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Abstract. The work is a generalization to [40] in which we study the per-
sistence of lower dimensional tori of general type in Hamiltonian systems of

general normal forms. By introducing a modified linear KAM iterative scheme
to deal with small divisors, we shall prove a persistence result, under a Mel-
nikov type of non-resonance condition, which particularly allows multiple and
degenerate normal frequencies of the unperturbed lower dimensional tori.

1. Introduction

The present work concerns the study of the persistence of lower dimensional tori
in perturbative, partially integrable Hamiltonian systems of the following normal
form:

(1.1) H = e(ω) + 〈ω, y〉 +
1

2
〈
(

y

z

)

, M(ω)

(

y

z

)

〉 + h(y, z, ω) + P (x, y, z, ω),

where (x, y, z) ∈ T n × Rn × R2m, ω is a parameter in a bounded closed region
O ⊂ Rn, M(ω) is a (n + 2m) × (n + 2m) real symmetric for each ω ∈ O, h =
O(|(y, z)|3), P is the perturbation whose smallness will be specified later, and both
h and P are real analytic in (x, y, z) for (x, y, z) lying in a complex neighborhood
D(r, s) = {(x, y, z) : |Im x| < r, |y| < s, |z| < s} of T n × {0} × {0}. In the above,
all ω dependences are of class C l0 for some l0 ≥ 4m2, and the derivatives of h and
P up to order l0 are uniformly bounded on their domain of definitions.

With the symplectic form
n

∑

i=1

dxi ∧ dyi +

m
∑

j=1

dzj ∧ dzm+j ,

the equation of motion associated to (1.1) reads






















ẋ = ω + M11y + M12z +
∂h

∂y
+

∂P

∂y
,

ẏ = −∂P

∂x
,

ż = JM22z + JM21y + J
∂h

∂z
+ J

∂P

∂z
,
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where M11, M12, M21, M22 denote the n × n, n × 2m, 2m × n, 2m × 2m blocks of
M = M(ω) respectively, and J is the standard 2m×2m symplectic matrix. Clearly,
as ω varies in O, the unperturbed system associated to (1.1) admits a family of
invariant n-tori Tω = T n×{0}×{0}which are parameterized by the toral frequency
ω ∈ O.

Hamiltonian (1.1) can be viewed as a canonical form in studying the persistence
of lower dimensional tori in Hamiltonian systems. Under suitable symplectic coor-
dinates, typical Hamiltonian systems in the vicinity of a family of lower dimensional
tori (e.g., those near an equilibrium point) may be reduced to a system of form (1.1)
in which there is a natural dependence of M on the tori, or a natural coupling of
M with the toral frequencies ω (see Section 6 for more details).

Along the line of the classical KAM theorem (Kolmogorov [17], Arnold [1], Moser
[28]), the persistence problem of lower dimensional tori for (1.1) is to find appropri-
ate non-degenerate and non-resonance conditions on M and ω, respectively, so that
the majority (with respect to the Lebesgue measure on O) of these tori, associated
to ω ∈ O, will persist after small perturbations.

Such persistence problem has been studied in various normally non-degenerate
cases (i.e. M22 is non-singular over O). A persistence theorem of elliptic tori was
formulated by Melnikov ([25, 26]) for Hamiltonian systems of the form (1.1) in
which M11(ω), M12(ω), M21(ω) ≡ 0 and M22(ω) is a diagonal matrix satisfying the
so-called Melnikov’s second non-resonance condition, i.e., the set

(1.2) {ω ∈ O : 〈k, ω〉 + 〈l, Λ〉 6= 0, for all (k, l) ∈ (Zn × Z2m) \ {0}, |l| ≤ 2}

admits full Lebesgue measure relative to O, where Λ = Λ(ω) is the column vector
formed by the eigenvalues (diagonal) of M22. The Melnikov’s theorem was first
proved by Eliasson in [11]. Refinements of the result with generalizations to infinite
dimension were made by Kuksin ([19, 20]) and Pöschel ([32, 33]). We note that,
with the Melnikov’s second non-resonance condition, all normal frequencies have to
be simple. Recently, Bourgain ([2, 3]) obtained a sharp persistence result (in both
finite and infinite dimensions) of elliptic tori in the Melnikov’s setting only under
the Melnikov’s first non-resonance condition (i.e., |l| ≤ 1 in (1.2)), which therefore
allows the multiplicity of normal frequencies.

Following a pioneer work of Moser ([27]), there were also studies on the per-
sistence of normally non-degenerate, lower dimensional tori of general types. For
example, Broer, Huitema and Takens ([5]), Broer, Huitema and Sevryuk ([6, 7]),
Sevryuk ([34]) studied cases that M11(ω), M12(ω), M21(ω) ≡ 0 and all eigenvalues
of JM22(ω) are simple (hence JM22(ω) can be smoothly and symplectically di-
agonalized) and satisfy a Melnikov’s second non-resonance condition. Jorba and
Villanueva ([16]) considered a case with generic, non-degenerate perturbation that,
M12(ω), M21(ω) ≡ 0, M11(ω) is non-singular over O, and JM22(ω) is diagonal
with distinct eigenvalues ±λi(ω), i = 1, 2, · · · , m, satisfying a similar Melnikov sec-
ond non-resonance condition. Recently, You ([40]) considered the same persistence
problem for (1.1) with M11(ω), M12(ω), M21(ω) ≡ 0, but under the following weaker
Melnikov second non-resonance condition on the eigenvalues λi, i = 1, 2, · · · , 2m,
of JM22:

(1.3)
√
−1〈k, ω〉 − λi(ω) − λj(ω) 6= 0, for all k ∈ Zn \ {0}, 1 ≤ i, j ≤ 2m,

which in particular allows the multiplicity of these eigenvalues.
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The persistence problem for hyperbolic tori was first considered in the work of
Moser ([27]) and later studied by Graff ([12]) and Zehnder ([41]) for a fixed Dio-
phantine toral frequency. Hyperbolic case with degeneracy and varying frequencies
is recently considered by the authors in [22].

The aim of the present study is to generalize the result of You ([40]) to allow
normal degeneracy (i.e., the singularity of M22(ω)) of the unperturbed lower dimen-
sional tori. We shall show under the same weaker Melnikov second non-resonance
condition (1.3) that the majority of unperturbed lower dimensional tori in (1.1) will
persist if either M22(ω) or M(ω) is everywhere non-singular. In the latter case, the
normal degeneracy of the lower dimensional tori can be made to an extreme. For
example, one can simply take M22 ≡ 0 if M(ω) is everywhere non-singular.

The proof of our results uses the classical KAM procedure. However, to be able to
handle a general normal form like (1.1) especially when normal degeneracy occurs,
a modified KAM linear iterative scheme will be introduced in order to construct
the desired symplectic transformations. An essential point of this scheme is to treat
the tangential variable y and the normal variable z in a same scale rather than the
traditional way of treating z as a much smaller variable than y. Having done so,
the present problem is in spirit closely related to the KAM problem in Hamiltonian
systems with more action than angle variables (we refer the readers to [24, 30] and
references therein for KAM theory in Hamiltonian or Poisson-Hamilton systems
with a distinct number of action and angle variables).

The persistence problem of lower dimensional tori can also be considered in
the resonance zone of a nearly integrable Hamiltonian system in which the lower
dimensional tori are natrually split from a family of unperturbed, full dimensional,
resonant tori. However, the persistence problem of this nature depends on the
Poincaré non-degenerate condition rather than conditions of Melnikov type. In this
case the normal form near the lower dimensional tori, derived from splitting of the
resonance, is similar to (1.1) but with M being in the same scale as the perturbation
(see [9, 21, 23, 37] for details).

The paper is organized as follows. In Section 2, we describe our main result
followed by some comments and remarks. We use the modified KAM linear scheme
in Section 3 to construct the symplectic transformation for one KAM cycle and give
estimates to the transformation and the transformed Hamiltonian. In Section 4,
an iteration lemma will be proved to ensure the validity of all KAM steps. We
shall complete the proof of our result in Section 5 by showing the convergence of
iterative sequences and estimating the measure of the limiting frequency set. Some
applications of our results will be discussed in Section 6 for quasi-periodic motions of
Hamiltonian systems near equilibria, in the spirit of the Lyapunov center theorem.

Unless specified otherwise, we shall use the same symbol | · | to denote an equiv-
alent vector norm and its induced matrix norm, absolute value of functions, and
measure of sets etc., and use | · |D to denote the sup-norm of functions on a domain
D. Also, for any two complex column vectors ξ, ζ of same dimension, 〈ξ, ζ〉 always
stands for ξ>ζ, i.e., the transpose of ξ times ζ. For the sake of briefness, we shall
not specify smoothness orders for functions having obvious orders of smoothness
indicated by their derivatives taken.

We would like to thank the referee for valuable comments and suggestions which
led to a significant improvement of the paper. This work was partially done when
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the first author was visiting the Center of Dynamical Systems and Nonlinear Stud-
ies, Georgia Institute of Technology, and the second author was visiting the National
University of Singapore, in 1998. We would also like to thank both Institutions for
support.

2. Statement of Main Results

Consider (1.1) and let λ1(ω), · · · , λ2m(ω) be eigenvalues of JM22(ω). We assume
the weak form of the Melnikov second non-resonance condition (1.3), i.e.,

NR) The set

{ω ∈ O :
√
−1〈k, ω〉 − λi(ω) − λj(ω) 6= 0, for all k ∈ Zn \ {0}, 1 ≤ i, j ≤ 2m}

admits full Lebesgue measure relative to O.

For γ > 0, let Ôγ denote the Diophantine set

{ω ∈ O : |〈k, ω〉| >
γ

|k|τ , for all k ∈ Zn \ {0}},

where |k| =

n
∑

i=1

|ki| and τ > n − 1 is fixed. Our main results are stated as follows.

Theorem 1. Suppose NR) and that either M(ω) or M22(ω) is non-singular on O.

For given r, s > 0, a positive integer l0 and σ0 ∈ (0, 1), if there is a sufficient small

µ = µ(r, s, l0, σ0) > 0 such that

(2.1) |∂l
ω∂i

x∂
j

(y,z)P | ≤ γ3(1+σ0)aµ

for all (x, y, z) ∈ D(r, s), ω ∈ O, and (l, i, j) ∈ Zn
+×Zn

+×Zn+2m
+ with |l|+ |i|+ |j| ≤

l0, where a = 4m2(l0 + 1), then there exist Cantor-like sets Oγ , with |O \ Oγ | → 0
as γ → 0, on which the following holds.

1) If M22(ω) is non-singular on O, then there exists a C l0−1 Whitney smooth

family of real analytic, symplectic transformations

Ψω : D(
r

2
,
s

2
) → D(r, s), ω ∈ Oγ ,

which is C l0 uniformly close to the identity, such that

(2.2) H◦Ψω = e∗(ω)+〈Ω∗(ω), y〉+1

2
〈
(

y

z

)

, M∗(ω)

(

y

z

)

〉+h∗(y, z, ω)+P∗(x, y, z, ω),

where e∗, Ω∗, M∗ are Cl0−1 Whitney smooth with |∂l
ωe∗− ∂l

ωe|Oγ
, |∂l

ω(Ω∗ −
id)|Oγ

, |∂l
ωM∗−∂l

ωM |Oγ
= O(γaµ

1
4 ), |l| ≤ l0−1, h∗(y, z, ω) = O(|(y, z)|3),

h∗ and P∗ are real analytic in their associated phase variables and C l0−1

Whitney smooth in the parameter ω, and

∂j
y∂k

z P∗|(y,z)=(0,0) = 0

for all x ∈ T n, ω ∈ Oγ , j ∈ Zn
+, k ∈ Z2m

+ with |j| + |k| ≤ 2. Moreover,

Ω∗(Oγ) ⊂ Ôγ .

Thus, for each ω ∈ Oγ , the unperturbed torus Tω persists and gives rise

to a slightly deformed, analytic, Floquet, quasi-periodic, invariant torus of

the perturbed system with the Diophantine toral frequency Ω∗(ω). These

perturbed tori also form a C l0−1 Whitney smooth family.
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2) If M(ω) is non-singular on O, then 1) holds with Ω∗ = id, i.e., for each ω ∈
Oγ ⊂ Ôγ, the perturbed torus also preserves the unperturbed (Diophantine)
toral frequency ω.

Theorem 2. Suppose that the Hamiltonian (1.1) is also real analytic in parameter

ω. Then the conclusions of Theorem 1 hold for a = 4m2 and any l0 > 1, provided

that the condition (2.1) is replaced by

(2.3) |P | ≤ γ3(1+σ0)aµ, (x, y, z) ∈ D(r, s), ω ∈ O.

Remark:

1) Part 1) of Theorem 1 becomes the result of You ([40]) when M11, M12, M21,
h ≡ 0. There are certainly cases in application that some of these terms are
non-zero and are not able to be eliminated via a smooth family of canonical
transformations or via rescaling (see Section 6). In the case that M22 is
everywhere non-singular, our results hold for arbitrary smooth matrices
M11, M12 = M>

21 and apply to non-degenerate lower invariant tori of all
types. Similar to [40], the results also allow multiple eigenvalues of JM22

(or M22), for example, when k 6= 0, i can be equal to j in NR).
2) Part 2) of Theorem 1 is of a particular interest in the presence of normal

degeneracy. As a simple example, we let M(ω) be any smooth, non-singular,
real symmetric, (n + 2m) × (n + 2m) matrix on O such that M22(ω) ≡ 0
(in particular, all normal eigenvalues equal to 0), say,

M =















0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...
0 1 · · · 0 0
1 0 · · · 0 0















.

Then the non-resonance condition NR) holds automatically, which therefore
assures the persistence of n-tori when the perturbation is sufficiently small.

With respect to normal degeneracy, an essential point of the result in
part 2) of Theorem 1 is that possible normal degeneracy can be compen-
sated by the overall non-degeneracy of M(ω). Unless there are further
non-degenerate constraints in the perturbation, such non-degeneracy is gen-
erally needed in the presence of normal degeneracy to eliminate first order
resonant terms in the Hamiltonian, for otherwise, there would not be any
persistent n-torus. For example, in (1.1) if M12 = M>

21 ≡ 0, M22 ≡ 0,
h ≡ 0, P = ε〈ξ, z〉, where ξ is a non-zero 2m vector, then for any matrix
M11(ω), no invariant n-torus can exist when ε 6= 0.

3) Like the classical KAM case, Theorem 1 concludes that perturbed tori are
actually Floquet (i.e., the quadratic terms in their normal forms (2.2) are
independent of angle variables) - a useful structure characterizing the nor-
mal spectra of the perturbed tori which may be used in studying problems
such as bifurcation from tori, stability and integrability etc. (see [7]).

The non-resonance condition NR) seems to be a best possible condition
in general for the persistence of Floquet lower dimensional tori in Hamilto-
nians of form (1.1).
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A parallel first non-resonance condition of Melnikov-Bourgain type with
respect to the general setting (1.1) can be described as follows: on a fre-
quency set of full measure,

(2.4)
√
−1〈k, ω〉 − λi(ω) 6= 0, for all k ∈ Zn \ {0}, 1 ≤ i ≤ 2m,

where λi’s are as in NR). Thus, the condition NR), when restricted to the
elliptic case, is weaker than the Melnikov’s second condition but is stronger
than the first condition.

At this point, it is not clear to us whether it is possible to generalize the
Bourgain’s theorem and our results to obtain a persistence result for gen-
eral type of non-degenerate, lower dimensional tori in Hamiltonian system
of general form (1.1), by only imposing the first non-resonance condition
(2.4). Even if it does, we suspect that the perturbed tori under the first
non-resonance condition (2.4) would in general be non-Floquet. This is
because, as far as KAM type of symplectic transformations are concerned,
the first non-resonance condition (2.4) is not sufficient for the elimination
of the angular dependence among quadratic order perturbative terms of a
Hamiltonian system.

Some exciting developments of the quasi-periodic Floquet theory are
made recently (e.g., [10, 13, 15, 18, 29, 38]) concerning the reducibility of
certain linear systems with quasi-periodic coefficients including some cases
of quasi-periodic linear Hamiltonian systems. With these developments,
one might obtain the Floquet tori alternatively by first obtaining the in-
variant tori then reducing their normal parts to Floquet forms. However,
since the quasi-periodic Floquet theory gives no particular information on
the reducibility near a given invariant torus, we feel that the weak second
Melnikov condition NR) is still needed for the reducibility near all invari-
ant tori corresponding to the set Oγ . Besides, the Hamiltonian system near
each of these perturbed tori will not be quasi-periodically forced in general.

4) Part 2) of Theorem 1 also gives a general result on the preservations of toral
frequencies, which has been known mainly in the classical KAM case and
hyperbolic cases (see [12, 41]). However, it does not mean the persistence
of any fixed lower dimensional torus satisfying the Melnikov condition NR).

Nevertheless, unless there are further non-degenerate constraints in the
perturbation, the non-degeneracy of M assumed in part 2) of Theorem 1 is
a sharp condition for the preservation of toral frequencies in Hamiltonian
systems of form (1.1) in the sense stated in the theorem. Indeed consider
(1.1) and let M = M(ω) be any (n + 2m) × (n + 2m) real symmetric
matrix depending smoothly on ω and satisfying NR). Take h ≡ 0, P =
ε(〈y0, y〉 + 〈z0, z〉), where ε 6= 0 is sufficiently small and y0 = y0(ω) ∈
Rn, z0 = z0(ω) ∈ R2m. Then the equation of motions associated to the
Hamiltonian becomes







ẋ = ω + M11y + M12z + εy0,

ẏ = 0,

ż = JM22z + JM21y + εJz0.

Suppose that the Hamiltonian admits a family of invariant n-tori Tε,ω which
preserves the toral frequencies ω of the corresponding unperturbed tori. Let
(x(t), y(t), z(t))> be an orbit on a perturbed torus Tε,ω. Then y is a constant
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and z must be a quasi-periodic function with basic frequencies chosen from
components of ω. Since NR) implies the condition (2.4) (see Lemma 5.1 in
Section 5), i.e, none of the eigenvalues of JM22 can rationally depend on
the basic frequencies, it is easy to see that z must be a constant solution of
the last equation above, i.e.,

(2.5) M22z + M21y + εz0 = 0.

Substituting the constant solutions y, z into the x-equation above, we see
that the frequencies of x will be drifted unless

(2.6) M11y + M12z + εy0 = 0.

Now, if M is singular on a positive measure set Ô ⊂ O, then by choosing
(y0, z0)

> as a basis vector of kerM(ω) (which varies smoothly in ω) we see

that the system {(2.5), (2.6)} admits no solutions on Ô for any ε, which
leads to a contradiction. In other word, we have shown that, given any
(n + 2m) × (n + 2m) real symmetric matrix M depending smoothly on ω

and satisfying NR), if M is singular on a positive measure set, then there
exists an arbitrary small perturbation which preserves no toral frequency
lying in a positive measure set.

3. KAM Step

We shall only prove Theorem 1 in the sequel. The proof of Theorem 2 can be
carried out by similar arguments along with the standard Cauchy estimate.

Due to the presence of small divisors, one cannot remove all x-dependent terms
in a finite number of steps. An essential idea of the KAM theory is to construct a
symplectic transformation, consisting of infinitely many successive steps (referred to
as KAM steps) of iterations, so that the x-dependent terms are pushed into higher
order perturbations after each step. As all KAM steps can be carried out induc-
tively, below, we only show detailed constructions of the symplectic transformation
for one KAM cycle (i.e., from one KAM step to the successive one).

Initially, we set N0 = N , e0 = e, Ω0 = id, M0 = M , M0
22 = M22, h0 = h, P0 = P ,

O0 = O, r0 = r, β0 = s, s0 = γ(1+σ0)aµ
1
4 , µ0 = γσ0µ

1
2 , γ0 = γ. Without loss of

generality, we assume that 0 < r0, β0, µ0, γ0 ≤ 1, s0 ≤ β0 and write µ∗ = µ. For
j ∈ Zn+2m

+ , define

aj = a(1 − sgn(|j|)sgn(|j| − 1)sgn(|j| − 2)) =

{

a, |j| = 0, 1, 2,

0, |j| ≥ 3,

κj = 1 − sgn(|j| − 1) =







2, |j| = 0,

1, |j| = 1,

0, |j| ≥ 2,

dj = 1 − λ0sgn(|j|)sgn(|j| − 1)sgn(|j| − 2) =

{

1, |j| = 0, 1, 2,

1 − λ0, |j| ≥ 3,

where λ0 ∈ (0, 1) is fixed. Then by (2.1),

|∂l
ω∂i

x∂
j

(y,z)P0|D(r0,s0)×O0
≤ γ

aj

0 s
κj

0 µ
dj

0 , |l| + |i| + |j| ≤ l0.
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Suppose that after a νth KAM step, we arrive at a real analytic, parameter-
dependent Hamiltonian

H = Hν = N + P,(3.1)

N = Nν = e + 〈Ω(ω), y〉 +
1

2
〈
(

y

z

)

, M(ω)

(

y

z

)

〉 + h(y, z, ω),

where (x, y, z) ∈ D = Dν = D(r, s), r = rν ≤ r0, s = sν ≤ s0, ω ∈ O = Oν ⊂ O0,
e(ω) = eν(ω), Ω(ω) = Ων(ω) are smooth on O, M(ω) = M ν(ω) is real symmetric
and smooth on O, h = hν(y, z, ω) = O(|(y, z)|3), h and P = Pν(x, y, z, ω) are real
analytic in (y, z) ∈ D = D(s) = {(y, z) : |y| < s, |z| < s} and in (x, y, z) ∈ D

respectively and smooth in ω ∈ O, and moreover,

(3.2) |∂l
ω∂i

x∂
j

(y,z)P |D×O ≤ γaj sκj µdj , |l| + |i| + |j| ≤ l0,

for some µ = µν > 0, γ = γν > 0.
We wish to construct a symplectic transformation Φ+ = Φν+1, which, in smaller

frequency and phase domains, should carry the above Hamiltonian into the next
KAM cycle. More precisely, the transformed Hamiltonian should be of a form
similar to (3.1) with a smaller perturbation term satisfying an inequality similar
to (3.2). Thereafter, quantities (domains, normal form, perturbation, etc.) in the
next KAM cycle will be simply indexed by + (=ν +1), and we shall not specify the
dependence of M, M+, P, P+ etc. on their arguments. Also, all constants c1 − c5

below are positive and independent of the iteration process. For simplicity, we
also use c to denote any intermediate positive constant which is independent of the
iteration process.

Let b, σ, d, δ be positive constants such that

δ = 1 − d, σ − (b + σ)(4b + 5σ) > 0, δ(1 + b + σ) > 1,

σ0 −
σ

b + σ
(1 + σ0)a > 0, (1 + σ0)(1 + b + σ)(1 − (b + 2σ)) > 1.

Define

r+ = δr + d(1 − δ2

2
)r0,

s+ = s1+b+σ ,

β+ =
β

2
+

β0

4
,

γ+ =
γ

2
+

γ0

4
,

K+ = ([log
1

s
] + 1)3,

D+ = D(β+),

D+ = D(r+, s+),

D̃+ = D(r+ +
5

8
(r − r+), β+),

Di = D(r+ +
i − 1

8
(r − r+), is+), i = 1, 2, · · · , 8,
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D(λ) = D(r+ +
7

8
(r − r+), λ),

Γ(λ) = e
r0(1−δ)δ2

16

∑

0<|k|≤K+

|k|χe−
λ
8 ,

where λ > 0, χ = 2(l0 + 1)(2m2 + 1)τ , and τ > n − 1 is fixed.

3.1. Outline of the construction. The transformation Φ+ will be constructed
in two steps. The first step is to average out terms in P up to quadratic order.
First order resonant terms will then be removed in the second step by a translation
of coordinate.

We first consider the averaging process.
Let R be the truncation of the Taylor-Fourier series of P up to quadratic order,

i.e.,

R =
∑

|k|≤K+,|ı|+||<3

pkıy
ıze

√
−1〈k,x〉

=
∑

|k|≤K+

(Pk00 + 〈Pk10, y〉 + 〈Pk01, z〉 + 〈y, Pk20y〉

+〈z, Pk11y〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉,(3.3)

where K+ is the truncation order in x to be specified later.
We shall seek for an averaging transformation as the time 1-map φ1

F of the flow
φt

F generated by a Hamiltonian F of the form

F =
∑

0<|k|≤K+

(Fk00 + 〈Fk10, y〉 + 〈Fk01, z〉(3.4)

+〈y, Fk20y〉 + 〈z, Fk11y〉 + 〈z, Fk02z〉)e
√
−1〈k,x〉,

where Fkij , 0 ≤ i + j ≤ 2, are ω-dependent vectors or matrices of obvious dimen-
sions.

We wish to determine F through the following linear homological equation:

(3.5) {N, F}+ R − [R] − Q = 0,

where [R] =

∫

T n

R(x, ·)dx is the average of R with respect to x ∈ T n and Q consists

of all terms in {N, F} of size O(s3µ) including those of order O(yız) for |ı|+|| ≥ 3.
We note that, by taking the term Q into account, (3.5) modifies the usual linear
homological equation adopted in standard KAM linear schemes.

At the moment, let us suppose that (3.5) is solvable on a suitable frequency
domain. Then

H ◦ φ1
F = (N + R) ◦ φ1

F + (P − R) ◦ φ1
F

= N + [R] + ({N, F} + R − [R] − Q) +

∫ 1

0

(1 − t){{N, F}, F} ◦ φt
F dt

+

∫ 1

0

{R, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q

= N + [R] +

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q,
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where

(3.6) Rt = (1 − t){N, F} + R = (1 − t)(Q + [R] − R) + R.

Therefore, if we let

N̄+ = N + [R],

P̄+ =

∫ 1

0

{Rt, F} ◦ φt
F dt + (P − R) ◦ φ1

F + Q,(3.7)

then

H ◦ φ1
F = N̄+ + P̄+.

This completes the averaging process.
Write M into blocks:

M =

(

M11 M12

M21 M22

)

,

where M11, M12, M21, M22 are n×n, n× 2m, 2m×n, 2m× 2m blocks of M respec-
tively.

As for the second step, we need to eliminate the first order resonant terms in
[R]. Assume the following condition:

H1) If M0
22 (M0 resp.) is non-singular on O0, then so is M22 (M resp.), and

moreover,

|M−1
22 |O ≤ 2|(M0

22)
−1|O0 (|M−1|O ≤ 2|(M0)−1|O0 resp.).

Let (y0, z0) satisfy

(3.8) (M(ω) + ∂2
(y,z)h(y0, z0, ω))

(

y0

z0

)

+ ∂(y,z)h(y0, z0, ω) = −
(

P010

P001

)

if M is non-singular on O, or

y0 = 0, (diag(O, M22(ω)) + ∂2
(y,z)h(y0, z0, ω))

(

y0

z0

)

(3.9)

+ ∂(y,z)h(y0, z0, ω) = −
(

0

P001

)

if M22 is non-singular on O. By the implicit function theorem, (y0, z0) = (y0(ω),
z0(ω)) exist and depend smoothly on ω.

Let

e+ = e + P000 + h(y0, z0, ω) + 〈Ω+(ω), y0〉 + 〈P001, z0〉

+
1

2
〈
(

y0

z0

)

,

(

P020 P011

P>
011 P002

)(

y0

z0

)

〉,(3.10)

Ω+ = Ω + P ∗,(3.11)

M+ = M + 2

(

P020 P011

P>
011 P002

)

,

h+ = h(y + y0, z + z0, ω) − h(y0, z0, ω) − 〈∂(y,z)h(y0, z0, ω),

(

y

z

)

〉

−1

2
〈
(

y

z

)

, ∂2
(y,z)h(y0, z0, ω)

(

y

z

)

〉,(3.12)
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where

P ∗ =

{

P010, if M22 is non-singular on O,

0, if M is non-singular on O.

We consider the translation

φ : x → x,

(

y

z

)

→
(

y

z

)

+

(

y0

z0

)

.

Then Φ+ = φ1
F ◦ φ will transform H into the Hamiltonian H+ in the next KAM

cycle, i.e.,

H+ = H ◦ Φ+ = N+ + P+,

where

N+ = N̄+ ◦ φ − 2〈
(

y

z

)

,

(

P020 P011

P>
011 P002

)(

y0

z0

)

〉(3.13)

= e+ + 〈Ω+(ω), y〉 +
1

2
〈
(

y

z

)

, M+

(

y

z

)

〉 + h+(y, z, ω),

P+ = P̄+ ◦ φ + 2〈
(

y

z

)

,

(

P020 P011

P>
011 P002

) (

y0

z0

)

〉.(3.14)

3.2. Solving the linear homological equation. In (3.5), we let

Q = −
√
−1

∑

0<|k|≤K+

〈k, M11y + M12z +
∂h

∂y
〉(Fk00 + 〈Fk10, y〉 + 〈Fk01, z〉

+〈y, Fk20y〉 + 〈z, Fk11y〉 + 〈z, Fk02z〉)e
√
−1〈k,x〉

−
∑

0<|k|≤K+

〈∂h

∂z
, J(Fk01 + Fk11y + Fk02z + F>

k02z)〉e
√
−1〈k,x〉.(3.15)

Then substitutions of (3.3), (3.4), (3.15) into (3.5) yield

−
∑

0<|k|≤K+

√
−1〈k, Ω〉(Fk00 + 〈Fk10, y〉 + 〈Fk01, z〉

+ 〈y, Fk20y〉 + 〈z, Fk11y〉 + 〈z, Fk02z〉)e
√
−1〈k,x〉

+
∑

0<|k|≤K+

〈M21y + M22z, J(Fk01 + Fk11y + Fk02z + F>
k02z)〉e

√
−1〈k,x〉

= −
∑

0<|k|≤K+

(Pk00 + 〈Pk10, y〉 + 〈Pk01, z〉

+ 〈y, Pk20y〉 + 〈z, Pk11y〉 + 〈z, Pk02z〉)e
√
−1〈k,x〉.(3.16)
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By comparing the coefficients of (3.16), we obtain the following linear equations
for all 0 < |k| ≤ K+:

√
−1〈k, Ω〉Fk00 = Pk00,(3.17) √
−1〈k, Ω〉Fk10 + M12JFk01 = Pk10,(3.18)

(
√
−1〈k, Ω〉I2m − M22J)Fk01 = Pk01,(3.19)

√
−1〈k, Ω〉Fk20 +

1

2
(M>

12JFk11 − F>
k11JM21) = Pk20,(3.20)

(
√
−1〈k, Ω〉 − M22J)Fk11 + (F>

k02 + Fk02)JM21 = Pk11,(3.21) √
−1〈k, Ω〉Fk02 − M22JFk02 + Fk02JM22 = Pk02.(3.22)

For any given matrix A = (aij)pq , let σ(A) denote the pq-vector which lines up
the row vectors of A from left to the right, i..e.,

σ(A) = (a11 · · ·a1q · · · ap1 · · ·apq)
>.

Then for any matrices A, B, C such that ABC is well defined, we have

(3.23) σ(ABC) = (A ⊗ C>)σ(B),

where ⊗ denotes the usual tensor product of matrices, i.e.,

(3.24) U ⊗ V = (uijV ), U = (uij)

for any two matrices U , V .
For 0 < |k| ≤ K+, define

Fk = σ(Fk02),

Pk = σ(Pk02),

L0k =
√
−1〈k, Ω〉,

L1k =
√
−1〈k, Ω〉I2m − M22J,

L2k =
√
−1〈k, Ω〉I4m2 − (M22J) ⊗ I2m − I2m ⊗ (M22J).

Using (3.23), (3.24) and the above notions, the linear equations (3.17)-(3.22) can
be rewritten equivalently as

L0kFk00 = Pk00,(3.25)

L1kFk01 = Pk01,(3.26)

L0kFk10 = Pk10 − M12JFk01,(3.27)

L0kFk20 = Pk20 +
1

2
(F>

k11JM21 − M>
12JFk11),(3.28)

L1kFk11 = Pk11 − (F>
k02 + Fk02)JM21,(3.29)

L2kFk = Pk,(3.30)

0 < |k| ≤ K+, which are clearly solvable as long as all L0k, L1k, L2k are invertible.
Consider the set

O+ = O(K+) = {ω ∈ O : |L0k| >
γ

|k|τ , |detL1k| >
γ2m

|k|2mτ
,

|detL2k| >
γ4m2

|k|4m2τ
, for all 0 < |k| ≤ K+}.(3.31)
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Then, on O+, equations (3.25)-(3.30) can be solved uniquely to obtain solutions
Fkij , depending smoothly on ω ∈ O+ and satisfying F̄kij = F−kij , for all 0 < |k| ≤
K+, 0 ≤ i + j ≤ 2, which uniquely determine the Hamiltonian F in (3.4).

3.3. Estimate on the truncation R.

Lemma 3.1. Assume that

H2) s+ ≤ s

16
;

H3)

∫ ∞

K+

λn+l0e−λ
r−r+

16 dλ ≤ s.

Then there is a constant c1 such that for all |l| + |i| + |j| ≤ l0, ω ∈ O,

|∂l
ω∂i

x∂
j

(y,z)(P − R)|D8 ≤ c1γ
aj (sκj+1 + sκj−3s3

+)µdj .

Proof. Denote

I =
∑

|k|>K+

pkıy
ıze

√
−1〈k,x〉,

II =
∑

|k|≤K+,|ı|+||≥3

pkıy
ıze

√
−1〈k,x〉

=

∫

∂(p,q)

∂yp∂zq

∑

|k|≤K+,|ı|+||≥3

pkıe
√
−1〈k,x〉yızdydz,

where

∫

is the obvious anti-derivative of ∂(p,q)

∂yp∂zq for |p| + |q| = 3. Then,

P − R = I + II.

Since, by H2), D8 ⊂ D(s), and by Cauchy’s estimate and (3.2),

|∂l
ω∂

j

(y,z)

∑

ı∈Zn
+,∈Z2m

+

pkıy
ız| ≤ |∂l

ω∂
j

(y,z)P |D(r,s)e
−|k|r

≤ γaj sκj µdj e−|k|r, |y|, |z| < s,

for all k and |l| + |j| ≤ l0, H3) implies that

|∂l
ω∂i

x∂
j

(y,z)I |D(s) ≤
∑

|k|≥K+

γaj |k||i|sκj µdje−|k|re|k|(r++ 7
8 (r−r+))

≤ γaj sκj µdj

∞
∑

η=K+

ηn+l0e−η
r−r+

8

≤ γaj sκj µdj

∫ ∞

K+

λn+l0e−λ
r−r+

16 dλ

≤ γaj sκj+1µdj , |l| + |i| + |j| ≤ l0.

It follows that

|∂l
ω∂i

x∂
j

(y,z)(P − I)|D(s) ≤ |∂l
ω∂i

x∂
j

(y,z)P |D(r,s) + |∂l
ω∂i

x∂
j

(y,z)I |D(s)

≤ 2γajsκj µdj , |l| + |i| + |j| ≤ l0.
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By performing Cauchy’s estimate of ∂l
ω∂i

x∂
j

(y,z)(P − I) on D(s), we have

|∂l
ω∂i

x∂
j

(y,z)II |D8

≤ |∂l
ω∂i

x∂
j

(y,z)

∫

∂(p,q)

∂yp∂zq

∑

|k|≤K+,|ı|+||≥3

pkıy
ıze

√
−1〈k,x〉dy dz|D8

≤ |
∫

| ∂(p,q)

∂yp∂zq
∂l

ω∂i
x∂

j

(y,z)(P − I)|dy dz|D8

≤ 2

(

1

s − 8s+

)3

γaj sκj µdj |
∫

dy dz|D8

≤ cγaj µdjsκj−3s3
+, |l| + |i| + |j| ≤ l0.

Thus,

|∂l
ω∂i

x∂
j

(y,z)(P − R)|D8 ≤ cγaj (sκj+1 + sκj−3s3
+)µdj , |l| + |i| + |j| ≤ l0.

�

3.4. Estimate on the transformation Φ+.

Lemma 3.2. Assume H3) and also that

H4) |∂l
ωM − ∂l

ωM0|O, |∂l
ω(Ω − id)|O ≤ µ

1
4∗ , |l| ≤ l0.

If F is the Hamiltonian defined in Sections 3.1, 3.2, then there is a constant c2 such

that

|∂l
ω∂i

x∂
j

(y,z)F |D(s)×O+
≤ c2s

κj µΓ(r − r+),(3.32)

|∂l
ω∂i

x∂
j

(y,z)F |D(β)×O+
≤ c2µΓ(r − r+)(3.33)

for all 0 < |k| ≤ K+, |l| ≤ l0, |i| + |j| ≤ l0 + 1.

Proof. Let q = 0, 1, 2, 0 < |k| ≤ K+. By H4),

(3.34) |∂l′

ωLqk|O+ ≤ c|k|, |l′| ≤ l0,

and by (3.31),

|L−1
0k |O+ = | 1

〈k, Ω(ω)〉 |O+ ≤ c
|k|τ
γ

,

|L−1
1k |O+ = |adjL1k

detL1k

|O+ ≤ c
|k|2mτ+2m−1

γ2m
,

|L−1
2k |O+ = |adjL2k

detL2k

|O+ ≤ c
|k|4m2τ+4m2−1

γ4m2 ,

i.e.,

(3.35) |L−1
qk |O+ ≤ c

|k|(2m)qτ+(2m)q−1

γ(2m)q .

Using (3.34), (3.35) and applying the identity

∂l′

ωL−1
qk = −

|l′|
∑

|l′′|=1

(

l′

l′′

)

(∂l′−l′′

ω L−1
qk ∂l′′

ω Lqk)L−1
qk
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inductively, it is easy to see that

(3.36) |∂l′

ωL−1
qk | ≤ c

|k||l′|+(|l′|+1)(2m)qτ

γ(|l′|+1)(2m)q , |l′| ≤ l0.

By Cauchy’s estimate, we also have

(3.37) |∂l
ωPkı|O ≤ |∂l

ωP |D(r,s)×Os−(ı+)e−|k|r ≤ γas2−ı−µe−|k|r, 0 ≤ ı +  ≤ 2.

It now follows from (3.26)-(3.30), (3.36), (3.37) that

|∂l
ωFkı|O+ ≤ c

|k||l|+(|l|+1)4m2τ

γ(|l|+1)4m2 γas2−ı−µe−|k|r

≤ c|k||l|+(|l|+1)4m2τs2−ı−µe−|k|r, |l| ≤ l0, 0 ≤ ı +  ≤ 2.

Since F is of quadratic orders in y, z, we have, on D(s) ×O+, that

|∂l
ω∂i

x∂
j

(y,z)F | ≤ c
∑

0<|k|≤K+

|k||i|(|∂l
ωFk00| + |∂l

ωFk10|s1−sgn(|j|)

+ |∂l
ωFk01|s1−sgn(|j|) + |∂l

ωFk20|s1−sgn(|j|−1) + |∂l
ωFk11|s1−sgn(|j|−1)

+ |∂l
ωFk02|s1−sgn(|j|−1))e|k|(r++ 7

8 (r−r+))

≤ csκj µ
∑

0<|k|≤K+

|k|χe−|k| r−r+
8 ≤ csκj µΓ(r − r+), |l| ≤ l0, |i| + |j| ≤ l0 + 1.

This proves (3.32). The proof of (3.33) is similar. �

Lemma 3.3. Assume H1)-H4) and also that

H5) c2µΓ(r − r+) < 1
8 (r − r+),

H6) c2sµΓ(r − r+) < s+,

H7) c2µΓ(r − r+) + c2µ < β − β+.

1) Let φt
F be the flow generated by F . Then for all 0 ≤ t ≤ 1

φt
F : D3 → D4,

φ : D1 → D3

are well defined, real analytic and depend smoothly on ω ∈ O+.

2) Let Φ+ = φ1
F ◦ φ. Then for all ω ∈ O+,

(3.38) Φ+ :
D+ → D,

D̃+ → D(r, β).

3) There is a constant c3 such that for all 0 ≤ t ≤ 1, |l| ≤ l0,

(3.39) |∂l
ω∂i

x∂
j

(y,z)φ
t
F |D3×O+ ≤











c3sµΓ(r − r+), |i| + |j| = 0, |l| ≥ 1,

c3µΓ(r − r+), 2 ≤ |l| + |i| + |j| ≤ l0 + 1,

c3, otherwise,

(3.40) |∂l
ω∂

p
ξ (Φ+ − id)|D̃+×O+

≤ c3µΓ(r − r+), |p| ≤ l0 + 1,

(3.41) |∂l
ωφ|D+×O+ ≤ c3γ

asµ,

where ξ = (x, y, z).
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Proof. Let φt
F1, φ

t
F2, φ

t
F3 be components of φt

F in x, y, z planes respectively. We
note that

(3.42) φt
F = id +

∫ t

0

XF ◦ φλ
F dλ,

where XF = (Fy ,−Fx, JFz)
> denotes the vector field generated by F .

For any (x, y, z) ∈ D3, let t∗ = sup{t ∈ [0, 1] : φt
F (x, y, z) ∈ D4}. Since, by H2),

D4 ⊂ D(s), it follows from H5)-H7) and (3.32) that

|φt
F1(x, y, z)| = |x| + |

∫ t

0

Fy ◦ φλ
F dλ| ≤ |x| + |Fy |D(s)

≤ r+ +
2

8
(r − r+) + c2sµΓ(r − r+) < r+ +

3

8
(r − r+),

|φt
F2(x, y, z)| = |y| + | −

∫ t

0

Fx ◦ φλ
F dλ| ≤ |y| + |Fx|D(s)

≤ 3s+ + c2s
2µΓ(r − r+) < 4s+,

|φt
F3(x, y, z)| = |z|+ |

∫ t

0

JFz ◦ φλ
F dλ| ≤ |z| + |Fz |D(s)

≤ 3s+ + c2s
2µΓ(r − r+) < 4s+,

i.e., φt
F (x, y, z) ∈ D4 for all 0 ≤ t ≤ t∗. Thus, t∗ = 1 and φt

F (x, y, z) ∈ D4,
0 ≤ t ≤ 1.

Next, we note by H3), H4) and (3.37) that

|∂l
ωz0|O+ , |∂l

ωy0|O+ ≤ c2γ
asµ, |l| ≤ l0,

where y0, z0 are as in (3.8). It follows from H2) that φ : D1 → D3 is well defined and
satisfies (3.41). Thus, Φ+ : D+ → D is well defined. Using H5), H7), (3.33) and a

similar argument as above, one sees that φt
F : D̂+ → D(r, β) is well defined for all

0 ≤ t ≤ 1, where D̂+ = D(r+ + 5
8 (r − r+), β+ + c2µ). Thus, Φ+ : D̃+ → D(r, β) is

also well defined.
As the proofs for (3.39) and (3.40) are similar, we only consider (3.40).
Observe that

Φ+ − id = (φ1
F − id) ◦ φ +





0
y0

z0



 .

Let ω ∈ O+, 0 ≤ t ≤ 1. By (3.41), to prove (3.40), it suffices to show that

|∂l
ω∂

p
ξ (φt

F − id)|
D̂+

≤ cµΓ(r − r+), |p| ≤ l0 + 1, |l| ≤ l0.

Note that

(3.43) |D|l′|XF |D̃0×O+
≤ c|D|l′|+1

ξ F |D̃0×O+
, |l′| ≤ l0.

Using (3.42) and (3.33), we immediately have

|φt
F − id|

D̂+
≤ cµΓ(r − r+).

Differentiating (3.42) yields

Dξφ
t
F = I2n+2m +

∫ t

0

(DXF )Dξφ
λ
F dλ = I2n+2m +

∫ t

0

J(D2
ξF )Dξφ

λ
F dλ.
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It follows from (3.33) and the Gronwall’s inequality that

|Dξφ
t
F − I2n+2m|

D̂+
≤

∫ t

0

|D2
ξF |D(β)|Dξφ

λ
F − I2n+2m|

D̂+
dλ + |D2

ξF |D(β)

≤
∫ t

0

|D2
ξF |D(β)|Dξφ

λ
F − I2n+2m|

D̂+
dλ + c2µΓ(r − r+) ≤ cµΓ(r − r+).

Similarly, by using (3.33), the Gronwall’s inequality and (3.43) inductively, we have

|∂l
ω∂

p
ξ φt

F |D̂+×O+
≤ cµΓ(r − r+), 2 ≤ |p|+ |l| ≤ l0 + 1, |l| ≤ l0, or, |p| = 0, |l| ≥ 1.

�

3.5. Estimate on the new Hamiltonian. We now estimate the new Hamiltonian

H+ = H ◦ Φ+ = N+ + P+,

where N+, P+ are as in (3.13), (3.14).

Lemma 3.4. There is a constant c4 such that for all |l| ≤ l0,

|∂l
ωΩ+ − ∂l

ωΩ|O+ ≤ c4γ
asµ,

|∂l
ωe+ − ∂l

ωe|O+ ≤ c4γ
as2µ,

|∂l
ωM+ − ∂l

ωM |O+ ≤ c4γ
aµ,

|∂l
ω∂

j

(y,z)(h+ − h)|D+×O+ ≤ c4γ
aµ, |j| ≤ l0.

Proof. The lemmas follows easily from (3.10)-(3.12) and (3.37). �

Let

∆|j| = (γasκj + s2−sgn(|j|)−sgn(|j|−2))µ2Γ3(r − r+)(3.44)

+ s
1−sgn(|j|)
+ s2−sgn(|j|)sgn(|j|−1)−sgn(|j|)sgn(|j|−1)sgn(|j|−2)µΓ(r − r+)

+ γaj (sκj+1 + sκj−3s3
+)µdj .

Lemma 3.5. Assume H1)-H6). Then there is a constant c5 such that

|∂l
ω∂i

x∂
j

(y,z)P+|D+×O+ ≤ c5∆|j|, |l| + |i| + |j| ≤ l0.

Thus, if

H8) c5∆|j| ≤ γ
aj

+ s
κj

+ µ
dj

+ ,

then

|∂l
ω∂i

x∂
j

(y,z)P+|D+×O+ ≤ γ
aj

+ s
κj

+ µ
dj

+ , |l| + |i| + |j| ≤ l0.

Proof. Let |l|+ |i|+ |j| ≤ l0. Similar to the proof of (3.32), we have, by H4), (3.15),
(3.38) and Lemma 3.4 that

|∂l
ω∂i

x∂
j

(y,z)Q|D3×O+(3.45)

≤ cs
1−sgn(|j|)
+ s2−sgn(|j|)sgn(|j|−1)−sgn(|j|)sgn(|j|−1)sgn(|j|−2) · µΓ(r − r+),

|∂l
ω∂i

x∂
j

(y,z)Q|D(s)×O+
≤ cs2−sgn(|j|)−sgn(|j|−2)µΓ(r − r+).(3.46)

Using the expression of R in (3.3), we also have

(3.47) |∂l
ω∂i

x∂
j

(y,z)[R]|D(s)×O + |∂l
ω∂i

x∂
j

(y,z)R|D(s)×O ≤ cγasκj µΓ(r − r+).
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It follows from (3.32) and (3.47) that

(|∂l
ω∂i

x∂
j

(y,z){[R], F}|+ |∂l
ω∂i

x∂
j

(y,z){R, F}|)D(s)×O+
≤ cγasκj µ2Γ2(r − r+),

and from (3.32) and (3.46) that

|∂l
ω∂i

x∂
j

(y,z){Q, F}|D(s)×O+
≤ cs2−sgn(|j|)−sgn(|j|−2)µ2Γ2(r − r+).

Hence, by (3.39), we have on D2 ×O+ that

|∂l
ω∂i

x∂
j

(y,z)

∫ 1

0

{Rt, F} ◦ φt
F dt| = |

∫ 1

0

{(1− t)(Q + [R] − R) + R, F} ◦ φt
F dt|

≤ c(γasκj + s2−sgn(|j|)−sgn(|j|−2))µ2Γ3(r − r+).(3.48)

Combining (3.45), (3.48) and Lemma 3.1 with (3.7), we have

|∂l
ω∂i

x∂
j

(y,z)P̄+|D2×O+ ≤ c((γasκj + s2−sgn(|j|)−sgn(|j|−2))µ2Γ3(r − r+)

+s
1−sgn(|j|)
+ s2−sgn(|j|)sgn(|j|−1)−sgn(|j|)sgn(|j|−1)sgn(|j|−2)µΓ(r − r+)

+γaj (sκj+1 + sκj−3s3
+)µdj ),

which, together with (3.45) and (3.41), implies that

|∂l
ω∂i

x∂
j

(y,z)P+|D+×O+ ≤ c∆|j|.

�

3.6. Estimate on the new frequency domain. Define

L+
0k =

√
−1〈k, Ω+〉,

L+
1k =

√
−1〈k, Ω+〉I2m − M+

22J,

L+
2k =

√
−1〈k, Ω+〉I4m2 − (M+

22J) ⊗ I2m − I2m ⊗ (M+
22J),

ω ∈ O, k ∈ Zn \ {0}.
Lemma 3.6. If

H9) 3c4µK8m2τ+8m2

+ < min{γ−γ+

γ0
,

γ2m−γ2m
+

γ2m
0

,
γ4m2−γ4m2

+

γ4m2
0

},
then for all 0 < |k| ≤ K+, ω ∈ O+,

|L+
0k| >

γ+

|k|τ , |detL+
1k| >

γ2m
+

|k|2mτ
, |detL+

2k| >
γ4m2

+

|k|4m2τ
.

Proof. Let 0 < |k| ≤ K+, ω ∈ O+. We note by (3.31) that

|L0k| >
γ

|k|τ , |detL1k| >
γ2m

|k|2mτ
, |detL2k| >

γ4m2

|k|4m2τ
.

It follows from Lemma 3.4 and H9) that

|L+
0k| > |L0k| − c4µK+ >

γ+

|k|τ ,

|detL+
1k| > |detL1k| − 2c4νK2m

+ >
γ2m
+

|k|2mτ
,

|detL+
2k| > |detL2k| − 3c4νK4m2

+ >
γ4m2

+

|k|4m2τ
.

�
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4. Iteration Lemma

In this section, we shall prove an iteration lemma which guarantees the inductive
construction of the transformations in all KAM steps.

Let r0, s0, µ0, γ0,O0, H0, N0, e0, Ω0, M
0, M0

22, h0, P0 be as defined at the begin-

ning of Section 3 and define D0 = D(β0), D̃0 = D(r0, β0), D0 = D(r0, s0), K0 = 0,
Φ0 = id. For any ν = 0, 1 · · · , we index all index-free quantities in Section 3 by ν

and index all “+”-indexed quantities in Section 3 by ν+1. This yields the following
sequences:

rν , sν , µν , Kν , Oν , Dν , Dν , D̃ν , Hν , Nν ,

eν , Ων , Mν , Mν
22, Lν

0k, Lν
1k, Lν

2k, hν , Pν , Φν

for ν = 1, 2, · · · . In particular,

Hν = Nν + Pν ,

Nν = eν + 〈Ων , y〉 +
1

2
〈
(

y

z

)

, Mν

(

y

z

)

〉 + hν(y, z, ω),

Mν =

(

Mν
11 Mν

12

(Mν
12)

> Mν
22

)

,

Lν
0k =

√
−1〈k, Ων〉,

Lν
1k =

√
−1〈k, Ων〉I2m − Mν

22J,

Lν
2k =

√
−1〈k, Ων〉I4m2 − (Mν

22J) ⊗ I2m − I2m ⊗ (Mν
22J),

rν = r0(1 − 1

2
(1 − δ)

ν
∑

i=1

δi+1),

sν = s1+b+σ
ν−1 ,

βν = β0(1 −
ν

∑

i=1

1

2i+1
),

µν = c0s
σ
ν−1µν−1, c0 = max{1, c1, · · · , c5},

γν = γ0(1 −
ν

∑

i=1

1

2i+1
),

Kν = ([log
1

sν−1
] + 1)3,

Oν = {ω ∈ Oν−1 : |Lν−1
0k | >

γν−1

|k|τ , |detLν−1
1k | >

γ2m
ν−1

|k|2mτ
,

|detLν−1
2k | >

γ4m2

ν−1

|k|4m2τ
, 0 < |k| ≤ Kν},

Dν = D(βν),

Dν = D(rν , sν),

D̃ν = D(rν +
5

8
(rν−1 − rν), βν).

We note that c0 only depends on r0, β0, l0.
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Lemma 4.1 (Iteration Lemma). If (2.1) holds for sufficiently small µ = µ(r0, β0, l0),
then the KAM steps described in Section 3 are valid for all ν = 0, 1, · · · , and the

following holds for all ν = 1, 2, · · · .
1) eν = eν(ω), Ων = Ων(ω) are smooth on Oν , Mν = Mν(ω) is symmetric

and smooth on Oν , hν = hν(y, z, ω) = O(|(y, z)|3) and Pν = Pν(x, y, z, ω)

are real analytic in (y, z) ∈ Dν and in (x, y, z) ∈ D̃ν respectively and smooth

in ω ∈ Oν . Moreover, for all |l| ≤ l0,

|∂l
ωeν − ∂l

ωeν−1|Oν
≤ γ2(1+σ0)a+aµ

1
4

2ν
,(4.1)

|∂l
ωeν − ∂l

ωe0|Oν
≤ γ2(1+σ0)a+aµ

1
4 ,(4.2)

|∂l
ωΩν − ∂l

ωΩν−1|Oν
≤ γ(1+σ0)a+aµ

1
4

2ν
,(4.3)

|∂l
ω(Ων − id)|Oν

≤ γ(1+σ0)a+aµ
1
4 ,(4.4)

|∂l
ωMν − ∂l

ωMν−1|Oν
≤ γaµ

1
4

2ν
,(4.5)

|∂l
ωMν − ∂l

ωM0|Oν
≤ γaµ

1
4 ,(4.6)

|∂l
ω∂

j

(y,z)(hν − hν−1)|Dν×Oν
≤ γaµ

1
4

2ν
, |j| ≤ l0,(4.7)

|∂l
ω∂

j

(y,z)(hν − h0)|Dν×Oν
≤ γaµ

1
4 , |j| ≤ l0,(4.8)

|∂l
ω∂i

x∂
j

(y,z)Pν |Dν×Oν
≤ γaj

ν sκj
ν µdj

ν , |l| + |i| ≤ l0, |j| ≤ l0.(4.9)

2) If M0 is non-singular on O0, then Ων(ω) ≡ ω.

3) Φν : Dν × Oν → Dν−1, D̃ν × Oν → D̃ν−1 is symplectic for each ω ∈ Oν ,

real analytic in (x, y, z) ∈ D̃ν and smooth in ω ∈ Oν , and

Hν = Hν−1 ◦ Φν = Nν + Pν .

Moreover,

(4.10) |∂l
ω∂

p
ξ (Φν − id)|D̃ν×Oν

≤ µ
1
4

2ν
, |p| ≤ l0 + 1, |l| ≤ l0,

where ξ = (x, y, z).
4)

Oν = {ω ∈ Oν−1 : |Lν−1
0k | >

γν−1

|k|τ , |detLν−1
1k | >

γ2m
ν−1

|k|2mτ
,

|detLν−1
2k | >

γ4m2

ν−1

|k|4m2τ
, for all Kν−1 < |k| ≤ Kν}.

Proof. We need to verify the conditions H1)-H9) in Section 3 for all ν = 0, 1, · · · .
Note that

µν = (c0)
νµ0s

σ
b+σ

((1+b+σ)ν−1)

0 ,(4.11)

sν = s
(1+b+σ)ν

0 ,(4.12)

s0 = γ(1+σ0)aµ
1
4 .(4.13)
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By (4.12), we see that if µ < ( 1
16 )

4
b+σ , then

sν+1 ≤ sb+σ
0 sν ≤ sν

16
,

i.e., H2) holds.
To verify H3), we denote

Eν =
rν − rν+1

16
=

1

32
r0(1 − δ)δν+2.

Since δ(1 + b + σ) > 1, we see that if µ is small, then

Eν

2
log

1

sν

= − 1

32
r0(1 − δ)δ2(δ(1 + b + σ))ν log s0

> − 1

32
r0(1 − δ)δ2 log s0 > 1.(4.14)

It follows from (4.12), (4.13), (4.14) that

log(n + l0 + 1)! + 3(n + l0) log([log
1

sν

] + 1) − Eν([log
1

sν

] + 1)3 − (n + l0) log Eν

≤ log(n + l0 + 1)! + 3(n + l0) log(log
1

sν

+ 2) − (log
1

sν

)2 + (n + l0) log
1

sν

≤ − log
1

sν

,

provided that µ (hence s0) is sufficiently small. Thus,
∫ ∞

Kν+1

λn+l0e−λEνdλ ≤ (n + l0 + 1)!
Kn+l0

ν+1

En+l0
ν

e−Kν+1Eν ≤ sν ,

i.e., H3) holds.
Denote

η = n + 2(l0 + 1)(2m2[τ ] + 2m2 + 1)

and fix an 0 < ε � 1 such that

(1 + σ0)(1 + b + σ)(1 − b − 2σ − 2ε) > 1,(4.15)
σ

b + σ
> (4b + 5σ + 3ε) + 3ε, λ0 − (1 − λ0)σ − 2ε > 0.

We let µ (hence s0) be sufficiently small so that

sε
ν

E
4η
ν

=

(

32

r0(1 − δ)δ2

)4η
s

ε(1+b+σ)ν

0

δ4ην
≤

(

32

r0(1 − δ)δ2

)4η

sε
0

(

sεb
0

δ4η

)ν

≤
(

32

r0(1 − δ)δ2

)4η

sε
0 ≤ 1

(η!)4e8E0
.(4.16)

Using (4.16) and the fact that

1 ≤ Γν = Γ(rν − rν+1) = Γ(
1

2
r0δ

ν+2(1 − δ)) ≤ e2E0

∫ ∞

1

ληe−λEνdλ ≤ η!e2E0

E
η
ν

,

we have

(4.17) sε
νΓ4

ν ≤ (η!)4e8E0sε
ν

E
4η
ν

≤ 1.

Since
σ0 −

σ

b + σ
(1 + σ0)a > 0,
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it follows that if µ is small, then

c0µνΓν

Eν

≤ c0µνs−2ε
ν

(

sε
ν

E
3η
ν

)

(sε
νΓ3

ν)(4.18)

≤ c0µνs−2ε
ν = c0µ0s

− σ
b+σ

0 cν
0s

(1+b+σ)ν( σ
b+σ

−2ε)

0

≤ c0µ0s
− σ

b+σ

0 (c0s
σ−2ε(b+σ)
0 )ν ≤ c0µ0s

− σ
b+σ

0 ≤ c0µ
1
4 < 1,

i.e., H5) holds.
(4.11)-(4.13), (4.15) and ν ≥ 1 yield that

µν

s4b+5σ+2ε
ν

=
(c0)

νµ0s
σ

b+σ
((1+b+σ)ν−1)

0

s
(1+b+σ)ν (4b+5σ+2ε)
0

= s
− σ

b+σ

0 µ0(c0)
νs

( σ
b+σ

−(4b+5σ+2ε))(1+b+σ)ν

0

≤ s
− σ

b+σ

0 µ0(c0s
ε
0)

ν ≤ µ
1
4 ,(4.19)

provided that µ is small so that c0s
ε
0 ≤ 1. This together with (4.17) implies that

c0sνµνΓν

sν+1
≤ c0µν

sb+σ+ε
ν

≤ c0µ
1
4 < 1,

i.e., H6) holds. H7) is obvious as µ small.
To verify H8), we let ∆|j| = ∆ν

|j| be the sequence defined in (3.44) for the νth

KAM step. Then,

c0∆1 = c0((γ
a
ν s2

ν + s3
ν)µ2

νΓ3
ν + sν+1s

2
νµνΓν + γa

ν (s3
ν + s−1

ν s3
ν+1)µν),

c0∆2 = c0((γ
a
ν sν + s2

ν)µ2
νΓ3

ν + s2
νµνΓν + γa

ν (s2
ν + s−2

ν s3
ν+1)µν),

c0∆3 = c0((γ
a
ν + sν)µ2

νΓ3
ν + sνµνΓν + γa

ν (sν + s−3
ν s3

ν+1)µν),

c0∆|j| = c0((γ
a
ν + 1)µ2

νΓ3
ν + µνΓν + γa

ν (sν + s−3
ν s3

ν+1)µ
1−λ0
ν ), |j| ≥ 3.

Using (4.17), (4.19), we have

c0∆1Γν

γa
ν+1s

2
ν+1µν+1

≤ (2s2(b+σ)
ν + γ−a

0 s1−b−2σ−2ε
ν + s1−2b−3σ

ν + sb
ν)Γν ,

c0∆2Γν

γa
ν+1sν+1µν+1

≤ (2s3(b+σ)
ν + γ−a

0 s1−b−2σ−2ε
ν + s1−b−2σ

ν + s2b+σ
ν )Γν ,

c0∆3Γν

γa
ν+1µν+1

≤ (2s4(b+σ)
ν + γ−a

0 s1−b−σ−2ε
ν + s1−σ

ν + s3b+2σ
ν )Γν ,

c0∆|j|
µν+1

≤ 2s4(b+σ)
ν + sλ0−(1−λ0)σ−2ε

ν + s1−σ
ν + s3b+2σ

ν , |j| ≥ 3.

Since, by (4.15) and ν ≥ 1,

s1−b−2σ−2ε
ν ≤ s

(1+b+σ)(1−b−2σ−2ε)
0

Y = γ
(1+σ0)a(1+b+σ)(1−b−2σ−2ε)
0 µ

1−b−2σ−2ε
4 ≤ γa

0µ
1−b−2σ−2ε

4 ,

it is clear that one can make µ small such that

γ−a
0 s1−b−σ−2ε

ν ≤ γ−a
0 s1−b−2σ−2ε

ν <
1

4
.
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By (4.12), (4.13), all other terms in the above can also be made smaller than 1
4 by

assuming µ small. This verifies H8). As µ sufficiently small, we have by (4.19) that

3c0µνK8m2τ+8m2

ν+1 <
3c0

2(ν+2)(4m2)
s4b+5σ+2ε

ν ([log
1

µν

] + 1)3(4m2τ+4m2)

<
1

2(ν+2)(4m2)
<

1

2(ν+2)(4m)
<

1

2ν+2
.

This verifies H9).
Since by (4.17), (4.19),

µνΓν ≤ µ
1
4 (c0s

ε
0)

ν(sε
νΓν)s4b+5σ

ν ≤ µ
1
4 (c0s

ε
0)

ν ,

we can make µ small so that

c0µνΓν ≤ µ
1
4

2ν+1
,(4.20)

c0γ
aµνΓν ≤ γaµ

1
4

2ν+1
(4.21)

for all ν.
We verify H1), H4) by induction. As H1), H4) trivially hold for ν = 0, the KAM

step described in Section 3 is valid for ν = 0. We now assume that for some positive
integer ν∗ H1), H4) hold for all ν = 0, 1, · · · , ν∗, i.e., the KAM steps are valid for all
ν = 1, 2, · · · , ν∗. Applying Lemma 3.4 and (4.21) for all ν = 0, 1, · · · , ν∗, we have

|∂l
ωMν∗+1

22 − ∂l
ωM0

22|Oν∗+1 ≤ |∂l
ωMν∗+1 − ∂l

ωM0|Oν∗+1

≤
ν∗
∑

i=0

|∂l
ω(M i+1 − M i)|Oi+1 ≤

ν∗
∑

i=0

γaµ
1
4

2i+1
≤ γaµ

1
4 ,(4.22)

|∂l
ω(Ων∗+1 − id)|Oν∗+1 ≤

ν∗
∑

i=0

|∂l
ωΩi+1 − ∂l

ωΩi|Oi+1 ≤
ν∗
∑

i=0

γ(1+σ0)a+aµ
1
4

2i+1

≤ γ(1+σ0)a+aµ
1
4 ,

i.e., H4) holds for ν = ν∗ + 1. Denote M̂ν∗+1 = Mν∗+1, Mν∗+1
22 , M̂0 = M0, M0

22, re-
spectively. If µ is small so that s0 < 1

2|(M̂0)−1|O0

, then by (4.22) and the invertibility

of M̂0 on O0, we see that M̂ν∗+1 is non-singular on Oν∗+1, and

|(M̂ν∗+1)
−1|Oν∗+1 ≤ |(M̂0)

−1|O0

1 − |M̂ν∗+1 − M̂0|Oν∗+1 |(M̂0)−1|O0

≤ 2|(M̂0)
−1|O0 .

Hence H1) holds for ν = ν∗ + 1. Therefore, all H1)-H9) hold and the KAM steps
described in Section 3 are valid for all ν.

By performing the KAM steps described in Section 3 inductively, we then obtain
the desired sequences stated in the lemma. Now, 2) clearly follows from (3.11),
and (4.1), (4.3), (4.5), (4.9), (4.10) follow from Lemmas 3.3-3.5 and (4.20), (4.21)
accordingly. By the same argument as in (4.22), we also obtain (4.2), (4.4), (4.6)
and (4.8) from (4.1), (4.3), (4.5) and (4.7) respectively.

Note that 4) automatically holds for ν = 1. We now let ν > 1. By Lemma 3.6,
it is clear that

Oν−1 = {ω ∈ Oν−1 : |Lν−1
0k | >

γν−1

|k|τ , |detLν−1
1k | >

γ2m
ν−1

|k|2mτ
,
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|detLν−1
2k | >

γ4m2

ν−1

|k|4m2τ
, for all 0 < |k| ≤ Kν−1}.

Denote

Ôν = {ω ∈ Oν−1 : |〈k, ω〉| >
γν−1

|k|τ , |detLν−1
1k | >

γ2m
ν−1

|k|2mτ
,

|detLν−1
2k | >

γ4m2

ν−1

|k|4m2τ
, for all Kν−1 < |k| ≤ Kν}.

Then

Oν = {ω ∈ Oν−1 : |〈k, ω〉| >
γν−1

|k|τ , |detLν−1
1k | >

γ2m
ν−1

|k|2mτ
,

|detLν−1
2k | >

γ4m2

ν−1

|k|4m2τ
, for all 0 < |k| ≤ Kν}

= Oν−1 ∩ Ôν = Ôν .(4.23)

The lemma is now complete. �

5. Proof of the Theorem

5.1. Convergence. By assuming µ = µ(r, s, l0) small, one can apply Lemma 4.1
inductively to obtain the following sequences:

Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν : D̃ν ×Oν → D̃0,

H ◦ Ψν = Hν = Nν + Pν ,

Nν = eν + 〈Ων , y〉 +
1

2
〈
(

y

z

)

, Mν(ω)

(

y

z

)

〉 + hν(y, z, ω),

for ν = 0, 1, · · · .
Let

O∗ =
∞
⋂

ν=0

Oν .

First, we show the uniform convergence of Ψν on D( r0

2 , β0

2 ) ×O∗. Note that

(5.1) Ψν = Ψ0 +
ν

∑

i=1

(Ψi − Ψi−1),

where, for each i = 1, 2, · · · ,
Ψi − Ψi−1 = Φ0 ◦ · · · ◦ Φi − Φ0 ◦ · · · ◦ Φi−1

=

∫ 1

0

D(Φ0 ◦ · · · ◦ Φi−1)(id + θ(Φi − id))dθ(Φi − id).(5.2)

Since, by (4.10), on D( r0

2 , β0

2 ) ×O∗,

|D(Φ0 ◦ · · · ◦ Φi−1)(id + θ(Φi − id))|
≤ |DΦ0(Φ1 ◦ · · · ◦ Φi−1)(id + θ(Φi − id)))| · · · · |DΦi−1(id + θ(Φi − id))|

≤ (1 + µ
1
4 )(1 +

µ
1
4

2
) · · · (1 +

µ
1
4

2i−1
) ≤ e

1+ 1
2 +···+ 1

2i−1 ≤ e2,(5.3)
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we have

|Ψi − Ψi−1|D(
r0
2 ,

β0
2 )×O∗

≤ e2|Φi − id|
D(

r0
2 ,

β0
2 )×O∗

≤ e2 µ
1
4

2i
,

for all i = 1, 2, · · · . Thus, Ψν converges uniformly on D( r0

2 , β0

2 ) × O∗. We denote
its limit by Ψ∞. Then

(5.4) Ψ∞ = Ψ0 +
∞
∑

i=0

(Ψi − Ψi−1) = id +
∞
∑

i=0

(Ψi − Ψi−1).

It follows that Ψ∞ is real analytic in ξ = (x, y, z) and uniformly close to the identity.
In fact, using a similar argument, Ψ∞ can be shown to be C l0 uniformly close to the
identity. To show the Whitney smoothness of Ψ∞ in ω, one can apply the standard
Whitney extension theorem (see [31, 36]) to uniformly extend all Φν , with respect

to ω, to functions on D̃ν ×O0 of class C l0−σ0 in ω ∈ O0 for some fixed 0 < σ0 < 1,
whose Hölder norms satisfy the same estimate (4.10), up to multiplication of a
constant. This results in a sequence of extended transformations Ψν defined on
D̃ν ×O0. Similar to (5.2), (5.3), one can use (4.10) to obtain the estimates

|∂l
ωΨν − ∂l

ωΨν−1|D(
r0
2 ,

β0
2 )×O0

≤ c
µ

1
4

2ν

for all ν = 1, 2, · · · , which shows the uniform convergence of ∂ l
ωΨν , on D( r0

2 , β0

2 ) ×
O0. Let Ψ∞ be defined as in (5.4) in terms of the extended transformations Ψν .
Then a similar argument shows that ∂l

ωΨν are equally (Hölder) continuous, and

∂l
ωΨν → ∂l

ωΨ∞, 1 ≤ |l| ≤ l0 − 1, uniformly on D( r0

2 , β0

2 ) ×O0. Thus, the original

limit Ψ∞ is Cl0−1 Whitney smooth in ω ∈ O∗.
Next, we show the convergence of the Hamiltonians Hν . By Lemma 4.1 1),

eν , Ων , Mν converge uniformly on O∗ and hν converges uniformly on D(β0

2 ) ×O∗,
as ν → ∞. We denote their limits by e∞, Ω∞, M∞, h∞ respectively. Clearly,
h∞ = O(|(y, z)|3). By a similar application of the Whitney extension theorem,
one can uniformly extend all Pν , with respect to ω, to functions on Dν × O0 of
class Cl0−σ0 in ω ∈ O0, whose Hölder norms satisfy the same estimate (4.9), up
to multiplication of a constant. For such extended functions Pν , we then use the
same formula (3.12) to define smooth extensions of M ν on O0. Then the estimates
in (4.5), (4.6), up to multiplication of a constant, are still valid for all extended
matrices Mν on O0, which implies the uniform convergence of ∂l

ωMν on O0 for all
1 ≤ |l| ≤ l0 − 1. Using the Hölder norms of the extended functions Pν one further
shows the Hölder continuities of ∂l

ωMν which implies that the limit of Mν on O0

is of class C l0−1. Thus, M∞ is Cl0−1 Whitney smooth on O∗, and

|∂l
ωM∞ − ∂l

ωM0|O∗
= O(γaµ

1
4 ), |l| ≤ l0 − 1,

in the sense of Whitney (see [31]). Similarly, e∞(ω), Ω∞(ω) are C l0−1 Whitney

smooth on O∗, h∞(y, z, ω) is real analytic in (y, z) ∈ D(β0

2 ) and Cl0−1 Whitney
smooth in ω ∈ O∗, and

|∂l
ωe∞ − ∂l

ωe0|O∗
= O(γ2(1+σ0)a+aµ

1
4 ),

|∂l
ω(Ω∞ − id)|O∗

= O(γ(1+σ0)a+aµ
1
4 ),

|∂l
ω∂

j

(y,z)h∞ − ∂l
ω∂

j

(y,z)h0|D(
β0
2 )×O∗

= O(γaµ
1
4 ),
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for all |j| ≤ l0, |l| ≤ l0 − 1. It follows that, on D( r0

2 , β0

2 ) × O∗, Nν and all their
possible derivatives converge uniformly to

N∞ = e∞(ω) + 〈Ω∞, y〉 +
1

2
〈
(

y

z

)

, M∞(ω)

(

y

z

)

〉 + h∞(y, z, ω)

and its corresponding derivatives, in the sense of Whitney. By the definition of O∗,
it is easy to see that Ω∞(O∗) ⊂ Ôγ .

Let

P∞ = H ◦ Ψ∞ − N∞.

Using the uniform convergence of Nν , Ψν to N∞, Ψ∞, respectively, we see that, for
all |l| ≤ l0−1, ∂l

ωPν → ∂l
ωP∞ uniformly on D( r0

2 , β0

2 )×O∗ in the sense of Whitney,

and P∞ is real analytic in (x, y, z) ∈ D( r0

2 , s0

2 ) and Cl0−1 Whitney smooth in
ω ∈ O∗.

For any ν ∈ Z+, ω ∈ O∗, j ∈ Zn
+, k ∈ Z2m

+ with |j| + |k| ≤ 2, by applying the
inequality

|Pν |Dν
≤ γas2

νµν

and performing Cauchy’s estimate of Pν on D(rν , 1
2sν), we see that

|∂j
y∂k

z Pν | ≤ 2j+2γa
νµν ,

for all |j|+ |k| ≤ 2 and ν = 1, 2, · · · . By (4.11), it is easy to see that the right hand
side of the above converges to 0 as ν → ∞. Hence, on D( r0

2 , 0) ×O∗,

∂j
y∂k

z P∞|(y,z)=0 = 0

for all x ∈ T n, ω ∈ O∗, j ∈ Zn
+, k ∈ Z2m

+ with |j| + |k| ≤ 2. It follows that
for each ω ∈ O∗, Tω = T n × {0} × {0} is an analytic, quasi-periodic, invariant
n-torus associated to the Hamiltonian H∞ = H ◦ Ψ∞ with the Diophantine toral
frequency Ω∞(ω), which corresponds to a perturbed invariant n-torus of (1.1) with
the same properties. Moreover, these perturbed tori form a C l0−1 Whitney smooth
family. In the case that M0 is non-singular on O0, it follows from Lemma 4.1 2)
that Ω∞(ω) ≡ ω, i.e., toral frequencies are also preserved in this case.

5.2. Measure estimates. We wish to show that

(5.5) |O0\O∗| → 0, as γ → 0.

The proof of (5.5) will be based on the following two lemmas. The first lemma
shows the connection between the non-resonance condition NR) with the small
divisor condition involved in (3.31) for ν = 0. The second lemma deals with measure
estimates.

Lemma 5.1. Let λj(ω), j = 1, 2, · · · , 2m, be eigenvalues of JM 0
22(ω). Then the

following holds.

1) For all k ∈ Zn,

detL0
1k =

2m
∏

i=1

(
√
−1〈k, ω〉 − λi),

detL0
2k =

2m
∏

i,j=1

(
√
−1〈k, Ω〉 − λi − λj).
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2) The set

{ω ∈ O0 : 〈k, ω〉 6= 0, detL0
1k 6= 0, detL0

2k 6= 0, for all k ∈ Zn \ {0}}
admits full Lebesgue measure relative to O0.

Proof. 1) Let E be the Jordan canonical form of M 0
22J and let T be the non-singular

matrix such that T−1(M0
22J)T = E. Then

detL0
1k = det(

√
−1〈k, ω〉I2m − M0

22J) = det(
√
−1〈k, ω〉I2m − E)

=

2m
∏

i=1

(
√
−1〈k, ω〉 − λi).

Since, for any square matrices A, B, C, D of the same dimension,

(A ⊗ B)(C ⊗ D) = (AC ⊗ BD),

we have

(T−1 ⊗ T−1)((M0
22J) ⊗ I2m + I2m ⊗ (M0

22J))(T ⊗ T ) = E ⊗ I2m + I2m ⊗ E.

It follows that

detL0
2k = det(

√
−1〈k, Ω〉I4m2 − M0

22J ⊗ I2m − I2m ⊗ (M0
22J))

= det(
√
−1〈k, Ω〉I4m2 − E ⊗ I2m − I2m ⊗ E)

=

2m
∏

i,j=1

(
√
−1〈k, Ω〉 − λi − λj).

The proof of 1) is now complete since JM 0
22, M0

22J have the same eigenvalues.
2) Denote

O1 = {ω ∈ O0 :
√
−1〈k, ω〉 − λi 6= 0 for all k ∈ Zn \ {0}, 1 ≤ i ≤ 2m},

O2 = {ω ∈ O0 :
√
−1〈k, ω〉 − λi − λj 6= 0 for all k ∈ Zn \ {0}, 1 ≤ i, j ≤ 2m}.

For any ω ∈ O2, k ∈ Zn\{0}, 1 ≤ i ≤ 2m, we have that
√
−1〈2k, ω〉−λi−λi 6= 0,

i.e., ω ∈ O1. Thus, O2 ⊂ O1, and 2) easily follows from NR) and 1). �

Lemma 5.2. Suppose that g ∈ Cp(Ī), p ≥ 2, where I ⊂ R1 is a finite interval. Let

Ih = {x ∈ I : |g(x)| ≤ h}, h > 0. If, on I, |g(p)(x)| ≥ c > 0 for some constant c,

then |Ih| ≤ c′h
1
p , where c′ = p + 2 +

2

c
.

Proof. See [39], Lemma 2.1. �

Let

Rν+1
k (γ) = {ω ∈ Oν : |Lν

0k| ≤
γ

|k|τ , or |detLν
1k| ≤

γ2m

|k|2mτ
, or |detLν

2k| ≤
γ4m2

|k|4m2τ
}.

We note by Lemma 4.1 4) that

Oν+1 = Oν \
⋃

Kν<|k|≤Kν+1

Rν+1
k (γν),

for all ν = 0, 1, · · · , which implies that

O0\O∗ =

∞
⋃

ν=0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γν).
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Thus, the measure estimate (5.5) amounts to the estimate of Rν+1
k (γ) for all ν

and k.
Given k = (k1, k2, · · · , kn)> ∈ Zn \ {0}, ν = 0, 1, · · · . Without loss of generality,

we assume that k1 = max{|ki|}. For any (ω2, · · · , ωn), we consider the sets I =
{ω1 : ω = (ω1, ω2, · · · , ωn)> ∈ Oν}, and

S1 = {ω1 ∈ I : ω = (ω1, ω2, · · · , ωn)>, |g(ω)| ≤ γ4m2

ν

|k|4m2τ
},

where g(ω) = det(Lν
2k(ω)). By (4.6), we have that, on I ,

Ak = |∂
4m2

∂ω4m2

1

g(ω)| = |k1|4m2

((4m2)! + O(
1

|k| + 1
) + O(µ

1
4 )),

where O( 1
|k|+1 ), O(µ

1
4 ) are independent of ν, ω, l0. Thus, there is a positive integer

n0 such that

Ak ≥ |k1| ≥ 1,

provided that |k| ≥ n0 and µ is small. Hence by Lemma 5.2,

(5.6) |S1| ≤ (4m2 + 3)
γν

|k|τ ,

provided that |k| ≥ n0. It follows from (5.6) and Fubini’s theorem that if |k| ≥ n0,
then

|{ω ∈ Oν : |g(ω)| ≤ γ4m2

ν

|k|4m2τ
}| ≤ c|S1| ≤ c

γ

|k|τ .

Similarly, by making n0 larger if necessary, we have that

|{ω ∈ Oν : |Lν
0k| ≤

γν

|k|τ }| ≤ c
γ

|k|τ ,

|{ω ∈ Oν : |detLν
1k| ≤

γ2m
ν

|k|2mτ
}| ≤ c

γ

|k|τ

for all |k| ≥ n0. As all constants above are independent of k, ν, we conclude that

(5.7) |Rν+1
k (γν)| ≤ c

γ

|k|τ

for all ν and all |k| ≥ n0. Let ν0 be such that Kν ≥ n0 as ν ≥ ν0. Then

|
∞
⋃

ν=ν0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γν)| ≤ cγ

∞
∑

ν=ν0

∑

Kν<|k|≤Kν+1

1

|k|τ = O(γ).(5.8)

We now estimate Rν+1
k (γν) for 0 < |k| ≤ Kν , ν ≤ ν0. Since, by Lemma 4.1 1),

|Ων − id|Oν
, |Mν − M0|Oν

= O(γ2a), one can make γ small such that Rν+1
k (γν) is

contained in the set

{ω ∈ O0 : |〈k, ω〉| ≤ 2γ

|k|τ , or |detL0
1k| ≤

2γ2m

|k|2mτ
, or |detL0

2k| ≤
2γ4m2

|k|4m2τ
}

for all 0 < |k| ≤ Kν , ν ≤ ν0. It follows from NR) and Lemma 5.1 that

|Rν+1
k (γ)| → 0, as γ → 0,

uniformly for all 0 < |k| ≤ Kν , ν ≤ ν0.
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Consequently,

(5.9) |
ν0
⋃

ν=0

⋃

0<|k|≤Kν

Rν+1
k (γν)| → 0,

as γ → 0.
Thus, by (5.8) and (5.9),

|O\O∗| ≤ |
ν0
⋃

ν=0

⋃

0<|k|≤Kν

Rν+1
k (γν)| + |

∞
⋃

ν=ν0

⋃

Kν<|k|≤Kν+1

Rν+1
k (γ)| → 0,

as γ → 0.
This completes the theorem.

6. Applications

6.1. Quasi-periodic solutions near an equilibrium. Consider a real analytic
Hamiltonian H(p, q), p ∈ Rd, q ∈ Rd, with the standard symplectic structure. We
assume that the origin is an equilibrium point and J∂2H(0) admits n (1 ≤ n < d)
distinct pairs of purely imaginary eigenvalues ±

√
−1σ1, · · · ,±

√
−1σn, where σk >

0, k = 1, 2, · · · , n, and J denotes the standard d × d symplectic matrix. Let

Σ0 = (
√
−1σ1, · · · ,

√
−1σn)>, Λ0 = (λ0

1, · · · , λ0
m)>,

where m = d−n and ±λ0
1, · · · ,±λ0

m denote the rest of the eigenvalues of J∂2H(0).
We assume the following joint non-resonance conditions:

A1) 〈k, Σ0〉+〈l, Λ0〉 6= 0 for all k ∈ Zn, l ∈ Zm with 1 ≤ |k| ≤ K, 1 ≤ |k|+ |l| ≤
K, where K = 24m2.

A2) There are γ0 > 0, τ > n − 1 such that

|〈k, Σ0〉 + 〈l, Λ0〉| >
γ0

|k|τ

for all k ∈ Zn \ {0}, l ∈ Zm with |l| = 2.

The condition A1) particularly implies that {σ1, σ2, · · · , σn} are non-resonant
up to order K.

We now derive a normal form of H near the origin. Clearly, by using a linear
symplectic transformation, H can be reduced to a Hamiltonian H(p, q) of the form

(6.1) H(p, q) =

n
∑

k=1

λkpkqk + H2(Z) + H3(p, q, Z) + · · · ,

where p, q ∈ Rn, Z = (pn+1, · · · , pd, qn+1, · · · , qd)
> ∈ R2m, and for each i ≥ 2,

Hi is a homogeneous polynomial of degree i. Let ξk = pkqk, k = 1, 2, · · · , n,
ξ = (ξ1, ξ2, · · · , ξn)>. It follows from A1) and [8] (pp 132) that the Hamiltonian
(6.1) in a neighborhood of 0 can be normalized to

(6.2) H = 〈Λ0, ξ〉 + H2(Z) +

K
∑

k=3

Hk(ξ, Z) + P (p, q),

where P consists of monomials of p, q of degrees ≥ K + 1, and for each k =
1, 2, · · · , K, Hk(ξ, Z) is a homogeneous polynomial which is uniquely determined
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and linearly combines monomials ξαZβ, 0 ≤ |α| ≤ [k
2 ], 2|α|+ |β| = k. Consider the

following symplectic change of coordinate

p =
1√
2
(p′ +

√
−1q′), q =

1√
2
(p′ −

√
−1q′)

and let (Y, x) ∈ Rn × T n be the standard action-angle variables associated to

p′, q′, i.e., Y = (Y1, Y2, · · · , Yn)>, x = (x1, x2, · · · , xn)> with Yk = 1
2 (p′2k + q′2k),

p′k =
√

Yk cosxk and q′k =
√

Yk sin xk, k = 1, 2, · · · , n. Then the action-angle form
of the Hamiltonian (6.2) reads

H(x, Y, Z) = N(Y, Z) + P (x, Y, Z),(6.3)

N(Y, Z) = 〈ω0, Y 〉 +
1

2
〈Y, AY 〉 + 〈Y, BZ〉 +

1

2
〈Z, CZ〉 + h(Y, Z),

where ω0 = (σ1, σ2, · · · , σn)>, C = D2H2(0), A is contributed by the monomials
{Y α : |α| = 2} in H4, B is contributed by the monomials {Y αZβ : |α| = 1, |β| = 1}
in H3, P (x, Y, Z) is defined by P (p, q) through the above changes of variables, and
h(Y, Z) is a polynomial which is associated to the rest of terms in (6.2) of degree 3
or higher.

Viewing P in the above as a perturbation, we note that the equation of motion
associated to the unperturbed part of (6.3) reads



















ẋ = ω0 + AY + BZ +
∂h(Y, Z)

∂Y
,

Ẏ = 0,

Ż = JCZ + JB>Y + J
∂h(Y, Z)

∂Z
,

(6.4)

where J denotes the standard 2m × 2m symplectic matrix. Let

M =

(

A B

B> C

)

and assume that

A3) M is non-singular.

Then by the implicit function theorem, the parameterized equation

(6.5) M
(

Y

Z

)

+ ∇h(Y, Z) =

(

ω − ω0

0

)

has an analytic family of solutions (Y (ω), Z(ω))> with |(Y (ω), Z(ω))| = O(|ω−ω0|)
as |ω −ω0| → 0, which clearly corresponds to an analytic family of invariant n-tori
Tω of (6.4) with toral frequencies parameterized by ω. Thus, with the above setting,
the persistence problem of lower dimensional tori of H(p, q) in the vicinity of the
origin becomes a perturbation problem for such a family of invariant n-tori. We
note that the hypothesis A3) above can be weakened by assuming the existence of
solutions of (6.5) instead. In this case, some branches of solutions (Y (ω), Z(ω))>

may only depend on ω smoothly.
Now, by introducing the translation of coordinates

y = Y − Y (ω), z = Z − Z(ω),

the Hamiltonian (6.3) takes the form of (1.1), i.e.,

H = e(ω) + 〈ω, y〉 +
1

2
〈
(

y

z

)

, M(ω)

(

y

z

)

〉 + h(y, z, ω) + P (x, y, z, ω),
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where

e(ω) =
1

2
〈
(

Y (ω)

Z(ω)

)

,M
(

Y (ω)

Z(ω)

)

〉 + h(Y (ω), Z(ω)),

M(ω) = M + D2h(Y (ω), Z(ω)),

h(x, y, z, ω) = h(y + Y (ω), z + Z(ω)) − h(Y (ω), Z(ω)) −∇h(Y (ω), Z(ω))

(

y

z

)

−1

2
〈
(

y

z

)

, D2h(Y (ω), Z(ω))

(

y

z

)

〉,

P (x, y, z, ω) = P (x, y + Y (ω), z + Z(ω)).

To apply our main results, we let s > 0 be sufficiently small and choose

γ = s1+a0 , µ∗ = sa0 , O = {ω ∈ Rn : 2s ≤ |ω − ω0| ≤ 4s},
where 0 < a0 � 1. Such choice of γ ensures that the set

Ôγ = {ω ∈ O : |〈k, ω〉| >
γ

|k|τ , k 6= 0}

is of positive Lebesgue measure. In fact,

|O \ Ôγ | = O(γ) = O(s1+a0).

Since

P (x, y, z, ω) = O((|y| + |z| + |ω − ω0|)
K+1

2 ),

there is a constant c > 0 such that

|P |D(r,s)×O ≤ cγ3(1+σ0)aµ∗,

where

a = 4m2, 0 < σ0 <
1
2 − a0 − 3aa0

3a(1 + a0)
.

Therefore, the smallness condition (2.3) of the perturbation is satisfied with µ =
cµ∗. By the definition of M(ω), it is clear that M(ω) is non-singular on O if s is
sufficiently small.

We now verify the non-resonance condition NR). Let M22 = M22(ω) be the
2m × 2m lower right block of M(ω) and denote the eigenvalues of JM22(ω) by
±λi(ω), i = 1, 2, · · · , m. Consider

Rk(γ) = {ω ∈ O : |det(
√
−1〈k, ω〉I4m2 − (M22J) ⊗ I2m

− I2m ⊗ (M22J))| ≤ γ4m2

|k|4m2τ
},

γ > 0, k ∈ Zn \ {0}. Then Lemma 5.1 implies that

(6.6) Rk(γ) = {ω ∈ O : |
∏

l∈Zm,|l|=2

(
√
−1〈k, ω〉 + 〈l, Λ(ω)〉)| ≤ γ4m2

|k|4m2τ
},

γ > 0, k ∈ Zn \ {0}, where Λ(ω) = (λ1(ω), · · · , λm(ω))>.
By a similar measure estimate as in Section 5.2, we first observe that there is an

integer k0 > 0 and a constant c > 0 such that

|Rk(γ)| ≤ c
γ

|k|τ ,
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for all |k| ≥ k0, γ > 0. It follows that

(6.7) |
⋃

|k|≥k0

Rk(γ)| = O(γ).

Since λi(ω) → λ0
i , i = 1, 2, · · · , m, ω ∈ O, uniformly as s → 0, A2) and (6.6) imply

that there is a γ0 > 0 such that

(6.8) Rk(γ) = ∅,

for all |k| < k0 and γ ≤ γ0, provided that s is sufficiently small. Let

Õγ = {ω ∈ O : |
√
−1〈k, ω〉 + 〈l, Λ(ω)〉| >

γ4m2

|k|4m2τ
, k ∈ Zn \ {0}, |l| = 2}.

It follows from (6.6)-(6.8) that

|O \ Õγ | = O(γ),

as γ → 0, which particularly implies that the set

{ω ∈ O :
√
−1〈k, ω〉 + 〈l, Λ(ω)〉 6= 0, k ∈ Zn \ {0}, |l| = 2}

admits full Lebesgue measure relative to O, i.e., NR) holds as long as s is sufficiently
small. Thus, by Theorem 2, we have the following.

Proposition 6.1. If conditions A1)-A3) hold, then there is a s > 0 sufficiently

small and Cantor-like sets Oγ ⊂ Ôγ with

(6.9) |O \ Oγ | = O(γ) = O(s1+a0)

such that the Hamiltonian H(p, q) admits a Whitney smooth family of invariant,

quasi-periodic n-tori in an O(s)-neighborhood of the origin with the toral frequency

ω ∈ Oγ.

We note that in this particular case the measure estimate (6.9) is more concrete
than the one stated in the theorem.

Remark 6.1 In the above, there are no restrictions on the type, multiplicity or
singularity of the normal eigenvalues {±λ0

1, · · · ,±λ0
m}. Also, the matrix M(ω) (or

M(ω)) is in general a non-diagonal matrix due to the existence of the term H3 in
(6.3). In the case of multiple or singular normal eigenvalues, neither can such a term
be eliminated via canonical transformations nor can it be treated as a perturbative
term via re-scalings.

Example 6.1 (Normal Degeneracy). As a special case, we consider the case that
Λ0 = 0, i.e., the normal eigenvalues of JD2H(0) are completely degenerate. Let Σ0

be Diophantine. Then both A1) and A2) hold automatically. Hence the conclusions
of Proposition 6.1 hold if A3) is satisfied.
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6.2. Coupled oscillators. Consider a system of near-neighboring coupled oscilla-
tors with the following real analytic Hamiltonian

(6.10) H(p, q) =

d
∑

j=1

(
1

2
p2

j + Uj(qj)) +

d−1
∑

j=1

ηjPj(qj+1 − qj),

where p = (p1, p2, · · · , pd)
>, q = (q1, q2, · · · , qd)

>, and ηj , j = 1, 2, · · · , d, are
coupling coefficients. We first assume that

A4) the potential energies Uj admit critical points q0
j for j = 1, 2, · · · , d respec-

tively such that the first n (0 < n < d) of them are elliptic, i.e., U ′
j(q

0
j ) = 0,

j = 1, 2, · · · , d, and U
′′

j (q0
j ) > 0, j = 1, 2, · · · , n.

Then by the Liouville-Arnold integrability theorem, in a small annulus G around
{0} × {(q0

1 , q
0
2 , · · · , q0

n)>} ∈ R2n, one can express the first n oscillators into action-
angle variables (Ij , φj), j = 1, 2, · · · , n, such that

1

2
p2

j + Uj(qj) ≡ Hj(Ij),

for I = (I1, I2, · · · , In)> lying in some small annulus O around the origin of Rn,

where Hj ’s are real analytic functions defined near the origin with H
′′

j (Ij) 6= 0, j =

1, 2, · · · , n. As I0 = (I0
1 , I0

2 , · · · , I0
n)> varies in O, we treat ω = (H ′

1(I
0
1 ), H ′

2(I
0
2 ), · · · ,

H ′
n(I0

n))> as a parameter in a bounded closed region O and define A(ω) =

diag{H ′′

1 (I0
1 ), H

′′

2 (I0
2 ), · · · , H

′′

n (I0
n)}.

Let m = d − n, y = I − I0, x = (φ1, φ2, · · · , φn)>, z = (pn+1, · · · , pd, qn+1, · · · ,
qd)

>. Then the Hamiltonian (6.10) reduces to the form

H1(x, y, z, ω) = e1(ω) + 〈ω, y〉 +
1

2
〈
(

y

z

)

, M1(ω)

(

y

z

)

〉

+ O((|y| + |z|)3) + P1(x, y, z, ω),(6.11)

where ω ∈ O, x ∈ T n, (y, z) lies in a small neighborhood of the origin in Rn×R2m,

M1(ω) = diag{A(ω), C1}, C1 = diag{Im, U
′′

n+1(q
0
n+1), · · · , U

′′

d (q0
d)},

P1(x, y, z, ω) =
d−1
∑

j=1

ηjPj(qj+1 − qj).

Thus, M1(ω) is non-singular on O as long as U
′′

j (q0
j ) 6= 0 for all j = n + 1, n +

2, · · · , d, and P1 is small as long as the coupling coefficients are small. Since C1 is
a constant matrix, a straightforward measure estimate shows that NR) holds on O
automatically. Applying Theorem 2 to (6.11), we then have the following.

Proposition 6.2. Assume A4) and that U
′′

j (q0
j ) 6= 0, j = n+1, n+2, · · · , d. Then

as η = (η1, η2, · · · , ηd−1) sufficiently small, there are Cantor-like sets Gη ⊂ G ⊂
R2n with |G \ Gη | → 0 as |η| → 0 such that for each (p0, q0) ∈ Gη the unperturbed

torus associated to (p0, q0) persists and gives rise to a slightly deformed, invariant,

quasi-periodic n-torus of (6.10) with the same toral frequency.

The application of our results also allows some strong couplings among the re-
maining m oscillators. Instead of assuming the weak couplings, we assume the
following:

A5) q0
n+1 = · · · = q0

d = q0, F ′
n+1(0) = · · · = F ′

d−1(0) = 0.
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Denote αj = U
′′

j (q0), j = n + 1, n + 2, · · · , d,

βj =







0, j = n,

ηjF
′′

j (q0), n + 1 ≤ j ≤ d − 1,

0, j = d,

j = n, n + 1, · · · , d, and let C2 = diag{Im, C}, where C = (cij) is the m × m

symmetric matrix defined by

cij =







αn+i + βn+i−1 + βn+i, j = i,

−βn+i, j = i + 1,

0, j > i + 1.

Then with respect to the new coordinate (x, y, z) above, the Hamiltonian (6.10)
becomes

H2(x, y, z, ω) = e2(ω) + 〈ω, y〉 +
1

2
〈
(

y

z

)

, M2(ω)

(

y

z

)

〉(6.12)

+ O((|y| + |z|)3) + P2(x, y, z, ω),

where ω ∈ O, M2(ω) = diag{A(ω), C2},

P2(x, y, z, ω) =

n
∑

j=1

ηjPj(qj+1 − qj).

Thus, Theorem 2 can be also applied to (6.12) to yield the following result:

Proposition 6.3. Assume A5) and that C is non-singular. Then as η = (η1, η2,

· · · , ηn) sufficiently small, the conclusion of Proposition 6.2 holds on G.

Remark 6.2 It is easy to see that the invertibility of C holds in the following two
particular situations:

i) αj = 0, βj 6= 0, j = n+1, · · · , d−1. In this case, the remaining m oscillators
are completely degenerate at q0.

ii) αj > 0, βj ≥ 0, j = n + 1, · · · , d. In this case, q0 is an elliptic critical
point for all remaining m oscillators, and C is diagonally dominant (hence
non-singular).

Example 6.2 (Coupled Pendulums). As a special case, we consider d coupled
mathematical pendulums of the following Hamiltonian:

(6.13) H(p, q) =

d
∑

j=1

(
1

2
p2

j + 1 − cos qj) +

d−1
∑

j=1

1

2
ηj(qj+1 − qj)

2,

where for each j = 1, 2, · · · , d, qj and pj = q̇j denote the oscillating angle and
the angular velocity of the jth pendulum respectively, and ηj ≥ 0 is the spring
constant of the spring which links the jth pendulum with the (j + 1)th one, for
j = 1, 2, · · · , d − 1 respectively.

Such a system has been used to model a row of idealized pendulums coupled with
horizontal springs (see [14] for extensive studies on higher order resonance cases)
and a finite lattice of nearest neighboring coupled paticles (the Frenkel-Kontorova
model, see [4]). It can also be thought of as a spatial discretization of the 1D sine
Gordon equation.
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Let Uj(q) = 1 − cos q, j = 1, 2, · · · , d, and Fj(q) = q2, j = 1, 2, · · · , d − 1. Then
U ′

j(q
0
j ) = 0, q0

j = 0 or π, and

U
′′

j (q0
j ) = αj =

{

1, if q0
j = 0;

−1, if q0
j = π,

for j = 1, 2, · · · , d.

Case 1 (soft springs). Assume that the pendulums are all coupled with soft springs,
i.e., ηj , j = 1, 2, · · · , d, are sufficiently small. Let n be such that q0

j = 0, j =

1, 2, · · · , n, and q0
j = 0, or π, j = n+1, · · · , d. Then Proposition 6.2 is immediately

applicable to yield a positive measure set of quasi-periodic, invariant n-tori near
{0} × (0, · · · , 0, q0

n+1, · · · , q0
d) ∈ R2d.

Case 2 (hard springs). Assume that for some 0 < n < d, the first n pendulums
are coupled with soft springs, i.e., ηj , j = 1, 2, · · · , n, are sufficiently small, but
the remaining d − n pendulums are coupled with arbitrary springs. Consider the
elliptic case that q0

j = 0 for all j = 1, 2, · · · , d. Then conditions in Remark 6.2 ii)
hold and thus Proposition 6.3 is immediately applicable to yield a positive measure
set of quasi-periodic, invariant n-tori near the origin of R2m.
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