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Abstract. In this study we investigate the formation of dynamical energy cascades in

higher order KdV-type equations. In the beginning we recall what is known about the

dynamic cascades for the classical KdV (quadratic) and mKdV (cubic) equations. Then,

we investigate further the mKdV case by considering a richer set of initial perturbations

in order to check the validity and persistence of various facts previously established for

the narrow-banded perturbations. Afterwards we focus on higher order nonlinearities

(quartic and quintic) which are found to be quite different in many respects from the

mKdV equation. Throughout this study we consider both the direct and double energy

cascades. It was found that the dynamic cascade is always formed, but its formation is

not necessarily accompanied by the nonlinear stage of the modulational instability. Direct

cascade structure remains invariant regardless the size of the spectral domain. In contrast,

the double cascade shape can depend on the size of the spectral domain, even if the total

number of cascading modes remains invariant. Results obtained in this study can be

potentially applied to plasmas, free surface and internal wave hydrodynamics.
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1. Introduction

When we want to describe an open or a closed physical system, the main question is
to describe the energy flux inside this system and with surrounding environment. The
energy transport along the wavenumbers in Fourier space is generally called the energy
cascade. An elegant idea to describe this cascade in turbulent flows was first proposed by
Richardson in 1922 [24]. His empirical description was put by the author in the form of a
verse:

Big whirls have little whirls,
Which feed on their velocity,
And little whirls have lesser whirls,
And so on to viscosity.

In this poetic way Richardson described the energy transport among turbulent vortexes
over the scales which ends by the dissipative region. This semi-empirical argument was
made more accurate by Kolmogorov in his famous 1941 paper (whose English translation
can be found in [20]) where he proposed the universal energy spectrum ∼ ℓ5/3 for the strong
homogeneous isotropic turbulence (here ℓ is characteristic size of a vortex). A similar
approach applied to weakly nonlinear wave systems resulted in the development of the so-
called Weak (or wave) Turbulence Theory (WTT) [29] where the spectrum is not universal
anymore and it depends on the dispersion function. However, the spectrum shape still
remains a powel law as in the strong turbulence theory. In terms of the nonlinearity
parameter ε the strong turbulence theory corresponds to εST ∼ O(1) while the WTT is
situated in the range εW ∼ O(10−2).

The model of the dynamic energy cascade for the case of intermediate (moderate) non-
linearities εM ∼ O(10−1) was proposed quite recently in 2012 [17] and studied analytically
in [18, 19]. Since the dynamic energy cascade model is based on the Modulational Insta-
bility (MI) mechanism, the first developments were made the the case of the Nonlinear
Schrödinger (NLS) equation and its modifications. The spectrum shape is deduced from
the Incremental Chain Equations (ICE) which strongly relies on the knowledge of the in-
stability interval. Fortunately this information is readily available for NLS-type equations
in the literature.

On the other hand, the MI can be encountered in other types of model equations. It is
important to study the dynamic energy cascade formation in these models as well. The
present article is entirely devoted to some generalized Korteweg–de Vries (KdV)-type equa-
tions. The celebrated original KdV equation was derived for the first time for surface waves
in shallow waters [1, 21] in order to explain the phenomenon of solitary waves:

KdV(u) ≐ ut + uxxx + βuux = 0. (1.1)

However, it is known that the classical KdV equation 1.1 does not possess the MI. Later
some extended versions of the KdV equation were derived for both surface [22] and internal
[11] waves. By making appropriate changes of variables, it can be reduced to the following
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modified (m)KdV equation:

mKdV(u) ≐ ut + uxxx + βu2ux = 0. (1.2)

It is known that equation (1.2) is integrable and it possesses the MI for β > 0. For negative
values of parameter β < 0 its behaviour is similar to the KdV in the respect of the MI.

Formally all these model equations can be encompassed into a single gKdV framework:

gKdV(u) ≐ ut + uxxx + (αu + βu2 + δu3 + γu4)ux = 0, (1.3)

which generates the KdV, mKdV, quartic and quintic gKdV equations for particular choices
of coefficients α, β, δ and γ. Quartic and quintic gKdV equations will be studied extensively
numerically below.

In general, there are only few known mathematical facts about higher order KdV-type
models. The global well-posedness of the quartic gKdV equation in some critical spaces
was shown in [26], while the stability of periodic travelling waves in the gKdV equation
was studied in [3, 4].

As we already mentioned above, the shape of the energy spectrum was computed in the
NLS-type equations based on the explicit knowledge of the instability interval with finite
measure. In the case of the KdV-type equations and nonlinearity of order nonlinearities
O(10−1) such finite intervals do not exist, since any mode with the wave vector k0 > 0 is
modulationally unstable (if the equation has the MI, of course). This fact prevents the
direct transposition of NLS predictions to the family of KdV-type equations. Nevertheless,
we decided to study the dynamic energy cascades in several KdV-type models numerically.

In general, the MI is an effect which describes a special type of the instability of a
single spectral component subject to narrow band excitation in an experiment (regardless
whether it is numerical or laboratory). In our previous investigations [6, 7] we followed
this ideology and all the numerical experiments toward the observation of the direct and
inverse cascades had only two spectral harmonics in the initial condition (i.e. the base wave
k0 along with its modulation K0 ≪ k0).

On the other hand, in real-world laboratory experiments it is extremely difficult to excite
precisely only two spectral harmonics. It is always a finite range which appears. Conse-
quently, it is interesting to study this situation in numerical experiments as well in order
to determine the limits of the survivability of the dynamical energy cascade. Additional
motivation comes from the fact that the so-called Benjamin–Feir Index (BFI) [16], which
characterizes the likelihood of freak wave formation in an open ocean, is also based on the
effect of the MI in the presence of a fairly broad spectrum. There is a direct connection
between the BFI and the increment chain equations which describe the cascade formation
[27]. It should be noted that the BFI was introduced, strictly speaking, for surface waves
in deep water which are described by the NLS-type equations. However, this notion might
be transposed to the mKdV case as well, since the analytical bridges between NLS and
(m)KdV are well studied [12] (and the references therein).

Even if historically the KdV equation (and related models) was proposed first as a model
equation for surface waves, later it found applications in many other fields such as plasma
physics, acoustic and internal waves in the ocean. That is why the study of this equation



D. Dutykh & E. Tobisch 6 / 25

along with its various modifications is important. The big advantage of the classical KdV
(1.1) and mKdV (1.2) equations consists in their exceptional mathematical properties —
i.e. the integrability, which allows a deep mathematical study. However, even in this case
it does not allow to describe exactly the properties of the dynamical energy cascade. If we
had a closed form analytical solution u(x, t) than we could develop it in a Fourier series

u(x, t) ∼
+∞

∑
j=−∞

cj(t)eikx, ck(t) ∶= ∫ u(x, t)e−ikx dx.

Then, the Fourier spectrum is given by the graph of the application k ↦ ∣ck(t)∣2. Unfor-
tunately, even for integrable equations we do not always have closed form solutions (with
notable excpetion of solitons and cnoidal waves). The modern notion of integrability is
related to the construction of the Lax’s pair or of conserved quantities (in the number
equal to the number of the degrees of freedom, i.e. infinity for PDEs). There is no general
method to find a Lax’s pair. Thus, the integrability does not always yield the solvabil-
ity of an equation in practice. Several examples can be found in [25]. Consequently, the
priveleged method of studying the non-integrable and even integrable, but not solvable
equations is the numerical simulation.

The formation of the dynamical energy cascade in the integrable mKdV equation (1.2)
was studied numerically in our previous papers [6, 7]. However, it was done for narrow
initial perturbations in the Fourier space, since originally it was discovered for the NLS
equation which is valid only in this narrow band approximation [17]. On the other hand,
the KdV equation does not have limitations on the spectral band, which allows us to study
this equation more extensively with broader perturbations.

The present article is organized as follows. In Section 2 the mKdV equation is studied
subject to broader initial perturbations. Quintic and quartic higher order modifications of
the KdV equation are considered in Section 3. Finally, the main conclusions of the present
study are outlined in Section 4.

2. mKdV equation with broad spectrum initial

perturbation

In order to investigate the broader perturbations we considered the following set of
numerical experiments which generalize those presented in [6, 7]. Here again, in order to
solve numerically the mKdV equation on a periodic domain we use the classical Fourier-
type pseudo-spectral method [2, 28]. All the derivatives are computed in the Fourier space,
while all the nonlinear products are performed in the physical space (with the linear CPU-
time, i.e. O(N), where N is the number of collocation points necessarily equal to the
number of Fourier modes). Thanks to the FFT algorithm [9, 8, 10] the passage between
these two representations is done in the super-linear time O(N log(N)), which determines
the overall algorithm complexity (per time step) O(mN log(N)), m ∼ 1 being the number
of FFTs needed to evaluate the right-hand side. For the dealiasing we used the classical
2/3-rule [28] which was combined (when necessary) with the Fourier smoothing method
proposed in [15] for more delicate treatment of higher frequencies. The discretization in
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Base wave amplitude, a 0.08

Perturbation magnitude, δ 0.05

Base wavenumber, k0 1.884

Perturbation wavenumber, K0 0.00785

Ratio of wavelengths, k0/K0 240

Number of Fourier modes, N 16 384

Table 1. Various parameters used in simulations of the direct energy cascade
subject to a broad excitation.

time was done with the embedded adaptive 5 th order Cash–Karp Runge–Kutta scheme
[5] with the adaptive PI step size control [14]. We note that for the numerical simulation
of the gKdV equation one needs to set more stringent tolerances, because of the presence
of highly nonlinear products. The accuracy of dynamical computations was checked by
following, for example, the L2 norm of the solution u(x, t) which is one of the invariants
of the (g,m)KdV dynamics. In all the experiments this norm was conserved up to the 8 th

digit with smaller oscillations around the mean value.

2.1. Direct cascade

The numerical set-up used in this study is a direct generalization of the test case used
also earlier in [13]. We consider the following initial condition posed on a periodic domain
[−ℓ, ℓ] = [−π/k0, π/k0]:

u(x,0) ≡ u0(x) = a(1 + δ∑
j

sin(jK0x)) sin(k0x), (2.1)

where a is the base wave amplitude, δ is the perturbation magnitude and the wavenumbers
k0, K0 and j are chosen such that their ratio k0/(jK0) ∈ Z. The last constraint comes from
the periodicity conditions on the initial data. Moreover, the spectral gap between the base
wave k0 and its modulation K0 contains two orders of magnitude (see Table 1 for the values
of parameters). When we perturb the base wave according to (2.1) with a few modes we
have to keep in mind that the pertubation has to be different from the base wave at least
with one order of magnitude. Taking into account this constraint along with k0/(jK0) ∈ Z,
we obtain that for our numerical set-up j is roughly limited by 10.

The case j ≡ 1 corresponds to the computations already discussed in [13, 6, 7]. The values
of parameters are given in the Table 1. On Figure 1 we show the corresponding pertubed
initial conditions. The case Figure 1(a) corresponds to j = 1. The Fourier spectrum on the
bottom panel shows three points which correspond to the base wave k0 (the most energetic
mode) and two side bands k0 ±K0. On Figure 1(b) we depict the perturbation by k0 ±K0,
k0 ± 2K0, k0 ± 3K0 and k0 ± 4K0 modes (in total nine points on the bottom panel). Finally,
the last Figure 1(c) corresponds to j = 1,2,3,4,6,8 and 10 (counting 15 modes in total).

The evolution of three initial conditions from Figure 1 is simulated using the mKdV
equation (1.2). The numerical snapshots taken at the same moment of time t = 160.0 are
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Figure 1. The same initial condition subject to the different number of

perturbation modes.
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shown on Figure 2. It can be readily seen that the nonlinear stage of the MI develops
much faster if the initial perturbation contains more spectral modes. For instance, the
first initial condition with j = 1 unstable mode shows some signs of the MI. Namely, the
cascading modes are already present in the Fourier domain. However, their broadening is
not developed yet. It is translated to the physical space by the absence of any amplification
of the base wave, while on Figures 2(b,c) the MI is fully developed with amplication factors
up to two times.

In order to show that the MI can be fully developed even from a single perturbation mode
we present a numerical snapshot on Figure 3 corresponding to the initial condition depicted
at Figure 1(a) but taken at the moment of time t = 620.0. A comparable amplification is
achieved. However, it happens almost four times slower than for initial conditions shown
in Figures 1(b,c).

This series of numerical experiments shows that a broader initial perturbation not only
does not suppress the dynamical energy cascade, but also the position of all the cascading
modes is not affected. The cascade shape remains exponential and it was studied in
details (in the case j = 1) in [6, 7]. We performed the same battery of tests for numerous
pertubative modes (see Figure 1(b,c)) and with double initial amplitude (thus, double
initial wave steepness). In this study we show only one snapshot corresponding to seven
spectral modes and the initial amplitude a = 0.16 = 2×0.08. Despite the violent MI observed
in this picture (Figure 4, upper panel) the structure of the cascade still can be recognized,
even if some deviation from the exponential shape can be recognized.

2.2. Double cascade

As it was demonstrated in [7] for the mKdV equation (1.2), a shift in the base mode
in Fourier space towards higher frequencies can lead to the formation of a double energy
cascade. As in the case of the direct cascade, the experiments were performed with only
one unstable mode. In this study we enrich the perturbation with up to seven spectral
modes in order to see whether this double cascade can still be observed in such extreme
conditions.

The numerical parameters for this series of experiments are provided in Table 2. In
the previous work [7] it was notices that the increase in the spectral domain yields the
appearance of a second occurrence of the double energy cascade. Consequently, we studied
several sizes of the computational spectral domain. Here we report the results for N = 2×16
384 in order to demonstrate the formation of the double cascade along with its repetition
in two occurrences if the spectral domain can host them.

The corresponding results are shown on Figure 5 for the initial time t = 0 (panel (a)),
t = 5.0 (panel (b)) and the same time t = 160.0 (panel (c)) as in experiments reported
above.

As a conclusion, we observe that the double cascade appears almost immediately (see
Figure 5(b, lower panel) corresponding to t = 5.0) and it is accompanied by a fully developed
MI in the physical space (see Figure 5(b, upper panel)). The comparison of the present
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Figure 2. Evolution of the initial conditions shown on Figure 1 at the same
time instance t = 160.0.
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Figure 3. Development of the nonlinear stage of the MI from one unstable
mode. This snapshot is taken at t = 620.0.
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Figure 4. Development of the nonlinear stage of the MI from seven unstable
mode and with double initial amplitude a = 0.16. This snapshot is taken at
t = 160.0.
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Figure 5. Formation of a double energy cascade in the spectral domain due to

the perturbation with seven modes shown on panel (a).
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Base wave amplitude, a 0.08

Perturbation magnitude, δ 0.05

Base wavenumber, k0 35 × 1.884
Perturbation wavenumber, K0 0.00785

Ratio of wavelengths, k0/K0 240

Number of Fourier modes, N 2 × 16 384

Table 2. Various parameters used in simulations of the double energy cascade
subject to a broad excitation.

results with previous numerical results [7] shows that even the location of cascading modes
appears to be the same up to the graphical resolution.

3. Quartic and quintic gKdV equations

In this Section we will consider the following particular gKdV equations (1.3) where
we keep only quartic (α ≡ 0, β ≡ 0, δ > 0, γ ≡ 0) or quintic (α ≡ 0, β ≡ 0, δ ≡ 0, γ > 0)
nonlinearities:

quartic KdV(u) ≐ ut + uxxx + δu3ux = 0, (3.1)

quintic KdV(u) ≐ ut + uxxx + γu4ux = 0. (3.2)

Our main goals are:

● Investigate the existence of the direct and inverse energy cascades
● If they exist:

– to compare their formation time scales
– to compare their structure, i.e. the number of cascading modes, their location,

spacing, etc.

In order to meet these goals we will take the same numerical set-up as described above for
the direct and double cascades correspondingly (see Tables 1 & 2). The initial perturbations
contain one, four or seven modes as it is shown on Figure 1. Several dozens of computations
have been performed for each of two equations (3.1), (3.2). Below we will show the main
findings.

3.1. Quartic gKdV equation

3.1.1 Direct cascade

The selected results of our numerical simulations are shown on Figure 6 for the initial
condition consisting of seven perturbative modes and the base wave amplitude a = 0.08.
This choice of parameters comes from the fact that we would like to highlight the differences
with the mKdV equation (1.2). The upper pane of Figure 6(a) shows the time moment
t = 160.0, while Figure 6(b) reports the system state at t = 3600.0. We can see that
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during the system evolution new cascading modes appear in the Fourier spectrum tail (high
frequencies). The structure and location of peaks remain the same, while their magnitudes
can slightly grow with time.

However, there exist an important qualitative difference with the mKdV case reported
in the previous Section. Namely, even at t = 160.0 (with all other equal parameters and
the initial perturbation) the physical space of the mKdV equation already demonstrates
the nonlinear stage of the MI development (see Figures 2(b,c)). On the other hand, the
quartic gKdV even for t = 3600.0 (more than twenty times longer!) does not show any
signs of the amplification in the physical space (see Figure 6).

In order to show that the nonlinear MI stage does not occur in the quartic gKdV equation,
we performed an additional series of the experiments with higher base wave amplitude. On
Figure 9(a) we show the physical and Fourier spaces for the case of double initial amplitude
a = 2 × 0.08 = 0.16, while on the lower panel Figure 9(b) we show simultaneously Fourier
spectra for the simple and double amplitudes at t = 3600.0. As in previous cases, one can
see that there is no significant solution amplification in the physical space. Concerning
the Fourier space, the superposition shown on Figure 9(b) clearly shows the coincidence
of the cascading modes locations, while new high frequency cascading modes appear. We
note that the Fourier spectrum shown with red dots contains roughly speaking four times
more energy (since the initial amplitude is doubled). However, this extra energy is mainly
redistributed towards the appearence of new peaks in the tail of the Fourier spectrum,
by conserving the energy of several first cascading modes at the long waves end of the
spectrum.

3.1.2 Double cascade

Numerical experiments to study the double energy cascade formation in the quartic
gKdV equation were performed similarly to the study of the mKdV equation reported in
the previous Section. The main conclusions are the same as for the direct cascade. Namely,
in the physical space we do not witness any significant amplification of the base wave.

On the other hand, in the Fourier space several entities of the double cascade are formed.
The very interesting fact is that the choice of the spectral domain influences the shape of
the double cascade for the quartic gKdV equation. In each spectral domain the total
number of cascading modes remains invariant (in the particular case under consideration
this number is equal to 19 modes). However, the energy distribution among these modes
is different and actually depends on the size of the spectral domain. As we observed in
[7], the spectral domain consisting of N = 2 × 16384 Fourier modes can host one entity
of the double cascade, while doubling the size of the spectral domain yields logically the
appearance of two entities of the cascade (with the total number of cascading modes being
14 in that computation). In order to illustrate this fact for the quartic gKdV equation
as well, on Figure 8 we show the formed double cascade for different sizes of the spectral
domain.

All pictures are taken at t = 3600.0, even though the location of the modes and the
distribution of energy among them is already clearly visible at t = 60.0. Longer simulations
are necessary in order to show that we do not observe any nonlinear development of the
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Figure 6. Direct cascade in the quartic KdV equation (3.1) with seven

perturbative modes for the base wave amplitude a = 0.08.

MI in the physical space on the longer horizon. The effect of the energy redistribution in
the spectral domain deserves a separate study. It will be performed elsewhere.
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Fourier spectra of the gKdV equation at t = 3600.000

 

 

a = 0.08

a = 0.16

(b) t = 3600.0

Figure 7. Upper panel (a): Direct cascade in the quartic KdV equation (3.1)

with seven perturbative modes for the base wave amplitude a = 0.16 Lower panel

(b): Comparison of Fourier spectra obtained for the quartic KdV equation (3.1)
with seven perturbation modes at t = 3600.0. Base wave amplitude is a = 0.08

(black dots) and a = 0.16 (red dots).
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Figure 8. Double energy cascade in the quartic gKdV equation with base wave
amplitude a = 0.08 at t = 3600.0. The spectral domain is increasing from up to
down.
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3.2. Quintic gKdV equation

The numerical set-up in this Section is precisely the same as above. However, here we
focus on the quintic gKdV equation (3.2) with parameter µ = 6.0.

The time evolution under the quintic gKdV equation dynamics (3.2) is totally differ-
ent from what we observed for the quartic gKdV (3.1). Namely, in the quintic case a
well-developed MI can be observed both in Fourier and physical spaces with physical am-
plifications of the base wave amplitude going up to two times and higher.

On the other hand, these numerical results are qualitatively the same as for the mKdV
equation (1.2) reported above and in [6, 7]. Namely, the direct and double cascades are
accompanied by the nonlinear stage of the MI in the physical space. It can be qualitatively
observed on Figure 9(b). An interesting difference with the mKdV consists in the appear-
ance of the instability treshold in the quintic gKdV equation (3.2). Below this supposed
instability treshold the quintic gKdV behaves similarly to the quartic gKdV equation in the
physical space. It is manifested by the long time dynamics of the modulated solution in the
physical space without the development of the nonlinear stage of the MI (see Figure 9(a)).
In contrast, when we take the doubled initial base wave amplitude a = 2 × 0.08 = 0.16,
the MI in the physical space is well developed already at t = 1200.0 as it can be seen on
Figure 9(b).

Concerning the Fourier space, the number of cascading modes, the spacing between them
and the shape of the energy spectrum is preserved regardless the base wave amplitude
(below or above the instability treshold, see Figure 9). In contrast to the double cascade,
the increase in the spectral domain does not lead to the redistribution of the energy among
cascading modes. We do not provide the corresponding pictures here. They can be obtained
from the authors after a simple request.

For the double cascade in the quintic gKdV we observe the same entities as in the mKdV
equation (see Figure 5 and also [7]). However, what is new is the presence of the instability
threshold as it was explained for the direct cascade. In order to see the difference the
reader can compare Figures 10(a) and 10(b).

4. Discussion

In the present study we investigated several KdV-type equations involving higher order
nonlinearities. The main focus was on the formation and properties of the dynamical
energy cascade in the Fourier space. The second goal was to describe the cases when the
formation of this cascade is accompanied by the nonlinear stage of the MI development
in the physical space. This question is of capital importance since the nonlinear stage
implies important wave amplifications which are put forward nowadays as one of the main
physical mechanisms of the freak wave formation [23]. Since, the total number of numerical
experiments performed in this study exceeded a few hundreds, we included only the most
typical ones.

● First of all, we extended the study of the mKdV equation presented in [6, 7] for the
case of a broader initial perturbation of the base wave. It was found that previous
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Figure 9. Direct cascade formation for the quintic gKdV equation (3.2) with

µ = 6.0 and seven pertubative modes (see Figure 1(c)). In the upper panel (a) the
snapshot is taken at t = 3600.0 and in the lower panel (b) at t = 1200.0.
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Figure 10. Double cascade formation for the quintic gKdV equation (3.2) with

µ = 6.0 and seven pertubative modes (see Figure 5(a)). In the upper panel (a) the
snapshot is taken at t = 560.0 and in the lower panel (b) at t = 35.0.
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Property/Model KdV (1.1) mKdV (1.2) quartic gKdV (3.1) quintic gKdV (3.2)
Nonlinear term uux u2ux u3ux u4ux

MI – + – (?) +
Direct cascade – + + +
Inverse cascade – – – –
Double cascade – + + +
Energy redistrib. – + + +
MI nonlin. stage – + – +
(amplif. > 2a)

Treshold – – – +

Table 3. The main conclusions of this study summarized in this table. The sign
’–’ designates the absence of the corresponding property, while ’+’ means its

presence.

findings can be transposed to this case as well: formation of the direct and double
cascades, their structure is preserved and appears to be quite stable. However,
in the broad perturbation case all nonlinear processes are accelerated (i.e. they
develop in shorter times).
● Not only the general structure of the energy cascade is preserved, but also the

number of the cascading modes (for the fixed spectral domain and the base wave
amplitude) and their location in the Fourier space.
● The main difference between the direct and double cascades consists in the fact

that the change of the size of the spectral domain does not induce the energy
redistribution in the direct cascade, while it changes completely the number of
entities, and thus the energy distribution, in the double cascade(s).
● In all the mKdV cases, the formation of dynamical cascades is accompanied by the

nonlinear stage of the MI development and the substantial amplification of the base
wave in the physical space.
● In the case of the quartic gKdV equation, all the results about the dynamical cas-

cades formation in the spectral domain remain the same. However, no amplification
of the base wave amplitude was observed in the physical space.
● The quintic gKdV case is mostly similar to the mKdV equation (with positive non-

linearity) except for the presence of the amplitude threshold in the physical space,
below which the amplification does not occur on the time horizons investigated
in this study. However, if the amplitude is taken above this threshold, the base
wave amplification occurs on longer time scales (virtually three times slower than
in mKdV for the parameters considered in this study).

The main findings are summarized in a compact form in Table 3.
Strictly speaking the theory of the dynamical energy cascade [18, 6] as well as the model

equations considered above are valid at best only for moderate nonlinearities ε ∼ O(10−1).
However, one can ask a legitimate question: what happens if we push the nonlinearity in
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the wave system to the finite size ∼ O(1) as in the strong turbulence? For this purpose
we performed an additional experiment for the quartic KdV equation (3.1) with the base
wave amplitude a = 10 × 0.08 = 0.8. Together with seven perturbative modes the initial
condition reaches ε ∼ O(1) announced above. Two numerical snapshots are shown on
Figure 11. First of all, one can notice that there is no visible difference between t = 20.0
depicted on the upper panel and t = 100.0 shown below. It means that the fully developed
quasi-stationary stage is reached on times T ∼ O(1). However, most surprisingly even for
such a strong nonlinearity one can still recognise the presence of the direct dynamic energy
cascade, despite the fact that we step out from all reasonnable ranges of model and theory
applicability.
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