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Abstract

A mathematical model incorporating both malaria epidemics and human popula-
tion genetics of the sickle-cell gene is studied. The dynamics of the model can be
separated into two time-scales with a faster time-scale for the epidemics and a slower
time-scale for the change in gene frequencies. A complete analysis of the dynamics on
the slow manifold is conducted, which provides insights into how malaria epidemics
may have an impact on the maintenance of the sickle-cell gene in a population where
malaria is prevalent.

1 Introduction

Malaria is a mosquito-borne human disease endemic in many areas of the world especially in
Africa. It is reported that there are 300-500 million clinical cases of malaria per year and more
than 2 billion people are at risk throughout the world ([23]). One of the important features
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associated with malaria is the resistance of erythrocytes containing HbS (i.e., the sickle-
cell trait) to infection by Plasmodium falciparum malaria parasites ([2], [10], [12]). On one
hand, intuitively, one would expect that the frequency of the sickle-cell (S) gene will decrease
in the absence of malaria due to a higher malaria-induced death rate in the heterozygote
sickled individuals (AS) than in the homozygote wild-type individuals (AA). On the other
hand, the S gene may be selected if the endemic level of malaria is sufficiently high, and
consequently polymorphisms in host populations may be maintained. Many mathematical
models for malaria have been developed to study the disease dynamics including the earliest
model by Ross in 1911 (see [7], [8], [14], [18], [19]). Most of these models focus on the
population biology and epidemiology of the host-parasite association and no explicit genetic
structures are incorporated. Several researchers have used mathematical models to explore
the possibility that the coevolution of hosts and parasites may be responsible for the genetic
diversity found in natural populations (see for example, [17], [4], [5], [8]). However, these
studies do not consider the special feature of malaria mentioned above and they either do
not include the vector population or assume a constant size of infected vector population.

In this paper, we study an ODE model that explicitly couples the dynamics of malaria
and the sickle-cell gene frequency and allows for a variable size of infective vector population.
The derivation of the model and more biological background and discussions can be found
in [21]. Our aim is to study mathematical properties of the model, along with some discus-
sions on their biological interpretations. Particular attention will be paid to the interaction
between the disease prevalence of malaria and the genotype distribution in human hosts.
The dynamics of this model can be very complicated in general even for parameters in a
biologically reasonable range. Based on epidemiological evidences and experimental data,
we assume that the malaria infection rate and the malaria-induced death rate are higher in
AA individuals than in AS individuals ([3], [15]), that the recovery rate from malaria may
be lower in AA individuals than in AS individuals ([15]), and that the background mortality
rate is higher in AS individuals than in AA individuals. We also assume that the malaria
epidemics occur on a much faster time-scale than changes in sickle-cell gene frequency. These
assumptions allow us to conduct a complete analysis for the slow dynamics and further for
the full dynamics of the model by using the geometric theory of singular perturbations due
to Fenichel ([9]) and the classical multiple scales method which have also been used in the
study of other biological problems (see for example, [4], [5], [11]).

Our mathematical results provide threshold conditions for the extinction or persistence
of the rare gene in a population. These conditions are formulated in terms of the fitness of
the rare gene. In our model, the fitness of the sickle-cell gene is measured by the per-capita
growth rate of the gene frequency when the gene is initially introduced into a population and
hence it describes the invasion ability of the gene. We will show that this fitness coefficient
is determined by the difference of weighted death rates between the homozygotes and the
heterozygotes, and the weights depend only on the epidemiological parameters. This allows
us to explore the impact of malaria epidemics on the distribution of genotypes. We will also
show that the fitness decreases with the mosquito-man transmission rate of malaria in the
heterozygotes and increases with the human recovery rate from malaria in the heterozygotes.

This paper in organized as follows. In Section 2 we describe the model and the sepa-
ration of the fast and slow equations, along with the application of the geometric theory
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of singular perturbations and the multiple scales method. Section 3 is devoted to the local
analysis of the slow dynamics including local stabilities of all biologically feasible equilibria.
Results on the global dynamics of the slow manifold are given in Section 4. Some biological
interpretations of the mathematical results are given in Section 5. Section 6 includes some
numerical simulations of the full model and a discussion is given in Section 7.

2 The model and its reduction

The following model is developed in [21]:






















u̇i = Pib(N)N − miui − aθiczui + γivi,

v̇i = aθiczui − (mi + γi + αi)vi, i = 1, 2,

ż = a(1 − z)(φ1
v1
N

+ φ2
v2
N

) − δz,

(2.1)

where u1 and u2 denote the number of uninfected humans with genotype AA and AS,
respectively; v1 and v2 denote the number of infected humans of each type; N =

∑2
i=1(ui+vi)

is the total population size of humans; z is the fraction of mosquitoes that are transmitting
malaria (it is assumed that SS individuals are never born, see [21]); P1 = p2, P2 = 2pq are
the fractions of total births of the genotype AA and AS, respectively, with

p =
2u1 + 2v1 + u2 + v2

2N
, q =

u2 + v2

2N
(2.2)

being the frequencies of the A gene and the S gene in the population, respectively; and,

b(N) = b(1 − N

K
) (2.3)

is the Logistic birth function, with b being the maximum per capita birth rate and K being
the carrying capacity. The meaning of the parameters in the model is the following. a
denotes the biting rate per human per mosquito; c denotes the number of mosquitoes per
human; θi denotes the probability that a human of type i acquires parasitaemia per bite; φi

denotes the probability that a mosquito acquires parasitaemia from biting a human of type
i; 1/γi is the average time until a victim of malaria recovers; 1/δ is the average life span of
an infected mosquito; αi is the additional death rate of infected individuals due to malaria.

For i = 1, 2, let

Ri =
a2cθiφi

δγi

, (2.4)

and,

ξi =
acθi

γi

, ηi =
aφi

δ
. (2.5)

Then Ri = ξiηi is the reproduction number associated with the genotype i (see [21]), ξi is
the malaria transmission coefficient from mosquitoes to humans, and ηi = aφi

δi

is the malaria
transmission coefficient from humans to mosquitoes.
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Our assumptions for the model described in the Introduction summarize to

m1 < m2, θ1 > θ2, γ1 < γ2, α1 ≥ α2, ξ1 > ξ2. (2.6)

In addition, the parameters mi, αi (i = 1, 2) and b are assumed to be much smaller than the
other epidemiological parameters (see [21]). We thus re-scale them as

mi = εm̃i, αi = εα̃i, b = εb̃, i = 1, 2,

where ε is a small positive parameter.

To separate the fast and slow dynamics, we consider two time scales: the original time
t, referred to as the fast time variable, and τ = εt, referred to as the slow time variable.

Hereafter, we denote ‘·’= d

dt
and ‘′’= d

dτ
.

Consider the new variables

xi =
ui

N
, yi =

vi

N
, w = x2 + y2, i = 1, 2.

Then xi, yi are rescaled human populations of the respective types and w is the total fre-
quency of genotype AS. We note that x1 +y1 +x2 +y2 = 1, x1 = 1−y1−w, and x2 = w−y2.

In terms of the new variables and rescaled parameters, the system (2.1) with respect to
the fast and slow time variables reads respectively as















































ẏ1 = aθ1cz(1 − y1 − w) − γ1y1

− εy1

(

(m̃1 − m̃2)w + α̃1(1 − y1) − α̃2y2 + (P1 + P2)b̃(1 − N
K

)
)

,
ẏ2 = aθ2cz(w − y2) − γ2y2

− εy2

(

(m̃1 − m̃2)w − α̃1y1 + α̃2(1 − y2) + (P1 + P2)b̃(1 − N
K

)
)

,
ż = a(1 − z)(φ1y1 + φ2y2) − δz,

ẇ = ε
(

((1 − w)P2 − wP1)b̃(1 − N
K

)
+ (m̃1 − m̃2)w(1 − w) + α̃1wy1 − α̃2(1 − w)y2

)

,

Ṅ = εN
(

(P1 + P2)b̃(1 − N
K

) − m̃1(1 − w) − m̃2w − α̃1y1 − α̃2y2

)

,

(2.7)















































εy′

1 = aθ1cz(1 − y1 − w) − γ1y1

− εy1

(

(m̃1 − m̃2)w + α̃1(1 − y1) − α̃2y2 + (P1 + P2)b̃(1 − N
K

)
)

,
εy′

2 = aθ2cz(w − y2) − γ2y2

− εy2

(

(m̃1 − m̃2)w − α̃1y1 + α̃2(1 − y2) + (P1 + P2)b̃(1 − N
K

)
)

,
z′ = a(1 − z)(φ1y1 + φ2y2) − δz,

w′ = ((1 − w)P2 − wP1)b̃(1 − N
K

)
+ (m̃1 − m̃2)w(1 − w) + α̃1wy1 − α̃2(1 − w)y2,

N ′ = N
(

(P1 + P2)b̃(1 − N
K

) − m̃1(1 − w) − m̃2w − α̃1y1 − α̃2y2

)

.

(2.8)

We note that
P1 = p2 =

(

1 − w

2

)2
, P2 = 2pq = w

(

1 − w

2

)

. (2.9)
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Thus y1, y2, z are the fast variables and w, N are the slow variables. Let ε = 0 in (2.7).
The fast dynamics are given by the equations:























ẏ1 = aθ1cz(1 − y1 − w) − γ1y1,

ẏ2 = aθ2cz(1 − y2 − w) − γ2y2,

ż = a(1 − z)(φ1y1 + φ2y2) − δz,

(2.10)

which describe the epidemics of malaria for a given distribution of genotypes.

As shown in [21], on the fast time-scale, all solutions of (2.10) are hyperbolically asymp-
totic to the relative equilibrium (y∗

1, y
∗

2, z
∗), where

y∗

1 =
ξ1z

∗

1 + ξ1z∗
(1 − w), y∗

2 =
ξ2z

∗

1 + ξ2z∗
w, (2.11)

and z∗ is a solution of the equation

k0z
2 + k1z + k2 = 0, (2.12)

with
k0 = ξ1ξ2 + R1ξ2(1 − w) + R2ξ1w,

k1 = ξ1 + ξ2 + R1(1 − ξ2)(1 − w) + R2(1 − ξ1)w,

k2 = 1 − R1(1 − w) − R2w.

(2.13)

In term of the system (2.7) with ε = 0, this is to say that

M = {(y1, y2, z, w, N) : y1 = y∗

1, y2 = y∗

2, z = z∗}
is the set of equilibria which are all hyperbolically asymptotically stable, or, in term of
the system (2.8), M is the two dimensional slow manifold which is normally hyperbolically
stable. The slow dynamics on M are simply described by the equations







w′ =
(

(1 − w)P2 − wP1

)

b̃(1 − N
K

) + (m̃1 − m̃2)w(1 − w)
+α̃1wy∗

1 − α̃2(1 − w)y∗

2,

N ′ = N
(

(P1 + P2)b̃(1 − N
K

) − m̃1(1 − w) − m̃2w − α̃1y
∗

1 − α̃2y
∗

2

)

,

(2.14)

where y∗

1 and y∗

2 are given in (2.11).

Our study of the model is based on the geometric theory of singular perturbations and
dynamical systems techniques. The geometric theory of singular perturbations was first
introduced in [9] using the persistence theory of normally hyperbolic invariant manifolds in
dynamical systems. Applying this geometric theory to the present problem, one immediately
has the persistence of the slow manifold M . More precisely, as ε small, there are smooth
functions

yε
1 = y∗

1 + O(ε),

yε
2 = y∗

2 + O(ε),

zε = z∗ + O(ε)

5



of w, N , varying smoothly in ε, such that the manifold (called center manifold)

M ε == {(y1, y2, z, w, N) : y1 = yε
1, y2 = yε

2, z = zε}
is diffeomorphic to M , normally hyperbolically stable, and invariant with respect to both
(2.7) and (2.8) as ε > 0. The dynamics on the center manifold M ε are simply described by
the equations















w′ =
(

(1 − w)P2 − wP1

)

b̃(1 − N
K

) + (m̃1 − m̃2)w(1 − w)
+α̃1wyε

1 − α̃2(1 − w)yε
2,

N ′ = N
(

(P1 + P2)b̃(1 − N
K

) − m̃1(1 − w) − m̃2w − α̃1y
ε
1 − α̃2y

ε
2

)

.

(2.15)

Moreover, M ε admits asymptotic phases, which, in terms of solutions (y1, y2, z, w, N) of
(2.8), means that

y1 = yε
1(w, N) + Y1(t), (2.16)

y2 = yε
2(w, N) + Y2(t), (2.17)

z = zε(w, N) + Z(t), (2.18)

where w and N are solutions of (2.15) (in the slow time scale εt), and Y1(t), Y2(t) and Z(t)
are exponentially decay functions with exponents in the scale of the upper bound of the
eigenvalues of the linearization of (2.10) about (y∗

1, y
∗

2, z
∗) (see [6],[9]). Thus, if the slow

dynamics of (2.14) can be characterized via bifurcations, then the bifurcating dynamics on
the slow manifold M are structurally stable hence robust subject to perturbations. In this
way, one has a complete understanding to the dynamics of (2.15) on the center manifold M ε

as ε small, hence to the full dynamics of (2.8) according to (2.16)-(2.18). Giving a complete
characterization of the dynamics on the slow manifold M is in fact our main concern in the
next two sections.

In this sense, the equations (2.10) and (2.14) together characterize the full dynamical
properties of (2.1), but now the relationships between the epidemic and population genetic
parameters are clearly distinct.

We remark that the application of the geometric theory of singular perturbations requires
the restriction of M on a bounded domain. This will not be a problem here because as we will
see in the sequel all interesting slow dynamics will lie in a bounded region in the w−N plane.
With the forms (2.16)-(2.18), one can also construct multi-scale asymptotic expansions of
solutions of (2.8) using the Tiknov-O’Malley matching principal (see [20]). This can be done
by choosing solutions (w, N) on the center manifold as the outer solutions and Y1, Y2, Z as the
boundary layer corrections (outer solutions). In fact, the slow dynamics to be characterized
in the next two sections will provide the 0th order approximation to the outer solutions.

3 Local dynamics on slow manifold

When Ri > 1, i = 1, 2, (2.12) admits a unique positive solution:

z∗ =
−k1 +

√
∆

2k0
, (3.1)
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where ∆ = k2
1 −4k0k2. Substituting (3.1) into (2.11) and using a straightforward calculation

yields

y∗

1 =
−k1 +

√
∆

−
(

k1 − 2
ξ1

k0

)

+
√

∆
(1 − w),

y∗

2 =
−k1 +

√
∆

−
(

k1 − 2
ξ2

k0

)

+
√

∆
w.

(3.2)

Since

P1 + P2 = 1 − w2

4
, (1 − w)P2 − wP1 = −w2

2

(

1 − w

2

)

, (3.3)

the slow system (2.14) can be re-written as











w′ = − b̃

2
w2(1 − w

2
)(1 − N

K
) + g1(w),

N ′ = N
(

b̃(1 − w2

4
)(1 − N

K
) − g2(w)

)

,

(3.4)

where
g1(w) = (m̃1 − m̃2)w(1 − w) + α̃1wy∗

1 − α̃2(1 − w)y∗

2,
g2(w) = m̃1(1 − w) + m̃2w + α̃1y

∗

1 + α̃2y
∗

2.
(3.5)

Substituting (3.2) into (3.5), we obtain

g1(w) = w(1 − w)
(

α̂1L1(w) − α̂2L2(w)
)

,
g2(w) = α̂1L1(w)(1 − w) + α̂2L2(w)w

(3.6)

with α̂i = α̃i + m̃i > 0, i = 1, 2, and

Li(w) =
−(k1 − νik0) +

√
∆

−(k1 − µik0) +
√

∆
, (3.7)

where

µi =
2

ξi

, νi =
m̃i

α̂i

µi =
m̃i

α̃i + m̃i

µi < µi

are positive constants.

It is easy to see that Li(w), i = 1, 2, have the following properties on (0, 1).

Proposition 3.1. L1(w) and L2(w) are smooth functions,

0 < Li(w) < 1, i = 1, 2, (3.8)

and,

L1(w) = 1 − M1

(

C11 +
C12 +

√
∆

1 − w

)

,

L2(w) = 1 − M2

(

C21 +
C22 −

√
∆

w

)

,

(3.9)
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where

Mi =
α̃iξi

2α̂iRi(1 + ξi)(ξ1 − ξ2)
,

C11 = (−1 + ξ2 + 2
ξ2

ξ1

)R1 − (1 + ξ1)R2,

C12 = ξ1 − ξ2 − (1 + ξ1)R2,

C21 = (−1 + ξ1 + 2
ξ1

ξ2
)R2 − (1 + ξ2)R1,

C22 = ξ1 − ξ2 + (1 + ξ2)R1,

(3.10)

and
∆ = C0w

2 + 2C1w + C2

with C2 = C2
22 and

C0 =
(

R1(1 + ξ2) − R2(1 + ξ1)
)2

,
C1 = −(1 + ξ2)

2R2
1 + (1 + ξ2)(ξ2 − ξ1 + R2(1 + ξ1))R1 − R2(1 + ξ1)(ξ1 − ξ2).

It now follows from (3.6) that system (3.4) can be written as











w′ = w
(

− 1

2
b̃w(1 − w

2
)(1 − N

K
) + h1(w)

)

,

N ′ = N
(

b̃(1 − w2

4
)(1 − N

K
) − h2(w)

)

(3.11)

where
h1(w) = (1 − w)

(

α̂1L1(w) − α̂2L2(w)
)

,
h2(w) = α̂1L1(w)(1 − w) + α̂2L2(w)w.

(3.12)

For convenience, we also write system (3.11) as

{

w′ = wq1(w)
(

N − H1(w)
)

,
N ′ = −Nq2(w)

(

N − H2(w)
) (3.13)

where

q1(w) =
b

2K
w(1 − w

2
), q2(w) =

b

K
(1 − w2

4
),

H1(w) = K − h1(w)

q1(w)
, H2(w) = K − h2(w)

q2(w)
.

The system (3.11) involves many parameters and has a complicated form. Instead of
explicitly calculating the location of the equilibria which turns out to be rather difficult, we
are going to give a qualitative description of its dynamics. Numerical simulations will follow
to illustrate the qualitative results.

3.1 Linear Stability Analysis

First, we make the following observation.
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Proposition 3.2. With respect to system (3.11), the closed rectangle

D :=
{

(w, N)
∣

∣

∣
0 ≤ w ≤ 1, 0 ≤ N ≤ K

}

is invariant and attracting.

Proof. The results follows from the fact that w, N−axis are invariant, and

w′

∣

∣

∣

w=1
= −1

4
b̃(1 − N

K
) < 0,

N ′

∣

∣

∣

N=K
= −h2(w)K < 0.

Obviously, the origin is an equilibrium of system (3.11) in D. There can well be equilibria
of (3.11) in D on both coordinate axes and in the interior of D.

To classify these equilibria, we consider the equations
{

wq1(w)
(

N − H1(w)
)

= 0,
Nq2(w)

(

N − H2(w)
)

= 0.
(3.14)

Then the interior equilibria, if exist, will be determined by the intersections of the two
isocline N = H1(w) and N = H2(w).

As we will see below, although there are many parameters in the system (3.11), only three
of them are crucial in determine the number of equilibria of (3.11) in D: the scaled maximum
per capita birth rate b̃ and σi = α̂iLi(0), i = 1, 2. We note by (3.8) that 0 < σi < α̂i, i = 1, 2,
and by (3.9) that

σ1 = m̃1 +
ξ1(R1 − 1)

(1 + ξ1)R1
α̃1

σ2 = m̃2 +
ξ2(R1 − 1)

(1 + ξ1)R1 + ξ1 − ξ2
α̃2.

(3.15)

Hence σi, i = 1, 2, depend on the death rates αi, mi, i = 1, 2, among other factors.

Below, we will use b̃, σ1 and σ2 as bifurcation parameters to study the non-negative
roots of (3.14), or equivalently, the equilibria of (3.11) in D, along with their linear stability.
Instead of describing bifurcation diagrams in the (b̃, σ1, σ2)-space, we will fix b̃ > 0 and study
the dynamics of (3.11) as σ1 and σ2 vary.

Let (w̄, N̄) be an equilibrium of system (3.11) in D. Then the variational matrix at
(w̄, N̄) reads

V (w̄, N̄) =

(

(q1 + wq′1)(N − H1) − wq1H
′

1 wq1

−Nq′2(N − H2) + Nq2H
′

2 −q2(N − H2) − q2N

)

. (3.16)

We study the equilibria of (3.11) in D by considering the equilibrium at the origin, on
the axis and in the interior of D respectively.
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1. The origin.

At the origin, V (0, 0) becomes

(

σ1 − σ2 0

0 b̃ − σ1

)

.

Hence the following holds for (3.11):

a) If σ1 > σ2 and σ1 > b̃, then (0, 0) is a hyperbolic saddle point;

b) If σ1 > σ2 and σ1 < b̃, then (0, 0) is a repelling node;

c) If σ1 < σ2 and σ1 > b̃, then (0, 0) is an attracting node;

d) If σ1 < σ2 and σ1 < b̃, then (0, 0) is a hyperbolic saddle point.

Moreover, if either σ1 = σ2 or σ1 = b̃ or both, then (0, 0) is a degenerate equilibrium. The
above stability descriptions of (0, 0) is illustrated in Fig. 3.

2. Equilibria on the N-axis

Let w = 0 in (3.14). Then the equilibria of (3.11) in D on the non-negative N -axis is
given by

N = H2(0) =
K

b̃
(b̃ − σ1), N ≥ 0.

Thus the following holds for (3.11):

a) If σ1 > b̃ and H2(0) < 0, then there is no equilibrium on the positive N -axis.

b) If σ1 < b̃, then there exists a unique equilibrium (0, H2(0)) on the positive N axis at
which

V
(

0, H2(0)
)

=

(

σ1 − σ2 0

−K

b̃
(b̃ − σ1) σ1 − b̃

)

.

Hence (0, H2(0)) is an attracting node if σ1 < σ2, a saddle point if σ1 > σ2. We note
that as σ1 increases and crosses the line σ1 = σ2, one interior equilibrium coalesces
with (0, H2(0)) to form an attracting saddle node.

c) If σ1 = b̃, then the equilibria (0, H2(0)) and (0, 0) coalesce with the origin. So, the
origin becomes an attracting saddle node if σ2 > b̃; a repelling saddle node if σ2 < b̃;
and a degenerate node of co-dimension at least 2 if σ2 = b̃.

The above stability descriptions of (0, H2(0)) is also illustrated in Fig. 3.

3. Equilibria on the w-axis
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We are interested in the possible equilibria of (3.11) lying in the interval (0, 1). These
equilibria are the roots of H1(w) = 0, or equivalently, the roots of

σ(w) := h1(w) − b̃

2
w(1 − w

2
). (3.17)

Let
σ3(w) = σ′(w), σ4(w) = σ′′(w). (3.18)

We denote Σ1 as the hyper-surface in the parameter space consisting of parameters at which
σ admits a multiple root in [0, 1), i.e., there is a w ∈ [0, 1) such that σ(w) = 0 and σ3(w) = 0.
The existence of such surface will be verified in the proof of the next proposition and also
via numerical simulations. As the parameters vary from one side to the other side of Σ1, a
saddle-node bifurcation is expected and the number of equilibria of (3.11) will decrease at
least by two. In particular, in the parameter space, the surface defined by σ3(0) = 0 is a
subset of Σ1, along which the saddle-node bifurcation occurs at the origin. In Fig 1, roots of
(3.17) are represented as the intersections between the curve N = h1(w) and the parabola

N = b̃
2
w(1− w

2
). As demonstrated in Fig 1a and b, (3.17) can have double roots when these

two curves are tangent to each other at some intersection points.

We remark that by using Maple one can find an explicit expression for Σ1. But we prefer
not to do so because such an expression is very complicated hence does not provide much
help to our analysis.

A straightforward calculation yields

σ3(0) = −α̂1

(

1 − M1C11 +
C1

C22

)

+ α̂2

(

1 − M2C21 +
C1

C22

+
C2

1 − C0C2

2C3
22

)

− b̃

2
,

σ4(0) =
C2

1 − C0C2

C3
22

(

α̂1M1 + α̂2M2(1 +
3C1

C2
22

)

)

+
b̃

2
.

(3.19)

Proposition 3.3. The system (3.11) admits at most two equilibria in the interval (0, 1) on
the w-axis. Moreover, the following holds.

1) (3.11) admits a unique equilibrium in (0, 1) on the w-axis if either σ1 > σ2 or σ1 =
σ2,σ3(0) > 0. If (w0, 0) is the unique equilibrium, then σ3(w0) < 0.

2) (3.11) admits zero or two equilibria (counting multiplicity) in (0, 1) on the w-axis if
either σ1 < σ2 or σ1 = σ2, σ3(0) < 0. Let (w01, 0),(w02, 0), w01 ≤ w02, be two such
equilibria at some parameter values. If w01 < w02, then σ3(w01) > 0 and σ3(w02) < 0,
and, if the parameters lie on the saddle-node surface Σ1, then (w01, 0) and (w02, 0)
coalesces at some point (w0, 0) with σ3(w0) = 0.

3) If σ1 = σ2 and σ3(0) = 0, i.e., the parameters are on the saddle-node surface Σ1 at
w = 0, then σ4(0) > 0 and there exists a unique equilibrium (w0, 0) of (3.13) with
w0 ∈ (0, 1) and σ3(w0) < 0.
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Figure 1: Equilibria on w-axis: the intersection of N = h1(w) and the parabola N =
b̃/2w(1 − w).

Proof. First we show that (3.17) has at most two roots in (0, 1).

It follows from (3.9), (3.12) and a straightforward calculation that σ(w) = 0 defined in
(3.17) is equivalent to

√
∆ =

ĥ11(w)

ĥ10(w)
, (3.20)

where

ĥ10(w) = α̂1M1w + α̂2M2(1 − w)

ĥ11(w), =
b̃

4
w3 − (α̂1 − α̂2 + α̂1M1C11 + α̂2M2C21 +

b̃

2
)w2

+[α̂1 − α̂2 − α̂1M1C12 + α̂2M2(C21 − C22)]w + α̂2M2C22.

We analyze the number of roots of (3.20) by finding the intersections of the two curves

N1 =
√

∆ and N2 = ĥ11(w)

ĥ10(w)
through convexity analysis.

Since

N ′′

1 (w) =
C2

1 − C0C2

∆
√

∆
, (3.21)

N1 is convex or concave on (0, 1) if C2
1 − C0C2 6= 0. If C2

1 − C0C2 = 0, then both L1 and L2

reduce to linear functions and σ(w) in (3.17) becomes quadratic hence admits at most two
roots.

Rewrite N2 as

N2(w) = P̂1(w) +
d0

α̂2M2 + (α̂1M1 − α̂2M2)w
(3.22)

12



where P̂1(w) is quadratic in w and d0 is a constant. Then N ′′

2 (w) = 0 is equivalent to

[α̂2M2 + (α̂1M1 − α̂2M2)w]3 = d1,

which admits at most one root, i.e., N2(w) has at most one inflection point. Hence if N2(w)
is not linear, then N ′′

2 (w) 6= 0.

From the above analysis, we see that N1 and N2 have at most three intersection points.
Since w = 0 is already a root of (3.20), the system (3.11) has at most two equilibria in the
interval (0, 1) on the w-axis.

We now proceed with the rest of the proposition. As shown in Fig. 1, the three cases
stated in the proposition are determined by the sign of σ1 − σ2.

1) If σ1 > σ2, then σ(0)σ(1) < 0. It follows that σ(w) = 0 has at most one root hence a
unique root, say w0, in (0, 1). Since σ(0) > 0 and σ(1) < 0, we have σ′(w0) = σ3(w0) < 0.

Note that for w > 0 sufficiently small,

σ(w) = σ3(0)w + σ4(0)w2 + O(w3). (3.23)

It follows from a similar argument as above that if σ1 = σ2 and σ3(0) < 0, then σ(w) = 0
has a unique root w0 ∈ (0, 1), and also σ3(w0) < 0.

2) If σ1 < σ2, then σ(0) < 0 and σ(1) < 0. Therefore σ(w) = 0 has zero or two roots
(counting multiplicity), say w01,w02 with w01 ≤ w02, in (0, 1). Now, if w01 < w02, then
σ′(w01) > 0 and σ′(w02) < 0, i.e., σ3(w01) > 0 and σ3(w02) < 0. On the other hand, if the
parameters are on the surface Σ1, then w01 = w02 := w0, hence σ3(w0) = 0.

The case σ1 = σ2 and σ3(0) < 0 follows from (3.23) and a similar argument as above.

3) We note that in this case w = 0 is a root of σ(w) = 0 of multiplicity three, which is
generated by the merging of the two roots w01 and w02 when moving towards w = 0. Since
σ(w) = 0 has at most two roots in (0, 1), we must have σ4(0) = σ′′(0) 6= 0, for otherwise
a small perturbation would produce at least three roots of it in (0, 1), which is impossible.
Hence by taking the special case C2

1 − C0C2 = 0 in the second equation of (3.19) we have
σ4(0) > 0, which implies that σ(w) > 0 as w > 0 sufficiently small. It follows that σ(w) = 0
has a unique root w0 in (0, 1) and σ3(w0) < 0. Moreover, the variational matrix at the origin
admits a zero eigenvalue.

Let (w0, 0), w0 ∈ (0, 1), be any equilibrium of (3.11) on the w-axis. Then its respective
variational matrix can be simplified to

V (w0, 0) =

(

w0σ(w0) w0q1(w0)
0 −q2(w0)H2(w0)

)

. (3.24)

Since both q1(w0) and q2(w0) are positive, the sign of H2(w0) will determine the stability
type of (w0, 0). We will determine the sign of H2(w0) when we proceed to the next case.

4. Equilibria in the interior of D
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The interior equilibria of (3.11) are the intersections of the isoclines N = H1(w) and
N = H2(w). Eliminating K from H1 and H2, the w coordinate of an interior intersection is
a root of the equation

H(w) = −(1 +
w

2
)h1(w) + wh2(w) (3.25)

in (0, 1).

Similar to the saddle-node surface Σ1, for the interior equilibria, we let Σ2 be the hyper-
surface of the parameter space consisting of points for which there is a w ∈ (0, 1) such
that H(w) = 0, H ′(w) = 0. Then as the parameters cross the surface Σ2, the number of
interior equilibria of (3.13) changes by two due to the tangency of the two isoclines, resulting
in a saddle-node bifurcation. The saddle node can lie either inside or on the left or lower
boundary of D. Hence the surface Σ1 is a subset of Σ2. To avoid the difficulty in expressing
both Σ1 and Σ2 explicitly, we will give a qualitative description of the surface Σ2 in the proof
of the proposition below.

Proposition 3.4. Consider the two isoclines N = H1(w) and N = H2(w) for w ∈ (0, 1).
Then for any fixed b̃ > 0 and any other positive parameters, there exists a curve

S : σ1 = S(σ2),

connecting (b̃, b̃) to (b̃∗, 0) in the (σ1, σ2) plane, where b̃∗ ∈ (b̃, σ1), such that if σ1 > S(σ2)
(σ2 ∈ (0, b̃)), system (3.11) has no interior equilibria.

Moreover, the curves σ1 = S(σ2) (b̃ < σ1 < b̃∗), σ2 = σ1, and σ1 = b̃ divide the
positive (σ1, σ2) plane into five subregions, I, II, III, IV and V (See Fig. 3) with the following
properties.

1) In I, the two isoclines have zero or two intersections (counting multiplicity). Let
(w̄1, H2(w̄1), (w̄2, H2(w̄2), w̄1 ≤ w̄2, be two interior equilibria of (3.11) in I. If
w̄1 < w̄2, then H ′(w̄1) > 0 and H ′(w̄2) < 0, and, if w̄1 = w̄2, then H ′(w̄1) = 0.

2) In II ∪ III, the two isoclines do not intersect in the interior of D.

3) In IV ∪ V , the two isoclines admit a unique intersection, say w̄, in the interior of D,
and moreover, H ′(w̄) < 0.

Proof. Similar to the proof of Proposition 3.3, we first show that the two isoclines have at
most two intersections in the interior of D.

By multiplying w to both sides of (3.25) and using a straightforward calculation, we see
that (3.25) is reduced to the equation

√
∆ =

ĥ21(w)

ĥ20(w)
, (3.26)

where
ĥ20(w) = (α̂1M1 − α̂2)w

2 − (2α̂1M1 − α̂2M2)w − 2α̂2M2

ĥ21(w) = −α̂1w(2 − w)[(1 − M1C11)(1 − w) − M1C11]
+α̂2(w

2 − w + 2)[(1 − M2C21)w + M2C12)].
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Figure 2: Interior equilibrium(a) as the intersection(s) of the two isoclines N = H1(w) and
N = H2(w)
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We note that this reduction has introduced the artificial root w = 0 to (3.26). Similar to the
proof of Proposition 3.3, we now consider the intersections between the two curves N1 =

√
∆

and N2 =
ĥ21

ĥ22

. Rewrite N2 into the form

N2(w) = P̂2(w) +
d0w + d1

w2 − D1w − D2

, (3.27)

where P̂2(w) is linear in w, Di, i = 1, 2, are positive constants, and d0 and d1 are constants.
A straightforward calculation shows that N ′′

2 = 0 is equivalent to

d0w
3 + 3d1w

2 − 3(d1D1 − d0D2)w + d1D
2
1 − d0D1D2 + d1D2 = 0, (3.28)

by which N2 has at most three inflection points in (0, 1).

If α̂1M1 = α̂2M2, then N2 is reduced to a cubic order polynomial hence admits at most
one inflection point in (0, 1). If α̂1M1 6= α̂2M2, then it can be easily verified that the two
roots of ĥ20(w) = 0 define two vertical lines outside the strip [0, 1]. Since limw→∞ N2(w)
limw→−∞ N2(w) < 0, N2(w) has at most one inflection point in (0, 1). In Proposition 3.3,
we have already shown that N1 =

√
∆ has no inflection point in (0, 1). This implies that,

for both cases above, N1 and N2 admit at most three intersections in [0, 1). Since w = 0 is
already such an intersection point, the number of intersection points of N1 and N2 in (0, 1)
is at most two.

We now discuss the number and distribution of the equilibria of (3.11) in the interior
of D, or equivalently, the intersection points of N1 and N2 in (0, 1), for which we need the
following facts:

H(0) = −(σ1 − σ2), H(1) = α̂2L2(1) > 0;
H1(0) = −sign(σ1 − σ2)∞, H1(1) = K > 0;

H2(0) = K

b̃
(b̃ − σ1), H2(1) = K

(

1 − 4α̂2L2(1)

3b̃

)

.
(3.29)

The regions A = {σ1 > σ2}, B = {σ1 < σ2}, and C = {σ1 = σ2} will be treated
separately.

The region A:

Let (σ1, σ2) ∈ A. Since H(0) < 0, H(1) > 0 and H(w) has at most two zeros in (0, 1), it
must has a unique zero in (0, 1), which we denote by w̄. Depending on the sign of σ1 − b̃,
H2(0) can be positive or negative, and hence the unique intersection (w̄, H2(w̄)) of H1, H2

can be above or below the w-axis.

Fix a σ2 ∈ (0, b̃). If σ1 ∈ (0, b̃), then H2(0) > 0 and (w̄, H2(w̄)) lies inside of D; while
if σ1 > b̃ increases and becomes sufficient large, then (w̄, H2(w̄)) moves toward and crosses
the w-axis, hence moves out of D. We let S(σ2) be the value of σ1 at which (w̄, H2(w̄))
coalesces with the equilibrium of (3.11) on the w-axis. Then σ1 = S(σ2), σ2 ∈ [0, b̃) defines
a continuous curve connecting (b̃, b̃) and (b̃∗1, 0), where b̃∗1 = S(0). Numerical simulations
suggest that the curve S is decreasing on (0, b̃∗1).
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As shown in Fig. 3, the curves σ1 = b̃, σ1 = S(σ2) divide the region A into three subre-
gions, III, IV and V . For (σ1, σ2) ∈ IV ∪ V , (3.11) admits a unique interior equilibrium
(w̄, H2(w̄)) in D. Since H(0) > 0 and H(1) < 0, one has that H ′(w̄) < 0. When the param-
eter (σ1, σ2) crosses the curve σ1 = S(σ2), the interior equilibrium becomes an attracting
saddle node on the w−axis then terminates from D. For (σ1, σ2) ∈ III, (3.11) admits two
equilibria, one at the origin and the other is in the interval (0, 1) on the w-axis.

The region B:

As shown in Fig. 3, the line σ1 = b̃ divides the region B into two subregions I and II.

If (σ1, σ2) ∈ I, then H(0) < 0 and H(1) < 0, hence H(w) has even number of zeros
(counting multiplicity) in (0, 1). It follows that H(w) has zero or two zeros in (0, 1), i.e.,
system (3.11) has zero or two (counting multiplicity) interior equilibria in D.

Let (w̄i, H1(w̄i)), i = 1, 2, with w̄1 ≤ w̄2, be two interior equilibria of (3.11). If w̄1 < w̄2,
then it follows from H(0) < 0 and H1(1) < 0 that H ′(w̄1) > 0 and H ′(w̄2) < 0. If w̄1 = w̄2,
then clearly H ′(w̄2) = 0.

If (σ1, σ2) ∈ II, then σ1 > b̃ and it follows from (3.11) and (3.12) that w′ < 0. Hence
system (3.11) has a unique equilibrium at the origin.

The region C:

If (σ1, σ2) ∈ C, then H(0) = 0 and one interior equilibria of (3.11) corresponding to
(σ1, σ2) ∈ A∪B will move toward the origin. There exists zero or at most one other interior
equilibrium of (3.11). This will depend on the sign of H ′(0) as follows.

If H ′(0) > 0, then a similar expansion as (3.23) shows that the other interior equilibrium
of (3.11), say (w̄, H1(w̄), exists, and, H ′(w̄) < 0.

If H ′(0) < 0, then a similar argument shows that there is no other interior equilibrium
of (3.11).

If H ′(0) = 0, the two interior equilibria of (3.11) corresponding to (σ1, σ2) ∈ B coalesce
at the origin, and H ′′(0) must be positive.

This completes the proof. Two of the typical intersections of the isoclines are illustrated
in Fig. 2(a) and (b).

Let (w̄, H2(w̄)) be an interior equilibrium of (3.11). Then H2(w̄) > 0, N−H1(w̄) = 0 and
N −H2(w̄) = 0. Hence the variational matrix in (3.16) at this equilibrium can be simplified
to

V (w̄, H1(w̄)) =

(

−w̄q1(w̄)H ′

1(w̄) w̄q1(w̄)
q2(w̄)H2(w̄)H ′

2(w̄) −q2(w̄)H2(w̄)

)

. (3.30)

We thus have
det V (w̄, H2(w̄)) = w̄q1(w̄)q2(w̄)H2(w̄)H ′(w̄),
T r V (w̄, H2(w̄)) = −w̄q1(w̄)H ′

1(w̄) − q2(w̄)H2(w̄).
(3.31)

It follows that if H ′(w̄) < 0, then det V (w̄, H2(w̄)) < 0 and (w̄, H2(w̄)) is a hyperbolic
saddle. In the case that H ′(w̄) > 0, one might hope to find periodic solutions through a
Hopf bifurcation characterizing by Tr V (w̄, H2(w̄)) = 0. But this is not the case as we will
show in the next section.
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To have an overview of the possible dynamics of (3.11), we now consider the degenerate
case σ1 = σ2 = b̃. Localizing (3.11) at the origin, we have











w′ = σ3(0)w2 + σ4(0)w3 +
b

2K
w2N + O(|(w, N)|4)

N ′ = −h′

2(0)wN − b

K
N2 + O(|(w, N)|3).

(3.32)

Depending on the nature of σ3(0) and σ4(0), the origin of (3.32) can be a degenerate node or
a saddle point. If σ3(0) = 0, then the co-dimension of the singularity is at least four. Since
both coordinate axes are invariant, the universal unfolding of the degenerate singularity
yields the equations

{

w′ = w
(

β1 + β2w + w2 + O(|(w, N)|4)
)

N ′ = N
(

β0 + N + O(|(w, N)|3)
)

,
(3.33)

where (β1, β2, β3) are small parameters. However, except the equilibria at the origin and on
the axes, there are at most two equilibria of (3.11) inside the first quadrant of the w − N
plane. Hence no bifurcation analysis for the unfolding (3.33) is necessary. Instead, we can
conclude the local bifurcations of (3.11) from the analysis in the above, which then well
march the results one would obtain from a standard bifurcation analysis for (3.33).

4 Global dynamics on slow manifold

We first show the nonexistence of periodic solutions for system (3.11).

Theorem 4.1. For any b̃ > 0 and any choice of the positive parameters, system (3.11) has
neither periodic solutions nor homoclinic loops.

Proof. Depending on the sign of σ1 and σ2, system (3.11) has either zero, one or two equilibria
inside D. Obviously, if (3.11) admits no interior equilibrium, then it does not have any
periodic solutions. Now assume that system (3.11) has at least one interior equilibria, say
(w̄, N̄). We first argue that if (3.11) has a periodic solution surrounding (w̄, N̄), then it must
go counter clockwise.

Consider the function Q(w, N) = Q1(w) + Q2(N), where Q1(w) and Q2(N) are defined
by the following initial value problems:

dQ1(w)

dw
=

2 + w

w
, Q1(w̄) = 0

dQ2(N)

dN
= − 1

N
, Q2(N̄) = 0.

(4.1)

It is easily seen that

Q(w, N) = w − w̄ + 2 ln
w

w̄
− ln

N

N̄
.

18



Let
dQ

dτ

∣

∣

∣

(3.13)
denote the derivative of Q along any trajectory of (3.13) inside D. A

straightforward calculation yields

dQ

dτ

∣

∣

∣

(3.13)
=

dQ1

dw

dw

dτ
+

dQ2

dN

dN

dτ

=
b̃

2K
w(2 + w)(1 − w

2
)[H2(w) − H1(w)]

(4.2)

In the case that σ1 > σ2, (w̄, N̄) is the unique equilibrium of (3.11) inside D, and, it
follows from the proof of Proposition 3.4 that H2(w) > H1(w) if w ∈ (0, w̄) and H2(w) <
H1(w) if w ∈ (w̄, 1). Hence

dQ

dτ

∣

∣

∣

(3.13)







> 0 if 0 < w < w̄,

< 0 if w̄ < w < 1.
(4.3)

In that case that σ1 < σ2, (3.11) admit two equilibria (counting multiplicity), say,
(w̄1, H2(w̄1)), (w̄1, H2(w̄1)) with w1 ≤ w2. If w̄1 = w̄2, then H2(w)−H1(w) ≤ 0 for w ∈ (0, 1).
If w̄1 < w̄2, then (w̄1, H2(w̄1)) is a saddle point, and (4.3) holds similarly if 0 is replaced by
w̄1 and w̄ is replaced by w̄2.

Therefore, if there is a periodic solution surrounding (w̄, H2(w̄)), then it must go counter
clockwise. We now show that this is impossible.

Indeed, if such a periodic solution exists, then it is divided by the two isoclines N = H1(w)
and N = H2(w) into four parts. Let us check the part between these two isoclines to the
left of w = w̄ or w = w̄2. Obviously, for w ∈ (0, w̄) or w ∈ (w̄1, w̄2), we have N < H2(w).
Hence dN

dτ
> 0, which contradicts to the moving direction claimed above.

Above all, system (3.11) has no periodic solutions, hence no homoclinic orbits either. It
also follows that (3.11) admits a unique global attractor lying in the interior of D.

Although there are many parameters involved in (3.11), the above analysis has shown that
it is the parameters b̃, σ1 and σ2 that determine the number of both the interior equilibria
and the equilibria on the boundary of D. In the theorem below, we will use these three
parameters as main parameters to describe the global dynamics of (3.11). We will do so for
any fixed b̃ > 0 as σ1 ≥ 0, σ2 ≥ 0 vary and list all the possible dynamics of (3.11) for each
region of (σ1, σ2) when other parameters such as σ3(0), σ4(0), etc. are also varied.

Based on Proposition 3.3, Proposition 3.4 and Theorem 4.1, we summarize the global
dynamics of (3.11) in the following theorem.

Theorem 4.2. Consider system (3.11) with all the positive parameters and assume that
R1 > 1, R2 > 1 and ξ1 > ξ2. Then the local and global bifurcation diagram and all the
respective phase portraits are as in Fig. 3 and Table 1.

Proof. We only show that for (σ1, σ2) ∈ I∪IV ∪V , where (3.11) admits one or two equilibria,
there is always an attracting equilibrium.
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Figure 3: Bifurcation diagram using σ1 and σ2 as parameters

Let σ1 ≥ σ2 and (σ1, σ2) ∈ IV ∪V . Then (3.11) admits at most one interior equilibrium.
Since by Proposition 3.2 and Theorem 4.1 the region D is attracting there are no periodic
solutions, the interior equilibrium must exist and must be attracting (a stable node or focus).

Let σ1 < σ2 and (σ1, σ2) ∈ I. Then (3.11) admits at most two interior equilibria. By
Proposition 3.4 and (3.31), the left one is always a saddle point. Again by Proposition 3.2 and
Theorem 4.1 the region D is attracting and there are no periodic solutions and homoclinic
loops. It follows that the interior equilibrium to the right of the saddle point can only be
attracting. When the two equilibria coalesce, we have an interior saddle-node, in the same
reason as above, which is attracting.

5 Interpretations of the mathematical results

To interpret the results biologically we choose to use the quantity ( 1
w

dw
dτ

)
∣

∣

w=0
as a measure

of the fitness of the sickle-cell gene (see [21]) and explain how this fitness may be affected by
the epidemiological parameters. This quantity represents the per-capita growth rate of the
gene frequency when the gene is initially introduced into a population and hence it describes
the invasion ability of the gene. From (3.4) and (3.6) we have

1

w

dw

dτ
= − b̃

2
w(1 − w

2
)(1 − N

K
) + (1 − w)

(

α̂1L1(w) − α̂2L2(w)
)

.
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Table 1: Phase portraits which can occur in region I

Noticing that σi = α̂iLi(0),
(

1

w

dw

dτ

)

∣

∣

w=0
= σ1 − σ2, (5.1)

and by (3.15),
σ1 − σ2 = (m̃1 + E1α̃1) − (m̃2 + E2α̃2), (5.2)

where

E1 =
ξ1(R1 − 1)

(1 + ξ1)R1
, E2 =

ξ2(R1 − 1)

(1 + ξ1)R1 + ξ1 − ξ2
. (5.3)

The formulas (5.1) – (5.3) show that the fitness coefficient is determined by the difference
of weighted death rates σ1 and σ2 between the homozygotes and the heterozygotes, and the
weights E1 and E2 depend only on the epidemiological parameters. Note that E1 > E2 > 0
as R1 > 1, ξ1 > ξ2.

Before discussing the dependence of the fitness coefficient on the epidemiological param-
eters, we first look at how this fitness quantity is related to the global dynamics summarized
in Fig. 3. In Region I (σ1 < σ2, σ1 < b̃) the fitness coefficient, σ1 − σ2, is negative. It
indicates that the selection for the sickle-cell gene is weak, and hence extinction of the gene
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will be expected. This outcome is indeed predicted by the model. For example, in Table 1,
I1, I2, and I7 – I9 exhibit cases in which either the sickle-cell gene will go extinction while
the total population will tend to the carrying capacity, or the total population N is wiped
out (this occurs when σ2 > b̃, i.e., the total per-capita death rate exceeds the maximum
per-capita birth rate). In cases I3 – I6, although a stable interior equilibrium may exist, the
sickle-cell gene will go extinction if its initial gene frequency q(0) = 1

2
w(0) is low.

On the other hand, in regions IV (σ2 < b̃ < σ1 < S(σ2)) and V (σ2 < σ1 < b̃), the
fitness coefficient, σ1 −σ2, is positive. Therefore, there is a strong selection for the sickle-cell
gene and one would expect the persistence of the gene. In fact, both regions are shown to
have a unique globally attracting interior equilibrium (w̄, N̄) with a higher population level
in region V where the per-capita birth rate b̃ is bigger than both death rates σ1, σ2.

The regions II and III are less significant biologically since the total population will go
extinction in both cases due to extremely high death rates σ1 and σ2. Nonetheless, we can
still see the role of fitness in determining the distribution of genotypes in the population.
That is, the fraction w(t) of heterozygotes tends to zero as t → ∞ if the fitness is negative
(region II), and it tends to a positive number if the fitness is positive (region III).

These findings suggest that the fitness coefficient defined in (5.2) indeed provides an
invasion criterion for the sickle-cell gene. If we let R0 = σ1

σ2

, then R0 is analogous to the
basic reproductive number of an infectious disease in epidemiology [1] which provides an
invasion criterion of the disease. Clearly, if R0 > 1 (positive fitness), the rare gene will
persist; if R0 < 1 (negative fitness), we have extinction of the gene.

We now proceed to discuss how the fitness coefficient depends on the epidemiological
and demographic parameters. We will only consider the case when the fitness coefficient is
positive, i.e., σ1 > σ2. Fitness cost for heterozygotes include a higher background mortality
rate, m̃2 > m̃1, and a lower fertility in mating with other heterozygotes (see [21]) which may
be negligible when the gene is rare. Here we choose C = m̃2 − m̃1 to be a measure for the
cost. For illustration purposes we assume that α̃1 = α̃2 =: α̃. Using (5.2) and (5.3) we have

σ1 − σ2 = m̃1 − m̃2 +
α̃(ξ1 − ξ2)(R1 − 1)

(

1 + (1 + ξ1)R1

)

(1 + ξ1)R1

(

(1 + ξ1)R1 + ξ1 − ξ2

) . (5.4)

It is clear that the dependence of the fitness on the mortality rates is simple and linear:
the fitness is higher if the difference in the background mortality rates, m2 − m1, between
heterozygotes and homozygotes is smaller.

The dependence of the fitness on parameters related to malaria transmission is more
complicated. Recall that ξi = acθi

γi

represents the malaria transmission coefficient from

mosquitoes to humans and ηi = aφi

δi

represents the malaria transmission coefficient from
humans to mosquitoes, and Ri = ξiηi, i = 1, 2. Consider the fitness as a function of ξ2.
Then,

d

dξ2

(σ1 − σ2) = − ξ2(R1 − 1)α̃2
(

(1 + ξ1)R1 + ξ1 − ξ2

)2 < 0.

Thus, the fitness decreases monotonically with ξ2, or equivalently, the fitness decreases mono-
tonically with θ2 and increases monotonically with γ2, since dξ2

dθ2

> 0 and dξ2
dγ2

< 0. This shows
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that a modifier gene should be favored if it decreases the mosquito-man transmission rate
of malaria (by developing a higher resistance to malaria infection) or increases the human
recovery rate from malaria. Notice that the fitness coefficient does not depend on η2 which
is the man-mosquito transmission coefficient of malaria in heterozygotes.

To obtain insights into the relationship between the strength of the selection and the cost
for fitness of the sickle-cell gene, we define S = ξ1 − ξ2 to be a measure of the strength of
the selection. From (5.4) we see that

σ1 − σ2 = −C +
BS

A + S
, (5.5)

where

A = (1 + ξ1)R1 > 0, B =
α̃(R1 − 1)(1 + A)

A
> 0.

Since BS
A+S

< B, a necessary condition for σ1 − σ2 > 0 is B − C > 0. Then, for each given
value of C, (5.5) gives a critical value of S:

S∗ =
CA

B − C
> 0, (5.6)

such that
σ1 − σ2 > 0 ⇐⇒ S > S∗.

This suggests that for a given level of cost C = m̃2 − m̃1 for the rare gene, the selective
pressure S = ξ1 − ξ2 for the gene has to exceed the critical level S∗ in order for the genes to
establish themselves in a population. However, this critical level of selective pressure may
be impossible to achieve if the fitness cost is too high, e.g., C > Bξ1

A+ξ1
, in which case S < S∗

for all ξ2 as long as ξ2 > 0.

6 Numerical simulations

The full system (2.7) is a five dimensional system with fifteen parameters. Our analytical
results for the slow system, together with the application of the geometric theory of sin-
gular perturbations explained in Section 2, indicate that the long term behavior of the full
system can also be determined by three parameters, b̃, σ1 and σ2, as ε sufficiently small, or
equivalently, as mi, αi, b, i = 1, 2, sufficiently small. In Figures 4, 5 and 6, we conduct some
numerical simulations of the full system using the software XPPAUT ([22]).

Fig. 4 is a plot of the solutions of (2.7) showing one fast variable y1 and one slow variable
w. The parameter values are chosen to be the following:

a = 2, c = 10, δ = .05, γ1 = 0.14 γ2 = 0.28,
θ1 = 0.1, θ2 = 0.01, φ1 = 0.1, φ2 = 0.1, K = 10000,
b = 0.00004, m1 = 0.00004, m2 = 0.00004, α1 = 0.00008, α2 = 0.0001.

(6.1)

With the above parameters, system (2.7) has a global attractor at which y1 = 0.20979,
w = 0.64357 lying on the center manifold (see Section 2). For the projection in Fig. 4, we
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Figure 4: Phase portrait in the (y1, w)-plane: parameters as in (6.1).

take various initial values for y1 and w, and fixed initial values N(0) = 10000, y2(0) = 0.2
and z(0) = 0.5. Notice that in this figure all trajectories look like “parallel lines” along the
y1 axes, which illustrates that the fast variable(s) approach the center manifold very quickly
according to (2.16)-(2.18).

In Fig. 5, for the purpose of demonstrating the behavior of the solutions of the full
system near the center namifold, we simulate the full dynamics of the model when the small
parameters m1, m1, α1, α2 and b are increased by 2000 times.

Fig. 5a shows the interaction between fast and slow variables especially near the center
manifold. Fig. 5b plots the solutions of the slow equations which illustrates that the slow
system indeed captures the long term behavior of the full system. For example, we see that
for both systems the fraction w(t) of heterozygotes tends to an equilibrium value 0.78 as t
tends to ∞. By taking ε = 10−5, we obtain

ξ1 = 14.2857, ξ2 = 0.7143,
R1 = 57.1429, R2 = 2.8571,

b̃ = 4, σ1 = 11.3458, σ2 = 4.4521.
(6.2)

Hence for the set of parameter values in (6.1), we have b̃ = 4 and (σ1, σ2) ∈ III. The graph
also confirms our analytic prediction (see Theorem 4.2).

The next figure is for the case when (σ1, σ2) is in the region I5.
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(a) Phase portrait of the original model with parameters in
(6.1) but small parameters 2000 times enlarged.
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(b) Corresponding slow dynamics, case (σ1, σ2) ∈ III .

Figure 5: Comparison of the original model and the corresponding slow dynamics.
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Figure 6: Phase portrait of the slow system for (σ1, σ2) ∈ I5.

The parameter values used in this graph are chosen such that

ξ1 = 4, ξ2 = 3,
R1 = 1.2, R2 = 9,

b̃ = 3.4, σ1 = 0.7, σ2 = 0.7114.
(6.3)

Hence, for the set of parameters, the corresponding parameters of the slow system fall in
region I5 in which the slow system has two interior equilibria. One is attracting and the
other one is repelling. In fact, Fig. 6 shows that for the slow system the trajectories tend
to the interior equilibrium if w(0) is large, and the trajectories leave the first quadrant if
w(0) > 0 is small. We have also enlarged the small parameters by 1000 times.

To end this section, we choose four other sets of parameters such that the corresponding
slow systems are in the region I1, I2, IV and V , respectively (see Figure 7).

7 Discussion

We have conducted a completed mathematical analysis of a model that incorporates both
malaria disease and the population genetics of human hosts. We have generated for the slow
dynamics a bifurcation diagram which provides thresholds for coexistence of the homozygote
wild-type individuals and the heterozygote sickled individuals (see Fig. 3 and Table 1). We
have used our mathematical results to explore the impact of malaria epidemics on possible
maintenance of the sickle-cell gene in a population.

Our results show that whether the rare gene will go extinction or persist in a population
is determined by the fitness coefficient,

(

1
w

dw
dτ

)
∣

∣

w=0
= σ1 − σ2, of the gene. This fitness
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(a) For the original model: a = 2, c = 5, δ =
.05, γ1 = 0.14, γ2 = 0.28, θ1 = 0.1, θ2 =
0.08, φ1 = 0.01, φ2 = 0.1, b = 0.00008, m1 =
m2 = 0.00004, α1 = 0.00001, α2 = 0.00009.

For the slow system, b̃ = 8, (σ1, σ2) =
(4.847, 6.992) ∈ I , case I1.
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(b) For the original model: a = 1.5, c = 5, δ =
.05, γ1 = 0.075, γ2 = 0.075, θ1 = 0.04, θ2 =
0.03, φ1 = 0.01, φ2 = 0.1, b = 0.000034, m1 =
0.000001, m2 = 0.0000036, α1 = 0.000045, α2 =
0.000041. For the slow system, b̃ = 3.4,
(σ1, σ2) = (0.7, 0.7514) ∈ I , case I2.
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(c) For the original model: a = 1.2, c = 5, δ =
.09, γ1 = 0.04, γ2 = 0.12, θ1 = 0.03, θ2 =
0.05, φ1 = 0.05, φ2 = 0.06, b = 0.00004, m1 =
0.00004, m2 = 0.00001, α1 = α2 = 0.00001.
For the slow system, b̃ = 4, (σ1, σ2) =
(4.545, 1.270) ∈ IV .
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(d) For the original model: a = 2, c = 6, δ =
.05, γ1 = 0.14, γ2 = 0.28, θ1 = 0.1, θ2 =
0.01, φ1 = 0.01, φ2 = 0.1, b = 0.00006, m1 =
m2 = 0.00004, α1 = 0.00001, α2 = 0.00003.

For the slow system, b̃ = 6, (σ1, σ2) =
(4.869, 4.127) ∈ V .

Figure 7: Phase potraits of the slow system for (σ1, σ2) in different regions.
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coefficient, or the directly related quantity R0 = σ1/σ2, plays a role as the basic reproductive
number of an infectious disease. The threshold conditions derived in this paper allow us
to address how the epidemiological and demographic parameters affect the fitness of the
sickle-cell gene. For example, the fitness decreases with the mosquito-man transmission
rate ξ2 of malaria in the heterozygotes and increases with the human recovery rate γ2 from
malaria in the heterozygotes. When the fitness cost C = m̃2 − m̃1 for the heterozygotes is
known, an explicit level of selective pressure S = ξ1 − ξ2 can be calculated (see (5.6)) above
which the rare gene is maintained. Our numerical simulations of the model along with the
application of the geometric theory of singular perturbations demonstrate the effect of the
genetic structure of the human population on the prevalence of malaria.

Herein, we have attempted to identify conditions that favor the sickle-cell gene with
coexistence of homozygote and heterozygote individuals. Our analysis has taken the form
of considering the ability of a rare gene to invade/coexist in a population composed mainly
wild-type individuals. One of the limitations of this model is its ability to predict periodic
solutions especially relaxation oscillations, which seem to be a reasonable outcome of the
interaction between malaria epidemics and human population genetics. Intuitively, if the
prevalence of malaria is high (on the fast time scale), then the human population size will
decrease due to a higher malaria-related death in homozygotes and the relative frequency
of the sickle-cell gene will increase (on the slow time scale). When the total population size
of humans becomes too small to sustain the disease, i.e., the prevalence of malaria becomes
very low, the impact of malaria on the genetic structure becomes small as well. Then the
human population will start growing with a decreasing frequency of the sickle-cell gene and
a higher prevalence of malaria will follow. We plan to consider some modifications of the
model (2.1) with the purpose of identifying possible mechanisms that may produce periodic
solutions.
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