be interpreted by any means as a solution formula for every case that
has the same set of requirements as this case, because it is only one of many possible
solutions. There may, however, be times when the generalized result will indeed be a
solution formula.

10

ATS:
Problem:

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN)

c-number-of-guests (? X) c-dining-space (?Y)]
Solution: [A751 A752]
Reasoning:

1. OP: plan for each subcase

A751:
Problem:

goal: [g-know(MAIN-DISH)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(?X)]

Solution: STUFFED-SQUASH
ingredients:

1/2 ?X squashes with the filling:
1/8 ?X cup chopped onion, 1/4 ?X clove garlic, 1/4 ?X stalk celery,
1/16 ?X cup walnuts, 1/16 ?X cup sunflower seeds, 1/16 ?X cup raisins,
1/8 ?X tsp. sage, 1/8 ?X tsp. thyme, juice from 1/8 ?X lemon,
3/4 ?X tbs. butter, 1/4 ?X cup wheat bread, 1/8 ?X cup cheddar cheese

Reasoning: (justifications: case C381 and domain knowledge DK22)

A752:
Problem:

goals: [g-know(MEAL-PRESENTATION)]
constraints: [c-number-of-guests(?X) c-dining-space(?Y)]

Solution:
Reasoning:

1. OP: If ?NO-GUESTS < ?DINING-CAPACITY
then ?EATING-CONFIGURATION is SEATED
else 7EATING-CONFIGURATION is STANDING

2. OP: If 7EATING-CONFIGURATION is SEATED
then ?MEAL-PRESENTATION is SERVICE
else 7MEAL-PRESENTATION is BUFFET

Figure 5: Abstract schema A75

11

computation, we get "If 7NO-GUESTS > 7DINING-CAPACITY, then
?EAHNG-CONFIGUEATION is STANDING™ Similarly, the next step
will also be generalized using the domain knowledge: T h e meal-presentation
is either SERVICE or BUFFET." Figure 5 shows the schema so obtained.

2.5 Abstraction Application

After an abstract schema is created, it is applied to the target problem.
The basic idea for schema application is to apply the generalized result if
one exists, otherwise apply the reasoning method.

Application of schema A75 (Figure 5) to problem C50 (Figure l) gen
erates two subproblems. The subproblem for goal g-know(MAIN-DISH) is
solved by applying the generalized result of subschema A751 which requires
instantiating the variable ? X to 16. On the other hand, the subproblem for
goal g-know(MEAL-PRESENTATION) is solved by applying the reasoning
method, step by step. The variables ? X and ? Y are bound to 16 and 10,
respectively, and each step is applied; the eating configuration is STAND
ING after the first step; the meal presentation is BUFFET after the second
step. The resultant target case is shown in Figure 6.

2.6 Solution Refinement

Application of a schema to the target problem may not lead to a final so
lution because the instantiated result does not always meet all the require
ments. If it is the case, the result of schema application must be refined.
In general, the problem of refinement can be viewed as an independent
problem where its goal is transforming the current result to make it satisfy
the remaining requirements. This means that either an analogical problem
solver or other problem solvers can be applied here. In JULIA, refinement
with extra constraints is done by using the same reasoning method used
for the other constraints.

3 Analogy-Based Learning

Analogical problem solving per se is one form of learning because it learns
from previous experience how to solve similar problems. Another form of

12

C50:
Problem:

goals: [g-know(MAIN-DISH) g-know(MEAL-PRESENTATION)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN)

c-number-of-guests(16) c-dining-space(lO)]
Solution: [C501 C502]
Reasoning: (justification: Schema A75)

1. OP: plan for each subcase

C501:
Problem:

goal: [g-know(MAIN-DISH)]
constraints: [c-season(THANKSGIVING) c-diet(VEGETARIAN) c-number-of-guests(16)]

Solution: STUFFED-SQUASH
ingredients:

8 squashes with the filling:
2 cup chopped onion, 4 clove garlic, 4 stalk celery,
1 cup walnuts, 1 cup sunflower seeds, 1 cup raisins,
2 tsp. sage, 2 tsp. thyme, juice from 2 lemon,
12 tbs. butter, 4 cup wheat bread, 2 cup cheddar cheese

Reasoning: (justification: Schema A751)

C502.
Problem:

goals: [g-know(MEAL-PRESENTATION)]
constraints: [c-number-of-guests(l6) c-dining-space(lO)]

Solution: BUFFET
Reasoning: (justification: Schema A752)

Figure 6: Case C50

13

learning occurs as a byproduct of problem solving in the form of schemas.
A g r t l p m a contains two types of general knowledge: procedural (reasoning
method) and declarative (generalized result). This section will discuss the
latter form of general learning and the related issues: where and how the
acquired knowledge is stored and how it is used later.

3.1 Learning During Solution Abstraction

As shown in the previous section, solution abstraction can be viewed as the
process of extracting an embedded algorithm out of the reasoning part of
a previous case and/or a generalized result out of the solution part. As a
result, a solution schema contains a reasoning method and/or a generalized
result for a given problem schema. From the learning point of view, a solu
tion schema represents exactly what is learned from a particular analogy.

We should note, however, that the generalized result of a solution schema
may not always be interpreted as a solution formula. If the result is proven
to be unique it can be used as a solution formula for any case that is an
instance of the problem schema. On the other hand, if the result is just one
among many possible solutions (e.g., A751), it should be interpreted solely
as a mediator of transferring the source solution to the target problem. If
this gets used frequently, it may become a prototypical solution, but not a
solution formula. Thus, the generalized result is a potential source of either
a solution formula or a prototypical solution.

A n a l o g y - b a s e d genera l iza t ion vs Exp lana t ion -based general iza
t ion

Schema abstraction (i.e., problem abstraction plus solution abstraction)
is a kind of analogy-based generalization (ABG) . A B G and explanation-
based generalization (EBG) (see [DM86,MKK86]) are as different as they
are similar.

If a reasoning history is not available for a solved case and needs to be
built, it can be done either by using EBG (because a reasoning history for
a case in A B G corresponds to an explanation for an example in EBG) or by
applying A B G recursively to another analogous case with a reasoning his
tory (see [KL87] for case-based explanation). The problem of constructing
an explanation using the domain theory is similar to a state space search

14

problem if we view a problem as an initial state and its solution as a final
state. jELBG, in this case, has no strategy of controlling the search space.
A B C , on the other hand, can significantly constrain the search space using
the reasoning history of another similar case.

In addition, since EBG generalizes on a single case, the generalized
explanation accommodates only the one possible alternative that the par
ticular case followed. As a result, EBG fails to consider other potential
alternatives so that EBG by itself is not capable of learning general reason
ing methods. On the other hand, two cases give A B G a chance to explore
more than one alternative in problem solving (as we have seen in Section
2.4). This leads A B G to incrementally learn a general method.

3.2 Organizing Memory with Cases

When a target problem is solved, both the target and source cases are stored
in memory as specializations of the abstract schema created by abstrac-
tional analogy. The schema itself is stored, replacing the previous source
case, and both cases will be made children of this schema. In this way, ab
straction^ analogy forms memory into abstraction hierarchies, where each
node represents a specific or generalized case.

A retrieval algorithm similar to that described in Kolodner [Kol84] can
be used to find the most specific partially matching schema or case, when
a new problem is being solved. If a schema has already been created and is
recalled from memory, the analogical reasoner uses it to solve the problem
directly. If a case more similar than available schemas is recalled, abstrac-
tional analogy is applied to it to solve the problem.

4 Summary
Our goal has been to develop a computational model of analogical reasoning
based on abstractional analogy. The process of abstractional analogy pro
ceeds as follows. First, given a new problem, an analogous case is retrieved
from memory. Second, analogy abstraction creates an abstract schema
that represents what source and target cases have in common. A n abstract
schema consists of a problem schema and its solution schema. In order to

15

3. HOTrmondL, TL 3. (1984). Indexing and Causality: The organization oj plans and strategies in
memory. Report No. 351. Dept. of Computer Science. Yale University. New Haven, CT.

4. Hammond, K. J. (1986). Case-Based Planning: An integrated theory of planning, learning,
and memory. Ph-D. Thesis. Dept. of Computer Science. Yale University.

5. Hinrichs, T. (1988). Towards an architecture for open world problem solving. Proceedings of
the DARPA Workshop on Case-Based Reasoning.

6. Hunter, L. (1988). The Use and Discovery of Paradigm Cases. Ph.D. Thesis. Yale University.
Forthcoming.

7. Kolodner, J. L. (1983). Reconstructive Memory: A Computer Model. Cognitive Science, vol.
7.

8. Kolodner, J. L. (1984). Retrieval and Organizational Strategies in Conceptual Memory: A
Computer Model. Hillsdale, NJ: Lawrence Erlbaum Assoc.

9. Kolodner, J. L. (1985). Experiential Processes in Natural Problem Solving. Technical Re
port No. GIT-ICS/85/23. School of Information and Computer Science. Georgia Inst, of
Technology. Atlanta, GA.

10. Kolodner, J. L. k. Cullingford, R. E. (1986). Towards a Memory Architecture that Supports
Reminding. Proceedings of the 1986 Conference of the Cognitive Science Society.

11. Kolodner, J. L. (1987a). Extending problem solver capabilities through case-based inference.
Proceedings of the 1987 International Machine Learning Workshop.

12. Kolodner, J. L. (1987b). Capitalizing on failure through case-based inference. Proceedings of
the 1987 Conference of the Cognitive Science Society.

13. Kolodner, J. L., Simpson, R. L., & Sycara, E. (1985). A Process Model of Case-Based
Reasoning in Problem Solving. Proceedings of IJCAI-85.

14. Koton, P. (1988). Reasoning about evidence in causal explanations. Proceedings of the
DARPA Workshop on Case-Based Reasoning.

15. Lebowitz, M. (1983). Generalization from natural language text. Cognitive Science, vol. 7.

16. Lytinen, S. (1984). Frame selection in parsing. Proceedings of AAAI-84.

17. Martin, C. h Riesbeck, C. (1986). Uniform parsing and inference for learning. Proceedings
of AAAI-86.

18. Owens, C. (1988). Domain-Independent Prototype Cases for Planning. Proceedings of the
DARPA Workshop on Case-Based Reasoning.

19. Reiser, B. & Black, J. (1983). The roles of interference and inference in the retrieval of
autobiographical memories. Proceedings of the 1983 Conference of the Cognitive Science
Society.

16

and T .M. Mitchell, editors, Machine Learning: An Artificial In-
tcitigrnce Approach, KanfmaTTn, Xos Altos, CA, 1986*

[Car83] J.G. CarbonelL Learning by analogy: formulating and general
izing plans from past experience. In R.S. Michalski, J.G. Car-
bonell, and T .M. Mitchell, editors, Machine Learning: An Arti
ficial Intelligence Approach, Tioga, Palo Alto, CA, 1983.

[Car86] J.G. CarbonelL Derivational analogy: a theory of reconstructive
problem solving and expertise acquisition. In R.S. Michalski,
J.G. Carbonell, and T .M. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach, Kaufmann, Los Altos, CA,
1986.

[CK86] R.E. Cullingford and J.L. Kolodner. Interactive advice giving.
In Proceedings of the 1986 IEEE International Conference on
Systems, Man, and Cybernetics, 1986.

[CM85] J.G. Carbonell and S. Minton. Metaphor and commonsense rea
soning. In J.R. Hobbs and R.C. Moore, editors, Formal Theories
of the Commonsense World, Ablex, Norwood, NJ, 1985.

[Dar83] L. Darden. Reasoning by analogy in scientific theory construc
tion. In Proc. of Int'l Workshop on Machine Learning, Monti-
cello, IL, 1983.

[Der85] N. Dershowitz. Program abstraction and instantiation. ACM
Transactions on Programming Languages and Systems, 7(3), July
1985.

[Der86] N. Dershowitz. Programming by analogy. In R.S. Michalski,
J.G. Carbonell, and T .M. Mitchell, editors, Machine Learning:
An Artificial Intelligence Approach, Kaufmann, Los Altos, CA,
1986.

[DM86] G. DeJong and R. Mooney. Explanation-based learning: an al
ternative view. In R.S. Michalski, J.G. Carbonell, and T.M.
Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, pages 145-176, Kaufmann, Los Altos, CA, 1986.

17

[Gen80] M.R . Genesereth. Metaphors and models. In Proe. AAAI-80,
M e n l o P a r i , CA, I960.

|Gen83] D . Gentner. Structnre-mapprng: a theoretical framework for
analogy. Cognitive Science, 7:155-170, 1983.

[GH83] M.L. Gick and K.J. Holyoak. Schema induction and analogical
transfer. Cognitive Psychology, 15:1-38, 1983.

[Hol85] K.J. Holyoak. The pragmatics of analogical transfer. Psychology
of Learning and Motivation, 19:59-87, 1985.

[Jar74] L. Jardine. FRANCIS BACON: Discovery and the Art of Dis
course. Cambridge University Press, Bentley House, 200 Euston
Road, London, 1974.

[KL87] A .M. Kass and D.B. Leake. A case-based approach to build
ing explanations for explanation-based learning. 1987. Working
paper.

[Kol84] J.L. Kolodner. Retrieval and Organizational Strategies in Con
ceptual Memory: A Computer Model. Lawrence Erlbaum Asso
ciates, Hillsdale, NJ, 1984.

[Kol87a] J.L. Kolodner. Capitalizing on failure through cased-based in
ference. In Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, Seattle, Washington, July 1987.

[Kol87b] J.L. Kolodner. Extending problem solver capabilities through
case-based inference. In Proc. of the Fourth Int'l Workshop on
Machine Learning, pages 167-178, Irvine, CA, June 1987.

[Min75] M. Minsky. A framework for representing knowledge. In P.H.
Winston, editor, The Psychology of Computer Vision, McGraw
Hill, New York, 1975.

[MKK86] T.M. Mitchell, R. Keller, and S.T. Kedar-Cabelli. Explanation-
based generalization: a unifying view. Machine Learning, 1:47-
80, 1986.

18

[Pol45] G. Polya. How to Solve It; A New Aspect of Mathematical
Mrthod Princeton University Press, Princeton, NJ* 1S45-

[Pol54] G. Polya. Mathematics and Plausible Reasoning: Induction and
Analogy in Mathematics. Volume 1, Princeton University Press,
Princeton, NJ, 1954.

[Ros86] B.H. Ross. Remindings in learning and instruction. In Workshop
in Similarity and Analogy, 1986.

[TC88] E. Turner and R.E. Cullingford. Conversation planning using
conversational mops. 1988. In Preparation.

[Tur87] R.M. Turner. Modifying previously-used plans to fit new situ
ations. In Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, Seattle, Washington, July 1987.

[Wil86] R. Wilensky. Some Problems and Proposals for Knowledge Rep-
resentation. Technical Report UCB/CSD 86/294, University of
California, Berkeley, Berkeley, CA, 1986.

[Win80] P.H. Winston. Learning and reasoning by analogy. Comm.
ACM, 23(12):689-703, 1980.

19

The Hole of Mapping j h A nalpgaral ̂ Transfer1

Hong S. Shmn
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, CA 30332, VSJL

Abstract

This paper aims to provide a view of the role of analogical mapping in the entire process of
analogical problem solving. In many models, analogical mapping is responsible for identifying
the analogy between two problems by considering structural and semantic similarities. However,
given a non-trivial analogy problem, success of mapping does not always guarantee successful
transfer of analogy. In fact, there exist many analogy problems, which succeed on analogical
mapping but which fail on analogical transfer. While a potential mapping between problems can
be generated, that mapping might not be justifiable until transfer from one problem to another
is attempted.

We present our analogical mapping method and show how it works for inter-domain and
tntra-domain analogies. We demonstrate several analogy problems in which a mapping can be
generated that cannot be transferred. We also compare our method to Gentner's SME and to
Holyoak's ACME, and show that it performs at least as well, and sometimes better than either
of those methods.

Key Words: analogical problem solving, analogical mapping.

1 Introduction

This paper aims to provide a view of the role of analogical mapping in the entire process of
analogical problem solving. Analogical problem solving contains at least the following components
[Shi88,CM85,HT88]: retrieval of a plausibly analogous case, analogical mapping, and analogical
transfer. The step of analogical transfer may involve modification of a previous solution and
justification of the result obtained before the result is transferred [Shi88].

In many models, analogical mapping is responsible for identifying the analogy between two
problems by considering structural and semantic similarities. However, given a non-trivial analogy
problem, analogical mapping by itself does not always guarantee that an analogy will be successful.
While it can produce a potential mapping between problems, a mapping might not be justifiable
until transfer from one problem to another is attempted.

In this paper, we illustrate the role of mapping in analogical problem solving and we present a
hierarchical method of analogical mapping that is based primarily on similarity of structures. The
method uses relatively little semantic information. Instead, it relies on the analogical transfer step
to determine the merit of a potential analogical mapping.

We show how our method works for inter-domain and intra-domain analogies. We demonstrate
several analogy problems in which a mapping can be generated that cannot be transferred. We
also compare our method to Gentner's SME and to Holyoak's ACME, and show that it performs
at least as well, and sometimes better than either of those methods.

xThis research has been supported in part by the Army Research Institute under Contract No. MDA-903-86-C-
173, is currently supported in part by NSF under Grant No. IST-8608362, and in part by Lockheed AI Center under
Grant No. DTD 09-25-87.

SHINN

3, -Analogical Mapping Algnrathm
Before introducing our algorithm, we need to clarify the problem of analogical mapping. Polya
[Pol54] views "analogy" as a systematic correspondence between two systems preserving certain
relations. For his basic type of analogy, Polya defines analogy as "similarity of relations", where
relations are similar if they are governed by the same laws. He illustrates this -with an example:
the multiplication of numbers multiply (x,y) is analogous to the addition of numbers add(x,y) in
the sense that both multiplication and addition are commutative. In other words, two relations
multiply (a, b) and add(a,b) are similar because they are governed by the same commutative law:
equals[OP(a,b),OP(b,a)J. Interpreting Polya's definition of similarity in analogical problem solving,
"similarity" in problems is what leads to similar effects on their solutions. The problem here
is that, without knowing beforehand what the similarity's effect will be on the solution to the
target problem, we must find that similarity which can be used in deriving the solution. Thus,
what analogical mapping does is to find the most probable similarity candidates before transfer of
knowledge from source to target is attempted.

Our analogical mapping algorithm follows Gentner's systematicity principle ([Gen83], p. 163)
in that it transfers "a system of connected knowledge, not a mere assortment of independent facts".
In other words, during mapping between structures, even the highest order predicates may not be
mapped separately from their lower level entities.

In dealing with similarity, however, we do not accept Gentner's entire theory of structure
mapping. In our mapping scheme, two relations which are structurally similar (i.e., the current
partonomic roles in both structures are the same) will not be thrown out. For example, according
to Gentner, two relations equals[multiply(a,b),multiply(b,a)J and equals[add(a,b),add(b,a)J are not
mappable to each other because the highest level predicates are identical (i.e., equals), but not
the lower level predicates (i.e., add and multiply). On the other hand, in our scheme, these are
mappable because their high order predicates are the same while the low level predicates "add" and
"multiply" are structurally similar due to their similar roles in the whole relations. Burstein [Bur86]
demonstrates with his system CARL the necessity of mapping between nonidentical relations,
criticizing Gentner's structure mapping which fails on this kind of similarity.

Another characteristic of our mapping scheme is hierarchical mapping. This is frequently used
when problems are represented in hierarchical structure. In fact, analogy between problems usually
exists at an abstract level. Thus, mapping starts at the highest level first and proceeds to the next
lower level and so on until analogy breaks down.

In our scheme, the entire mapping process is a recursive application of a two-step hierarchical
mapping: first map the two problem structures systematically under structural similarity and then
decompose them into the next lower level structures (see Figure 1). Structural similarity is found
not only in physical structures but also in functional structures. Functional structures are described
by functional objects and relations such as functions, purposes, goals, constraints, conditions, and
states. For example, an air conditioner is like an electric fan because their top level functions
are the same (i.e., excite-air). Another example of analogy is found between society and organism
because they are similar in their functional organizations.

As a result of analogical mapping, an analogy map is generated for two cases showing correspon
dences between both relations and their objects. An analogy map represents a common structure
between source and target structures with a binding list between source and target elements. The
common structure represents a common problem schema which is used as a medium of transfer in
analogical problem solving [Shi88,CM85]. For example, analogical mapping between multiply(a,b)
and add(a,b) generates the analogy map as a common structure OP(a,b) with the binding list [(OP
multiply add)] meaning that there is one binding OP and it binds to multiply in the source and to

SHINN

"Input: A~Bonrcc case anil a'target piubtem
Output: An analogy map (AMAP)
Algorithm-

Recursive application of two-step hierarchical mapping:
given two problem structures,

1. Map them systematically under structural similarity:
identify components whose partonomic roles in both structures are the same;
map components as specifically as possible under the current AMAP;
if mappable
then add correspondences between components to AMAP
else return AMAP

2. Hierarchical refinement:
decompose the current level into the next lower level structures;
pair them in the same partonomic roles

Figure 1: Analogical Mapping Algorithm

add in the target.

3 Related Work

Gentner's structure mapping theory with its implementation, Structure-Mapping Engine (SME)
[FFG86], demonstrates the importance of systematicity in interpreting an analogy. But, it is often
criticized because of its syntactic approach.

Many recent models consider semantic and pragmatic characteristics of analogy as well as syn
tactic information to guide analogical mapping [FFG86]. For instance, Burstein [Bur86] introduces
some top-down constraints on relations and primarily relates objects in terms of their functional
roles in analogical mapping. Winston's mapping is driven by importance-dominated matching
[Win80,Win82]; importance is mainly determined by causal relations in the situations.

Holyoak and Thagard's mapping theory [HT88] attempts to take into account all three di
mensions of analogy: syntax, semantics and pragmatics. Their program called ACME computes
an analogical map by means of constraint-satisfaction based on five heuristic constraints: logical
compatibility, uniqueness, relational consistency, semantic similarity, and role identity. Semantic
and pragmatic information help to constrain the search for the most plausible mapping. But, the
problem with this approach is that there exist many analogy problems on which such heuristics do
not work (an example will be shown in Section 5.1).

Our mapping algorithm is similar to SME in that both enforce systematicity (as shown in the
previous section), but different in that ours maps predicates under similarity by functional roles
while SME maps under identity. Ours is also similar to Burstein's and ACME in that it maps
components by considering part-whole relationships. However, unlike ACME and Winston's, much
of the semantic information is not explored during mapping. Rather, it will be checked when the
knowledge to be transferred is justified in the transfer step.

SHINN

4 Applications ol Analngiral Mapping
Analogical mapping is a step of predicting a plausible analogy, which will be tried for transfer.
During the actual transfer attempt, mapping results are filtered considering semantic similarity.
The following applications show how these processes are performed

The first two applications of our mapping algorithm Tery on similarity in physical structures:
Section 5.1 shows analogy examples between different domains, while Section 5.2 compares analogies
within the same domain. These examples are also used to compare our algorithm to two general
analogical mapping mechanisms, SME and ACME. In Section 5.3, an application from the JULIA
project shows an example in functional structures.

4.1 Inter-Domain Examples

Applying our analogical mapping algorithm, let's solve the problem ^-[sinx — lnx] using the fol
lowing case:

Problem: f[ex + l]dx
Solution: ex + x + C
Reasoning steps: f[ex + 1] dx f ex dx + / 1 dx ex + x + C

When the mapping algorithm, in the first cycle, is applied to the top level structures (i.e., ^[s inx —
lnx] and / [c* + 1] dx), it successfully produces the analogy map

?[f(x) OPg(x)\

with bindings [(7 ^ /) (OP h) (/ (e) sinx ex) {g{x) lnx 1)]. Since the first reasoning step of

the source case predicts the following analogy (in an abstract form):

T[f(x) OPg(x)] = T[f(x)]OP?[g(x)\

the target problem reduces as follows:
d r • i i d • d i —Ism x — In xl = — sin x — — In x

dx dx dx
In the next cycle, the mapping between the next lower level structures / ex dx and £ sin x succeeds,
but analogical transfer between these two fails. This is the level where the analogy breaks down
and the mapping process halts. Thus, the analogy between the above two cases resides only at the
top level. This example shows the utility of hierarchical mapping in identifying analogy, since the
analogy at higher levels of abstraction can be used even though there does not exist a complete
analogy.

Consider another problem
c 2 x + 3

using the same source case. It is similar to the first example in that mapping predicts

However, this hypothesis is not correct; the correct transformation is c 2 x + 3 = c 2 x * c 3 . This example
shows that successful analogical mapping may not guarantee the existence of analogy when semantic
similarity is missing. The semantic similarity is checked using reasonings similar to those of the
source case. This is done during the process of analogical transfer to justify the hypothesized
analogy. (See [Shi88] for more discussion of the justification problem.)

Let us apply SME and ACME to the first analogy problem:

SHINN

Source: J]e*-}-l]iz
SME fails to recognize this analogy because the two high level predicates ^ and / are not identical.
This example shows that structural mapping under predicate identity is too strong. In case of
ACME, the logical compatibility requires the second arguments h z and 1 to be the same logical
kind (e.g., constants to constants) so that ACME also fails on this analogy. This case suggests that
semantic and pragmatic information should be used cautiously because of their heuristic nature.

4.2 Intra-Domain Examples

Given a problem

r l
dy

consider analogical mapping problems with each of the following three cases.

Case 1:

Problem: f > 1 „ dy

Solution: s inh - 1 -J- + C

Case 2:

Problem: / -^JL^dx
Solution: s in - 1 x + C

Case 3:

Problem: f > 1 j dz
Solution: s in - 1 ^ - + C

All three mappings succeed with our mapping algorithm because the three cases are all structurally
similar to the target problem.

In the first case, analogy transfer from case 1 to the target problem is not possible (because the
previous reasoning of case 1 is not applicable to the target problem). In the second case, transfer
from the source case is not possible until some modification is performed. That is, in order to apply
the solution of case 2 to the target problem, the form y/a — z2 embedded in the target problem
needs be transformed to the form y/1 — x2 in case 2. In the third case, the source solution can be
transferred to the target domain so the target solution will be s in - 1 ^= + C.

The success of analogical mapping leads directly to analogy transfer in the third example. The
first example shows, however, that the success of mapping may not guarantee successful analogy
transfer. (It only predicts a possibility of transfer which should subsequently be verified.) Further
more, the second example shows that even when analogical mapping eventually leads to analogy
transfer, successful analogical mapping may not directly dictate what is to be transferred from the
source case to the target problem. (It may only hint at what is to be transformed in order to reach
a transferable state.) So, the role of analogical mapping is to identify a plausible analogy based on
known similarity before transfer of analogical knowledge from the source case to the new problem
is attempted [Shi88].

Note that SME and ACME are similar to our mapping algorithm in that they will come up with
successful mappings with all three cases. This shows that, even when ACME considers semantic

SHINN

and fgagmatic accomta, it is n o t able I d djstmgnish gTmlryrw -which lead I d amaScapcal irramfirr
(ie . , case "S) fium analogies -which do not (Le., cases 1 and 2). m other -words, ACME is not -more
powerful than SME and ours in dealing with these three.

4*3 A n .Application i n JTTTJA

Our analogical mapping mechanism is part of the case-based reasoner [Shi88] in JULIA, an in
telligent caterer's advisory system [CK86,Kol87]. Each problem case in JULIA has problem and
solution parts. The problem part describes its problem functionally in terms of goals and constraints
while the solution part contains a solution plan and the reasoning history.

Since problem cases are represented in a hierarchical structure, JULIA maps the top level
problem structures first. It tries to identify similarity between two functional structures. In a
frame-based representation, it is straightforward to identify the same functional components (e.g.,
goals and constraints). JULIA starts mapping with goals between problems: if the goals fully
match, the mapping proceeds to constraints; in case of a partial match, which means some goals
match but others do not, only the matched goals will be considered for possible transfer; otherwise,
the mapping fails. Mapping then proceeds to constraints on only the matched goals to establish
correspondences between them. For example, JULIA would consider two cost constraints LOW-
COST and INEXPENSIVE2 similar, because they are functionally the same in that they both
constrain the cost. Then, should LOW-COST and EXPENSIVE be considered similar, too? JULIA
views that they, too, are functionally similar due to the same reason. However, these do not have
as much in common semantically as LOW-COST and INEXPENSIVE.

This problem will be resolved during actual transfer and there the degree of semantic similarity
determines the degree of learning involved. Suppose the source case made the following inference
during its problem solving:

If c-cost(LOW-COST)
then c-ingredient-cost(LOW-COST) and c-cooking(LOW-COST)
because cost of dish is cost of ingredients plus cooking cost

Then, during analogical transfer, JULIA will try to transfer the previous inference rule with the
similar concept INEXPENSIVE using its justification ("because") clause. In other words, JULIA
hypothesizes a rule substituting LOW-COST in the rule for INEXPENSIVE, seeing if the justifi
cation previously used is similarly applicable. Since the justification also holds for the target case,
the new rule will be transferred:

If c-cost(INEXPENSIVE)
then c-ingredient-cost(INEXPENSIVE) and c-cooking(INEXPENSIVE)
because cost of dish is cost of ingredients plus cooking cost

However, if it were EXPENSIVE, the similar inference may not be true because not every ingredient
needs to be expensive to make a dish expensive.

5 Summary and Conclusions

We have shown that successful mapping may not guarantee successful transfer of analogy. Ana
logical mapping only predicts a possibility of transfer which should subsequently be verified. Even

2INEXPENSIVE ranges from low cost to moderate cost so that its meaning is slightly broader than that of
LOW-COST.

SHINN

when analogical inapping eventually leads to analogy transfer, mr*»j»«ifol ynnlnĝ f-al Trmjijmi^ may
not directly dictate "what is to be transferred uom the source case to the target problem.

An analogical mapping algorithm has been introduced as a recursive application of two-step hi
erarchical mapping: first map the two problem structures systematically under structural similarity
and then decnmpowe them into the next lower level structures. Structural similarity is identified
during this mapping process, while semantic similarity is checked during analogical transfer. These
two processes together guarantee the correctness of analogy transfer.

Acknowledgments

This work could not have been done without the support and guidance of Janet L. Kolodner.
I would like to thank Patsy L. Holmes, David Wood, Mark A. Graves, Joel Martin, and Mike
Redmond for useful comments and discussion on earlier versions of this paper.

References
[Bur86] M.H. Burstein. Concept formation by incremental analogical reasoning and debugging. In R.S.

Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine Learning: An Artificial Intelligence
Approach, Kaufmann, Los Altos, CA, 1986.

[CK86] R.E. Cullingford and J.L. Kolodner. Interactive advice giving. In Proceedings of the 1986 IEEE
International Conference on Systems, Man, and Cybernetics, 1986.

[CM85] J.G. Carbonell and S. Minton. Metaphor and commonsense reasoning. In J.R. Hobbs and R.C.
Moore, editors, Formal Theories of the Commonsense World, Ablex, Norwood, NJ, 1985.

[FFG86] B. Falkenhainer, K.D. Forbus, and D. Gentner. The structure-mapping engine. In Proc. AAAI-86,
1986.

[Gen83] D. Gentner. Structure-mapping: a theoretical framework for analogy. Cognitive Science, 7:155-
170, 1983.

[HT88] K.J. Holyoak and P. Thagard. Analogical mapping by constraint satisfaction: a computational
theory. 1988. Accepted at Cognitive Science.

[Kol87] J.L. Kolodner. Capitalizing on failure through cased-based inference. In Proceedings of the Ninth
Annual Conference of the Cognitive Science Society, Seattle, Washington, July 1987.

[Pol54] G. Polya. Mathematics and Plausible Reasoning: Induction and Analogy in Mathematics. Vol
ume 1, Princeton University Press, Princeton, NJ, 1954.

[Shi88] H.S. Shinn. Abstractional analogy: a model of analogical reasoning. 1988. Submitted for publica
tion.

[Win80] P.H. Winston. Learning and reasoning by analogy. Comm. ACM, 23(12):689-703, 1980.

[Win82] P.H. Winston. Learning new principles from precedents and exercises. Artificial Intelligence,
19:321-350, 1982.

Organizing and Using Schematic
.Knowledge fox Medical Diagnosis*

Roy M. Turner
School of ICS

Georgia Institute of Technology

Abstract

A major problem for both human and computer diagnosticians is representing and organizing
problem-solving knowledge in such a manner that the knowledge can be quickly accessed and
easily used. Some researchers (e.g., [Lesgold et al., 1981] and [Feltovich et al., 1984] feel that expert
medical diagnosticians have at least some of their problem-solving knowledge in a schematic form—
procedures, or plans and scripts—that can efficiently be brought to bear on diagnostic problems.

In this research, we present an approach to diagnostic reasoning, called schema-based reasoning,
that allows a reasoner to access and use the most specific procedural information available for the
problem at hand. Our approach represents the problem solver's knoweldge as schemata: packets
of procedural knowledge about how to achieve a goal or set of goals. Schemata are organized in
memory by the category of diagnostic problem they are useful for and along hierarchies defined by
features of the schemata. When presented with a new problem, the reasoner retrieves schemata
based on features of and goals present in the problem; the schemata are then applied by the reasoner
to achieve its goals.

The process of schema-based reasoning was designed with an eye towards learning from ex
perience; we discuss some initial ideas along these lines in this paper, specifically comparing our
approach to case-based reasoning [e.g., Ashley, 1986; Kolodner, 1987; Kolodner et al., 1985; Simp
son, 1985].

Our approach is implemented in the MEDIC program, a schema-based diagnostic reasoner whose
domain is puhnonology.

1 Introduction

One of the major differences between a novice and an
expert is that the expert has his or her knowledge in
a readily accessible and usable form. The novice at
medical diagnosis—a medical student—does not nec
essarily suffer from a lack of facts; rather, the novice
does not have the facts organized in a fashion that
allows them to be brought to bear quickly and effi
ciently on a problem. In addition, the novice does not
have available the procedural knowledge necessary to
allow him or her to quickly and easily solve diagnostic
problems. The novice's knowledge, in other words, is
not operational

In order to operationalize a diagnostician's knowl
edge, he or she is given cases to solve, either practice

'This research has been funded in part by NSF Grants IST-
831771 and IST-8608362 and a grant DTD 09-25-87 from the
Lockheed Al Center.

or reaL As cases are solved, the student learns what
is important in the problem-solving environment, and
learns what knowledge to use to solve which kinds
of problems. Part of the learning process consists
of converting "book knowledge" of signs, symptoms,
and diseases into procedural knowledge: schemata
for solving diagnosis problems (cf. [Lesgold et al.,
1981]). Another part of the learning process is orga
nizing the information learned—new facts as well as
new schemata—in a form that allows it to be brought
to bear efficiently on future problems.

The problem of how to represent and organize diag
nostic knowledge has been studied in several artificial
intelligence projects. In CENTAUR [Aikins, 1980], for
instance, problem-solving knowledge is represented in
the form of prototypes (frames) with associated rules;
this has the effect of clustering the rules used around
the contexts in which they are useful. MDX [Gomez
and Chandrasekaran, 1982] is similar, in that its

1

.knowledge is represented as rales stored m specialists
TH •*, Bpv*JuiH&alkAi ût laajuuuuuL.) liiei u1 cby. H&olDdr
ner and Kolodner [1987] proposed a scheme in which
knowledge used in diagnosis is stored in episodes and
generalized episodes in a dynamic memory [Schank,
1962]. Thai approach has several benefits: (1) d«e
to the properties of the dynamic memory, the most
specific knowledge possible for a particular problem
can be retrieved; (2) previous cases of problem solv
ing are available for use in similar situations; and (3)
the general knowledge, and the organization of the
memory, is changed as new cases are added to the
memory.

Though all these approaches organize the rea
soner's knowledge in a form that is readily accessi
ble, they tend to ignore the procedural knowledge
necessary to perform diagnosis. That is left in the
program itself and does not reside in the reasoner's
knowledge structures. This assumes that one gen
eral method of performing diagnosis, using many
specialized pieces of knowledge, can allow the rea
soner to effectively diagnose problems. However,
many researchers (e.g., [Lesgold et al., 1981] and [Fel-
tovich et al., 1984]) believe that as diagnosticians
become more expert, they increasingly use schema
like information—procedures, or plans and scripts—
to perform diagnosis, and that this procedural knowl
edge is gained from experience. By using schema
like information, the reasoner can bring specialized
problem-solving procedures to bear on diagnostic
problems.

In this paper, we discuss a means of memory orga
nization and retrieval that allows a reasoner to find
the most specific problem-solving procedures avail
able for a particular problem, then to use that infor
mation to solve the problem. Our work is based, to
some extent, on preliminary work which was done
on the SHRINK project some years ago [Kolodner,
1983]. In our approach, we represent the problem
solver's knowledge as schemata, which are packets
of procedural knowledge much like SHRINK's "pro
cess MOPs". Schemata are organized in memory
by many different hierarchies of features present in
the schemata, and are retrieved by indexes composed
from features present in the problem being solved.
When retrieved, a schema guides the reasoner in se
lecting actions to perform to solve a problem. Our
approach, which we call schema-based reasoning, is
implemented in the MEDIC program, a diagnostic rea
soner whose domain is pulmonology.

Our research was begun with the idea that the
results should lend themselves to making use of

prohtan-scivhig experience. "We "will also fliynro in
thiBpapei iwiieTWitial Wfaaofang these TTIWK, TEB 'wcfl
as the relationship of our work to a form of reason
ing from experience called case-based reasoning [e.g.,
Ashley, 1986; Kolodner, 1987; Kolodner et al., 1985;
SimpMJui, 19BS].

2 Schemata

According to Bartlett, a schema is:

...an active organization of past reac
tions, or of past experiences, which must
always be supposed to be operating in any
well-adapted organic response [Bartlett,
1932].

This is very similar to how we view schemata: a
schema is knowledge that tells a reasoner how to re
spond to a particular situation.1 A schema is basi
cally a packet of procedural knowledge, represented
in a declarative form, that can achieve a goal or set of
goals; it is somewhat like a program with procedures.
A diagnostic reasoner should have many schemata,
for the many different situations and goals it will
encounter. When the reasoner is confronted with a
problem, it retrieves a schema for some portion of the
problem, then interprets, or applies, the schema by
taking the actions it describes.

Figure 1 shows a simplified picture of what one of
MEDIC's schemata looks like, in this case a schema
that can be used to interpret a finding of dyspnea. In
addition to the actions to be taken in following the
schema (the schema's steps), the schema contains in
formation about goals it can be used to achieve, fea
tures of situations in which it is useful, preconditions
or restrictions on its use, and the expected results of
using it.

Each of the steps of a schema is composed of three
parts: an action, a goal, and information used to
choose the next step. The action is either a primitive
action the reasoner can perform or another schema.
The goal is a goal that the step is meant to achieve.
The "next step" information consists of tests to per
form against the state of the world and steps to be se
lected if the tests are true. This information is used to
order the steps of a schema; there can be several dif
ferent orderings, depending on the state of the world
at the time the schema is used, including optional

1 Though this research does not address how schemata come
to exist, they can be thought of as being the result of past
experiences, whether of the program or of the human expert
who gave them to the program.

2

Patient: any patient
Findings: dyspnea
Preconditions: there is a finding of dyspnea
Actions:

Al: actios: ask how many stairs patient can climb
Coal: ih tin mii severity at dyapsMa
" ' i j t cam cttmb flight of atafa* AS

else =*• A2
A3: action: ask how far patient can walk

goal: determine severity of dyspnea
next: A3

A3: action: estimate the severity of the dyspnea
goal: determine severity of dyspnea

A10: action: postulate hypotheses of pulmonary disease,
cardiac disease
goal: explain dyspnea
next: done

Indices:
patient/PATIENTl SCENE2

Figure 1: sc-dyspnea—a schema for interpreting a
finding of dyspnea.

steps. If the action portion of a step is omitted, then
the step suggests a goal that should be satisfied at
that particular point in schema application.

In many ways, a schema is similar to traditional
reasoning knowledge structures. For example, if each
step in the schema has an action that is a primi
tive action, then the schema is equivalent to a script
[Schank and Abelson, 1977] with tracks [Cullingford,
1981]. If, on the other hand, all of the steps of a
schema have actions that are either schemata or prim
itive actions, the schema can be viewed as a abstract
plan or as equivalent to one of NASL's [McDermott,
1978] tasks. Finally, we can view a schema as a packet
of rules, perhaps similar to MDX's concepts or spe
cialists. In this view, the rules' "antecedents" would
consist of the information in the schema—findings,
characteristics of the patient, etc.—(excluding the
schema's steps); the "consequents" would be the ac
tions that are specified by the schema.

There are several differences between schemata and
these other knowledge structures, however. First,
schemata are more general, in effect subsuming the
functionality of the others. Second, new schemata
can, in principle, be created by applying old schemata
to new situations, then generalizing the result. This
would allow schemata to be created for situations not
anticipated when the reasoner was given its knowl
edge; the reasoner could adapt to its environment by
operationalizing its problem-solving knowledge. And
third, schemata are active participants in memory

reganjxatioa, as will be Satcwaed below. This crg*-
uinlkm I B P W B tkeTnoet Bp*Jiii3ked schemata, fbr "a.
portion of a problem to be retrieved and applied to
that problem.2

3 3£B trie v l u g Schemata.
Since a reasoner will encounter many different goals
in many different situations, it should have a wealth
of schemata at its disposal. The reasoner's memory
must organize these schemata in such a way that the
most specific schema available to achieve a particular
goal can be found when the reasoner needs it. In
order to do this, the schemata must be linked to one
another in memory so that retrieval is facilitated.

MEDIC's memory organizes its schemata in two gen
eral ways: by the category of diagnostic situation in
which they are useful, and by the use of specialization
hierarchies of schemata. Figure 2 shows a portion of
MEDIC's memory. There are four types of memory
structure present in the figure (and in MEDIC's mem
ory):

1. diagnostic memory organization packets (dx-
MOPs) (cf. the memory organization packets
(MOPs) of [Schank, 1982])—representing gen
eralized sessions of diagnosis;

2. cases—representing individual (presumably un
usual) cases of diagnosis that the reasoner knows
about;

3. schemata; and

4. scenes—representing portions of diagnostic ses
sions in which a schema was used; in other
words, a scene represents an instantiation of a
schema in a particular case.

The dxMOPs and cases provide contexts against
which a current problem can be matched (cf. the
diagnostic categories of [Kolodner and Kolodner,
1987])—i.e., they allow the reasoner to categorize the
current problem. These memory structures contain
information about the findings which occur in par
ticular types of problems, the hypotheses that are
usually considered, patient characteristics, and, most
importantly, schemata that can be used to achieve
goals arising in consultations of this type. For exam
ple, the dxMOP "dx-consult" in Figure 2 represents
a generalized consultation. It contains the informa
tion that consultations involve a patient, a doctor,

3 MDX's specialists also participate in its memory organiza
tion; however, schemata are different from specialists both in
the type of information they contain and in the way they are
used by the reasoner.

3

and the pujfjiaiu, finding* «dZl fenexaDy be Amcov-
Qt9j and hypotheses "wiB. %e Lonsidaed. A. dxMOr*
also contains pointers to schemata that can be used
to achieve goals expected in the type of consultation
the dxMOP represents: e.g., "sc-finding" to handle
goals %t> uitcipKt 'findings, "̂ stwhyputhesjs* "to has\>
die hypotheses, and so forth. A case, though much
more specific than a dxMOP, contains basically the
same type of information; instead of representing a
category or prototype of a diagnostic situation, how
ever, it represents an exemplar of a particular kind
of diagnostic session. Its scenes represent instances
of schemata having been applied in the past to solve
particular goals in the situation represented by the
case.

MEDIC's memory is organized in a manner simi
lar to that described by [Kolodner, 1984] for episodic
memory structures. The memory is basically an in
terconnected set of discrimination nets, or hierar
chies, in which the leaf nodes are cases and scenes,
and the interior nodes are dxMOPs or schemata.
Memory nodes are linked by indices, each of which
is a feature/value pair, where the "feature" is drawn
from the more abstract memory structure of the two,
and the "value" is the value, in the more specific
structure, of the feature. Features are selected based
on their predictiveness, or ability to point to useful
specializations. For instance, one of the indices be
tween adx-consult" and adx-cc-dyspnea" (represent
ing consultations in which the chief complaint is dys
pnea) is "chief complaint/dyspnea."

DxMOPs and schemata both serve to organize por
tions of memory. A dxMOP organizes other (less ab
stract) dxMOPs and cases along dimensions defined
by the features of the consultation described by the
dxMOP. Schemata organize more specific schemata
and instances of schemata having been applied; this
organization is along features of the schemata: goals
it achieves, characteristics of the situations in which
it is useful, etc. The two types of organization
hierarchies—by dxMOP and by schemata—are con
nected by links between dxMOPs and the schemata
useful in the situations they describe, and between
cases and the scenes (instances of schema applica
tion) that occurred in them.

Retrieval consists of using features present in the
current problem (characteristics of the patient, find
ings present, and problem-solving goals) to traverse
[Kolodner, 1984] the indexing structure of the mem
ory to find the most specific schemata available that
fit the current situation. The actual process of re
trieval is beyond the scope of this paper; it is basically

the jaenseas that described in [Kolodner, 1964].
As an ample of retrieval, suppose "the reasoner

is working on a problem in which there is a find
ing of dyspnea on exertion. One of the reasoner's
goals would be to interpret the finding: to flesh it
uul awl 'to explain, its occurrence. The schema thai
contains the information necessary to do this is la
beled *sc-DOE" in Figure 2. The reasoner can find
this schema by two paths. It can traverse the in
dices of adx-consult", using information about the
finding present in the problem, to first find adx-cc-
dyspnea", then "dx-cc-DOE". From here, "sc-DOE"
can be found by using information about how to sat
isfy the goal of interpreting DOE. Or the reasoner can
begin by looking in asc-consult" for a schema which
achieves the general goal: in this case, "interpret a
finding." The indices of this schema can then be tra
versed, through asc-dyspnea" to asc-DOE".

Multiple paths to the same schema serve the pur
pose of helping ensure that a good schema can be
found for specific situations. Since there are redun
dant paths to each schema, the reasoner can still
find a schema even if there is not enough information
present in the current problem to allow it to traverse
some paths.

4 Applying Schemata

Schema application is somewhat analogous to pro
gram interpretation. First, a step is selected. If the
step's action is a primitive action, the reasoner exe
cutes it directly; if the action is a schema, then the
reasoner recursively applies it. If the action fails, or
if no action is specified, the reasoner attempts to find
and apply another schema to achieve the goal of the
step. A new step is then selected by using informa
tion contained in the "next step" portion of the step,
and the process continues.

There are several control problems that are beyond
the scope of this paper. For instance, the reasoner
should react to new information as it is discovered by
retrieving schemata to handle it: e.g., when a find
ing is discovered, the reasoner should find a schema
that can interpret the finding, and when a hypothesis
is proposed, the a schema to evaluate the hypothesis
should be found. At any particular time, there may
be several active schemata. The problem of select
ing the schema to apply at a particular time is one
of focusing the reasoner's attention; it depends on
(among other things) the reasoner's current goal and
the importance of the findings and hypotheses under
consideration.

4

chief complaint
r
dyspnea

coietcof

dx-cc-dyspnea
indices

I exertion
dx-cc-DOE [•

finding
onset

patient

ataman ^< ons
/ exertion >v

' I sc-DOE I

PT1

finding
character

CASE1: A scenes
recurrent pulm. embolism

patient

X
T 1 > | progressive

PT1

z
SCENE1: interpret DOE 1 J

Figure 2: A portion of MEDIC's memory.

5

3 Medic
Our approach to diagnostic reasoning is implemented
in the MEDIC program, a schema-based reasoner
working in the domain of puhnonology. MEDIC con-

ory (STM). The memory is organised as we have de
scribed in this paper. The reasoner is a bit more
complex, in that it is able to respond (to a limited
extent) to new information as it occurs. The rea
soner operates at all times under the direction of a
schema.

Conceptually, MEDIC has two types of schemata in
its memory: global schemata and local schemata. A
global schema is one that can direct the reasoner in
performing large segments of a consultation. Exam
ples are: "sc-consult", which directs the entire course
of a consultation; "sc-getlnfo", which gathers infor
mation from the user; and "sc-formDx", which forms
a diagnosis from the hypotheses present in STM. A
local schema is one that can direct the reasoner to
achieve very specific goals, such as interpreting a find
ing or evaluating a hypothesis. Examples are: "sc-
finding", an abstract schema which interprets any
finding; "sc-dyspnea", which interprets a finding of
dyspnea; "sc-dzHypothesis", which can evaluate any
disease hypothesis; "sc-pulmDz", a specialization of
sc-dzHypohthesis for pulmonary disease; and "sc-
RPE", a further specialization for evaluating recur
rent pulmonary embolism.

Having very specialized schemata allows the rea
soner to act in a more focused manner than if it had
only more abstract schemata. For example, a schema
for interpreting dyspnea can be used to directly ask
the user questions aimed at eliciting specific infor
mation to evaluate the severity: "How far can the
patient walk?" or "How many stairs can the patient
climb?" If a more abstract schema were used, a way
would have to be found to gather the information and
fill in the severity. Further specializations can be used
to make even finer interpretations, or interpretations
in rare but important contexts: e.g., a schema for in
terpreting dyspnea in someone who is restricted to a
wheelchair should cause the reasoner to ask different
questions than a schema for interpreting dyspnea in
someone who is ambulatory.

Currently, MEDIC can diagnose very simple cases of
pulmonary disease. Its basic algorithm is described
in Figure 3. When the user asks for a consultation
with MEDIC, the program attempts to find a dxMOP
which describes the situation. This dxMOP is then
the source of schemata to achieve goals arising dur
ing the consultation. In addition, the reasoner re-

Wait until user requests a consultation;
Add goal of diagnosing patient to short-term

memory;
Retrieve dxMOP using goal;
Use strategy from dxllOP, it possible;
Select a schema from tbe dxMOP to satisfy

goal, add it to agenda;
loop until done:

Select a schema from agenda using strategies,
local information in the dxMOP;

Apply one action of the schema;
if there was an interruption then:

Handle interruption;
fl;
Specialize current dxMOP;
if specialization succeeded then:

Set current dxMOP to be the
specialization;

fl;
end loop;
Accept and process feedback;
Update memory;

end loop;
end.

Figure 3: Basic schema-based reasoning algorithm.

trieves a strategy from the dxMOP; the strategy is
used by the reasoner to select from among its active
schemata. An example of a strategy can be seen in
Figure 4; this strategy provides a goal ordering to
the reasoner which causes the reasoner to perform
a crude form of hypothetico-deductive reasoning: se
lect goals (schemata) related to hypotheses first, then
select those that relate to findings (with the hope of
generating hypotheses), etc.

Situation: any
Goal ordering:

select goals related to hypotheses
select goals related to findings
select goals for gathering information
select goal for forming diagnosis

Figure 4: Strategy "st-HD-Reas" for hypothet
ico-deductive reasoning style.

Let's look at an example of a consultation with
MEDIC, a portion of which is shown in Figure 5. Sup
pose a user requests a consultation. The reasoner
looks in memory for a way of satisfying the goal of di
agnosing a patient and finds a dxMOP, "dx-consult",
representing how consultations are generally done.
This is made the current dxMOP, and it is used as
a source both of a strategy and of schemata to sat
isfy active goals. The strategy it contains is "st-HD-
reasoning", the strategic schema mentioned above
which provides a goal ordering to induce hypothetico-

6

T̂pVttea* (mT female)' (Te%kt (vsl«ê 04)) (kcajftft
(value 64)) (imce white))

Adding information about patient to STM.
What is the chief complaint?
: (finding (entity (dyspnea (duration (yean 2)) (chancier profMMive))))
A^At^g chief complaint to 5TM—adding findhag af

<DYSP1TOA0> to STM.
How many flights of stairs can the patient climb?
: (less-than 1)
How far can the patient walk on level ground?
: (yards 20)
I judge the qualitative value of SEVERITY of <DYSPNEA0>

to be SEVERE.
(same for cardiac disease)...

...explaining dyspnea...
Processing <HYPOTHESIS0> [pulmonary disease);

relating to other hypotheses...
...generating expectations given <HYPOTHESIS0>...
...I'm scoring hypothesis <HYPOTHESIS0> (<PULM-DZ0>)
...hypothesis explains: (<FINDING0>) [dyspnea]...
...failed predictions for hypothesis: —
...hypothesis doesn't explain: —
...trying to specialise the hypothesis of

<HYPOTHESIS0> (<PULM-DZ0>).. .
...specialized <HYPOTHESIS0> to <HYPOTHESISl>

(<RPE>) [recurrent pulmonary embolism]
...generating expectations given <HYPOTHESISl>.. .

Is there a finding of <SYNCOPE>?
: Yes

Enter information (<return> if no more).

My diagnosis is: Recurrent pulmonary embolism.

Figure 5: Part of a consultation with MEDIC.

deductive reasoning. The only goal active is one to
diagnose the patient; the schema to achieve this in
dx-consult is "sc-consult". This is added to the rea
soner's agenda.

The reasoner now selects a schema from its agenda,
using the goal ordering provided by the current strat
egy; the use of specific information from the dxMOP
is not currently implemented. The only schema to se
lect is sc-consult, so the reasoner selects that and be
gins to apply it. The user is asked for some initial in
formation about the patient, including a description
of the patient (a white female who is overweight)3

and the chief complaint (progressive dyspnea). The
information is added to STM. Adding the chief com
plaint causes the reasoner to be interrupted, and it
searches memory for a schema to interpret the find
ing. Schema "sc-dyspnea" is found and activated.

Since the strategy in use dictates that goals related
to findings have precedence over goals for gathering
information or forming a diagnosis, sc-dyspnea is se
lected and used. This schema is a specialized version

3 Input to MEDIC is in a version of Conceptual Dependency
[Schank & Abelson, 1977]; there is currently no natural lan
guage interface.

af a. general yhema to interpret findings; mgfatad of
asfciwg general ^nestana, however, the schema can
ask very specific things related to dyspnea (e.g., ask
ing how many stairs the patient can climb as a mea
sure of the severity). The last step of this schema is to
explain *the'finding bypostulatzng diseases *thai could
cause it; using this step, the reasoner postulates hy
potheses of pulmonary disease and cardiac disease.
Adding these hypotheses to STM again interrupts
the reasoner, which finds and adds to the agenda
schemata to evaluate the hypotheses: "sc-pulmDz"
and "sc-cardiacDz".

The strategy orders goals related to hypotheses be
fore any others; hence, one of the two schemata just
added is selected, in this case, sc-pulmDz. The rea
soner uses this schema to score the hypothesis of pul
monary disease,4 and then tries to specialize the hy
pothesis using information that is in STM. One pos
sible specialization, based on the fact that the pa
tient is overweight, is recurrent pulmonary embolism
(RPE); this is hypothesized, resulting in a schema
("sc-RPE") being activated to evaluate it.

The reasoner then selects sc-RPE and begins to
evaluate the hypothesis of pulmonary embolism.
Eventually, it will have evaluated all the hypotheses
it can and will have exhausted the information the
use can give it. The main schema, sc-consult, will
then suggest the step of forming a diagnosis, which
will be attempted.5 In this case, the best hypothesis
is recurrent pulmonary embolism, and that will be
proposed to the user.

The current implementation of MEDIC is incom
plete in several ways. For example, MEDIC does not
have a principled way of choosing from among several
active schemata the one to follow at any particular
point in diagnosis; Le., there is currently no theory
addressing the control of the reasoner's attention. In
addition, there is currently neither the domain knowl
edge nor the variety and number of schemata present
in memory to allow very sophisticated diagnoses to
be made; gathering this knowledge from our domain
expert is one of the next steps in this project.

Learning is currently not addressed, either. We
cannot expect to give a diagnostic reasoner operat
ing in a sophisticated domain all of the knowledge
that it will need to solve all of the problems presented
it [Kolodner and Kolodner, 1987]; instead, if the pro
gram's knowledge is to be made as operational as pos
sible for the domain, the program will need to be able

4 Using a scoring scheme very similar to that of INTERNIST-1
[Miller et al, 1982].

5 Again, using a method similar to that of INTERNIST-1.

7

to adapt its own Jmowledge, both fartnal tmrl proce-
rrtrrai, T O its proosem- bottsb^ eninuiriwf'H*. 1 jHHigu
learning is not a focus of our work, we have tried to
formulate the schema-based reasoning approach (and
design MEDIC) in such a way that learning could be
added at a later 'time. We discuss this m the next
section.

6 Relationship to Case-based
Reasoning

Though we do not explicitly address learning in our
work, this research was begun with the idea that the
style of reasoning which would evolve from it would
be amenable to learning from past problem-solving
experience. In this section, we discuss one approach
to this type of learning, called case-based reasoning.

Case-based reasoning [e.g., Kolodner, 1987; Kolod
ner et a/., 1985; Simpson, 1985] involves reusing in
formation from past problem-solving episodes to help
solve a new problem. Case-based reasoning (CBR)
basically provides reasoning short-cuts: problem-
solving that went on in similar previous cases is re
trieved and reused in a new problem. CBR has been
successfully applied to several different planning tasks
[Simpson, 1985; Sycara, 1987; Hammond, 1986], to
advice-giving [Kolodner, 1986; Turner, 1987a, 1987b;
Cullingford and Kolodner, 1986], and, in one instance
(and in a somewhat limited way), to diagnosis [Kol
odner, 1983; Kolodner and Kolodner, 1987].

In our approach, "cases" correspond to consulta
tions that have been performed by the reasoner.6

When a consultation is finished, the reasoner would
represent the result as a case and store it in memory.
It would be indexed from the dxMOP or dxMOPs
that were used in the consultation it represents, since
it is a specialization of those dxMOPs. For example,
a consultation involving a young alcoholic man with
lung cancer might be solved using information from
a dxMOP representing consultations involving alco
holic patients and from a dxMOP representing con
sultations involving patients with lung cancer. The
new case representing the consultation would then
be indexed by both of these dxMOPs, using features
that differentiate it from them.

A case has information about the patient involved
in the consultation, findings that occurred, hypothe
ses that were considered, the diagnosis, and any feed-

6 The cases we mentioned earlier in the paper are given to
the program by a human. However, they can be used in the
same way as the cases described in this section.

back about the coasaftataoa that was obtained from
the um.i. Most hupui Unity, fcuwun, a t » e xxmt-
tains the actions that were performed to diagnose the
patient in that consultation; these actions, as men
tioned, comprise the scenes of the case.

There are ftnii ways that mse bawd Teasonmg can
be used in our approach:

1. the results of reasoning done in the past can be
reused;

2. a case can suggest schemata to use in a similar
situation;

3. a case can provide information to allow the cre
ation of new schemata; and

4. the process of storing cases in memory can pro
duce useful changes in the reasoner's general
knowledge structures, including the specializa
tion of existing schemata.

When a reasoner is faced with a new problem, it
may be reminded [Schank, 1982; Kolodner, 1984] of
a previous consultation—i.e., a case representing the
previous consultation may be retrieved from memory
using the features of the new problem. In this situa
tion, the old case can be used as a source of reasoning
short-cuts in the new problem; this is how case-based
reasoners usually use cases.7 For example, consider
able reasoning effort may have been expended in the
old consultation to interpret a particular finding; if
the same finding occurs in the new problem, the rea
soner can reuse the interpretation from the old con
sultation instead of repeating the reasoning that was
done. One advantage of this was mentioned in [Kol
odner & Kolodner, 1987]: an old case can be used as
a source of hypotheses about a new problem.

Similarly, a previous case may suggest actions the
reasoner can use to achieve goals in a new problem.
In our approach, the scenes of a case generally rep
resent instantiatiations of schemata; thus, the scenes
of an old case can suggest schemata to use in a new
problem. In addition, the reasoner may choose to in
stantiate a schema in a particular way, based on how
it was instantiated in the old consultation.

The reasoner may choose to create new schemata
from the scenes of a case, rather than using the
schemata that were instantiated in the case. One
reason for this to occur would be if the old case and
the new problem are quite similar, but not identical,

7 W e have not addressed in any detail how these short-cuts
are transferred to the new problem. However, a reasonable
approach, given the nature of schema-based reasoning, would
be to give the reasoner schemata which it can use to perform
case-based reasoning.

8

•rkfr «w>yt «wn JMfaWM t»1»eW» tnAarkwn> that « U
used "in the Tanks* CMC to aiihi****e sume fc\l»fcL
ample, suppose a scene of the old case was concerned
with interpreting dyspnea, and the patient was in a
wheelchair. In this scene, the usual dyspnea schema
-would have been modified to take into account that
the patient could not walk Le., questions such as
"How far can the patient walk on level ground? 0, that
would normally be asked, may have been changed to
questions that are more useful for that patient. If
the new problem involves a patient who walks with
crutches, then it is likely that the goal of interpreting
dyspnea can be achieved in the new problem using a
slight generalization of the actions performed in the
old scene. One method of performing this type of
generalization is abstractional analogy, described in
[Shinn & Kolodner, 1988]; alternatively, some sort of
explanation-based learning [DeJong, 1983; DeJong &
Mooney, 1986] could be used. Once a new schema
is formed, it would be indexed from the schema it
is a specialization of. It could then be used to solve
similar problems in future.

An old case may have scenes that are not instan
tiations of schemata, but represent instead the end
result of some sort of "from-scratch" problem-solving
that was carried out in lieu of an appropriate schema
to achieve a goaL When the reasoner recalls such a
case and has a similar goal, it may choose to create
a new schema by generalizing the actions that were
performed in the previous scene. Abstractional anal
ogy or explanation-based learning could be used here,
too, and the new schema would be stored in memory
for future use.

New generalized knowledge, including new
schemata, would also be created during the process of
storing cases in memory. It is a relatively short jump
from the memory described in this paper to a full-
fledged dynamic memory [Schank, 1982] of the kind
implemented in CYRUS [Kolodner, 1984] and used in
several case-based reasoning approaches [e.g., Ham
mond, 1986; Kolodner, 1983; Simpson, 1985; Sycara,
1987]. The differences are that in a dynamic memory:
(1) new information can be added; and (2) as infor
mation is added, both the existing memory structures
as well as the organization changes to facilitate future
retrieval.

As mentioned, a new case would be indexed from
those dxMOPs it represents a specialization of, us
ing features that differentiate it from those dxMOPs.
One of three things can happen for each index in
each dxMOP. The index may not currently be used
in that dxMOP; in this situation, the case will simply

be stored asang that index. The index might, how-
erer, already point to another dxMOP; in this situar-
tion, the new case will be indexed from the dxMOP
residing at that index. Finally, there may already
be a case at index: in this situation, a collision is
said to have occtnred. Following {Kolodner, 1964],
the procedure in this situation would be first to cre
ate a new dxMOP by generalizing both cases, then
to store the new dxMOP using the index. The two
cases—the one that was stored at the index and the
new one being added—are then indexed from the new
dxMOP by their differences from it.8 The new dx
MOP represents a generalization of the two cases and
a specialization of the parent dxMOP from which the
old case was indexed.

The process of storing cases in memory effectively
causes a reasoner to learn new specializations of ex
isting diagnostic categories, based on consultations
it has seen. As cases are being added to memory,
causing new specialized dxMOPs to be created, we
would like for the reasoner to learn specializations of
its problem-solving knowledge, too. Each case, recall,
represents a consultation the program has had with
a user; as such, it contains scenes that represents the
actions taken to achieve one goal or set of goals—
i.e., instantiations of schemata for the situation faced
in that consultation. It would make sense to store
the scenes of a consultation in memory by indexing
them beneath the schemata they are instantiations
of. In this way, new schemata would be created in
the same way dxMOPs are created during memory
update. These new schemata would represent spe
cializations of existing schemata which were created
based on experience using those schemata to solve
problems.

The results of creating new dxMOPs and schemata
are twofold. First, by creating new dxMOPs, the rea
soner learns about new categories of consultations.
This allows it to know how to apply its schemata
in different situations, since each dxMOP has use
ful schemata associated with it. By doing this, the
reasoner would learn in which types of consultation
specific schemata are useful: in other words, the rea
soner would be learning the conditions under which
its procedural knowledge is applicable. Second, new
schemata are produced, allowing the reasoner to solve
problems which are similar to the new schemata
more quickly, better, or both. In effect, the reasoner
is adapting its problem-solving knowledge to better

8In [Kolodner, 1984], similarity-based learning was used; for
a medical domain such as this, however, SBL should probably
be augmented with some sort of explanation-based techniques.

9

Jit its flrrmanr it is opentionalizing its jaocedmal
luiuwleflgc.

In summary, then, case-based reasoning techniques
would add much to a schema-based reasoner. Cases
provide a way of finding schemata for goals present
in new sxtnatxans that are wrmilar to pie? kjnsly-Be.es
consultations. A case can also suggest new a schema,
which can be formed by generalizing the instantiation
of a schema or a sequence of actions used to achieve
a goal in that case. Finally, storing cases in memory
affects the schemata the reasoner has available to it:
as a case is stored, new schemata and dxMOPs are
formed. The new schemata can be used to solve new
problems; information from the new dxMOPs can be
used to decide when schemata are applicable.

7 Related Work

As we mentioned, our work is based on preliminary
research along the same lines done on the SHRINK
program some years ago [Kolodner, 1983; Kolod
ner & Kolodner, 1987]. In its most specific and
mature form, the approach taken by that research
was to perform diagnosis using information from
an experientiaUy-modified memory consisting of two
kinds of structures: DIAGNOSTIC MOPs and PRO
CESS MOPs.

The DIAGNOSTIC MOPs in SHRINK are similar
to our dxMOPs, in that they are memory structures
that represent generalized information used during
diagnosis. However, there are some major differ
ences. Although DIAGNOSTIC MOPs are meant to
be derived from experience, using a process similar to
that outlined above for dxMOPs, they are not truly
episodic structures: that is, they contain no refer
ences to actions. Instead, they represent disease cat
egories, in much the same way as do MDX's [Gomez
& Chandrasekaran, 1982] specialists; the difference
is that DIAGNOSTIC MOPs are dynamic structures
that are updated from experience, whereas specialists
are static. In contrast, dxMOPs represent categories
of consultations rather than of diseases; though a dx
MOP may refer to diseases as hypotheses, it contains
other information relating to the consultation as a
whole. An example of this would be a dxMOP rep
resenting consultations involving alcoholic patients.
Though not representing a disease, this dxMOP holds
information which helps the reasoner to diagnose this
type of patient. For example, anemia is generally
a fairly important finding; however, the dxMOP for
alcoholic patients would contain information which
would allow the reasoner to ascribe the finding of

anemia in fur & jpjitifnt. to ?V**>fr**>1wwn xathex than
seal (Jung lis. sunt utlm t i n t rn addition, dxMOPs
do refer to procedural knowledge: a dxMOP refers to
a set of schemata that are useful for achieving goals
that are likely to arise during consultations of the
type described by the dxMOP.

PROCESS MOPs are similar in some ways to our
schemata, though more closely related to scripts. As
new cases use a PROCESS MOP, "compiled paths"
[Kolodner, 1983] are added to it, analogous to the
tracks in a script. Schemata, on the other hand, are
more general than scripts, as we have mentioned. A
schema allows some "compiled paths" to be repre
sented as variations in the ordering of the steps due
to its steps' "next" information. However, the degree
of freedom here is limited by the constraint that the
schema, no matter what path is taken, should sat
isfy a particular goal or set of goals; which path is
taken depends on the environment. We allow spe
cialized versions of schemata to exist to handle re
lated or specialized goals, and these are organized in
a manner that facilitates their retrieval in particular
situations. PROCESS MOPs were meant to be spe-
cializable and to participate in memory organization
[Kolodner, personal communication]; however, they
were not a major focus of the research on SHRINK, and
this aspect of their use was not fully implemented.

The manner in which the reasoner uses each kind
of procedural information also differs. PROCESS
MOPs are recalled and followed by the reasoner from
start to finish; only one is active at once. Many
schemata, each being used to satisfy a goal, can be
active at once, and the reasoner need not completely
apply any schema before switching to another. This
allows a degree of flexibility that SHRINK does not
have to respond to changes in the task during diag
nosis.

Our approach also differs from work relying on a
strict interpretation of the term "case-based reason
ing:" that the reasoner uses information only from
cases and not from any generalized structures. The
MEDIATOR [Simpson, 1985] is an example of such
a case-based reasoner. Though it has Generalized
Episodes (GEs) present in its memory as a result of
storing cases of problem-solving, it uses this informa
tion only for the organization and retrieval of cases.
In contrast, the use of generalized knowledge struc
tures is central to our approach: schemata and dx
MOPs are used preferentially to cases, representing
as they do compiled problem-solving information.

Our knowledge structures and memory organiza
tion superficially resemble those of MDX. However,

10

http://kjnsly-Be.es

run- schemata am XO0RJ ajeaflCal tha& MDJC'* >JWf |li
ists is. being able to lepiwwrnt scripts and pians as"well
as rules. This allows MEDIC to represent procedural
knowledge of bow to perform diagnosis, in addition
to domain knowledge, directly and d<rrlaratrveiy.

8 Conclusion

The schema-based reasoning process outlined in this
paper is one approach towards providing a diagnos
tic reasoner with information that is operational for
its problem-solving environment. Schemata are re
trieved by the reasoner and used to achieve goals
present in diagnostic problems: interpret a finding,
evaluate a hypothesis, etc. Schemata are stored in
a memory that organizes them in two ways: by the
situations for which they are appropriate, and along
hierarchies defined by their features. The reasoner re
trieves schemata by using goals in and feature of the
current problem to traverse memory, then applies the
schemata to achieve its goals.

Our approach was developed keeping in mind the
eventual need for learning in a problem solver for real-
world problems. If we were to allow cases of problem
solving to be added to our memory in the manner de
scribed above, several benefits would accrue: (l) the
reasoner's knowledge of consultations would increase;
(2) it would learn about situations in which its pro
cedural knowledge is applicable; and (3) its store of
schemata would increase, with the overall effect that
the program's procedural knowledge would adapt to
the task environment as problem solving is done.

Our ideas are being tested in MEDIC, a schema-
based diagnostic reasoner whose domain is pul-
monology. There is no reason to believe, however,
that diagnosis is the only domain in which schema-
based reasoning is worthwhile. The basic idea is quite
general, and should be applicable to other domains
and other types of problem-solving tasks.

9 Acknowledgments

Many thanks to our domain expert, Eric Honig of
Emory University and Grady Memorial Hospital, and
to Janet Kolodner, Elise Turner, Joel Martin, Mike
Redmond, and Phyllis Koton for their comments on
drafts leading to this paper.

JLD ^B^fwnpjwyR

Aikins, 33. (1980). Prototypes and Production Rules:
A Knowledge Representation for Computer
Consultations. Doctoral dissertation, Stan-
lord TJmvasftj*.

Ashley, K. (1986). Knowing what to ask next
and why: Asking pertinent questions using
cases and hypotheticals. In Proceedings of
the Eighth Annual Conference of the Cogni
tive Science Society.

Bartlett, F.C. (1932). Remebering, a Study in
Experimental and Social Psychology, Cam
bridge University Press, Cambridge. Quoted
in E. Rich, Artificial Intelligence, New York:
McGraw-Hill Book Company, 1983.

Cullingford, R.E. (1981). SAM. In Inside Com
puter Understanding, R.C. Schank and C.K.
Riesbeck (Eds.), Hillsdale, NJ: Lawrence Erl-
baum Associates.

Cullingford, R.E., and Kolodner, J.L. (1986). In
teractive advice giving. In Proceedings of the
1986 IEEE International Conference on Sys
tems, Man, and Cybernetics.

DeJong, G. (1983) Acquiring schemata through
understanding and generalizing plans. In
Proceedings of the Eighth International Joint
Conference on Artificial Intelligence.

DeJong, G.F., and Mooney, R.J. (1986).
Explanation-based learning: An alternative
view, Machine Learning 1:2, (April, 1986).

Feltovich, P.J., Johnson, P.E., Moller, J.A., and
Swanson, D.B. (1984). LCS: The role and
development of medical knowledge in diag
nostic expertise. In W.J. Clancey and E.H.
Shortliffe (Eds.), Readings in Medical Arti
ficial Intelligence, Reading, Massachusetts:
Addison-Wesley Publishing Company, pp.1
275-319.

Gomez, F., and Chandrasekaran, B. (1982).
Knowledge organization and distribution for
medical diagnosis. In W.J. Clancey and E.H.
Shortliffe (Eds.), Readings in Medical Arti
ficial Intelligence, pp. 320-338. Reading,
Massachusetts: Addison-Wesley Publishing
Company, 1984. (Originally published in
IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-11, No. 1, pp. 34-42
(1981).)

Hammond, K.J. (1986c). Case-based planning: An
integrated theory of planning, learning, and

11

auniujif. (PAD dium 1litinm) Yale TJjunxsitjr
Department cf Cmuputei Sauce twlniii al
report Y A L E / C S D / RR#448.

Kolodner, J.L. (1982). The role of experience in
development of expertise. la Proceedings of
the National Conference on Artificial Intelli
gence, Pittsburgh, PA, pp. 273-277.

Kolodner, J.L. (1983). Towards an understand
ing of the role of experience in the evolution
from novice to expert, International Journal
of Man-Machine Studies, vol. 19, pp. 497-
518.

Kolodner, J.L. (1984). Retrieval and Organiza
tional Strategies in Conceptual Memory: A
Computer Model, Lawrence Erlbaum Asso
ciates, Publishers, Hillsdale, New Jersey.

Kolodner, J.L. (1985). Experiential processes
in natural problem solving. Technical Re
port #GIT-ICS-85/123, School of Informa
tion and Computer Science, Georgia Insti
tute of Technology, Atlanta, Georgia.

Kolodner, J.L. (1987). Capitalizing on failure
through case-based inference. In Proceedings
of the Ninth Annual Conference of the Cog
nitive Science Society, pp. 715-726.

Kolodner, J.L., and Kolodner, R.M. (1987). Using
experience in clinical problem solving: Intro
duction and framework. In Proceedings of
the 1987 IEEE International Conference on
Systems, Man, and Cybernetics.

Kolodner, J.L., Simpson, R.L., and Sycara, K.
(1985). A process model of case-based rea
soning in problem solving. In Proceedings of
IJCAI-85.

Lesgold, A .M. , Feltovich, P.J., Glaser, R., and
Wang, Y. (1981). The acquisition of percep
tual diagnostic skill in radiology. Technical
report No. PDS-1, University of Pittsburgh
Learning Research and Development Center.

McDermott, D. (1978). Planning and acting, Cog
nitive Science, vol. 2, pp. 71-109.

Schank, R.C. (1982). Dynamic Memory, Cam
bridge University Press, New York.

Miller, R.A., Pople, H.E., Jr., and Myers, J.D.
(1982). INTERNIST-1, an experimental
computer-based diagnostic consultant for
general internal medicine, New England
Journal of Medicine, vol 307, pp. 468-476.

Schank, R . C , and Abelson, R. (1977). Scripts,
Plans, Goals and Understanding, Lawrence

JVlhsirm HIQsdale, NJ-
Shxmx, 1L, and ILolodneT, JSL. (19BB). Ab

stractional analogy: A general paradigm of
analogical transfer, submitted to the Sev
enth National Conference an Artificial Intel
ligence.

Simpson, R.L Jr. (1985). A Computer Model of
Case-Based Reasoning in Problem Solving:
An Investigation in the Domain of Dispute
Mediation. Doctoral dissertation, Technical
Report #GIT-ICS-85/23, School of Informa
tion and Computer Science, Georgia Insti
tute of Technology, Atlanta, GA 30332.

Sycara K., (1987). "Adversarial Reasoning in Con
flict Resolution", Ph.D. dissertation, Geor
gia Institute of Technology, Atlanta, Geor
gia, 30332.

Turner, R.M. (1987a). Issues in the Design of
Advisory Systems: the Consumer-Advisor
System, Technical Report #GIT-ICS-87/19,
School of Information and Computer Science,
Georgia Institute of Technology, Atlanta, GA
30332.

Turner, R.M. (1987b). Modifying previously-used
plans to fit new situations. Proceedings of
the Ninth Annual Conference of the Cogni
tive Science Society, Seattle, Washington.

12

Opportmustic Use of Schemata for
Medical Diagnosis1

Roy M. Turner
(roytOgatectt,cdn)

School of ICS
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract

Medical diagnosis can be considered to be a kind of planning task in which the goals are such things
as "interpret a finding" and "evaluate a hypothesis," and in which the operators are such things as
asking for information and drawing inferences. However, diagnosis is unlike many typical planning
tasks, planning and plan execution proceed simultaneously. New information, arising as a result of
an action taken by the reasoner, may impact the reasoner's future behavior. To cope with this,
the diagnostician must be able to respond to changes in its environment as they occur: it must be
opportunistic.

In this paper, we describe an approach to opportunistic reasoning in medical diagnosis. Our ap
proach, called schema-based reasoning, uses packets of procedural knowledge—schemata—to direct the
reasoner to solve goals as they arise during problem solving. Several schemata can be active at once,
and the reasoner can switch between using them as the situation demands. The reasoner selects which
schema to follow at any given time by using information about the type of consultation it is performing,
and by using strategies represented as strategic schemata. Our approach is implemented in the M E D I C

program, a schema-based diagnostic reasoner whose domain is pulmonology.

1Thi« research has been funded in part by NSF Grants IST-831771 and IST-8608362 and grant DTD
09-25-87 from the Lockheed Al Center.

Opportunistic TJse of Schemata for
Medical Diagnosis*

Roy M. Turner
School of ICS

Georgia Institute of Technology

Medical diagnosis can be considered a planning
task. This is not the traditional view, however.
For example, Gomez and Chandrasekaran [Gomez &
Chandrasekaran, 1982] and others view diagnosis as
a classification task: a problem, consisting of a set
of signs and symptoms, is classified as being an in
stance of a disease or set of diseases. However, this
viewpoint overlooks the fact that actions are per
formed in order to classify a disease: in other words,
planning and plan execution must be done as part
of the classification process. When viewed as plan
ning, goals in diagnosis are such things as "diagnose
the patient," "interpret a finding," and "evaluate a
hypothesis." Operators, at the lowest level, are such
things as asking questions, requesting tests be per
formed, and making inferences based on information
known about the patient and the reasoner's general
knowledge of the domain.

Medical diagnosis is unlike many traditional plan
ning tasks in that an initial, complete statement of
the problem is generally impossible. Instead, the di
agnostician must gather information about the prob
lem as part of the process of performing diagnosis.
The result of this is that the diagnostician cannot
formulate a plan for diagnosis, then carry it out: the
problem statement would change as the plan for per
forming diagnosis is executed. The effect of execut
ing one step (e.g., asking a question) would likely al
ter the assumptions upon which later steps are based
(e.g., a new finding might radically alter the diseases
considered as diagnoses, or might suggest specialized
methods for interpreting the finding). The problem
for a diagnostician, then, is to be able to interleave
planning and execution (cf. [McDermott, 1978]) so as
to make use of new information as it becomes avail
able. In other words, a diagnostician should be op
portunistic.

'This research has been funded in part by NSF Grants IST-
831771 and IST-8608362 and grant DTD 09-25-87 from the
Lockheed Al Center.

Our approach to this problem makes use of pack
ets of procedural information called schemata, which
are retrieved from memory in response to goals aris
ing from changes in the problem solver's environ
ment: e.g., new findings, new hypotheses, etc. Most
schemata can achieve very specific goals, such as "in
terpret a finding" or "evaluate a hypothesis"; others
control larger parts of the reasoner's processing, such
as directing the reasoner in the overall consultation.
Schemata are flexible enough to encode several vari
ations of how to achieve their goal; in addition, spe
cializations of schemata provide the reasoner with in
formation about how to satisfy specific goals or goals
arising in specific contexts.

When a goal arises that can be achieved by a
schema, that schema is retrieved from memory and
made active. As the reasoner may have many goals
simultaneously, there may be many active schemata
at any time. The reasoner must decide which goal
to focus on, and hence, which schema to apply. In
our approach, the reasoner uses information from two
sources to help it focus its attention. One source
is from memory structures representing generalized
consultations similar to the current problem. Infor
mation from these generalized consultations, such as
information about which findings are generally im
portant in this context, can be used by the reasoner to
help it select a goal to achieve. The second source is
from packets of procedural knowledge, called strategic
schemata, which contain generally useful strategies in
the form of goal orderings: e.g., a medical reasoner
would have strategies for performing hypothetico-
deductive reasoning, reasoning under time pressure,
etc.

In this paper, we discuss our approach to oppor
tunism in medical diagnosis. Our approach is called
schema-based reasoning. Our ideas are being tested
in MEDIC [Turner, 1988], a schema-based diagnostic
reasoner whose domain is pulmonology.

TURNER

carpvjciuNJ&M u s i n g

Opportunism involves responding to changes in the
task environment as they arise during problem solv
ing. There are at least three rapabiTrtirn a Teasaner
must have in order for it to respond to changes; it
must be able:

1. to interleave planning to achieve a goal and exe
cution of that plan;

2. to respond immediately to new information ap
pearing in the environment; and

3. to select the appropriate goal to pursue at each
point in problem solving—that is, it must be able
to focus its attention.

Traditional planners do not interleave planning
and execution. Instead, the planner formulates a
plan, then applies it. On the other hand, rule-based
problem solvers and purely reactive planners such as
PENGI [Agre & Chapman, 1987] do not really perform
planning per se. The problem with these approaches
is that there is very little coherence in their actions;
consequently, their behavior may seem strange and
unintuitive to a user. This presents a problem, es
pecially in a medical domain, since a user is unlikely
to accept a system if he or she cannot understand its
reasoning.

A middle ground is needed between traditional
planners and purely reactive planning. In our ap
proach, problem solving is carried out by retrieving
packets of procedural knowledge from memory, then
applying them. These packets, or schemata, can be
thought of as small plans or pieces of plans that
achieve a goal; for instance, a reasoner may have a
schema which can interpret a finding or one that can
evaluate the likelihood of a hypothesis that a particu
lar disease is present. Figure 1 shows a simplified view
of a schema for interpreting a finding of dyspnea.1 A
schema contains steps to be performed by the rea
soner in order to satisfy a particular goal.

Our approach is more flexible than traditional
planning for three reasons. First, the order of the
steps of a schema is not completely fixed ahead of
time, but rather depends, to some extent, on the sit
uation at the time of schema execution. For exam
ple, the step labeled "Si" contains information that
allows the reasoner to select the next step based on
the answer to the question asked in SI.

1 Shortness of breath.

(mimh iufcujMLl a-frnrtwss; nf AJsjiimi Patient: any patient findings: dyspnea Preconditions: there is a finding; of dyspnea Steps: SI: action: ask how many stairs patient can climb goal: detexmiae seventy of dyspnea next: if pt. can climb flight of stairs S3 else => S2 S2: action: ask how far patient can walk goal: determine severity of dyspnea next: S3 S3: action: estimate the severity of the dyspnea goal: determine severity of dyspnea

S10: action: postulate hypotheses of pulmonary disease, cardiac disease goal: explain dyspnea next: done
Indices:

patient/PATIENTl — SCENE2
Figure 1: sc-dyspnea—a schema for interpret
ing a finding of dyspnea.

The second source of flexibility in our approach is
also due to the nature of a schema's steps. In ad
dition to specifying actions that should be taken—
either primitive actions or other schemata—a step in
a schema usually specifies the goal that the step is to
satisfy. If the step fails, the reasoner can attempt to
find another way of satisfying the step at run time.
In addition, a step does not necessarily specify an
action. Instead, it can specify only a goal, thus forc
ing the reasoner to attempt to satisfy the goal at run
time.

The third reason our approach is flexible is that
a single plan is not formulated for all of the goals
in a problem, then executed. Instead, individual
schemata are retrieved and applied to satisfy goals.
As the situation changes, which schemata are active
will also change. For example, as new goals arise dur
ing problem solving, new schemata can be found and
activated to satisfy them.

In order to exhibit opportunism, a reasoner must
be able to notice and respond to new information as
it becomes available. In the context of a diagnosis
program, new information comes from the user; in
formation may be volunteered, or it may come from
answers to questions asked by the system. In either
case, when new information becomes available, the
reasoner should interrupt what it is doing and incor
porate the information into what it knows; the new
information may also cause the reasoner to alter the
course of its problem-solving behavior.

TURNER

In am *xygmxmr\% *SL artirass atte MjumumtA hjram-
fmutation u/nlained in schemata; tins, to handle a
piece of information, a schema most be found and ac
tivated. When a new item of information is encoun
tered, the reasoner interrupts what it is doing and
looks for n schema that can satisfy the goal created
by the occurrence of the information: e.g., if the in
formation is a finding, the goal will be to interpret it.
When a schema is found, it is activated. The reasoner
can then either return to what it was doing (i.e., to
the schema it was applying), or it can choose, based
on the altered state of the environment, to pursue
a different goal (i.e., to apply a different schema—
perhaps the one just activated).

There may be many goals present for a given diag
nostic problem: e.g., goals to interpret findings, eval
uate hypotheses, and to produce a diagnosis. Each
of these will lead to one or more schemata being ac
tivated. In addition, information learned during di
agnosis will result in more schemata being activated,
as discussed above. Once we allow the reasoner to
have more than one schema active at a time, we face
the need for ability (3) above: the reasoner must be
able to select the appropriate schema to apply at each
point in problem solving;2 i.e., the reasoner must de
cide on which goal to focus its attention.

This is not an easy task, since the importance of
a goal varies with context. For example, in one sit
uation, a goal to explain a severe rash may be quite
important; however, in another situation involving
both a severe rash and hemoptysis,3 the goal of ex
plaining the hemoptysis should take precedence over
the goal of explaining the rash.

One approach to this problem is to use knowl
edge about the type of consultation the reasoner is
performing. This information, in our approach, is
present in memory structures called diagnostic mem
ory organization packets, or dxMOPs (cf. [Schank,
1982], [Kolodner, 1985], and the diagnostic categories
of Kolodner and Kolodner [1987]). These structures
participate in memory organization, and provide one
way for the reasoner to retrieve schemata from mem
ory (see [Turner, 1988] for details). Each dxMOP
represents a particular class of consultations, and pro-

3 We do not allow schemata to be applied in parallel. This is
because we are trying, as far as possible, to model the behavior
of human diagnosticians, who generally act as though they are
thinking of one thing at a time. There are two reasons for
modeling humans: (1) if the reasoner behaves similarly to a
human, then the user is more likely to understand its reasoning,
and hence, accept it; and (2) reasoning in a manner similar to
that of a human should make explanations easier (though we
do not currently address explanation).

3Blood in the sputum.

Gmmk liltiiMi t h * y t i e a r t
T a t i e s f c a n alcohofic p a t i e a t
Chief complaint: dyspnea
findings:

anemia: low importance, explained by
alcoholism

atmnim- lam importance, crplainnrl by
•lmhollra

Hypotheses: TB, sarcoid, generalised pulmonary or heart
disease

Schemata:
sc-consult: for goal of diagnosing patient
sc-nnding: for generic findings
sc-TB: for evaluating TB

Indices:

finding/mass-on-X-ray—•• dxMOP3

patient/PATIENT4 — dxMOP2

Figure 2: A d x M O P for consultations involv
ing alcoholics with dyspnea.

vides information about goals, actions, etc., that can
be expected in such a consultation. Information from
a dxMOP can be used to decide which goal—and
hence, which schema—to pursue. For example, sup
pose the dxMOP is the one shown in Figure 2; this
dxMOP represents consultations involving alcoholics
whose chief complaint is dyspnea. Among the ex
pected findings are anemia and ataxia,4 which are
both explained by alcoholism. If the reasoner discov
ers that the patient indeed has anemia, it would not
need to follow it up, since the finding is anticipated
by the dxMOP and marked with a low importance.

Information contained in a dxMOP can help the
reasoner order goals; but what if there is no such in
formation present in the dxMOP retrieved from mem
ory? Or what if there are constraints associated with
the current problem that are not anticipated in the
dxMOP, such as time being limited?

In order to focus the reasoner's attention in this
type of situation, we use the idea of meta-reasoning
[e.g., Davis & Buchanan, 1984]: reasoning that takes
place to guide planning. In our approach, meta-
reasoning information is present in the form of strate
gic knowledge structures called strategic schemata.
A strategic schema is a packet of information which
represents a strategy for the reasoner's behavior;
since the reasoner's behavior is determined by which
schemata it chooses to apply, a strategy is equivalent

'Poor motor coordination.

TURNER

Goal ordering:
•elect goal* related to .hypotheses
select goals related to findings
select goals for gathering information
select goal for forming diagnosis

Tl&ure 7s A simple elrate&y for IrypoCbe-
tico-deductive reasoning style.

Situation: time is short
Goal ordering*.

select goal related to chief complaint
select goals related to hypotheses
select finding goal only if very important
select goals of forming diagnosis

Figure 4: A simple strategy for reasoning un
der time pressure.

to an ordering of the schemata applied. Strategic
schemata are useful for representing general strate
gies such as hypothetico-deductive reasoning or rea
soning under time pressure. The reasoner can then
use information, if available, from a dxMOP to mod
ify its use of these strategies for a specific situation.

A simple example of a strategic schema is shown
in Figure 3. This schema provides a goal order
ing for the reasoner that induces a crude form of
hypothetico-deductive reasoning: select any goals
(i.e., select their corresponding schemata) that relate
to hypotheses first; if there are none, then select goals
related to findings in the hope of producing hypothe
ses; if none, then select goal of gathering information
from the user; and finally, if that cannot be done, se
lect the goal of forming a diagnosis. Figure 4 shows
a simple strategic schema for reasoning under time
pressure: follow up the chief complaint, if possible;
evaluate hypotheses; only select goals related to find
ings if the findings are very important; and finally,
when all else fails, form a diagnosis.

The overall algorithm for schema-based reasoning,
including opportunism, is shown in Figure 5. Note
that the reasoner can be interrupted; these interrup
tions can include interruptions both by the user and
by schema application, as new information is added
to STM.

M E D I C

Our approach to diagnostic reasoning is being imple
mented in the MEDIC program, a schema-based rea
soner which performs diagnosis in the domain of pul-
monology. MEDIC consists of three major modules: a

Wait until nser requests a consultation;
Add goal of diagnosing patient to short-term

memory;
Retrieve dxMOP using goal;
U m strategy trass dscMOP, if possible;
Select« srhema frasn the dxMOP to satisfy

goal, add H to agenda;
loop until done:

Select a schema from agenda using strategies,
local information in the dxMOP;

Apply one action;
If there was an interruption then:

Handle interruption;
fl;
Specialise current dxMOP;
if specialisation succeeded then:

Set current dxMOP to be the
specialisation;

fl;
end loop;
Accept and process feedback;
Update memory;

end loop;
end.

Figure 5: Basic schema-based reasoning algo
rithm.

long-term memory, which is organized as described in
[Turner, 1988]; a short-term memory (STM); and a
schema-based reasoner, which is directed at all times
by schemata.

Conceptually, there are three types of schemata
in MEDIC's memory: global, local, and strategic
schemata. A global schema is one that directs a major
portion of a consultation; an example is the schema
which contains information that the reasoner can use
to conduct the consultation: ask for a patient descrip
tion, ask about the chief complaint, gather informa
tion, then form a diagnosis. Gathering information
and forming a diagnosis are also directed by global
schemata. A local schema is one which directs the
reasoner in achieving very specific goals: e.g., inter
pret a finding of dyspnea or evaluate the hypothesis
of lung cancer. Strategic schemata represent general
reasoning strategies and are described above.

Currently, MEDIC can diagnose very simple cases of
pulmonary disease. MEDIC follows an algorithm very
similar to that in Figure 5. Let's look at an example
of a consultation with MEDIC, a portion of which is
shown in Figure 6. Suppose a user requests a consul
tation. The reasoner looks in memory for a way of
satisfying the goal of diagnosing a patient and finds
a dxMOP, adx-consult", representing how consulta
tions are generally conducted. The reasoner then uses
this dxMOP as a context for diagnosis: it is used as

TURNER

.- (p a t i e n t (n z f e m a l e) (w e i g h t frralT304)) (J
(v a l u e 6 4)) (r a c e w h i t e))

A d d i n g information a b o u t p a t i e n t to S T V f .
W h a t U the chief complaint?
: (f i nd ing (e n t i t y (dyspnea (duration (y e a r s 2))

(c h a r a c t e r p r o g r e s s i v e))))
A d d i s * c h i e f c o m p l a i n t to S T U addhsg fia d ing a t

< D Y S P N * A O > t o S T M .
H o w m a n y n i g h t s of s t a i r s c a n t h e p a t i e n t c l i m b ?
: (less-than 1)
How far can the patient walk on level ground?
: (yards 20)
I judge the qualitative value of SEVERITY of <DYSPNEA0>

to be SEVERE.
. . . (same for cardiac disease)...

...explaining dyspnea...
Processing <HYPOTHESIS0> [pulmonary disease];

relating to other hypotheses...
...generating expectations given <HYPOTHESIS0>...
...I'm scoring hypothesis <HYPOTHESIS0> (<PULM-DZ0>)
...hypothesis explains: (<FINDING0>) [dyspnea]...
...failed predictions for hypothesis: —
...hypothesis doesn't explain: —
...trying to specialise the hypothesis of

<HYPOTHESIS0> (<PULM-DZ0>).. .
...specialised <HYPOTHESIS0> to <HYPOTHESISl>

(<RPE>) [recurrent pulmonary embolism]
...generating expectations given <HYPOTHESISl>...

Is there a finding of <SYNCOPE>?
: Yes

Enter information (<return> if no more).

My diagnosis is: Recurrent pulmonary embolism.

Figure 6: Part of a consultation with MEDIC.

a source both of a strategy and of schemata to sat
isfy active goals. The strategy it contains is "st-HD-
reasoning", the strategic schema mentioned above
which provides a goal ordering to induce hypothetico-
deductive reasoning. The only goal active is one to
diagnose the patient; the schema to achieve this in
dx-consult is "sc-consult". This is added to the rea
soner's agenda of active schemata.

The reasoner now selects a schema from its agenda,
using the goal ordering provided by the current strat
egy; the use of specific information from the dxMOP
is not currently implemented. The only schema to se
lect is sc-consult, so the reasoner selects that and be
gins to apply it. The user is asked for some initial in
formation about the patient, including a description
of the patient (a white female who is overweight)6

and the chief complaint (progressive dyspnea). The
information is added to STM. Adding the chief com
plaint causes the reasoner to be interrupted, and it
searches memory for a schema to interpret the find
ing. Schema "sc-dyspnea" is found and activated.

P&rtct: thf tttx its u in aar fhi* g"§V rffc
to "findings hzve 'precedence wer goals far gathering
information or forming a diagnosis, sc-dyspnea is se
lected and used. This schema is a specialized version
of a general schema to interpret findings; instead of
anting general questions, the schema can ask very
specific things Telated to dyspnea (e.g., asking how
many stairs the patient can climb as a measure of the
severity). The last step of this schema is to explain
the finding by postulating diseases that could cause
it; using this step, the reasoner postulates hypothe
ses of pulmonary disease and cardiac disease. Adding
these hypotheses to STM again interrupts the rea
soner, which finds and adds to the agenda schemata
to evaluate the hypotheses: "sc-pulmDz" and "sc-
cardiacDz".

The strategy orders goals related to hypotheses
before any others; hence, one of the two schemata
just added is selected, in this case, sc-pulmDz. The
reasoner uses this schema to score the hypothesis of
pulmonary disease,6 and then tries to specialize the
hypothesis using information that is in STM. One
possible specialization, based on the fact that the pa
tient is overweight, is recurrent pulmonary embolism7

(RPE); this is hypothesized, resulting in a schema
("sc-RPE") being activated to evaluate it.

The reasoner then selects sc-RPE and begins to
evaluate the hypothesis of pulmonary embolism.
Eventually, it will have evaluated all the hypotheses
that it can and will have exhausted the information
the user can give it. The main schema, sc-consult,
will then suggest the step of forming a diagnosis,
which will be attempted.8 In this case, the best hy
pothesis is recurrent pulmonary embolism, and that
will be proposed to the user.

There is still much work to be done on MEDIC.
At the present, the program has very little domain
knowledge, and relatively few schemata. Additional
thought must also be given to the form and content
of the strategic schemata, which are currently quite
simple; eventually, we would like for them to specify
actions for the reasoner to perform in order to select a
goal to pursue, making them more like the reasoner's
other schemata. MEDIC also does not make use of
context-specific information in dxMOPs to focus its
attention.

5Input to MEDIC is in a version of Conceptual Dependency
[Schank and Abelson, 1977]; there is currently no natural lan
guage interface.

eU8ing a scoring scheme very similar to that of INTERNIST-1
[Miller et aL, 1982].

7Blood clots occurring in the lungs.
8Again, using a method similar to that of INTERNIST-1.

TURNER

JBSXJ&3ED~WIXBXL

Opportunistic reasoning has been addressed in the
blackboard approach to problem solving of HEARSAY -
II [Erman et al., 1980] and OPM [Hayes-Roth,
1965]. These piugiam's Knowledge Sonne* (KS's)
are atomic, rule-like specialists that are invoked in re
sponse to some arbitrary condition occurring. They
correspond only loosely to schemata. Schemata are
larger-grained than KS's, and capable of being in
terrupted. Schemata also serve to cluster actions to
be taken to achieve a goal; many KS's, on the other
hand, may be needed to achieve a single goal. The
use of schemata should allow the reasoner to behave
in a manner that a reasoner can understand: e.g.,
question-asking should be more focused. Schemata
should also facilitate explanation, since the actions
taken to achieve a goal, though possible temporally
disjoint, can still be explained in relation to one an
other.

The VISIONS Schema System [Weymouth, 1986]
uses an approach similar to ours for interpreting vi
sual scenes. Their schemata are specialists in partic
ular vision tasks and can work in parallel to inter
pret a scene. Unlike our schemata, theirs are largely
represented using procedures written in a program
ming language; it is therefore not possible for their
program to reason about or modify their schemata,
as is potentially possible using our representation of
schemata. In addition, parallel execution of schemata
is not feasible in our domain, given the goals of fo
cused question-asking and modeling a human diag
nostician's behavior.

The NASL [McDermott, 1978] program concen
trated on the interaction of planning and execution.
In many respects, our schemata are similar to NASL's
tasks: both are hierarchical, bottoming out at the
primitive action or primitive task level. However, our
schemata are somewhat more flexible than NASL's
tasks, and we make explicit use of goals; the latter
allows the potential of specifying the goal of a task
without necessarily specifying the steps to achieve it,
thus allowing the reasoner to make such decisions at
run-time.

We face some of the same problems as did NASL,
too, in the chore of selecting which schemata to pur
sue at each point in problem solving. NASL made use
of choice rules, which contained the strategic knowl
edge of that system. Our strategic schemata can be
viewed in the current implementation as packages of
such choice rules. However, the ultimate goal is to
make them less rule-like and more schema-like, spec
ifying steps for the reasoner to perform in order to

.select .schemata toappjy.
"Pnby f 19B7] is also Liuiuanefl irifli inteileafgig

planning and execution in environments that change
during planning. The behavior of his RAP planner
is quite similar to that of our reasoner. However,
n\APs would seem to be somewhat uime simple than
our schemata, and oriented towards real-time con
trol rather than diagnosis. In addition, we extend
the idea of using packets of control knowledge to the
meta-level by using strategic schemata to direct the
reasoner's attention.

C O N C L U S I O N

Medical diagnosis can be fruitfully viewed as a plan
ning task in which planning is interleaved with di
agnosis. New information may be discovered during
diagnosis which should impact the future problem-
solving behavior of the diagnostician. The diagnos
tician must be opportunistic in order to take notice
of and respond to this new information as it becomes
available.

Schema-based reasoning is one approach to this
problem. By representing problem-solving knowl
edge as packets of procedural information designed
to achieve a goal, the reasoner can activate schemata
as goals for dealing with changes in the environment
arise. By storing schemata in a memory based on
the goals they achieve and the situations in which
they are useful, the reasoner can find the appropriate
schemata for goals as they arise.

Schemata are flexible, and enhance the reasoner's
ability to respond to changes in the environment in
two ways: (1) the order of their steps need not be
completely determined—this allows the reasoner to
select the next step of a schema based on the state of
the world resulting from the application of the pre
vious step; and (2) steps may specify goals, which
the reasoner can attempt to satisfy at run-time by
retrieving schema specific to the current situation.

Schemata are selected for application based on the
reasoner's focus of attention—Le., the goal the rea
soner is trying to achieve. Goals are selected by
the reasoner based on information from two sources:
general goal-ordering information, stored in strate
gic schemata; and specific goal-ordering information,
stored in the dxMOP representing consultations sim
ilar to the current one.

Though this research addresses medical diagnosis,
we believe that schema-based reasoning can be use
fully applied to other tasks. Our approach should be
useful for any task in which planning and execution

TURNER

mast be iiilri htfwnd, nria mairft all isatamce of ike
problem cannot lie anown at the start tf the prob
lem.

Many thanks to Janet Kolodner, Hong Shinn, and
Elise Turner for their comments on earlier drafts of
this paper, and to our domain expert, Eric Honig, of
Emory University and Grady Memorial Hospital.

R E F E R E N C E S

Agre, P.E., and Chapman, D. (1987). Pengi: An
implementation of a theory of activity, in Pro
ceedings of the Sixth National Conference on Ar
tificial Intelligence, pp. 268-272.

Cullingford, R.E., and Kolodner, J.L. (1986). In
teractive advice giving. In Proceedings of the
1986 IEEE International Conference on Sys
tems, Man, and Cybernetics.

Davis, R., and Buchanan, B.G. (1984). Meta-leval
knowledge. In B.G. Buchanan and E.H. Short
liffe (eds.), Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic
Programming Project. Addison-Wesley Publish
ing Company, Reading, Massachusetts, pp. 507-
530.

Erman, L.D., Hayes-Roth, F., Lesser, V.R.,
& Reddy, D.R. (1980). Then HEARSAY-
II speech-understanding system: Integrating
knowledge to resolve uncertainty, Computing
Surveys, Vol. 12, No. 2.

Firby, R.J. (1987). An investigation into reactive
planning in complex domains, in Proceedings of
the Sixth National Conference on Artificial In
telligence, pp. 202-206.

Gomez, F., and Chandrasekaran, B. (1982).
Knowledge organization and distribution for
medical diagnosis. In W.J. Clancey and E.H.
Shortliffe (Eds.), Readings in Medical Artifi
cial Intelligence, pp. 320-338. Reading, Mas
sachusetts: Addison-Wesley Publishing Com
pany, 1984. (Originally published in IEEE
Transactions on Systems, Man, and Cybernet
ics, Vol. SMC-11, No. 1, pp. 34-42 (1981).)

Hayes-Roth, B. (1985). A blackboard architecture
for control, Artificial Intelligence, Vol. 26, No.
3, pp. 251-321.

ffnlncrnrr, X I . (J.9B5). ETrrrVntial jrnrraawr
in natmral ptubTeiu solving. Technical "Report
#GIT-ICS-85/123, School of Information and
Computer Science, Georgia Institute of Technol
ogy, Atlanta, Georgia.

"Kolodner, JX-, and "Kolodner, H.M. (1987). Th
ing experience in clinical problem solving: In
troduction and framework. In Proceedings of
the 1987 IEEE International Conference on Sys
tems, Man, and Cybernetics.

McDermott, D. (1978). Planning and acting, Cog
nitive Science, voL 2, pp. 71-109.

Miller, R.A., Pople, H.E., Jr., and Myers,
J.D. (1982). INTERNIST-1, an experimental
computer-based diagnostic consultant for gen
eral internal medicine, New England Journal of
Medicine, voL 307, pp. 468-476.

Schank, R.C. (1982). Dynamic Memory, Cam
bridge University Press, New York.

Schank, R . C , and Abelson, R. (1977). Scripts,
Plans, Goals and Understanding, Lawrence Erl-
baum Associates, Hillsdale, NJ.

Turner, R.M. (1988). Organizing and using
schematic knowledge for medical diagnosis. Sub
mitted to the Seventh National Conference on
Artificial Intelligence.

Weymouth, T.E. (1986). Using Object Descrip
tions in a Schema Network for Machine Vision,
Technical Report 86-24 (Ph.D. thesis) Dept. of
Computer and Information Science, Univ. of
Massachusetts.

Towards an Architecture for Open "World Problem Solving*

Thomas R. Hinrichs
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

Problem solving in open worlds involves
the management of inconsistency, impre
cision, and lack of knowledge. In this pa
per we examine some specific problems
that arise in open worlds and describe
inferences that are needed to deal with
them. We present a problem solving
architecture that integrates case-based
reasoning and constraint propagation to
achieve flexibility in open domains. This
architecture is implemented in a com
puter program called JULIA.

1 Introduction

Problem solvers must often work with incom
plete or inconsistent knowledge, either because
the domain is unbounded, continually chang
ing, or not well understood. Two general tech
niques for dealing with such situations are: 1) to
postpone commitment until more information is
available, and 2) to make an assumption, or edu
cated guess, about the missing information. In
dividually, these techniques may be insufficiently
flexible: If a problem is under-constrained, de
layed commitment by itself may never solve it.
On the other hand, a problem solver that always
leaps to conclusions may fail to exploit informa
tion that arrives late. To remedy these prob
lems, we are exploring an approach that inte
grates both methods in the form of constraint
propagation and case-based reasoning.

*This research was funded in part by NSF Grant No.
IST-8608362, in part by ARO contract No. DAAG-29-85-
K-0023, and in part by Lockheed Grant No. DTD09-25-87

Case-based reasoning involves recalling pre
vious problem solving episodes, or cases, that
are similar to the current situation and adapt
ing parts of those cases to fit the new prob
lem. In this paper, we describe a problem solving
architecture which integrates case-based reason
ing with constraint propagation in order to sup
port reasoning in open worlds. We have imple
mented this architecture in a program called JU
LIA [Cullingford et al. 1986], which is an inter
active catering advisor that helps users to plan
meals.

In the following section, we use the meal plan
ning domain to illustrate some problems that
arise in open worlds and techniques that address
them. Section 3 describes the problem solving
process with an extended example and section 4
presents a layered architecture which implements
this process.

2 Open Worlds

An open world is any domain for which a prob
lem solver has incomplete or inconsistent knowl
edge. Typical situations in which open worlds
arise are: 1) interactive problem solving, 2)
under-constrained problems, 3) incomplete do
main theories, and 4) problems of ill-defined
scope. In this section, we will discuss each of
these situations and show how they involve rea
soning with incomplete knowledge.

1

2.1 Interactive Problem Solving

Problem specifications are often incomplete.
Many problem adven cope with thai by ask
ing rraestions and accepting advice from a user.
To be effective, such interactive problem solvers
must meet two criteria: they must be reac
tive and they must reason opportunist really.
A reactive problem solver is one which re
sponds dynamically to changes in its environ
ment [Kaelbling 1986]. An opportunistic prob
lem solver exploits serendipitous features of the
environment to satisfy multiple goals or con
straints [Hayes-Roth et al. 1979]. These criteria
are illustrated in the following hypothetical dia
log:

Caterer: How much do you want to spend?
Client: Let's have something cheap like Mexi

can food. I'm on a diet though, so it
should be a light meal.

Caterer: How about a taco salad?

In this exchange, the client answers the origi
nal question, changes the focus of the conversa
tion, and volunteers additional information. The
problem solver, in turn, must react to the shift in
focus and assimilate the new information oppor
tunistically to derive a solution which satisfies
the goals and constraints.

In addition, the requirements of interactive
problem solving prohibit chronological back
tracking. First, because the focus shifts dynam
ically, the search space cannot be explored hier
archically. Second, responsibility for decisions is
shared between the system and the user, and the
system must not unilaterally revoke the user's
decisions. Therefore each decision must be indi
vidually justified to permit dependency-directed
backtracking, and the problem solving architec
ture must include truth maintenance.

2.2 Under-Constrained Problems

Sometimes a problem has no single right answer,
or even an optimal one. There may be many
solutions that satisfy the given constraints; for
example, there are usually many possible menus

that will be acceptable for a given meal. How
ran a problem solver generate these potential so
lutions, how «b^o]d it rfrrwaj* among them?

Often, it tb not practical to generate the com
plete search space. For instance, the class of all
dishes is both too large and too poorly defined
to omiTTiArflfA A better strategy is to generate
a small subset of possibilities, use constraints to
filter out unacceptable values, and choose among
the remaining satisficing candidates.

One way to generate candidates is to recall
them from previous cases [Kolodner et al. 1985].
If the problem solver is reminded of cases which
were similar to the current one, this provides a
limited set of candidate values among which to
choose. Using case-based reasoning in this way
amounts to a kind of early commitment which
complements the delayed commitment of con
straint propagation.

2.3 Incomplete Domain Theories

When a problem solver does not know all of the
relationships that hold in a domain, it may make
incorrect inferences or fail to make any inferences
at all. Sometimes the only recourse is to make an
assumption about what is probably true. For in
stance, a caterer can usually assume that money
is important to a client and should be conserved.
This may not be true, however, if the goal of the
meal is to impress a guest. Determining when
such assumptions apply is difficult when the do
main theory is incomplete.

To complicate matters, these assumptions may
change over time. In the short term, a prob
lem solver must revise its assumptions as new
information becomes available. For example, if
a problem solver plans an inexpensive meal and
later learns that the boss is coming to dinner,
then it must retract the 'conserve money' as
sumption and its consequences, and make new
assumptions about cost, ease of preparation, and
formality. In other words, the problem solver
must ensure that the plan is consistent with its
assumptions. This consistency can be enforced
by constraint propagation and truth mainte
nance.

2

Assumptions may also change over the long
term, a* a problem solver learns when an as
sumption does or does not apply. Such learn
ing is srmpfified if the "problem solver can recall
previous cases, and if those cases contain feed-
bach indicating why they succeeded or failed.
For instancp, a meal may fail because the plan
ner neglected to provide for vegetarian guests.
In the future, the planner should be reminded of
this failure and try to determine whether or not
there will be vegetarians present. Over time, this
should be generalized to accomodate any special
case eaters. Case-based reasoning of this sort can
offset an incomplete domain theory by helping
a problem solver to recognize implicit assump
tions, thereby allowing it to anticipate and avoid
failure [Hammond 1986,Kolodner 1987].

2.4 Ill-defined Problem Scope

Real world problems are seldom stated in terms
of an initial state, a goal state and a set of oper
ators. Usually, a problem solver must infer the
nature and scope of the problem and the de
sired specificity of the solution. For instance,
if a client says: "I'm having a party for my re
search group..." a catering advisor must first
assume the existence of a meal based on its own
role as caterer. Next, it must look at the con
text of this meal in order to propose relevant
constraints, such as cost and formality. As the
solution evolves, the problem solver must also
decide how specific to be. For example, a dish
might be specified as a salad or more particu
larly as a waldorf salad. The locale of a meal
might be sufficiently specified with an address,
or it might be necessary to indicate a particular
room. The required level of specificity is seldom
given explicitly, and must often be inferred from
previous cases and constraints.

In addition to determining the specificity of
the solution, the problem solver may also have
to infer how specific its own operators should be.
In particular, a case-based reasoner may be able
to adapt and modify previous solutions at differ
ent levels of granularity. For example, situations
such as Thanksgiving Dinner are sufficiently tra

ditional that menus from previous cases may be
adapted almost intact. More often, bits and
pify*»ff of cases be mjy^-d and matched to de
rive a satasncmg solution. Sometimes, however,
the repertoire of known dishes isn't quite suf
ficient. In this situation, it may be possible to
modify recipes by substituting one ingredient for
another to satisfy a constraint. Thus, the gran
ularity of problem solving operators never really
bottoms out. The adaptation of previous cases
just becomes progressively more like reasoning
cfrom-scratch\

3 Problem Solving in JULIA

JULIA solves open world problems by reasoning
from previous cases and propagating constraints
to refine a problem statement (see figure 1). We
illustrate this process with a portion of an exe
cution trace in which the problem is to plan a
party for about 20 guests. First, the problem
solver posts a goal to refine the problem and re
trieves a plan to achieve it:

GOAL « REFINE (PR0T0C0L3)
PLAN » REFINE-SOCIAL-OCCASION

The scope of this problem is ill-defined because
it is not explicitly stated whether JULIA should
plan the entire party, the meal by itself, or just
the menu. The problem solver hedges initially
by assuming that the problem is to plan a meal
in the context of the party:

Assuming problem i s to refine meal.
GOAL = REFINE (MEAL-1)
PLAN • REFINE-MEAL

This problem is under-constrained because there
are an infinite number of possible solutions.
Therefore, rather than immediately working on
the menu, JULIA asks for information which
could constrain the search:

How much do you want to spend?
-> (cheap-meal Mexican-cuisine p-diet)

The user's reply is a list of desired features:
cheap-meal is a range of costs per person,

3

Sext goal

Formulate
constraints

Process
remindings

Choose one

Propagate
constraints

no

Suspend
current goal

Backtrack via
constraints

Post new goals

yes

Figure 1: Abbreviated Problem Solving Algorithm

4

Mexican-cuisine is a description of a typical
Mexican meal, and p-di«t is a preservation
g/omL Therefore, the English translation would
he *I would Eke a cheap, Mexican meal which
is also low-calorie." Not only has the user an
swered the question, but he has also volunteered
new information. In order to opportunistically
nee this information, the problem solver formu
lates and propagates constraints on the new fea
tures. When it does, a contradiction is found
between the default meal structure (appetizer,
salad, main course, and dessert), the structure
of a typical Mexican meal (omit salad), and the
structure of a typical diet meal (a single main
course). JULIA assumes that p-diet , an explicit
goal, is more important than Mexican-cuisine,
a descriptor, and therefore chooses the single
course:

Withdrawing plan step 7REFINE-APPETIZER
Withdrawing plan step 7REFINE-SALAD
Withdrawing plan step 7REFINE-DESSERT

Thus, JULIA reacts to the user's input by re
vising its own problem-solving plan as well as
the meal plan. At this point the problem
solver starts to look for a main dish. Although
the problem is still under-constrained, there is
enough information available for the case-based
reasoner to retrieve similar cases:

GOAL - FIND-VALUE (MAIN-DISHES)
Reminded of case: DECEMBER-MEAL
Reminded of case: LO-CAL-DINNER
Reminded of case: DEATH-CHILI-MEAL

I remember the DEATH-CHILI-MEAL which
fa i l ed because Tom didn ' t eat spicy
food. Will th is be a problem in the
current s i tuat ion?
-> yes

To avoid repeating a previous mistake, the prob
lem solver adds a constraint to reject any dish
whose taste is spicy:

adding constraint:
(DIFFERENT (7DISHES TASTE) SPICY)

The case-based reasoner ranks the meals it re

members by similarity and suggests values from
the most similar case. When it finds a value that
Fr'tiffi"0 thr crnetra'mt*, ft- M^g^tn it to the user:

Would you like a taco-salad?
-> yes

If a taco-salad were unacceptable, the problem
solver would try to relax constraints on other
candidates, and failing that it would postpone
this goal in the hope that other features would
generate new remindings and suggest other can
didates. The problem solver continues on from
here to fill in other descriptors and dishes until
the meal plan is complete.

4 Architecture

The preceeding example suggests some of the
functions that are needed to reason with in
complete knowledge. Specifically, there must be
some means of: 1) selecting a goal or focus of at
tention, 2) formulating, propagating, and relax
ing constraints, 3) retrieving cases from mem
ory, analyzing failures, and transferring values
and constraints, and 4) modifying the problem
structure and justifying individual decisions.

Ideally, these functions should be integrated
as much as possible in order to minimize redun
dancy and maximize constructive interaction.
At the same time, good software engineering
practice dictates information hiding and modu
larity. These requirements are reconciled in JU
LIA with a layered architecture which consists
of four modules, as shown in Figure 2.

The goal scheduler and TMS are fairly tra
ditional. The goal scheduler is a problem
reduction problem solver, and the TMS is
a justification-based truth maintenance system
based on [Doyle 1979], In the next sections, we
discuss the constraint propagator and the case-
based reasoner, which form the core of the prob
lem solving architecture.

5

G o a l S c h e d u l e r

Constraint Propagator Case-Based Reasoner

T r u t h M a i n t e n a n c e S y s t e m (T M S)

Figure 2: The Problem Solving Architecture

4.1 Cons t r a in t P r o p a g a t o r

The constraint propagator has two main func
tions. First, it evaluates and filters sug
gested values in a manner similar to Mol-
gen [Stefik 1981]. Second, it propagates val
ues and constraints through a network as in
the constraint propagators of [Waltz 1972] and
[Steele 1980].

Constraints in JULIA consist of a type, argu
ments, and an importance. The constraint type
is a frame with slots containing a predicate and
a generator function, as in ISIS [Fox 1983] and
PRIDE [Mittal et al. 1986]. An argument may
be either a constant or a path to a slot. The im
portance indicates whether or not the constraint
may be relaxed. For example, the constraint to
rule out spicy dishes looks like:

(d i f ferent (?main-dishes taste) spicy
required)

where dif ferent is the constraint type, the first
argument is a path, the second argument is a
constant, and the importance is required.

Constraints reside under slots. This permits a
constraint to be triggered when its slot receives
a value, and it also determines the scope of the
constraint. For instance, if the not-spicy con
straint is stored under the ACTIVITIES slot of
the meal, then all courses inherit it. If, on the
other hand, it were stored under a subslot of this
such as MAIN-COURSE, then only the main course
would be required to be non-spicy.

4.2 C a s e - B a s e d R e a s o n e r

Two important elements of case-based reason
ing are: 1) recalling similar cases in previous
situations and 2) adapting parts of those cases
to fit the new situation. In JULIA, the case-
based reasoner retrieves previous cases from a
dynamic memory [Schank 1982,Kolodner 1984].
It then ranks them in order of similarity to the
current problem, weighing similar goals more
heavily than similar descriptors. The reasoner
suggests values from the most similar cases by
constructing TMS nodes that package the values
along with the reasons for and against them. The
Constraint Propagator checks the suggested val
ues and rules out those that violate constraints.

Another function of the case-based reasoner
is failure avoidance. Previous cases con
tain feedback from the user in a slot called
Actual-Events. The feedback is a sketchy
causal chain which indicates l) a goal which ei
ther succeeded or failed, 2) an event which re
sulted in the success or failure of the goal, and 3)
a reason which is either a theme or a constraint
which enabled (or disabled) the event. When
the case-based reasoner detects a previous goal
failure, it tries to determine whether or not it
is relevant by comparing the default function of
the object of the event with the current focus of
attention. Thus, in the example in section 3 the
failure event was that Tom didn't eat chili. The
default function of chili is to serve as a main dish,
so when the problem solver is looking for a main

6

dish, this failure will be considered potentially
relevant.

At t&ss paint, the anient rrrrplfTnrntatinn of
JULIA simply asks the user whether the Failure
is in fact relevant, and if so it transfers the con
straint in the reason slot. A more sophisticated
approach would be to .analyze the T°T c r r r i itself
to determine how the failure is relevant and how
to best avoid it in the current situation.

5 Discussion

Although constraint propagation and case-based
reasoning are not new in and of themselves, their
integration provides a novel approach to problem
solving in open worlds. In particular, it allows a
problem solver to deal with incomplete informa
tion in five ways:

• The problem solver can react to a user or to
a dynamic environment by triggering con
straints when new information arrives.

• The problem solver can opportunistically
satisfy multiple goals and constraints by
combining the bottom-up inferences of con
straint propagation with the top-down ex
pectations of case-based reasoning and goal
scheduling.

• The case-based reasoner can help reduce
the search space when a problem is under-
constrained by suggesting values from pre
vious cases.

• The problem solver can deal with an incom
plete domain theory by making plausible as
sumptions based on previous successes and
failures.

• The case-based reasoner can help the prob
lem solver to infer the scope of a problem
by referring to previous similar cases.

These capabilities suggest several ways in
which constraint propagation and case-based
reasoning are complementary:

• Commitment . Constraint propagation is
a form of delayed commitment; inferences

are made as information arrives. Alterna
tively, case-based reasoning can be viewed
as a. kind of early c-JUH 'ni^'r* 1* beranfle it
provides a way to make plausible assump
tions about missing information.

• Rate of adaptation. Constraint propaga
tion permits a problem solver to react imme
diately to new information. Reacting within
a problem-solving session like this can be
thought of as short-term adaptation. Case-
based reasoning, on the other hand, reacts
by altering behavior between sessions, thus
adaptation is long-term.

• Source of information Information pro
vided by one technique is used by the other:
constraints index cases, and in turn, cases
suggest additional constraints.

Because constraint propagation and case-based
reasoning are complementary, their integration
is a first step towards an architecture for open
world problem solving.

Acknowledgements

I would like to thank Janet Kolodner for her
guidance and encouragement during this re
search, and Craig Stanfill and Reid Simmons for
their comments on an earlier draft of this paper.

References

[Cullingford et al. 1986] R.E. Cullingford and
J.L. Kolodner. Interactive advice giving. In
Proceedings of the 1986 IEEE International
Conference on Systems, Man, and Cybernet
ics, 1986.

[Doyle 1979] J. Doyle. A truth maintenance sys
tem. Artificial Intelligence, 12(3), 1979.

[Fox 1983] M.S. Fox. Constraint-
Directed Search: A Case Study of Job-Shop
Scheduling. PhD thesis, CMU, 1983. CMU-
RI-TR-83-22.

7

[Hammond 1986] K.J. Hammond. Case-based
Planning: An Integrated Theory of Planning,
lamming Mod Memarg. PhD thesis, Yak,
1SBB. TAEE/CSD/B3U4B8.

[Hayes-Roth et al. 1979] B. Hayes-Roth, and F.
Hayes-Roth. A Cognitive Model of Planning.
Cognitive Science, (3)275-310,1979.

[Kaelbling 1986] L.P. Kaelbling. An architec
ture for intelligent reactive systems. In M.P.
Georgeff and A.L. Lansky, editors, Proceed
ings of the Workshop on Reasoning about
Actions and Plans, pages 345-410, Morgan
Kaufman, Los Altos, CA, July 1986.

[Kolodner 1984] J.L. Kolodner. Retrieval and
Organization Strategies in Conceptual Mem
ory: A Computer Model. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1984.

[Kolodner et al. 1985] J.L. Kolodner, R.L.
Simpson, and K. Sycara. A process model
of case-based reasoning in problem solving.
In Proceedings of IJCAI-85, pages 284-290,
Los Angeles, 1985.

[Kolodner 1987] J.L. Kolodner. Capitalizing on
failure through cased-based inference. In
Proceedings of the Ninth Annual Conference
of the Cognitive Science Society, Seattle,
Washington, July 1987.

[Mittal et al. 1986] S. Mittal and A. Araya. A
knowledge based framework for design. In
Proceedings of AAAI-86, pages 856-865,
Philadelphia, PA, August 1986.

[Schank 1982] R.C. Schank. Dynamic Memory:
A theory of reminding and learning in com
puters and people. Cambridge University
Press, London, 1982.

[Steele 1980] G.L. Steele Jr. The Definition
and Implementation of a Computer Language
based on Constraints. PhD thesis, MIT,
1980. AI-TR-595.

[Stefik 1981] M.J. Stefik. Planning with con
straints (molgen: part 1). Artificial Intel
ligence, 16(2):141-169, 1981.

altz 1972] D. Waltz. Generating Semantic
Descriptions from Drawings of Scenes urith
Shadows. Technical Report, MIT Artificial
Intelligence Laboratory, T972. APTB-271.

8

