Determination of gamma and -2beta s from charmless two-body decays of beauty mesons

R. Aaij, Y. Amhis, S. Barsuk, M. Borsato, O. Kochebina, J. Lefrançois, F. Machefert, A. Martin Sanchez, Marie Nicol, P. Robbe, et al.

To cite this version:

R. Aaij, Y. Amhis, S. Barsuk, M. Borsato, O. Kochebina, et al.. Determination of gamma and -2beta_s from charmless two-body decays of beauty mesons. Physics Letters B, Elsevier, 2015, 741, pp.1-11. <10.1016/j.physletb.2014.12.015>. <in2p3-01056615>

HAL Id: in2p3-01056615

http://hal.in2p3.fr/in2p3-01056615

Submitted on 23 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Determination of γ and $-2 \beta_{s}$ from charmless two-body decays of beauty mesons

LHCb Collaboration

ARTICLE INFO

Article history:

Received 19 August 2014
Received in revised form 27 November 2014
Accepted 5 December 2014
Available online 9 December 2014
Editor: L. Rolandi

Abstract

Using the latest LHCb measurements of time-dependent $C P$ violation in the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay, a U-spin relation between the decay amplitudes of $B_{s}^{0} \rightarrow K^{+} K^{-}$and $B^{0} \rightarrow \pi^{+} \pi^{-}$decay processes allows constraints to be placed on the angle γ of the unitarity triangle and on the B_{s}^{0} mixing phase $-2 \beta_{s}$. Results from an extended approach, which uses additional inputs on $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays from other experiments and exploits isospin symmetry, are also presented. The dependence of the results on the maximum allowed amount of U-spin breaking is studied. At 68% probability, the value $\gamma=\left(63.5_{-6.7}^{+7.2}\right)^{\circ}$ modulo 180° is determined. In an alternative analysis, the value $-2 \beta_{s}=-0.12_{-0.16}^{+0.14} \mathrm{rad}$ is found. In both measurements, the uncertainties due to U-spin breaking effects up to 50% are included. © 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP ${ }^{3}$.

1. Introduction

The understanding of flavour dynamics is one of the most important aims of particle physics. Charge-parity ($C P$) violation and rare decay processes involving weak decays of B mesons provide tests of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism [1, 2] in the Standard Model (SM). The CKM matrix describes all flavour changing transitions of quarks in the SM. These include tree-level decays, which are expected to be largely unaffected by non-SM contributions, and flavour changing neutral current transitions characterized by the presence of loops in the relevant diagrams, which are sensitive to the presence of non-SM physics. Tests of the CKM matrix structure, commonly represented by the unitarity triangle (UT), are of fundamental importance.

Although significant hadronic uncertainties usually complicate the experimental determination of the CKM matrix elements $V_{i j}$, there are certain cases where the $V_{i j}$ can be derived with reduced or even negligible hadronic uncertainty. One of these cases involves the determination of the UT angle γ. The angle γ, defined as $\arg \left[-\left(V_{u d} V_{u b}^{*}\right) /\left(V_{c d} V_{c b}^{*}\right)\right]$, can be measured using decays that involve tree diagrams only, with almost vanishing theoretical uncertainty [3]. However, γ is experimentally the least known of the UT angles. World averages of the measurements performed by BaBar, Belle and LHCb [4-7], provided by the UTfit Collaboration and CKMfitter group, are $\gamma=(70.1 \pm 7.1)^{\circ}$ and $\gamma=\left(68.0_{-8.5}^{+8.0}\right)^{\circ}$, respectively ${ }^{1}$ [8,9].

[^0]An alternative strategy to determine γ using two-body charmless B decays, namely $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$, has also been proposed [10-12]. Knowledge of the B^{0} mixing phase 2β, where $\beta=\arg \left[-\left(V_{c d} V_{c b}^{*}\right) /\left(V_{t d} V_{t b}^{*}\right)\right]$, is needed as an input. Due to the presence of penguin diagrams in the decay amplitudes, in addition to tree diagrams, the interpretation of the observables requires knowledge of hadronic factors that cannot at present be calculated accurately from quantum chromodynamics (QCD). However, the hadronic parameters entering the $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$ decays are related by the U-spin symmetry of strong interactions. This symmetry, related to the exchange of d and s quarks in the decay diagrams, can be exploited to determine the unknown hadronic factors. A more sophisticated analysis has also been proposed [13], where it is suggested to combine the U-spin analysis of $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays with the isospin analysis of $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays [14], in order to achieve a more robust determination of γ with respect to U-spin breaking effects. The B_{s}^{0} mixing phase $-2 \beta_{s}$, where $\beta_{s}=\arg \left[-\left(V_{t s} V_{t b}^{*}\right) /\left(V_{c s} V_{c b}^{*}\right)\right]$, can also be determined with either analysis approach.

An analysis based on Bayesian statistics, aimed at determining probability density functions (PDFs) for γ and $-2 \beta_{s}$, is presented in this Letter. This uses the latest LHCb measurements of time-dependent $C P$ violation in the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay, exploiting U-spin symmetry with the $B^{0} \rightarrow \pi^{+} \pi^{-}$decay. An extended analysis, including measurements on $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays from other experiments, is also performed. The Letter is organized as follows. First, the theoretical formalism needed to describe CP violation is introduced in Section 2, including the SM parameterization of the decay amplitudes of the various decays.

The experimental status is given in Section 3. In Section 4 we present the determination of γ and $-2 \beta_{s}$ using $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays, and in Section 5 we also add information from $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays. The dependence of the measurements of γ and $-2 \beta_{S}$ on the amount of U-spin breaking is studied in detail in both cases. Finally, conclusions are drawn in Section 6.

2. Theoretical formalism

Assuming CPT invariance, the CP asymmetry as a function of decay time for a neutral B^{0} or B_{s}^{0} meson decaying to a selfconjugate final state f, with $f=\pi^{+} \pi^{-}, \pi^{0} \pi^{0}$ or $K^{+} K^{-}$, is given by

$$
\begin{align*}
\mathcal{A}(t) & \equiv \frac{\Gamma_{\bar{B}_{(s)}^{0} \rightarrow f}(t)-\Gamma_{B_{(s)}^{0} \rightarrow f}(t)}{\Gamma_{\bar{B}_{(s)}^{0} \rightarrow f}(t)+\Gamma_{B_{(s)}^{0} \rightarrow f}(t)} \\
& =\frac{-C_{f} \cos \left(\Delta m_{d(s)} t\right)+S_{f} \sin \left(\Delta m_{d(s)} t\right)}{\cosh \left(\frac{\Delta \Gamma_{d(s)}}{2} t\right)+A_{f}^{\Delta \Gamma} \sinh \left(\frac{\Delta \Gamma_{d(s)}}{2} t\right)} \tag{1}
\end{align*}
$$

where $\Delta m_{d(s)} \equiv m_{d(s), \mathrm{H}}-m_{d(s), \mathrm{L}}$ and $\Delta \Gamma_{d(s)} \equiv \Gamma_{d(s), \mathrm{L}}-\Gamma_{d(s), \mathrm{H}}$ are the mass and width differences of the $B_{(s)}^{0}-\bar{B}_{(s)}^{0}$ system mass eigenstates. The subscripts H and L denote the heavy and light eigenstates. With this convention, the value of $\Delta m_{d(s)}$ is positive by definition, and that of $\Delta \Gamma_{S}$ is measured to be positive [15], $\Delta \Gamma_{S}=0.106 \pm 0.011$ (stat) ± 0.007 (syst) ps^{-1} [16]. The value of $\Delta \Gamma_{d}$ is also positive in the SM and is expected to be much smaller than that of $\Delta \Gamma_{s}, \Delta \Gamma_{d} \simeq 3 \times 10^{-3} \mathrm{ps}^{-1}$ [8]. The quantities C_{f}, S_{f} and $A_{f}^{\Delta \Gamma}$ are
$C_{f} \equiv \frac{1-\left|\lambda_{f}\right|^{2}}{1+\left|\lambda_{f}\right|^{2}}$,
$S_{f} \equiv \frac{2 \operatorname{Im} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}} \quad$ and $\quad A_{f}^{\Delta \Gamma} \equiv-\frac{2 \operatorname{Re} \lambda_{f}}{1+\left|\lambda_{f}\right|^{2}}$,
where λ_{f} is given by
$\lambda_{f} \equiv \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}$.
The two mass eigenstates of the effective Hamiltonian in the $B_{(s)}^{0}, \bar{B}_{(s)}^{0}$ system are $p\left|B_{(s)}^{0}\right\rangle \pm q\left|\bar{B}_{(s)}^{0}\right\rangle$, where p and q are complex parameters satisfying the relation $|p|^{2}+|q|^{2}=1$. The parameter λ_{f} is thus related to $B_{(s)}^{0}-\bar{B}_{(s)}^{0}$ mixing (via q / p) and to the decay amplitudes of the $B_{(s)}^{0} \rightarrow f$ decay $\left(A_{f}\right)$ and of the $\bar{B}_{(s)}^{0} \rightarrow f$ decay $\left(\bar{A}_{f}\right)$. Assuming negligible $C P$ violation in mixing $(|q / p|=1)$, as expected in the SM and supported by current experimental determinations $[17,18]$, the terms C_{f} and S_{f} parameterize $C P$ violation in the decay and in the interference between mixing and decay, respectively. From the definitions given in Eq. (2), it follows that
$\left(C_{f}\right)^{2}+\left(S_{f}\right)^{2}+\left(A_{f}^{\Delta \Gamma}\right)^{2}=1$.
It is then possible to express the magnitude (but not the sign) of $A_{f}^{\Delta \Gamma}$ as a function of C_{f} and S_{f}. There are therefore two independent parameters, which can be chosen, for example, to be $\operatorname{Re} \lambda_{f}$ and $\operatorname{Im} \lambda_{f}$, or C_{f} and S_{f}. In the latter case, the sign of $A_{f}^{\Delta \Gamma}$ carries additional information.

The CP-averaged branching fraction is given by
$\mathcal{B}_{f}=\frac{1}{2} F\left(B_{(s)}^{0} \rightarrow f\right)\left(\left|\bar{A}_{f}\right|^{2}+\left|A_{f}\right|^{2}\right)$,
where

$$
\begin{align*}
& F\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)=\frac{\sqrt{m_{B^{0}}^{2}-4 m_{\pi^{+}}^{2}}}{m_{B^{0}}^{2}} \tau_{B^{0}}, \tag{6}\\
& F\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)=\frac{\sqrt{m_{B^{0}}^{2}-4 m_{\pi^{0}}^{2}}}{m_{B^{0}}^{2}} \tau_{B^{0}}, \tag{7}\\
& F\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) \\
& \quad=\frac{\sqrt{m_{B_{s}^{0}}^{2}-4 m_{K^{+}}^{2}}}{m_{B_{s}^{0}}^{2}}\left[2 \tau_{B_{s}^{0}}-\left(1-y_{s}^{2}\right) \tau\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)\right] \tag{8}
\end{align*}
$$

with $\tau_{B^{0}} \equiv 1 / \Gamma_{d}, \tau_{B_{s}^{0}} \equiv 1 / \Gamma_{s}$ and $y_{s} \equiv \Delta \Gamma_{s} /\left(2 \Gamma_{s}\right)$. The term m_{χ} is the mass of the meson $x, \Gamma_{d(s)} \equiv\left(\Gamma_{d(s), \mathrm{L}}+\Gamma_{d(s), \mathrm{H})}\right) / 2$ is the average decay width of the $B_{(s)}^{0}$ meson, and $\tau\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)$is the effective lifetime measured using $B_{s}^{0} \rightarrow K^{+} K^{-}$decays. The extra term is Eq. (8) follows from the fact that the $\bar{B}_{s}^{0}-B_{s}^{0}$ meson system is characterized by a sizeable decay width difference. This leads to a difference between the measured (i.e. decay-time-integrated) branching fraction and the theoretical branching fraction, and a correction is applied using the corresponding effective lifetime measurement [19].

In the case of a B^{+}meson decaying to a final state f, the $C P$ asymmetry is given by
$\mathcal{A}_{f}=\frac{\left|\bar{A}_{\bar{f}}\right|^{2}-\left|A_{f}\right|^{2}}{\left|\bar{A}_{\bar{f}}\right|^{2}+\left|A_{f}\right|^{2}}$,
and the $C P$-averaged branching fraction is
$\mathcal{B}_{f}=\frac{1}{2} F\left(B^{+} \rightarrow f\right)\left(\left|\bar{A}_{\bar{f}}\right|^{2}+\left|A_{f}\right|^{2}\right)$,
where
$F\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=\frac{\sqrt{m_{B^{+}}^{2}-\left(m_{\pi^{+}}+m_{\pi^{0}}\right)^{2}}}{m_{B^{+}}^{2}} \tau_{B^{+}}$,
with $\tau_{B^{+}}$the lifetime and $m_{B^{+}}$the mass of the B^{+}meson.
Adopting the parameterization from Ref. [10] and its extension from Ref. [13], assuming isospin symmetry and neglecting electroweak penguin contributions, the following expressions for the various CP asymmetry terms and branching fractions are obtained in the framework of the SM
$C_{\pi^{+} \pi^{-}}=-\frac{2 d \sin (\vartheta) \sin (\gamma)}{1-2 d \cos (\vartheta) \cos (\gamma)+d^{2}}$,
$S_{\pi^{+} \pi^{-}}=-\frac{\sin (2 \beta+2 \gamma)-2 d \cos (\vartheta) \sin (2 \beta+\gamma)+d^{2} \sin (2 \beta)}{1-2 d \cos (\vartheta) \cos (\gamma)+d^{2}}$,
$C_{\pi^{0} \pi^{0}}=-\frac{2 d q \sin \left(\vartheta_{q}-\vartheta\right) \sin (\gamma)}{q^{2}+2 d q \cos \left(\vartheta_{q}-\vartheta\right) \cos (\gamma)+d^{2}}$,
$\mathcal{A}_{\pi^{+} \pi^{0}}=0$,

$$
\begin{align*}
C_{K^{+} K^{-}}= & \frac{2 \tilde{d}^{\prime} \sin \left(\vartheta^{\prime}\right) \sin (\gamma)}{1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}} \tag{16}\\
S_{K^{+} K^{-}}= & -\left(\frac{\sin \left(-2 \beta_{s}+2 \gamma\right)+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \sin \left(-2 \beta_{s}+\gamma\right)}{1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}\right. \\
& \left.+\frac{\tilde{d}^{\prime 2} \sin \left(-2 \beta_{s}\right)}{1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}\right) \tag{17}
\end{align*}
$$

$$
\begin{align*}
\mathcal{B}_{\pi^{+} \pi^{-}}= & F\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)|D|^{2} \\
& \times\left(1-2 d \cos (\vartheta) \cos (\gamma)+d^{2}\right), \tag{18}\\
\mathcal{B}_{\pi^{0} \pi^{0}}= & F\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right) \frac{|D|^{2}}{2} \\
& \times\left(q^{2}+2 d q \cos \left(\vartheta_{q}-\vartheta\right) \cos (\gamma)+d^{2}\right), \\
\mathcal{B}_{\pi^{+} \pi^{0}}= & F\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right) \frac{|D|^{2}}{2}\left(1+q^{2}+2 q \cos (\vartheta q)\right), \\
\mathcal{B}_{K^{+} K^{-}}= & F\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right) \frac{\lambda^{2}}{\left(1-\lambda^{2} / 2\right)^{2}}\left|D^{\prime}\right|^{2} \\
& \times\left(1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}\right),
\end{align*}
$$

where $\tilde{d^{\prime}} \equiv d^{\prime}\left(1-\lambda^{2}\right) / \lambda^{2}$ and $\lambda \equiv\left|V_{u s}\right| / \sqrt{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}}$. In addition, $A_{K^{+} K^{-}}^{\Delta \Gamma}$ can be expressed as

$$
\begin{align*}
A_{K^{+} K^{-}}^{\Delta \Gamma}= & -\left(\frac{\cos \left(-2 \beta_{s}+2 \gamma\right)+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos \left(-2 \beta_{s}+\gamma\right)}{1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}\right. \\
& \left.+\frac{\tilde{d}^{2} \cos \left(-2 \beta_{s}\right)}{1+2 \tilde{d}^{\prime} \cos \left(\vartheta^{\prime}\right) \cos (\gamma)+\tilde{d}^{\prime 2}}\right) . \tag{22}
\end{align*}
$$

The quantities $|D|, d, \vartheta, q$ and ϑ_{q} are real-valued hadronic parameters related to the decay amplitudes of $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays, whereas $\left|D^{\prime}\right|, d^{\prime}$ and ϑ^{\prime} are the analogues of $|D|, d$ and ϑ for the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay. They are defined as
$D^{(\prime)} \equiv A \lambda^{3} R_{u}\left(-\mathrm{T}^{(\prime)}-\mathrm{P}^{(\prime) u}+\mathrm{P}^{(\prime) t}\right)$,
$d^{\left({ }^{\prime}\right)} e^{i \vartheta^{\left({ }^{\prime}\right)}} \equiv \frac{1}{R_{u}} \frac{\left.\mathrm{P}^{(}\right) c-\mathrm{P}^{\left({ }^{\prime}\right) t}}{\mathrm{~T}^{\left({ }^{\prime}\right)}+\mathrm{P}^{\left({ }^{\prime}\right) u}-\mathrm{P}^{(\prime) t}}$,
$q e^{i \vartheta_{q}} \equiv \frac{\mathrm{C}-\mathrm{P}^{u}+\mathrm{P}^{t}}{\mathrm{~T}+\mathrm{P}^{u}-\mathrm{P}^{t}}$,
where T and C represent the contributions from $\bar{b} \rightarrow \bar{u} W^{+}(\rightarrow u \bar{d})$ tree and colour-suppressed tree transitions, P^{q} represents the contributions from $\bar{b} \rightarrow \bar{d} g(\rightarrow \bar{u} u)$ or $\bar{b} \rightarrow \bar{d} g(\rightarrow \bar{d} d)$ penguin transitions (the index $q \in\{u, c, t\}$ indicates the flavour of the internal quark in the penguin loop), R_{u} is one of the sides of the UT
$R_{u}=\frac{1}{\lambda}\left(1-\frac{\lambda^{2}}{2}\right)\left|\frac{V_{u b}}{V_{c b}}\right|$,
and $A \equiv 1 / \lambda\left|V_{c b} / V_{u s}\right|$. Analogously, T^{\prime} represents the contribution from $\bar{b} \rightarrow \bar{u} W^{+}(\rightarrow u \bar{s})$ tree transitions, and $P^{\prime q}$ represents the contributions from $\bar{b} \rightarrow \bar{s} g(\rightarrow \bar{u} u)$ penguin transitions.

3. Experimental status

$C P$ violation both in decay amplitudes and in their interference with the $B^{0}-\bar{B}^{0}$ mixing amplitude has been seen in $B^{0} \rightarrow$ $\pi^{+} \pi^{-}$decays by the BaBar [20] and Belle [21] experiments, which also provided measurements of $C P$ violation in the $B^{+} \rightarrow \pi^{+} \pi^{0}$ [22,23] and $B^{0} \rightarrow \pi^{0} \pi^{0}$ [20,24] decays. LHCb has recently published measurements of $C P$ violation in $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow$ $K^{+} K^{-}$decays [25]. Measurements of branching fractions for $B^{0} \rightarrow$ $\pi^{+} \pi^{-}, B^{+} \rightarrow \pi^{+} \pi^{0}$ and $B^{0} \rightarrow \pi^{0} \pi^{0}$ decays have been made by BaBar $[20,22,26]$ and Belle [23,24]. CDF and LHCb have also measured the $B^{0} \rightarrow \pi^{+} \pi^{-}$branching fraction, as well as that of the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay [27,28], using the world average of the $B^{0} \rightarrow K^{+} \pi^{-}$branching fraction for normalization [17]. The current experimental knowledge is summarized in Table 1.

The LHCb measurement of $C_{K^{+} K^{-}}$and $S_{K^{+} K^{-}}$in Ref. [25] was obtained using the constraint
$A_{K^{+} K^{-}}^{\Delta \Gamma}=-\sqrt{1-\left(C_{K^{+} K^{-}}\right)^{2}-\left(S_{K^{+} K^{-}}\right)^{2}}$
in the maximum likelihood fit. In the same analysis, the sign of $A_{K^{+} K^{-}}^{\Delta \Gamma}$ was verified to be negative, as expected in the SM. A measurement of $A_{K^{+} K^{-}}^{\Delta \Gamma}$ has also been made by LHCb via an effective lifetime measurement of the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay, using the same data sample as in Ref. [25], but with different event selection. The result is $A_{K^{+} K^{-}}^{\Delta \Gamma^{-}}=-0.87 \pm 0.17$ (stat) ± 0.13 (syst) [29]. In the analysis presented in this Letter, $A_{K^{+} K^{-}}^{\Delta \Gamma^{-}}$is constrained to have a negative value.

4. Determination of γ and $-2 \beta_{s}$ from $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays

A method to determine γ and $-2 \beta_{s}$ using $C P$ asymmetries and branching fractions of $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays, exploiting the approximate U-spin symmetry of strong interactions, was proposed in Refs. [10-12]. Typical U-spin breaking corrections are expected to be around the 30% level $[30,31]$. In the limit of strict U-spin symmetry, one has $d=d^{\prime}, \vartheta=\vartheta^{\prime}$ and $|D|=\left|D^{\prime}\right|$. As pointed out in Ref. [10], the equalities $d=d^{\prime}$ and $\vartheta=\vartheta^{\prime}$ do not receive U-spin breaking corrections within the factorization approximation, in contrast with the equality $|D|=\left|D^{\prime}\right|$,
$\left|\frac{D^{\prime}}{D}\right|_{\text {fact }}=\frac{f_{K}}{f \pi} \frac{f_{B_{S}^{0} K}^{+}\left(m_{K}^{2}\right)}{f_{B^{0} \pi}^{+}\left(m_{\pi}^{2}\right)} \frac{m_{B_{S}^{0}}^{2}-m_{K}^{2}}{m_{B^{0}}^{2}-m_{\pi}^{2}}$,
where f_{K} and f_{π} are the kaon and pion decay constants, and $f_{B_{s}^{0} K}^{+}\left(m_{K}^{2}\right)$ and $f_{B^{0} \pi}^{+}\left(m_{\pi}^{2}\right)$ parameterize hadronic matrix elements. These quantities have been determined using QCD sum rules [32], yielding
$\left|\frac{D^{\prime}}{D}\right|_{\text {fact }}=1.41_{-0.11}^{+0.20}$.
To take into account non-factorizable U-spin breaking corrections, we parameterize the effect of the breaking as
$\left|D^{\prime}\right|=\left|\frac{D^{\prime}}{D}\right|_{\text {fact }}|D|\left|1+r_{D} e^{i \vartheta_{r_{D}}}\right|$,
$d^{\prime} e^{i \vartheta^{\prime}}=d e^{i \vartheta} \frac{1+r_{G} e^{i \vartheta_{r_{G}}}}{1+r_{D} e^{i \vartheta_{r_{D}}}}$,
where r_{D} and r_{G} are relative magnitudes, and $\vartheta_{r_{D}}$ and $\vartheta_{r_{G}}$ are phase shifts caused by the breaking. In the absence of nonfactorizable U-spin breaking, one has $r_{D}=0$ and $r_{G}=0$.

We perform two distinct analyses, to determine either γ or $-2 \beta_{s}$. They are referred to as analyses A and B , respectively. To improve the precision on the determination of γ, in analysis A the value of $-2 \beta_{S}$ is constrained as
$-2 \beta_{s}=-2 \lambda^{2} \bar{\eta}\left[1+\lambda^{2}(1-\bar{\rho})\right]$,
which is valid in the SM up to terms of order λ^{4}. The parameters $\bar{\rho}$ and $\bar{\eta}$ determine the apex of the UT, and are defined as $\bar{\rho}+i \bar{\eta} \equiv$ $-\left(V_{u d} V_{u b}^{*}\right) /\left(V_{c d} V_{c b}^{*}\right)$. Since $\bar{\rho}$ and $\bar{\eta}$ can be written as functions of β and γ as
$\bar{\rho}=\frac{\sin \beta \cos \gamma}{\sin (\beta+\gamma)}, \quad \bar{\eta}=\frac{\sin \beta \sin \gamma}{\sin (\beta+\gamma)}$,
we can express $-2 \beta_{s}$ in terms of β and γ. To determine $-2 \beta_{s}$ in analysis B , the world average value of γ from tree-level decays,

Table 1
 CDF and LHCb. The parameter $\rho(X, Y)$ is the statistical correlation between X and Y. The first uncertainties are statistical and the second systematic.

Quantity	BaBar	Belle	CDF	LHCb
$C_{\pi^{+} \pi^{-}}$	$-0.25 \pm 0.08 \pm 0.02$	$-0.33 \pm 0.06 \pm 0.03$	-	$-0.38 \pm 0.15 \pm 0.02$
$S_{\pi^{+} \pi^{-}}$	$-0.68 \pm 0.10 \pm 0.03$	$-0.64 \pm 0.08 \pm 0.03$	-	$-0.71 \pm 0.13 \pm 0.02$
$\rho\left(C_{\pi^{+} \pi^{-}}, S_{\pi^{+} \pi^{-}}\right)$	-0.06	-0.10	-	0.38
$\mathcal{B}_{\pi^{+} \pi^{-}} \times 10^{6}$	$5.5 \pm 0.4 \pm 0.3$	$5.04 \pm 0.21 \pm 0.18$	$5.02 \pm 0.33 \pm 0.35$	$5.08 \pm 0.17 \pm 0.37$
$C_{K^{+} K^{-}}$	-	-	-	$0.14 \pm 0.11 \pm 0.03$
$S_{K^{+} K^{-}}$	-	-	-	$0.30 \pm 0.12 \pm 0.04$
$\rho\left(C_{K^{+} K^{-}}, S_{K^{+} K^{-}}\right)$	-	-		0.02
$\mathcal{B}_{K^{+} K^{-}} \times 10^{6}$	-	$38_{-9}^{+10} \pm 7$	$25.8 \pm 2.2 \pm 1.7$	$23.0 \pm 0.7 \pm 2.3$
$\mathcal{A}_{\pi^{+} \pi^{0}}$	$-0.03 \pm 0.08 \pm 0.01$	$-0.025 \pm 0.043 \pm 0.007$	-	-
$\mathcal{B}_{\pi^{+} \pi^{0}} \times 10^{6}$	$5.02 \pm 0.46 \pm 0.29$	$5.86 \pm 0.26 \pm 0.38$	-	-
	$-0.43 \pm 0.26 \pm 0.05$	$-0.44_{-0.52}^{+0.53} \pm 0.17$	-	-
$\mathcal{B}_{\pi^{0} \pi^{0}} \times 10^{6}$	$1.83 \pm 0.21 \pm 0.13$	$2.3_{-0.5-0.3}^{+0.4+0.2}$	-	-

Table 2
Experimental inputs used for the determination of γ and $-2 \beta_{s}$ from $B^{0} \rightarrow \pi^{+} \pi^{-}$ and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays using U-spin symmetry. The parameter $\rho(X, Y)$ is the statistical correlation between X and Y. For $C_{\pi^{+} \pi^{-}}$and $S_{\pi^{+} \pi^{-}}$we perform our own weighted average of BaBar, Belle and LHCb results, accounting for correlations.

Quantity	Value	Source
$C_{\pi^{+} \pi^{-}}$	-0.30 ± 0.05	This Letter
$S_{\pi^{+} \pi^{-}}$	-0.66 ± 0.06	This Letter
$\rho\left(C_{\pi^{+} \pi^{-}}, S_{\pi^{+} \pi^{-}}\right)$	-0.007	This Letter
$C_{K^{+} K^{-}}$	0.14 ± 0.11	LHCb [25]
$S_{K^{+} K^{-}}$	0.30 ± 0.13	LHCb [25]
$\rho\left(C_{K^{+} K^{-}}, S_{K^{+} K^{-}}\right)$	0.02	LHCb [25]
$\mathcal{B}_{\pi^{+} \pi^{-} \times 10^{6}}$	5.10 ± 0.19	HFAG [17]
$\mathcal{B}_{K^{+} K^{-}} \times 10^{6}$	24.5 ± 1.8	HFAG [17]
$\sin 2 \beta$	0.682 ± 0.019	HFAG [17]
$\gamma(\mathrm{analysis} \mathrm{B} \mathrm{only)}$	$(70.1 \pm 7.1)^{\circ}$	UTfit [8]
λ	0.2253 ± 0.0007	PDG [33]
$m_{B^{0}}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	5279.55 ± 0.26	PDG [33]
$m_{B_{s}^{0}}\left[\mathrm{MeV} / c^{2}\right]$	5366.7 ± 0.4	PDG [33]
$m_{\pi^{+}}\left[\mathrm{MeV} / c^{2}\right]$	139.57018 ± 0.00035	PDG [33]
$m_{K^{+}}\left[\mathrm{MeV} / c^{2}\right]$	493.677 ± 0.013	PDG [33]
$\tau_{B^{0}}[\mathrm{ps}]$	1.519 ± 0.007	HFAG [17]
$\tau_{B_{s}^{0}}[\mathrm{ps}]$	1.516 ± 0.011	HFAG [17]
$\Delta \Gamma_{S} / \Gamma_{S}$	0.160 ± 0.020	LHCb [16]
$\tau\left(B_{s}^{0} \rightarrow K K^{+}\right)[\mathrm{ps}]$	1.452 ± 0.042	LHCb [17,34,35]

Table 3
Ranges of flat priors used for the determination of γ and $-2 \beta_{s}$ from $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays using U-spin symmetry.

Quantity	Prior range
d	$[0,20]$
ϑ	$\left[-180^{\circ}, 180^{\circ}\right]$
r_{D}	$[0, \kappa]$
$\vartheta_{r_{D}}$	$\left[-180^{\circ}, 180^{\circ}\right]$
r_{G}	$[0, \kappa]$
$\vartheta_{r_{G}}$	$\left[-180^{\circ}, 180^{\circ}\right]$
γ (analysis A only)	$\left[-180^{\circ}, 180^{\circ}\right]$
$-2 \beta_{s}[\mathrm{rad}]$ (analysis B only)	$[-\pi, \pi]$

$\gamma=(70.1 \pm 7.1)^{\circ}[8]$, is used as an input, and $-2 \beta_{s}$ is left as a free parameter.

The inputs to the analyses are the measured values of $C_{\pi^{+} \pi^{-}}$, $S_{\pi^{+} \pi^{-}}, C_{K^{+} K^{-}}, S_{K^{+} K^{-}}, \mathcal{B}_{\pi^{+} \pi^{-}}$and $\mathcal{B}_{K^{+} K^{-}}$. The corresponding constraints are given in Eqs. (12), (13), (16), (17), (18) and (21). In addition, the value of $A_{K^{+} K^{-}}^{\Delta \Gamma}$ is fixed to be negative. A summary of the experimental inputs is given in Table 2.

In both analyses, flat prior probability distributions, hereinafter referred to as priors, on $d, \vartheta, r_{D}, \vartheta_{r_{D}}, r_{G}, \vartheta_{r_{G}}$ and, where appropriate, on γ and $-2 \beta_{s}$ are used. In particular, we allow the U-spin breaking phases $\vartheta_{r_{D}}$ and $\vartheta_{r_{G}}$ to be completely undeter-
mined, using flat priors between -180° and 180°. Concerning the parameters r_{D} and r_{G}, we adopt uniform priors between 0 and κ, where κ represents the maximum magnitude of non-factorizable U-spin breaking allowed. The ranges of the flat priors are summarized in Table 3. We study the sensitivity on γ and $-2 \beta_{s}$ as a function of κ, ranging from 0 to 1 , meaning from 0% up to 100% non-factorizable U-spin breaking. For all experimental inputs we use Gaussian PDFs. The values of $\left|D^{\prime}\right|, d^{\prime}$ and ϑ^{\prime} are determined using Eqs. (29) and (30).

The dependences on κ of the 68% and 95% posterior probability intervals for γ and $-2 \beta_{s}$ are shown in Fig. 1. When the allowed amount of U-spin breaking becomes large enough, the PDF for γ is poorly constrained. In particular, it can be noted that for values of κ exceeding 0.6 the sensitivity on γ reduces significantly as a function of increasing κ. This fast transition is related to the nonlinearity of the constraint equations. For $-2 \beta_{s}$ the dependence of the sensitivity on κ is mild, but for values of κ exceeding 0.6 a slight shift of the distribution towards more negative values is observed.

In Fig. 2 we show the PDFs for γ obtained from analysis A and for $-2 \beta_{s}$ obtained from analysis B , corresponding to $\kappa=0.5$. The numerical results from both analyses are reported in Table 4. The 68% probability interval for γ is $\left[56^{\circ}, 70^{\circ}\right]$, and that for $-2 \beta_{S}$ is [$-0.28,0.02$]rad.

5. Inclusion of physics observables from $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays

A method to determine the angle α of the UT using $C P$ asymmetries and branching fractions of $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays was proposed in Ref. [14]. This method relies on the isospin symmetry of strong interactions and on the assumption of negligible contributions from electroweak penguin amplitudes. Isospin breaking and electroweak penguin contributions are known to be small, and their impact on the determination of the weak phase is at the level of 1° [36-39]. In Ref. [13] it was suggested to combine the isospin-based technique of Ref. [14] with that of Ref. [10] based on U-spin. Here we extend the study presented in Section 4 by including the experimental information on $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays, i.e. using also the observables $C_{\pi^{0} \pi^{0}}, \mathcal{B}_{\pi^{0} \pi^{0}}$ and $\mathcal{B}_{\pi^{+} \pi^{0}}$. The corresponding constraints are given in Eqs. (14), (19) and (20).

In complete analogy with the study presented in Section 4, we perform two distinct analyses, to determine either γ or $-2 \beta_{s}$. They are referred to as analyses C and D, respectively. In analysis C, the value of $-2 \beta_{s}$ is constrained as a function of β and γ, and γ is determined, whereas in analysis D , the world average

Fig. 1. Dependences of the 68% (hatched areas) and 95% (filled areas) probability intervals on the allowed amount of non-factorizable U-spin breaking, for (a) γ from analysis A and (b) $-2 \beta_{s}$ from analysis B.

Fig. 2. Distributions of (a) γ from analysis A and (b) $-2 \beta_{s}$ from analysis B, corresponding to $\kappa=0.5$. The hatched areas correspond to 68% probability intervals, whereas the filled areas correspond to 95% probability intervals.

Table 4
Results obtained from analyses A and B with $\kappa=0.5$. The results are given modulo 180° for $\vartheta, \vartheta^{\prime}$ and γ.

Quantity	Analysis A		Analysis B 68\% prob.
d	$[0.32,0.53]$	95% prob.	68% prob.
ϑ	$\left[136^{\circ}, 157^{\circ}\right]$	$[0.25,0.78]$	$[0.36,0.58]$
d^{\prime}	$[0.33,0.50]$	$\left[119^{\circ}, 165^{\circ}\right]$	$\left[141^{\circ}, 157^{\circ}\right]$
ϑ^{\prime}	$\left[132^{\circ}, 160^{\circ}\right]$	$[0.28,0.65]$	$[0.34,0.52]$
$\|D\|\left[\mathrm{MeV}^{\frac{1}{2}} \mathrm{ps}^{-\frac{1}{2}}\right]$	$[0.102,0.114]$	$[0.094,0.121]$	$\left[132^{\circ}, 160^{\circ}\right]$
$\left\|D^{\prime}\right\|\left[\mathrm{MeV}^{\frac{1}{2}} \mathrm{ps}^{-\frac{1}{2}}\right]$	$[0.130,0.195]$	$[0.097,0.231]$	$[0.101,0.112]$
γ	$\left[56^{\circ}, 70^{\circ}\right]$	$\left[49^{\circ}, 82^{\circ}\right]$	$[0.122,0.188]$
$-2 \beta_{s}[\mathrm{rad}]$	-	-	-

value of γ from tree-level decays is used as an input and $-2 \beta_{s}$ is determined. A summary of the experimental inputs is given in Table 5.

In both analyses, flat priors on $d, \vartheta, q, \vartheta_{q}, r_{D}, \vartheta_{r_{D}}, r_{G}, \vartheta_{r_{G}}$ and, where appropriate, on γ and $-2 \beta_{s}$ are used. The ranges of the flat priors are summarized in Table 6. For all experimental inputs we use Gaussian PDFs. The values of $\left|D^{\prime}\right|, d^{\prime}$ and ϑ^{\prime} are again determined using Eqs. (29) and (30).

The dependences on κ of the 68% and 95% probability intervals for γ and $-2 \beta_{s}$ are shown in Fig. 3. Again, when the amount of U-spin breaking exceeds 60%, additional maxima appear in the posterior PDF for γ. By contrast, for $-2 \beta_{s}$, the dependence of the sensitivity on κ is very weak. In Fig. 4 we show the PDFs for γ obtained from analysis C and for $-2 \beta_{s}$ obtained from analysis D , corresponding to $\kappa=0.5$. The numerical results from both analyses are reported in Table 7. The 68\% probability interval for γ is [$57^{\circ}, 71^{\circ}$], and that for $-2 \beta_{s}$ is $[-0.28,0.02] \mathrm{rad}$.

It is worth emphasizing that, although this study is similar to that presented in Ref. [13], there are two relevant differences, in
addition to the use of updated experimental inputs. First, the upper limits of the priors on d and q are chosen to be much larger, to include all nonzero likelihood regions and to remove any sizable dependence of the results on the choice of the priors. In particular, this leads to a bigger impact of U-spin breaking effects at very large κ values. Second, the adopted parameterization of non-factorizable U-spin breaking is slightly different, in order to propagate equally the effects of the breaking on every topology contributing to the total decay amplitudes.

6. Results and conclusions

Using the latest LHCb measurements of time-dependent $C P$ violation in the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay, and following the approaches outlined in Refs. [10,13], the angle γ of the unitarity triangle and the B_{s}^{0} mixing phase $-2 \beta_{s}$ have been determined. The approach of Ref. [10] relies on the use of the U-spin symmetry of strong interactions relating $B_{s}^{0} \rightarrow K^{+} K^{-}$with $B^{0} \rightarrow \pi^{+} \pi^{-}$decay amplitudes, whereas that of Ref. [13] relies on both isospin and U-spin

Table 5 results, accounting for correlations.
symmetries by combining the methods proposed in Refs. [10] and [14], i.e. considering also the information from $B^{0} \rightarrow \pi^{0} \pi^{0}$ and $B^{+} \rightarrow \pi^{+} \pi^{0}$ decays. To follow the latter approach, measure-

Experimental inputs used for the determination of γ and $-2 \beta_{s}$ from $B^{0} \rightarrow \pi^{+} \pi^{-}$, $B^{0} \rightarrow \pi^{0} \pi^{0}, B^{+} \rightarrow \pi^{+} \pi^{0}$ and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays, using isospin and U-spin symmetries. The parameter $\rho(X, Y)$ is the statistical correlation between X and Y. For $C_{\pi^{+} \pi^{-}}$and $S_{\pi^{+} \pi^{-}}$we perform our own weighted average of BaBar, Belle and LHCb

Quantity	Value	Source
$C_{\pi^{+} \pi^{-}}$	-0.30 ± 0.05	This Letter
$S_{\pi^{+} \pi^{-}}$	-0.66 ± 0.06	This Letter
$\rho\left(C_{\pi^{+} \pi^{-}}, S_{\pi^{+} \pi^{-}}\right)$	-0.007	This Letter
$C_{\pi^{0} \pi^{0}}$	-0.43 ± 0.24	HFAG [17]
$C_{K^{+} K^{-}}$	0.14 ± 0.11	LHCb [25]
$S_{K^{+} K^{-}}$	0.30 ± 0.13	LHCb [25]
$\rho\left(C_{K^{+}} K^{-}, S_{K^{+} K^{-}}\right)$	0.02	LHCb [25]
$\mathcal{B}_{\pi^{+} \pi^{-}} \times 10^{6}$	5.10 ± 0.19	HFAG [17]
$\mathcal{B}_{\pi^{+} \pi^{0}} \times 10^{6}$	5.48 ± 0.35	HFAG [17]
$\mathcal{B}_{\pi^{0} \pi^{0}} \times 10^{6}$	1.91 ± 0.23	HFAG [17]
$\mathcal{B}_{K^{+} K^{-}} \times 10^{6}$	24.5 ± 1.8	HFAG [17]
sin 2β	0.682 ± 0.019	HFAG [17]
$\gamma(\mathrm{analysis} \mathrm{D} \mathrm{only})$	$(70.1 \pm 7.1)^{\circ}$	UTfit [8]
λ	0.2253 ± 0.0007	PDG [33]
$m_{B^{0}}\left[\mathrm{MeV} / c^{2}\right]$	5279.55 ± 0.26	PDG [33]
$m_{B^{+}}\left[\mathrm{MeV} / \mathrm{c}^{2}\right]$	5279.25 ± 0.26	PDG [33]
$m_{B_{S}^{0}}\left[\mathrm{MeV} / c^{2}\right]$	5366.7 ± 0.4	PDG [33]
$m_{\pi^{+}}\left[\mathrm{MeV} / c^{2}\right]$	139.57018 ± 0.00035	PDG [33]
$m_{\pi^{0}}\left[\mathrm{MeV} / c^{2}\right]$	134.9766 ± 0.0006	PDG [33]
$m_{K^{+}}\left[\mathrm{MeV} / c^{2}\right]$	493.677 ± 0.013	PDG [33]
$\tau_{B^{0}}[\mathrm{ps}]$	1.519 ± 0.007	HFAG [17]
$\tau_{B^{+}}[\mathrm{ps}]$	1.641 ± 0.008	HFAG [17]
$\tau_{B_{s}^{0}}^{[\mathrm{ps}]}$	1.516 ± 0.011	HFAG [17]
$\Delta \Gamma_{S} / \Gamma_{S}$	0.160 ± 0.020	LHCb [16]
$\tau\left(B_{s}^{0} \rightarrow K^{+} K^{-}\right)[\mathrm{ps}]$	1.452 ± 0.042	LHCb [17,34,35]

ments solely coming from other experiments have been included in the analysis.

We have studied the impact of large non-factorizable U-spin breaking corrections on the determination of γ and $-2 \beta_{s}$. The relevant results in terms of 68% and 95% probability intervals, which include uncertainties due to non-factorizable U-spin breaking effects up to 50%, are summarized in Fig. 5. Typical U-spin breaking effects, including factorizable contributions, are expected to be much smaller, around the 30% level $[30,31]$.

With up to 50% non-factorizable U-spin breaking, the approach of Ref. [13] gives marginal improvements in precision with respect to that of Ref. [10]. The former approach gives considerably more robust results for larger U-spin breaking values. Following the approach of Ref. [13] and taking the most probable value as central value, at 68% probability we obtain

$$
\gamma=\left(63.5_{-6.7}^{+7.2}\right)^{\circ}
$$

Table 6
Ranges of flat priors used for the determination of γ and $-2 \beta_{s}$ from $B^{0} \rightarrow \pi^{+} \pi^{-}, B^{0} \rightarrow \pi^{0} \pi^{0}, B^{+} \rightarrow \pi^{+} \pi^{0}$ and $B_{s}^{0} \rightarrow K^{+} K^{-}$decays, using isospin and U-spin symmetries.

Quantity	Prior range
d	$[0,20]$
ϑ	$\left[-180^{\circ}, 180^{\circ}\right]$
q	$[0,20]$
ϑ_{q}	$\left[-180^{\circ}, 180^{\circ}\right]$
r_{D}	$[0, \kappa]$
$\vartheta_{r_{D}}$	$\left[-180^{\circ}, 180^{\circ}\right]$
r_{G}	$[0, \kappa]$
$\vartheta_{r_{G}}$	$\left[-180^{\circ}, 180^{\circ}\right]$
$\gamma($ analysis C only)	$\left[-180^{\circ}, 180^{\circ}\right]$
$-2 \beta_{s}[\mathrm{rad}]$ (analysis D only)	$[-\pi, \pi]$

Fig. 3. Dependences of the 68% (hatched areas) and 95% (filled areas) probability intervals on the allowed amount of non-factorizable U-spin breaking, for (a) γ from analysis C and (b) $-2 \beta_{s}$ from analysis D.

Fig. 4. Distributions of (a) γ from analysis C and (b) $-2 \beta_{s}$ from analysis D , corresponding to $\kappa=0.5$. The hatched areas correspond to 68% probability intervals, whereas the filled areas correspond to 95% probability intervals.

Table 7
Results obtained from analyses C and D with $\kappa=0.5$. The results are given modulo 180° for $\vartheta, \vartheta^{\prime}$ and γ.

Quantity	Analysis C		Analysis D	
	68\% prob.	95\% prob.	68\% prob.	95\% prob.
d	[0.33, 0.57]	[0.28, 0.79]	[0.37, 0.59]	[0.31, 0.77]
ϑ	[139 $\left.{ }^{\circ}, 157^{\circ}\right]$	[$\left.125^{\circ}, 164^{\circ}\right]$	[142 $\left.{ }^{\circ}, 157^{\circ}\right]$	[$\left.132^{\circ}, 163^{\circ}\right]$
d^{\prime}	[0.34, 0.50]	[0.28, 0.65]	[0.34, 0.52]	[0.29, 0.70]
ϑ^{\prime}	[$\left.132^{\circ}, 160^{\circ}\right]$	[$\left.119^{\circ}, 176^{\circ}\right]$	[$\left.133^{\circ}, 160^{\circ}\right]$	[$\left.1199^{\circ}, 176^{\circ}\right]$
q	[1.04, 1.21]	[0.94, 1.30]	[1.04, 1.21]	[0.95, 1.30]
ϑ_{q}	$\left[-82^{\circ},-58^{\circ}\right]$	$\left[-88^{\circ},-35^{\circ}\right]$	$\left[-78^{\circ},-57^{\circ}\right]$	[$-85^{\circ}, 38^{\circ}$]
$\|D\|\left[\mathrm{MeV}^{\frac{1}{2}} \mathrm{ps}^{-\frac{1}{2}}\right]$	[0.101, 0.113]	[0.094, 0.118]	[0.100, 0.111]	[0.094, 0.116]
$\left\|D^{\prime}\right\|\left[\mathrm{MeV}^{\frac{1}{2}} \mathrm{ps}^{-\frac{1}{2}}\right]$	[0.129, 0.193]	[0.097, 0.228]	[0.122, 0.187]	[0.089, 0.221]
γ	[$\left.57^{\circ}, 71^{\circ}\right]$	[$\left.52^{\circ}, 82^{\circ}\right]$	-	-
$-2 \beta_{s}[\mathrm{rad}]$	-	-	[-0.28, 0.02]	[-0.44, 0.17]

Fig. 5. Results for (top) γ and (bottom) $-2 \beta_{s}$ with $50 \%(\kappa=0.5$) non-factorizable U-spin breaking. As a comparison, other reference values are also reported. The most likely values are indicated by the vertical lines insides the boxes. The boxes and the error bars delimit the 68% and 95% probability intervals, respectively.
and, in an alternative analysis,
$-2 \beta_{s}=-0.12_{-0.16}^{+0.14} \mathrm{rad}$.
These results have been verified to be robust with respect to the choice of the priors and of the parameterization of non-factorizable U-spin breaking contributions. The value of γ shows no significant deviation from the averages of γ from tree-level decays provided by the UTfit Collaboration and the CKMfitter group that quote $\gamma=$ ($70.1 \pm 7.1)^{\circ}$ and $\gamma=\left(68.0_{-8.5}^{+8.0}\right)^{\circ}$, respectively [8,9]. Analogously, the value of $-2 \beta_{s}$ is compatible with the LHCb result from $b \rightarrow c \bar{c} s$ transitions, $\phi_{s}=0.01 \pm 0.07$ (stat) ± 0.01 (syst) rad [16], obtained using a data sample of $p p$ collisions corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$.

In summary, the value of γ from charmless two-body decays of beauty mesons is found to be compatible and competitive with that from tree-level decays. However, since the impact of U-spin breaking corrections is significant, further improvements in the measurement of γ are primarily limited by theoretical understanding of U-spin breaking. By contrast, the impact of U-spin breaking
effects on the value of $-2 \beta_{s}$ is small, and significant improvements are anticipated with the advent of larger samples of data. It is worth emphasizing that the information on $-2 \beta_{S}$ comes solely from the measurement of $C P$ violation in the $B_{s}^{0} \rightarrow K^{+} K^{-}$decay [25], also based on a data sample of $p p$ collisions corresponding to an integrated luminosity of $1.0 \mathrm{fb}^{-1}$. At present, the overall uncertainty on $-2 \beta_{s}$, which also includes theoretical uncertainties, is only two times larger than that obtained using $b \rightarrow c \bar{c} s$ transitions, as reported above.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MINECO (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R\&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

References

[1] N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531.
[2] M. Kobayashi, T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652.
[3] J. Brod, J. Zupan, The ultimate theoretical error on γ from $B \rightarrow D K$ decays, J. High Energy Phys. 1401 (2014) 051, arXiv:1308.5663.
[4] BaBar Collaboration, J.P. Lees, et al., Observation of direct CP violation in the measurement of the Cabibbo-Kobayashi-Maskawa angle γ with $B^{ \pm} \rightarrow$ $D^{(*)} K^{(*) \pm}$ decays, Phys. Rev. D 87 (2013) 052015, arXiv:1301.1029.
[5] K. Trabelsi, Study of direct CP in charmed B decays and measurement of the CKM angle γ at Belle, arXiv:1301.2033.
[6] LHCb Collaboration, R. Aaij, et al., Measurement of the CKM angle γ from a combination of $B^{ \pm} \rightarrow D h^{ \pm}$analyses, Phys. Lett. B 726 (2013) 151, arXiv:1305.2050.
[7] LHCb Collaboration, Improved constraints on γ from $B^{ \pm} \rightarrow D K^{ \pm}$decays including first results on 2012 data, LHCb-CONF-2013-006.
[8] UTfit Collaboration, M. Bona, et al., The unitarity triangle fit in the Standard Model and hadronic parameters from lattice QCD: a reappraisal after the measurements of Δm_{s} and $\operatorname{BR}\left(B \rightarrow \tau \nu_{\tau}\right)$, J. High Energy Phys. 0610 (2006) 081, arXiv:hep-ph/0606167, updated results and plots available at http://www.utfit.org/.
[9] CKMfitter group, J. Charles, et al., Predictions of selected flavour observables within the Standard Model, Phys. Rev. D 84 (2011) 033005, arXiv:1106.4041, updated results and plots available at http://ckmfitter.in2p3.fr/.
[10] R. Fleischer, New strategies to extract β and γ from $B_{d} \rightarrow \pi^{+} \pi^{-}$and $B_{s} \rightarrow$ $K^{+} K^{-}$, Phys. Lett. B 459 (1999) 306, arXiv:hep-ph/9903456.
[11] R. Fleischer, $B_{s, d} \rightarrow \pi \pi, \pi K, K K$: status and prospects, Eur. Phys. J. C 52 (2007) 267, arXiv:0705.1121.
[12] R. Fleischer, R. Knegjens, In pursuit of new physics with $B_{s}^{0} \rightarrow K^{+} K^{-}$, Eur. Phys. J. C 71 (2011) 1532, arXiv:1011.1096.
[13] M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Testing the Standard Model and searching for new physics with $B_{d} \rightarrow \pi \pi$ and $B_{s} \rightarrow K K$ decays, J. High Energy Phys. 1210 (2012) 029, arXiv:1205.4948.
[14] M. Gronau, D. London, Isospin analysis of CP asymmetries in B decays, Phys. Rev. Lett. 65 (1990) 3381.
[15] LHCb Collaboration, R. Aaij, et al., Determination of the sign of the decay width difference in the B_{s}^{0} system, Phys. Rev. Lett. 108 (2012) 241801, arXiv: 1202.4717.
[16] LHCb Collaboration, R. Aaij, et al., Measurement of $C P$ violation and the B_{s}^{0} meson decay width difference with $B_{s}^{0} \rightarrow J / \psi K^{+} K^{-}$and $B_{s}^{0} \rightarrow J / \psi \pi^{+} \pi^{-}$ decays, Phys. Rev. D 87 (2013) 112010, arXiv:1304.2600.
[17] Heavy Flavor Averaging Group, Y. Amhis, et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of early 2012, arXiv:1207.1158, updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/.
[18] LHCb Collaboration, R. Aaij, et al., Measurement of the flavour-specific CPviolating asymmetry $a_{s l}^{s}$ in B_{s}^{0} decays, Phys. Lett. B 728 (2014) 607, arXiv: 1308.1048.
[19] K. De Bruyn, et al., Branching ratio measurements of B_{S} decays, Phys. Rev. D 86 (2012) 014027, arXiv:1204.1735.
[20] BaBar Collaboration, J.P. Lees, et al., Measurement of CP asymmetries and branching fractions in charmless two-body B-meson decays to pions and kaons, Phys. Rev. D 87 (2013) 052009, arXiv:1206.3525.
[21] Belle Collaboration, I. Adachi, et al., Measurement of the CP violation parameters in $B^{0} \rightarrow \pi^{+} \pi^{-}$decays, Phys. Rev. D 88 (2013) 092003, arXiv:1302.0551.
[22] BaBar Collaboration, B. Aubert, et al., Study of $B^{0} \rightarrow \pi^{0} \pi^{0}, B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$, and $B^{ \pm} \rightarrow K^{ \pm} \pi^{0}$ decays, and isospin analysis of $B \rightarrow \pi \pi$ decays, Phys. Rev. D 76 (2007) 091102, arXiv:0707.2798.
[23] Belle Collaboration, Y.-T. Duh, et al., Measurements of branching fractions and direct CP asymmetries for $B \rightarrow K \pi, B \rightarrow \pi \pi$ and $B \rightarrow K K$ decays, Phys. Rev. D 87 (2013) 031103, arXiv:1210.1348.
[24] Belle Collaboration, K. Abe, et al., Observation of $B^{0} \rightarrow \pi^{0} \pi^{0}$, Phys. Rev. Lett. 94 (2005) 181803, arXiv:hep-ex/0408101.
[25] LHCb Collaboration, R. Aaij, et al., First measurement of time-dependent $C P$ violation in $B_{s}^{0} \rightarrow K^{+} K^{-}$decays, J. High Energy Phys. 1310 (2013) 183, arXiv:1308.1428.
[26] BaBar Collaboration, B. Aubert, et al., Improved measurements of the branching fractions for $B^{0} \rightarrow \pi^{+} \pi^{-}$and $B^{0} \rightarrow K^{+} \pi^{-}$, and a search for $B^{0} \rightarrow K^{+} K^{-}$ Phys. Rev. D 75 (2007) 012008, arXiv:hep-ex/0608003.
[27] CDF Collaboration, T. Aaltonen, et al., Measurements of direct CP violat ing asymmetries in charmless decays of strange bottom mesons and bottom baryons, Phys. Rev. Lett. 106 (2011) 181802, arXiv:1103.5762.
[28] LHCb Collaboration, R. Aaij, et al., Measurement of b-hadron branching fractions for two-body decays into charmless charged hadrons, J. High Energy Phys. 1210 (2012) 037, arXiv:1206.2794.
[29] LHCb Collaboration, R. Aaij, et al., Effective lifetime measurements in the $B_{s}^{0} \rightarrow$ $K^{+} K^{-}, B^{0} \rightarrow K^{+} \pi^{-}$and $B_{s}^{0} \rightarrow \pi^{+} K^{-}$decays, Phys. Lett. B (2014), in press, arXiv:1406.7204.
[30] M. Gronau, U-spin breaking in CP asymmetries in B decays, Phys. Lett. B 727 (2013) 136, arXiv:1308.3448.
[31] M. Nagashima, A. Szynkman, D. London, U-spin tests of the standard model and new physics, Mod. Phys. Lett. A 23 (2008) 1175, arXiv:hep-ph/0701199.
[32] G. Duplančić, B. Melić, $B, B_{S} \rightarrow K$ form factors: an update of light-cone sum rule results, Phys. Rev. D 78 (2008) 054015, arXiv:0805.4170.
[33] Particle Data Group, J. Beringer, et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001, and 2013 partial update for the 2014 edition.
[34] LHCb Collaboration, R. Aaij, et al., Measurement of the effective $B_{s}^{0} \rightarrow K^{+} K^{-}$ lifetime, Phys. Lett. B 707 (2012) 349, arXiv:1111.0521.
[35] LHCb Collaboration, R. Aaij, et al., Measurement of the effective $B_{s}^{0} \rightarrow K^{+} K^{-}$ lifetime, Phys. Lett. B 716 (2012) 393, arXiv:1207.5993.
[36] A.J. Buras, R. Fleischer, A general analysis of γ determinations from $B \rightarrow \pi K$ decays, Eur. Phys. J. C 11 (1999) 93, arXiv:hep-ph/9810260.
[37] M. Gronau, D. Pirjol, T.-M. Yan, Model independent electroweak penguins in B decays to two pseudoscalars, Phys. Rev. D 60 (1999) 034021, arXiv:hep-ph/ 9810482.
[38] J. Zupan, Penguin pollution estimates relevant for the extraction of α / ϕ_{2}, Nucl. Phys. B, Proc. Suppl. 170 (2007) 33, arXiv:hep-ph/0701004.
[39] F. Botella, D. London, J.P. Silva, Looking for $\Delta I=5 / 2$ amplitude components in $B \rightarrow \pi \pi$ and $B \rightarrow \rho \rho$ experiments, Phys. Rev. D 73 (2006) 071501, arXiv: hep-ph/0602060.

LHCb Collaboration

P.N.Y. David ${ }^{41}$, A. Davis ${ }^{57}$, K. De Bruyn ${ }^{41}$, S. De Capua ${ }^{54}$, M. De Cian ${ }^{11}$, J.M. De Miranda ${ }^{1}$, L. De Paula ${ }^{2}$, W. De Silva ${ }^{57}$, P. De Simone ${ }^{18}$, D. Decamp ${ }^{4}$, M. Deckenhoff ${ }^{9}$, L. Del Buono ${ }^{8}$, N. Déléage ${ }^{4}$, D. Derkach ${ }^{55}$, O. Deschamps ${ }^{5}$, F. Dettori ${ }^{38}$, A. Di Canto ${ }^{38}$, H. Dijkstra ${ }^{38}$, S. Donleavy ${ }^{52}$, F. Dordei ${ }^{11}$, M. Dorigo ${ }^{39}$, A. Dosil Suárez ${ }^{37}$, D. Dossett ${ }^{48}$, A. Dovbnya ${ }^{43}$, K. Dreimanis ${ }^{52}$, G. Dujany ${ }^{54}$, F. Dupertuis ${ }^{39}$, P. Durante ${ }^{38}$, R. Dzhelyadin ${ }^{35}$, A. Dziurda ${ }^{26}$, A. Dzyuba ${ }^{30}$, S. Easo ${ }^{49,38}$, V. Egorychev ${ }^{31}$, S. Eidelman ${ }^{34}$, S. Eisenhardt ${ }^{50}$, U. Eitschberger ${ }^{9}$, R. Ekelhof ${ }^{9}$, L. Eklund ${ }^{51}$, I. El Rifai ${ }^{5}$, Ch. Elsasser ${ }^{40}$, S. Ely ${ }^{59}$, S. Esen ${ }^{11}$, H.-M. Evans ${ }^{47}$, T. Evans ${ }^{55}$, A. Falabella ${ }^{14}$, C. Färber ${ }^{11}$, C. Farinelli ${ }^{41}$, N. Farley ${ }^{45}$, S. Farry ${ }^{52}$, R.F. Fay ${ }^{52}$, D. Ferguson ${ }^{50}$, V. Fernandez Albor ${ }^{37}$, F. Ferreira Rodrigues ${ }^{1}$, M. Ferro-Luzzi ${ }^{38}$, S. Filippov ${ }^{33}$, M. Fiore ${ }^{16, f}$, M. Fiorini ${ }^{16, f}$, M. Firlej ${ }^{27}$, C. Fitzpatrick ${ }^{39}$, T. Fiutowski ${ }^{27}$, P. Fol 53, M. Fontana ${ }^{10}$, F. Fontanelli ${ }^{19, j}$, R. Forty ${ }^{38}$, O. Francisco ${ }^{2}$, M. Frank ${ }^{38}$, C. Frei ${ }^{38}$, M. Frosini ${ }^{17, g}$, J. Fu ${ }^{21,38}$, E. Furfaro ${ }^{24, l}$, A. Gallas Torreira ${ }^{37}$, D. Galli ${ }^{14, d}$, S. Gallorini ${ }^{22,38}$, S. Gambetta ${ }^{19, j}$, M. Gandelman ${ }^{2}$, P. Gandini ${ }^{59}$, Y. Gao ${ }^{3}$, J. García Pardiñas ${ }^{37}$, J. Garofoli ${ }^{59}$, J. Garra Tico ${ }^{47}$, L. Garrido ${ }^{36}$, C. Gaspar ${ }^{38}$, R. Gauld ${ }^{55}$, L. Gavardi ${ }^{9}$, G. Gavrilov ${ }^{30}$, A. Geraci ${ }^{21, v}$, E. Gersabeck ${ }^{11}$, M. Gersabeck ${ }^{54}$, T. Gershon ${ }^{48}$, Ph. Ghez ${ }^{4}$, A. Gianelle ${ }^{22}$, S. Gianì ${ }^{39}$, V. Gibson ${ }^{47}$, L. Giubega ${ }^{29}$, V.V. Gligorov ${ }^{38}$, C. Göbel ${ }^{60}$, D. Golubkov ${ }^{31}$, A. Golutvin ${ }^{53,31,38}$, A. Gomes ${ }^{1, a}$, C. Gotti ${ }^{20}$, M. Grabalosa Gándara ${ }^{5}$, R. Graciani Diaz ${ }^{36}$, L.A. Granado Cardoso ${ }^{38}$, E. Graugés ${ }^{36}$, G. Graziani ${ }^{17}$, A. Grecu ${ }^{29}$, E. Greening ${ }^{55}$, S. Gregson ${ }^{47}$, P. Griffith ${ }^{45}$, L. Grillo ${ }^{11}$, O. Grünberg ${ }^{62}$, B. Gui ${ }^{59}$, E. Gushchin ${ }^{33}$, Yu. Guz ${ }^{35,38}$, T. Gys ${ }^{38}$, C. Hadjivasiliou ${ }^{59}$, G. Haefeli ${ }^{39}$, C. Haen ${ }^{38}$, S.C. Haines ${ }^{47}$, S. Hall ${ }^{53}$, B. Hamilton ${ }^{58}$, T. Hampson ${ }^{46}$, X. Han ${ }^{11}$, S. Hansmann-Menzemer ${ }^{11}$, N. Harnew ${ }^{55}$, S.T. Harnew ${ }^{46}$, J. Harrison ${ }^{54}$, J. He ${ }^{38}$, T. Head ${ }^{38}$, V. Heijne ${ }^{41}$, K. Hennessy ${ }^{52}$, P. Henrard ${ }^{5}$, L. Henry ${ }^{8}$, J.A. Hernando Morata ${ }^{37}$, E. van Herwijnen ${ }^{38}$, M. Heß ${ }^{62}$, A. Hicheur ${ }^{1}$, D. Hill ${ }^{55}$, M. Hoballah ${ }^{5}$, C. Hombach ${ }^{54}$, W. Hulsbergen ${ }^{41}$, P. Hunt ${ }^{55}$, N. Hussain ${ }^{55}$, D. Hutchcroft ${ }^{52}$, D. Hynds ${ }^{51}$, M. Idzik ${ }^{27}$, P. Ilten ${ }^{56}$, R. Jacobsson ${ }^{38}$, A. Jaeger ${ }^{11}$, J. Jalocha ${ }^{55}$, E. Jans ${ }^{41}$, P. Jaton ${ }^{39}$, A. Jawahery ${ }^{58}$, F. Jing ${ }^{3}$, M. John ${ }^{55}$, D. Johnson ${ }^{38}$, C.R. Jones ${ }^{47}$, C. Joram ${ }^{38}$, B. Jost ${ }^{38}$, N. Jurik ${ }^{59}$, M. Kaballo ${ }^{9}$, S. Kandybei ${ }^{43}$, W. Kanso ${ }^{6}$, M. Karacson ${ }^{38}$, T.M. Karbach ${ }^{38}$, S. Karodia ${ }^{51}$, M. Kelsey ${ }^{59}$, I.R. Kenyon ${ }^{45}$, T. Ketel ${ }^{42}$, B. Khanji ${ }^{20}$, C. Khurewathanakul ${ }^{39}$, S. Klaver ${ }^{54}$, K. Klimaszewski ${ }^{28}$, O. Kochebina 7, M. Kolpin ${ }^{11}$, I. Komarov ${ }^{39}$, R.F. Koopman ${ }^{42}$, P. Koppenburg ${ }^{41,38}$, M. Korolev ${ }^{32}$, A. Kozlinskiy ${ }^{41}$, L. Kravchuk ${ }^{33}$, K. Kreplin ${ }^{11}$, M. Kreps ${ }^{48}$, G. Krocker ${ }^{11}$, P. Krokovny ${ }^{34}$, F. Kruse ${ }^{9}$, W. Kucewicz ${ }^{26, o}$, M. Kucharczyk ${ }^{20,26, k}$, V. Kudryavtsev ${ }^{34}$, K. Kurek ${ }^{28}$, T. Kvaratskheliya ${ }^{31}$, V.N. La Thi ${ }^{39}$, D. Lacarrere ${ }^{38}$, G. Lafferty ${ }^{54}$, A. Lai ${ }^{15}$, D. Lambert ${ }^{50}$, R.W. Lambert ${ }^{42}$, G. Lanfranchi ${ }^{18}$, C. Langenbruch ${ }^{48}$, B. Langhans ${ }^{38}$, T. Latham ${ }^{48}$, C. Lazzeroni ${ }^{45}$, R. Le Gac ${ }^{6}$, J. van Leerdam ${ }^{41}$, J.-P. Lees ${ }^{4}$, R. Lefèvre ${ }^{5}$, A. Leflat ${ }^{32}$, J. Lefrançois ${ }^{7}$, S. Leo ${ }^{23}$, O. Leroy ${ }^{6}$, T. Lesiak ${ }^{26}$, B. Leverington ${ }^{11}$, Y. Li ${ }^{3}$, T. Likhomanenko ${ }^{63}$, M. Liles ${ }^{52}$, R. Lindner ${ }^{38}$, C. Linn ${ }^{38}$, F. Lionetto ${ }^{40}$, B. Liu ${ }^{15}$, S. Lohn ${ }^{38}$, I. Longstaff ${ }^{51}$, J.H. Lopes ${ }^{2}$, N. Lopez-March ${ }^{39}$, P. Lowdon ${ }^{40}$, H. Lu ${ }^{3}$, D. Lucchesi ${ }^{22, r}$, H. Luo ${ }^{50}$, A. Lupato ${ }^{22}$, E. Luppi ${ }^{16, f}$, O. Lupton ${ }^{55}$, F. Machefert ${ }^{7}$, I.V. Machikhiliyan ${ }^{31}$, F. Maciuc ${ }^{29}$, O. Maev ${ }^{30}$, S. Malde ${ }^{55}$, A. Malinin ${ }^{63}$, G. Manca ${ }^{15, e}$, G. Mancinelli ${ }^{6}$, A. Mapelli ${ }^{38}$, J. Maratas ${ }^{5}$, J.F. Marchand ${ }^{4}$, U. Marconi ${ }^{14}$, C. Marin Benito ${ }^{36}$, P. Marino ${ }^{23, t}$, R. Märki ${ }^{39}$, J. Marks ${ }^{11}$, G. Martellotti ${ }^{25}$, A. Martens ${ }^{8}$, A. Martín Sánchez ${ }^{7}$, M. Martinelli ${ }^{39}$, D. Martinez Santos ${ }^{42,38}$, F. Martinez Vidal ${ }^{64}$, D. Martins Tostes ${ }^{2}$, A. Massafferri ${ }^{1}$, R. Matev ${ }^{38}$, Z. Mathe ${ }^{38}$, C. Matteuzzi ${ }^{20}$, A. Mazurov ${ }^{45}$, M. McCann ${ }^{53}$, J. McCarthy ${ }^{45}$, A. McNab ${ }^{54}$, R. McNulty ${ }^{12}$, B. McSkelly ${ }^{52}$, B. Meadows ${ }^{57}$, F. Meier ${ }^{9}$, M. Meissner ${ }^{11}$, M. Merk ${ }^{41}$, D.A. Milanes ${ }^{8}$, M.-N. Minard ${ }^{4}$, N. Moggi ${ }^{14}$, J. Molina Rodriguez ${ }^{60}$, S. Monteil ${ }^{5}$, M. Morandin ${ }^{22}$, P. Morawski ${ }^{27}$, A. Mordà ${ }^{6}$, M.J. Morello ${ }^{23, t}$, J. Moron ${ }^{27}$, A.-B. Morris ${ }^{50}$, R. Mountain ${ }^{59}$, F. Muheim ${ }^{50}$, K. Müller ${ }^{40}$, M. Mussini ${ }^{14}$, B. Muster ${ }^{39}$, P. Naik ${ }^{46}$, T. Nakada ${ }^{39}$, R. Nandakumar ${ }^{49}$, I. Nasteva ${ }^{2}$, M. Needham ${ }^{50}$, N. Neri ${ }^{21}$, S. Neubert ${ }^{38}$, N. Neufeld ${ }^{38}$, M. Neuner ${ }^{11}$, A.D. Nguyen ${ }^{39}$, T.D. Nguyen ${ }^{39}$, C. Nguyen-Mau ${ }^{39, q}$, M. Nicol ${ }^{7}$, V. Niess ${ }^{5}$, R. Niet ${ }^{9}$, N. Nikitin ${ }^{32}$, T. Nikodem ${ }^{11}$, A. Novoselov ${ }^{35}$, D.P. O'Hanlon ${ }^{48}$, A. Oblakowska-Mucha ${ }^{27,38}$, V. Obraztsov ${ }^{35}$, S. Oggero ${ }^{41}$, S. Ogilvy ${ }^{51}$, O. Okhrimenko ${ }^{44}$, R. Oldeman ${ }^{15, e}$, G. Onderwater ${ }^{65}$, M. Orlandea ${ }^{29}$, J.M. Otalora Goicochea ${ }^{2}$, P. Owen ${ }^{53}$, A. Oyanguren ${ }^{64}$, B.K. Pal ${ }^{59}$, A. Palano ${ }^{13, c}$, F. Palombo ${ }^{21, u}$, M. Palutan ${ }^{18}$, J. Panman ${ }^{38}$, A. Papanestis ${ }^{49,38}$, M. Pappagallo ${ }^{51}$, L.L. Pappalardo ${ }^{16, f}$, C. Parkes ${ }^{54}$, C.J. Parkinson ${ }^{9,45}$, G. Passaleva ${ }^{17}$, G.D. Patel ${ }^{52}$, M. Patel ${ }^{53}$,
C. Patrignani ${ }^{19, j}$, A. Pazos Alvarez ${ }^{37}$, A. Pearce ${ }^{54}$, A. Pellegrino ${ }^{41}$, M. Pepe Altarelli ${ }^{38}$, S. Perazzini ${ }^{14, d}$, E. Perez Trigo ${ }^{37}$, P. Perret ${ }^{5}$, M. Perrin-Terrin ${ }^{6}$, L. Pescatore ${ }^{45}$, E. Pesen ${ }^{66}$, K. Petridis ${ }^{53}$, A. Petrolini ${ }^{19, j}$, E. Picatoste Olloqui ${ }^{36}$, B. Pietrzyk ${ }^{4}$, T. Pilař ${ }^{48}$, D. Pinci ${ }^{25}$, A. Pistone ${ }^{19}$, S. Playfer ${ }^{50}$, M. Plo Casasus ${ }^{37}$, F. Polci ${ }^{8}$, A. Poluektov ${ }^{48,34}$, E. Polycarpo ${ }^{2}$, A. Popov ${ }^{35}$, D. Popov ${ }^{10}$, B. Popovici ${ }^{29}$, C. Potterat ${ }^{2}$,
E. Price ${ }^{46}$, J.D. Price ${ }^{52}$, J. Prisciandaro ${ }^{39}$, A. Pritchard ${ }^{52}$, C. Prouve ${ }^{46}$, V. Pugatch ${ }^{44}$, A. Puig Navarro ${ }^{39}$, G. Punzi ${ }^{23,5}$, W. Qian ${ }^{4}$, B. Rachwal ${ }^{26}$, J.H. Rademacker ${ }^{46}$, B. Rakotomiaramanana ${ }^{39}$, M. Rama ${ }^{18}$, M.S. Rangel ${ }^{2}$, I. Raniuk ${ }^{43}$, N. Rauschmayr ${ }^{38}$, G. Raven ${ }^{42}$, F. Redi ${ }^{53}$, S. Reichert ${ }^{54}$, M.M. Reid ${ }^{48}$, A.C. dos Reis ${ }^{1}$, S. Ricciardi ${ }^{49}$, S. Richards ${ }^{46}$, M. Rihl ${ }^{38}$, K. Rinnert ${ }^{52}$, V. Rives Molina ${ }^{36}$, P. Robbe ${ }^{7}$, A.B. Rodrigues ${ }^{1}$, E. Rodrigues ${ }^{54}$, P. Rodriguez Perez ${ }^{54}$, S. Roiser ${ }^{38}$, V. Romanovsky ${ }^{35}$, A. Romero Vidal ${ }^{37}$, M. Rotondo ${ }^{22}$, J. Rouvinet ${ }^{39}$, T. Ruf ${ }^{38}$, H. Ruiz ${ }^{36}$, P. Ruiz Valls ${ }^{64}$, J.J. Saborido Silva ${ }^{37}$, N. Sagidova ${ }^{30}$, P. Sail ${ }^{51}$, B. Saitta ${ }^{15, e}$, V. Salustino Guimaraes ${ }^{2}$, C. Sanchez Mayordomo ${ }^{64}$, B. Sanmartin Sedes ${ }^{37}$, R. Santacesaria ${ }^{25}$, C. Santamarina Rios ${ }^{37}$, E. Santovetti ${ }^{24, l}$, A. Sarti ${ }^{18, m}$, C. Satriano ${ }^{25, n}$, A. Satta ${ }^{24}$, D.M. Saunders ${ }^{46}$, M. Savrie ${ }^{16, f}$, D. Savrina ${ }^{31,32}$, M. Schiller ${ }^{42}$, H. Schindler ${ }^{38}$, M. Schlupp ${ }^{9}$, M. Schmelling ${ }^{10}$, B. Schmidt ${ }^{38}$, O. Schneider ${ }^{39}$, A. Schopper ${ }^{38}$, M.-H. Schune ${ }^{7}$, R. Schwemmer ${ }^{38}$, B. Sciascia ${ }^{18}$, A. Sciubba ${ }^{25}$, M. Seco ${ }^{37}$, A. Semennikov ${ }^{31}$, I. Sepp ${ }^{53}$, N. Serra ${ }^{40}$, J. Serrano ${ }^{6}$, L. Sestini ${ }^{22}$, P. Seyfert ${ }^{11}$, M. Shapkin ${ }^{35}$, I. Shapoval ${ }^{16,43, f}$, Y. Shcheglov ${ }^{30}$, T. Shears ${ }^{52}$, L. Shekhtman ${ }^{34}$, V. Shevchenko ${ }^{63}$, A. Shires ${ }^{9}$, R. Silva Coutinho ${ }^{48}$, G. Simi ${ }^{22}$, M. Sirendi ${ }^{47}$, N. Skidmore ${ }^{46}$, T. Skwarnicki ${ }^{59}$, N.A. Smith ${ }^{52}$, E. Smith ${ }^{55,49}$, E. Smith ${ }^{53}$, J. Smith ${ }^{47}$, M. Smith ${ }^{54}$, H. Snoek ${ }^{41}$, M.D. Sokoloff ${ }^{57}$, F.J.P. Soler ${ }^{51}$, F. Soomro ${ }^{39}$, D. Souza ${ }^{46}$, B. Souza De Paula ${ }^{2}$, B. Spaan ${ }^{9}$, A. Sparkes ${ }^{50}$, P. Spradlin ${ }^{51}$, S. Sridharan ${ }^{38}$, F. Stagni ${ }^{38}$, M. Stahl ${ }^{11}$, S. Stahl ${ }^{11}$, O. Steinkamp ${ }^{40}$, O. Stenyakin ${ }^{35}$, S. Stevenson ${ }^{55}$, S. Stoica ${ }^{29}$, S. Stone ${ }^{59}$, B. Storaci ${ }^{40}$, S. Stracka ${ }^{23}$, M. Straticiuc ${ }^{29}$, U. Straumann ${ }^{40}$, R. Stroili ${ }^{22}$, V.K. Subbiah ${ }^{38}$, L. Sun ${ }^{57}$, W. Sutcliffe ${ }^{53}$, K. Swientek ${ }^{27}$, S. Swientek ${ }^{9}$, V. Syropoulos ${ }^{42}$, M. Szczekowski ${ }^{28}$, P. Szczypka ${ }^{39,38}$, D. Szilard ${ }^{2}$, T. Szumlak ${ }^{27}$, S. T’Jampens ${ }^{4}$, M. Teklishyn ${ }^{7}$, G. Tellarini ${ }^{16, f}$, F. Teubert ${ }^{38}$, C. Thomas ${ }^{55}$, E. Thomas ${ }^{38}$, J. van Tilburg ${ }^{41}$, V. Tisserand ${ }^{4}$, M. Tobin ${ }^{39}$, S. Tolk ${ }^{42}$, L. Tomassetti ${ }^{16, f}$, S. Topp-Joergensen ${ }^{55}$, N. Torr ${ }^{55}$, E. Tournefier ${ }^{4}$, S. Tourneur ${ }^{39}$, M.T. Tran ${ }^{39}$, M. Tresch ${ }^{40}$, A. Tsaregorodtsev ${ }^{6}$, P. Tsopelas ${ }^{41}$, N. Tuning ${ }^{41}$, M. Ubeda Garcia ${ }^{38}$, A. Ukleja ${ }^{28}$, A. Ustyuzhanin ${ }^{63}$, U. Uwer ${ }^{11}$, C. Vacca ${ }^{15}$, V. Vagnoni ${ }^{14, *}$, G. Valenti ${ }^{14}$, A. Vallier ${ }^{7}$, R. Vazquez Gomez ${ }^{18}$, P. Vazquez Regueiro ${ }^{37}$, C. Vázquez Sierra ${ }^{37}$, S. Vecchi ${ }^{16}$, J.J. Velthuis ${ }^{46}$, M. Veltri ${ }^{17}$,h, G. Veneziano ${ }^{39}$, M. Vesterinen ${ }^{11}$, B. Viaud ${ }^{7}$, D. Vieira ${ }^{2}$, M. Vieites Diaz ${ }^{37}$, X. Vilasis-Cardona ${ }^{36, p}$, A. Vollhardt ${ }^{40}$, D. Volyanskyy ${ }^{10}$, D. Voong ${ }^{46}$, A. Vorobyev ${ }^{30}$, V. Vorobyev ${ }^{34}$, C. Voß ${ }^{62}$, H. Voss ${ }^{10}$, J.A. de Vries ${ }^{41}$, R. Waldi ${ }^{62}$, C. Wallace ${ }^{48}$, R. Wallace ${ }^{12}$, J. Walsh ${ }^{23}$, S. Wandernoth ${ }^{11}$, J. Wang ${ }^{59}$, D.R. Ward ${ }^{47}$, N.K. Watson ${ }^{45}$, D. Websdale ${ }^{53}$, M. Whitehead ${ }^{48}$, J. Wicht ${ }^{38}$, D. Wiedner ${ }^{11}$, G. Wilkinson ${ }^{55,38}$, M.P. Williams ${ }^{\text {45 }}$, M. Williams ${ }^{56}$, H.W. Wilschut ${ }^{65}$, F.F. Wilson ${ }^{49}$, J. Wimberley ${ }^{58}$, J. Wishahi ${ }^{9}$, W. Wislicki ${ }^{28}$, M. Witek ${ }^{26}$, G. Wormser ${ }^{7}$, S.A. Wotton ${ }^{47}$, S. Wright ${ }^{47}$, K. Wyllie ${ }^{38}$, Y. Xie ${ }^{61}$, Z. Xing ${ }^{59}$, Z. Xu ${ }^{39}$, Z. Yang ${ }^{3}$, X. Yuan ${ }^{3}$, O. Yushchenko ${ }^{35}$, M. Zangoli ${ }^{14}$, M. Zavertyaev ${ }^{10, b}$, L. Zhang ${ }^{59}$, W.C. Zhang ${ }^{12}$, Y. Zhang ${ }^{3}$, A. Zhelezov ${ }^{11}$, A. Zhokhov ${ }^{31}$, L. Zhong ${ }^{3}$, A. Zvyagin ${ }^{38}$

[^1]${ }^{31}$ Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
${ }^{32}$ Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
${ }^{33}$ Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
${ }^{34}$ Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
${ }^{35}$ Institute for High Energy Physics (IHEP), Protvino, Russia
${ }^{36}$ Universitat de Barcelona, Barcelona, Spain
${ }^{37}$ Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{39}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
${ }^{40}$ Physik-Institut, Universität Zürich, Zürich, Switzerland
${ }^{41}$ Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
${ }^{43}$ NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
${ }^{45}$ University of Birmingham, Birmingham, United Kingdom
${ }^{46}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
${ }^{47}$ Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
${ }^{49}$ STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
${ }^{50}$ School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
${ }^{51}$ School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
${ }_{56}$ Massachusetts Institute of Technology, Cambridge, MA, United States
57 University of Cincinnati, Cincinnati, OH, United States
58 University of Maryland, College Park, MD, United States
59 Syracuse University, Syracuse, NY, United States
${ }^{60}$ Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil ${ }^{w}$
${ }^{61}$ Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China ${ }^{\chi}$
62 Institut für Physik, Universität Rostock, Rostock, Germany ${ }^{y}$
${ }^{63}$ National Research Centre Kurchatov Institute, Moscow, Russia ${ }^{z}$
${ }^{64}$ Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia - CSIC, Valencia, Spain aa
${ }^{65}$ KVI - University of Groningen, Groningen, The Netherlands ${ }^{a b}$
${ }^{66}$ Celal Bayar University, Manisa, Turkey ${ }^{a c}$

* Corresponding author.

E-mail address: Vincenzo.Vagnoni@bo.infn.it (V. Vagnoni).
${ }^{a}$ Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.
${ }^{b}$ P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.
${ }^{c}$ Università di Bari, Bari, Italy.
${ }^{d}$ Università di Bologna, Bologna, Italy.
e Università di Cagliari, Cagliari, Italy.
f Università di Ferrara, Ferrara, Italy.
g Università di Firenze, Firenze, Italy.
${ }^{h}$ Università di Urbino, Urbino, Italy.
${ }^{i}$ Università di Modena e Reggio Emilia, Modena, Italy.
j Università di Genova, Genova, Italy.
k Università di Milano Bicocca, Milano, Italy.
I Università di Roma Tor Vergata, Roma, Italy.
m Università di Roma La Sapienza, Roma, Italy.
n Università della Basilicata, Potenza, Italy.
${ }^{\circ}$ AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.
p LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.
q Hanoi University of Science, Hanoi, Viet Nam.
r Università di Padova, Padova, Italy.
s Università di Pisa, Pisa, Italy.
${ }^{t}$ Scuola Normale Superiore, Pisa, Italy.
${ }^{u}$ Università degli Studi di Milano, Milano, Italy.
${ }^{v}$ Politecnico di Milano, Milano, Italy.
${ }^{w}$ Associated to: Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
${ }^{x}$ Associated to: Center for High Energy Physics, Tsinghua University, Beijing, China.
y Associated to: Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany.
z Associated to: Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia.
aa Associated to: Universitat de Barcelona, Barcelona, Spain.
${ }^{a b}$ Associated to: Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands.
ac Associated to: European Organization for Nuclear Research (CERN), Geneva, Switzerland.

[^0]: ${ }^{1}$ The measurements of γ are given modulo 180° throughout this Letter.

[^1]: ${ }^{1}$ Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil
 ${ }^{2}$ Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
 ${ }^{3}$ Center for High Energy Physics, Tsinghua University, Beijing, China
 ${ }^{4}$ LAPP, Université de Savoie, CNRS/IN2P3, Annecy-Le-Vieux, France
 ${ }^{5}$ Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France
 ${ }^{6}$ CPPM, Aix-Marssille Université, CNRS/IN2P3, Marseille, France
 ${ }^{7}$ LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
 ${ }^{8}$ LAL, UnHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France
 ${ }^{9}$ Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
 ${ }^{10}$ Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
 ${ }^{11}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
 ${ }^{12}$ School of Physics, University College Dublin, Dublin, Ireland
 ${ }^{13}$ Sezione INFN di Bari, Bari, Italy
 ${ }^{14}$ Sezione INFN di Bologna, Bologna, Italy
 ${ }^{15}$ Sezione INFN di Cagliari, Cagliari, Italy
 ${ }^{16}$ Sezione INFN di Ferrara, Ferrara, Italy
 ${ }^{17}$ Sezione INFN di Firenze, Firenze, Italy
 ${ }^{18}$ Laboratori Nazionali dell'INFN di Frascati, Frascati, Italy
 ${ }^{19}$ Sezione INFN di Genova, Genova, Italy
 ${ }^{20}$ Sezione INFN di Milano Bicocca, Milano, Italy
 ${ }^{21}$ Sezione INFN di Milano, Milano, Italy
 ${ }^{22}$ Sezione INFN di Padova, Padova, Italy
 ${ }^{23}$ Sezione INFN di Pisa, Pisa, Italy
 ${ }^{24}$ Sezione INFN di Roma Tor Vergata, Roma, Italy
 ${ }^{25}$ Sezione INFN di Roma La Sapienza, Roma, Italy
 ${ }^{26}$ Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
 ${ }^{27}$ AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
 ${ }^{28}$ National Center for Nuclear Research (NCBJ), Warsaw, Poland
 ${ }^{29}$ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
 ${ }^{30}$ Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

