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Abstract

We review the recent notion of a nonautonomous dynamical system
(NDS), which has been introduced as an abstraction of both random dy-
namical systems and continuous skew product flows. Our focus is on fun-
damental analogies and discrepancies brought about by these two classes
of NDS. We discuss base dynamics mainly through almost periodicity
and almost automorphy, and we emphasize the importance of these con-
cepts for NDS which are generated by differential and difference equations.
Nonautonomous dynamics is presented by means of representative exam-
ples. We also mention several natural yet unresolved questions.
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1 Introduction

Random dynamical systems and continuous skew product flows both describe
the dynamical behavior of systems under an external influence – random and
deterministic yet nonautonomous, respectively – which is inherent to the con-
cept. In both cases the influence is modeled by a dynamical system (the so-called
driving system) which is ergodic or continuous, respectively. Both subjects have
evolved rather independently up to now and their formal and practical analogies
have been exploited only occasionally.

The theory of random dynamical systems was developed mainly by Ludwig
Arnold and his “Bremen Group”. As Arnold points out in [3] one of the historical
gates in the development of the theory of stochastic differential equations was the
discovery that their solution is a cocycle over an ergodic dynamical system which
models randomness, i.e. a random dynamical system. Results on multiplicative
ergodic theory, invariant manifolds, normal forms and bifurcation theory for
random dynamical systems are all comprised in the excellent monograph by
Arnold [4]. Recent results on Lyapunov’s second method and monotone systems
can be found in Arnold and Schmalfuss [9] and Arnold and Chueshov [6, 7, 8].
For an overview of random dynamical systems in economics we refer to Schenk-
Hoppé [58]. We merely mention that there is also a vast literature on infinite-
dimensional random dynamical systems which we will not survey here (see for
instance Flandoli and Schmalfuss [34]).

The study of continuous skew products originated from the ergodic theory
of discrete dynamical systems (Anzai [2] and Furstenberg [35]). It was carried
out during the 1960s by Miller [51], Millionscikov [53], Miller and Sell [52] and
Sell [59] where we have mentioned but a few of these authors’ publications. We
also refer to the slightly later contributions by Artstein [10], Bronstein [20], and
Zhikov and Levitan [76]. Meanwhile a fairly comprehensive theory of continuous
skew product flows has emerged. Among the multifarious results we mention as
examples, ranging from the classical to the more recent ones, the spectral theory
of Sacker and Sell [57] (for its relation to the multiplicative ergodic theorem see
Johnson, Palmer and Sell [39]), the invariant manifold theory by Yi [74], Chow
and Yi [23] (see also Aulbach and Wanner [11]), and the inertial manifold theory
by Koksch and Siegmund [47].

Quite often results for random dynamical systems and continuous skew prod-
uct flows are structurally similar, and these similarities may even extend to the
corresponding proofs. It is therefore natural to ask whether the analogies could
be put on a formal, common basis. Such a unification is provided by the con-
cept of a nonautonomous dynamical system (NDS) which may be regarded as an
abstraction of both random dynamical systems and skew product flows. Orig-
inating also from Arnold’s vicinity (see e.g. the Festschrift [27] for his sixtieth
birthday) the notion of a nonautonomous dynamical system still is relatively
recent and perhaps not yet known to a wider audience. Nevertheless, work on
the general theory of NDS is under way (Koksch, Siegmund and Schmalfuss
[48]), and results are promising not only with respect to a forthcoming theory
but also for providing some additional insights about the classical concepts and
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their interrelations.
The present paper takes part in this ongoing development by thoroughly

reviewing some of the fundamental facets inherent to the new concept. We
consider it essential for any further progress in the theory of NDS that unifying
as well as distinguishing aspects brought about by most important subclasses
are seen clearly. In this spirit we first give a careful discussion on the driving
system level. When comparing ergodic theory and topological dynamics in the
context of NDS several analogies and differences may naturally come to one’s
mind.

• Existence and Realization

Given a continuous dynamical system on a compact metric space, the
Krylov–Bogoljubov theorem together with a convexity argument ensures
that there always exist ergodic measures. It is therefore easy to conceptu-
ally switch from the topological to the statistical point of view although it
may be difficult to single out the relevant ergodic measure. On the other
hand, the celebrated Jewett–Krieger Theorem asserts that every ergodic
map on a (Lebesgue) probability space can be realized as (i.e., is mea-
surably isomorphic to) a uniquely ergodic homeomorphism on a compact
metric space (Petersen [56]). Despite its theoretical importance this re-
sult may be of little practical help, as the isomorphism is likely to destroy
many particular features of the system under consideration.

• Recurrence

A classical result highlightening the analogy of topology (via Baire cat-
egory) and measure is the Poincaré recurrence theorem. Informally, it
asserts that for a measure-preserving homeomorphism of a bounded open
set U ⊆ R

d all points in U except a set of first category and zero measure
are recurrent. This perfect analogy, however, does not extend far beyond
Poincaré’s theorem. For example, with respect to the Birkhoff ergodic
theorem Oxtoby says in [54] that “curiously, though, this refinement of
Poincaré’s theorem turns out to be generally false in the sense of (Baire)
category; the set of points where [the asymptotic relative frequency] is
defined may be only of first category.”

• Entropy

The concept of entropy yields a quantification of a dynamical system’s
complexity. It may analogously be introduced both in ergodic theory and
topological dynamics. An important link between both constructions is
provided by the variational principle (Walters [71]). This later result,
however, also makes visible a fundamental discrepancy between the two
approaches: measure-theoretic entropy quantifies complexity on average
whereas its topological counterpart quantifies the maximal complexity in-
herent to the system under consideration. Notice also that both concepts
trivially coincide in the case of unique ergodicity.
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• Almost Periodicity and Automorphy

The classical topic of almost periodic differential equations is a well-known
meeting point of the two concepts where one can switch from one inter-
pretation to the other by using the uniquely ergodic Haar measure. The
theory of almost periodicity, since established in the 1920s, had lasting
impact on the development of harmonic analysis on groups and also on
the development of the theory of both topological and smooth dynamical
systems. A vast amount of research has been directed towards the study
of almost periodic differential equations in the past (see Fink [33] for a
survey). Solutions of almost periodic differential equations, however, are
not necessarily almost periodic themselves: Johnson [37] gives an example
of an almost periodic differential equation with a bounded solution which
is not almost periodic but merely almost automorphic. The more general
notion of almost automorphy was introduced by Bochner in 1955.

Among the topics listed above, almost periodicity offers itself as an ideal start-
ing point for our discussion, and we present a fairly complete mathematical
treatment under a dynamical systems point of view.

PSfrag replacements

Nonautonomous Dynamical Systems (NDS)

Random Dynamical Systems (RDS)

Skew Product Flows (SPF)

P probability space

θ

ϕ

ergodic driving system

measurable cocycle
What else? ϕ continuous cocycle

NDS generated by

almost periodic

cocycles over R-,Z-actions

ODE x = f(t, x)
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θ

metric space

continuous driving

system

One should not expect an obvious unification of random dynamical systems
and continuous skew products. In the specific situation of [54] Oxtoby observed
that “the analogy [. . . ] goes a long way here, but eventually it breaks down.” We
consider this statement particularly appropriate for the (full) nonautonomous
dynamics of NDS. Correspondingly our presentation is somewhat selective and
cursory. Possibly the time has not yet come to give a clear overall picture of
NDS. Nevertheless the power of the concept as well as its inherent subtleties
should become apparent through our discussion.
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The structure of this paper is as follows: In Section 2 we briefly review
random dynamical systems and continuous skew product flows, and we introduce
as their common structure the notion of a nonautonomous dynamical system.
We explain how these systems may be generated by differential equations, and
we recall some notions from measurable and topological dynamics.

Section 3 is devoted to a description of the analogies and discrepancies be-
tween random dynamical systems and continuous skew products on the driving
system level. We give several illustrating examples. The main result of this
section is on the interplay of equicontinuity, recurrence, almost periodicity and
almost automorphy of the driving system.

In Section 4 we give a survey on selected topics for random dynamical sys-
tems and continuous skew products which illustrate some of the discrepancies
between the two concepts as well as properties inherent to their common struc-
ture. Concludingly we summarize in Section 5, and we also suggest starting
points for further investigations which could pursue our discussion.

2 Basic Definitions and Preliminaries

The concept of a random dynamical system is an extension of the deterministic
concept of a dynamical system, and it reduces to the latter if the noise is absent.
It is tailor-made to treat under a dynamical systems perpective many interesting
systems which are under the influence of some “randomness”, such as random
or stochastic differential equations

dxt = f0(xt)dt+

m
∑

j=1

fj(xt)dW
j
t .

For a comprehensive study of random dynamical systems we refer to the mono-
graph by Arnold [4].

The concept of skew product flows arose from topological dynamics dur-
ing the 1960s as a description of dynamical systems with nonautonomy, i.e.
an explicit time dependence. Since then, skew product flows have extensively
been studied. They are tailor-made to nonautonomous systems such as nonau-
tonomous ordinary differential equations

ẋ = f(t, x) .

In both cases alluded to above we do not obtain a dynamical system directly
from solving the respective differential equation. Instead, the solution gives rise
to a so-called cocycle over a dynamical system which models, respectively, the
“randomness” and the “nonautonomy” of the equation. Before giving formal
definitions we have to recall a few basic notions from measurable and topological
dynamics.

Let T(= R,Z) denote time and let θ : T × Ω → Ω be a measure-preserving
dynamical system in the sense of ergodic theory, i.e. (Ω,F,P) is a probability
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space and (t, ω) 7→ θ(t)ω is a measurable1 flow which leaves P invariant, i.e.
θ(t)P = P for all t ∈ T. (As it may cause confusion, the synonymously used
notion of a metric dynamical system will be avoided here.) A set M ⊂ P
is θ-invariant (or simply invariant) if θ(t)M = M for all t ∈ T. We say
that θ is ergodic under P if every θ-invariant set has probability 0 or 1. It is
always possible to sensibly decompose P into ergodic components (see Denker,
Grillenberger and Sigmund [30] or Klünger [46]).

Analogously, in the setting of topological dynamics θ : T×P → P denotes a
continuous dynamical system on a metric space (P, d). Let p ∈ P be a point and
consider its orbit O(p) := {θ(t)p : t ∈ T}. Throughout this paper we will use
the symbol H(p) := clO(p) to denote the orbit closure. The orbit of p inherits,
via θ(s)p ⊕ θ(t)p := θ(s + t)p, from T the structure of an abelian group with
neutral element 0 := θ0p = p. Later we shall investigate whether this structure
extends to H(p), thereby making this set a topological abelian group itself.

Given a closed invariant set M there may be non-void proper closed subsets
of M which are themselves invariant. If there are none, θ|M is called minimal,
and M is referred to as a minimal set (for θ). Equivalently, M is a minimal set
if H(p) = M for every p ∈ M . Given any element p ∈ P its ω-limit set ω(p)
denotes the set of all future accumulation points of O(p), more formally

ω(p) :=
⋂

t∈T

{θ(s)p : s ≥ t} .

Analogously, the α-limit set α(p) is the set of all accumulation points in the past.
Both α(p) and ω(p) are closed and θ-invariant. A point p is called positively
(negatively) recurrent, if p ∈ ω(p) (respectively, p ∈ α(p)); it is recurrent if it is
both positively and negatively recurrent. The point p thus is recurrent if and
only if for every ε > 0 there exists a monotonically increasing sequence (tk)k∈Z

in T with |tk| → ∞ as |k| → ∞ such that d(θtk
p, p) < ε for all k. If in addition

supk∈Z
(tk+1 − tk) < ∞ then p is called uniformly recurrent. Note that the

notion of recurrence does not depend on the specific metric as long as the latter
induces the topology of P .

We emphasize by a formal definition the structure common to random dy-
namical systems and skew product flows. For the sake of not overburdening the
presentation we restrict ourselves to metric state spaces and two-sided time.

Definition 2.1 (Nonautonomous Dynamical System (NDS)). A nonau-
tonomous dynamical system (NDS) with time T(= R,Z) on a metric space X
with base set P consists of two ingredients:

(i) A model of the nonautonomy, namely an action θ : T × P → P of the
group T on P , i.e., the family θ(t, ·) = θ(t) : P → P of self-mappings of the set
P satisfies the group property

θ(0) = idP , θ(t+ s) = θ(t) ◦ θ(s)

for all t, s ∈ T.

1w.r.t. B⊗ F and F, respectively, where B denotes the Borel σ-algebra of T.
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(ii) A model of the system perturbed or forced by nonautonomy, namely a
cocycle ϕ over θ, i.e. a mapping ϕ : T × P ×X → X , (t, p, x) 7→ ϕ(t, p, x), such
that (t, x) 7→ ϕ(t, p, x) is continuous for all p ∈ P and the family ϕ(t, p, ·) =
ϕ(t, p) : X → X of self-mappings of X satisfies the cocycle property

ϕ(0, p) = idX , ϕ(t+ s, p) = ϕ(t, θ(s)p) ◦ ϕ(s, p) (2.1)

for all t, s ∈ T and p ∈ P .

PSfrag replacements

{p} ×X {θ(s)p} ×X
{θ(s+ t)p} ×X

x

ϕ(s, p)
ϕ(t, θ(s)p)

ϕ(s+ t, p)

ϕ(s, p)x

ϕ(s+ t, p, x)

= ϕ(t, θ(s)p)(ϕ(s, p)x)

p
θ(s)p

P
θ(s+ t)p

= θ(t)θ(s)p

Remark 2.2. (i) The pair of mappings

(θ, ϕ) : T × P ×X → P ×X , (t, p, x) 7→ (θ(t, p), ϕ(t, p, x))

is called the corresponding skew product. If P = {p} consists of a single point
then the cocycle ϕ is a dynamical system.

(ii) If T = Z then θ(n) = θn, n ∈ T, where θ := θ(1) is the time one mapping.
If T = R we often use the less clumsy notation θt instead of θ(t). We also say
that ϕ is an NDS to subsume the situation of Definition 2.1.

(iii) It follows from the cocycle property that ϕ(t, p) is a homeomorphism of
X , and ϕ(t, p)−1 = ϕ(−t, θ(t)p).

(iv) If X is a linear space then an NDS Φ is called linear if for any scalar α
and x1, x2 ∈ X

Φ(t, p)[α(x1 + x2)] = αΦ(t, p)x1 + αΦ(t, p)x2

for all t ∈ T and p ∈ P .

We now introduce the notion of a random dynamical systems. Since we want
to compare random dynamical systems to continuous skew products, we do not
introduce the most general notion but require that the state space be a metric
space and assume w.l.o.g. ergodicity of the driving system (see Klünger [46] for
the decomposition into ergodic components).
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Definition 2.3 (Random Dynamical System (RDS)). A (continuous) ran-
dom dynamical system is an NDS (θ, ϕ) which in addition has the following
properties:

(i) The driving system θ is an ergodic dynamical system (Ω,F,P, (θ(t))t∈T),
i.e., the base (Ω,F,P) is a probability space and (t, ω) 7→ θ(t)ω is a a measurable
flow which is ergodic under P.

(ii) The cocycle (t, ω, x) 7→ ϕ(t, ω)x is measurable2.

Remark 2.4. In denoting the base space by Ω in Definition 2.3 (and also in
Theorem 2.5 below) we pay deference to a strict tradition in random dynam-
ical systems theory. Nevertheless (Ω,F,P) should be viewed as an additional
structure on P which by Definition 2.1 is a mere set.

In this paper we will mainly consider RDS which are generated by random
differential equations. This is the (easy) real noise case in which the genera-
tor indeed is a certain family of ordinary differential equations with parameter
ω, i.e., it can be solved “path-wise” for each fixed ω as a deterministic nonau-
tonomous ordinary differential equation (see Arnold [4, Thm. 2.2.2, Rem. 2.2.3]).

Theorem 2.5 (RDS from Random Differential Equation). Let (Ω,F,P,
(θ(t))t∈R) be a measure-preserving dynamical system, let f : Ω × Rd → Rd be
measurable, and consider the path-wise random differential equation

ẋ = f(θtω, x). (2.2)

If (t, x) 7→ f(θtω, x) is continuous in (t, x), locally Lipschitz in x for all ω and

‖f(ω, x)‖ ≤ α(ω)‖x‖ + β(ω)

where t 7→ α(θtω) and t 7→ β(θtω) are locally integrable, then (2.2) uniquely
generates through its solution

ϕ(t, ω)x = x+

∫ t

0

f(θsω, ϕ(s, ω)x) ds

an RDS ϕ over θ.

Next we define skew product flows. Again we do not introduce the most
general notion but instead require that the base space be a complete metric
space. For a reduction to this situation from more general base spaces see
Johnson, Palmer and Sell [39].

Definition 2.6 (Skew Product Flow (SPF)). A (continuous) skew product
flow is an NDS (θ, ϕ) which in addition has the following properties:

(i) The base is a metric space (P, d), and the driving system (t, p) 7→ θ(t)p
is continuous.

(ii) The cocycle (t, p, x) 7→ ϕ(t, p)x is continuous.

2w.r.t. B⊗ F ⊗B(X) and B(X), respectively, where B(X) is the Borel σ-algebra of X.
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The well-known trick of making a nonautonomous differential equation

ẋ = f(t, x) (2.3)

autonomous by introducing a new variable for the time suggests to investigate a
corresponding skew product flow with base P := R and driving system (t, s) 7→
θts := t+s. However, as P does not depend on f we should not expect a specific
kind of nonautonomy (e.g. periodicity in t) to be captured by this base dynamics.
Moreover, P is not compact which may cause additional difficulties. For a fairly
general class of right hand sides f the Bebutov flow (t, p) 7→ θtp := p(·+ t, ·) on
the hull P := H(f) = cl{f(· + t, ·) : t ∈ R} of f can serve as a model for the
nonautonomy (Sell [59]). Here the closure is taken with respect to an adequate
topology. The evaluation mapping

f̄ : P × R
d → R

d, (p, x) 7→ p(0, x)

satisfies f̄(θtp, x) = p(t, x) and, since f ∈ H(f) and therefore f̄(θtf, x) = f(t, x),
it is a natural “extension” of f to P × Rd. As a slight abuse of notation we
will sometimes omit the bar. Instead of looking at the single equation (2.3) we
consider the associated family of equations

ẋ = f̄(θtp, x), p ∈ P = H(f). (2.4)

By using standard results about linearly bounded equations as in Amann [1,
p. 100ff] and Arzela-Ascoli’s theorem as in Sell [59, p. 36ff] one can prove the
following theorem.

Theorem 2.7 (SPF from Nonautonomous Differential Equation). Let
f : R × Rd → Rd be a continuous function and consider the nonautonomous
differential equation (2.3). If (t, x) 7→ f(t, x) is locally Lipschitz in x and

‖f(t, x)‖ ≤ α(t)‖x‖ + β(t)

where t 7→ α(t) and t 7→ β(t) are locally integrable, then the hull P := H(f) is
a metric space (where the closure is taken in C(R × Rd,Rd) with the compact-
open topology), the Bebutov flow (t, p) 7→ θtp = p(·+ t, ·) is continuous and (2.3)
uniquely generates through the solution

ϕ(t, p)x = x+

∫ t

0

f̄(θsp, ϕ(s, p)x) ds (2.5)

of the associated family of equations (2.4) an SPF ϕ over θ. Moreover, H(f) is
compact if and only if (t, x) 7→ f(t, x) is bounded and uniformly continuous on
every set of the form R ×K where K ⊂ Rd is compact.

Remark 2.8. (i) Note that the hull H(f) depends on the topology chosen.
Therefore it is necessary to determine an adequate topology for a given f in
order to make the Bebutov flow continuous. For example, in the case of a linear
ordinary differential equation ẋ = A(t)x in Rd with a locally integrable matrix
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function A ∈ L1
loc := L1

loc(R,R
d×d) it is easy to see (Siegmund [63]) that ϕ

in (2.5) with f(t, x) = A(t)x is an SPF over the Bebutov flow on P := H(A)
where the closure is taken in L1

loc. Moreover, P is compact if and only if (Sell
[59, Thm. III.12])

• there exists b > 0 such that
∫ 1

0
|A(s+ t)| ds ≤ b for all t ∈ R, and

• for every ε > 0 there is a δ > 0 such that
∫ 1

0
|A(s+ t+h)−A(s+ t)| ds ≤ ε

whenever |h| ≤ δ and t ∈ R.

One could replace L1
loc by the space of essentially bounded A and still obtain an

SPF. The hull is then compact in the weak∗-topology (Colonius and Kliemann
[24]).

(ii) An analogue of Theorem 2.7 holds for nonautonomous difference equa-
tions xn+1 = f(n, xn) with the Bebutov flow (n, p) 7→ θnp = p(· + n, ·) on the
hull P := H(f) = cl{f(· + n, ·) : n ∈ Z}.

3 Base Dynamics

In this section we pursue the question: When can the driving system (P, θ) be
interpreted both as an ergodic dynamical system and as a continuous dynamical
system on a metric space? Our starting point to tackle this question is provided
by almost periodic differential equations. As will soon become clear, almost
periodicity gives rise to a rotational flow on a compact metrizable abelian group.
By virtue of character theory the dynamics of group rotations is easy to analyze.
For our purpose the following well-known theorem is crucial (Walters [71]).

Theorem 3.1 (Haar Measure). Let G be a compact abelian group. There
exists a unique probability measure P on the Borel σ-algebra B(G) which is
invariant under rotation, i.e. P(A) = P(gA) for all g ∈ G and A ∈ B(G).

Later we will describe what happens if we slightly weaken the assumptions
on the dynamics which lead to an application of Theorem 3.1. Instead of elab-
orating the most general case we consider it more instructive to understand the
difficulties by means of explicit examples. Therefore we investigate the base
dynamics of nonautonomous dynamical systems generated by nonautonomous
difference or differential equations of the form

xn+1 = f(n, xn) or ẋ = f(t, x)

where f : T × Rd → Rd, by considering the corresponding families

xn+1 = f̄(θnp, xn) or ẋ = f̄(θtp, x), p ∈ P

of equations over the Bebutov flow θ : T×P → P on the hull P := H(f). In the
sequel we shall use the symbol H(f) without explicitly referring to a topology;
if we simultaneously deal with several different topologies (via non-equivalent
metrics) clarification will be ensured by means of subscripts.
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First we want to review almost periodic differential and difference equations
and therefore have to define what it means for a right-hand side f to be almost
periodic. For this purpose we consider two different complete metrics on the set
C(T × Rd,Rd) of continuous functions f : T × Rd → Rd; both metrics emerge
from the family of semi-metrics

dk,l(f, g) := sup
|s|≤k,‖x‖≤l

‖f(s, x) − g(s, x)‖
1 + ‖f(s, x) − g(s, x)‖ (k, l ∈ N) .

The compact-open topology, i.e. the topology of uniform convergence on com-
pact sets K ⊂ T × Rd, is induced by

dco(f, g) :=

∞
∑

k,l=1

2−(k+k)dk,l(f, g)

whereas the somewhat hybrid metric

d∞(f, g) := lim
k→∞

∞
∑

l=1

2−ldk,l(f, g)

gives rise to a mixture of uniform (in the first argument) and locally uniform
(in the second argument) topology.

In the sequel θ(t) applied to a function f always denotes the Bebutov
flow (t, f) 7→ θ(t)f = f(· + t, ·). Note that d∞ is invariant under θ, i.e.
d∞(θ(t)f, θ(t)g) = d∞(f, g) for all t.

Definition 3.2 (Almost Periodic Functions). Let f : T × Rd → Rd be a
continuous function.

(i) f is Bohr almost periodic if for every ε > 0 there exists a relatively dense
set Lε ⊂ T, i.e. [t, t+ T ] ∩ Lε 6= ∅ for all t ∈ T with some fixed T ∈ T+, and

d∞(θ(t)f, f) < ε for all t ∈ Lε .

(ii) f is Bochner almost periodic if any sequence in T contains a subsequence
(tn)n∈N such that θ(tn)f converges in the d∞-topology, i.e. limn→∞ f(t+ tn, x)
exists uniformly in (t, x) ∈ T ×K for every compact subset K ⊂ Rd.

Remark 3.3. Bohr and Bochner introduced almost periodicity for functions
f : T → C. Bohr’s definition first appeared in his original paper in 1923 which
is most easily found in the collection [18]. In 1927 Bochner [15] gave his definition
of almost periodicity and showed its equivalence to the Bohr definition.

Example 3.4. Consider the function h : R → C defined as

h(t) := 1 +
1

2

(

e2πit + e2πi
√

2t
)

and take f : R → R2 as f(t) := (<h(t),=h(t)). An elementary calculation yields

d∞(θtf, f) ≤ | sinπt| + | sin
√

2πt| (t ∈ R)
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the right-hand side of which becomes smaller than any given ε on an appropriate
relatively dense set. Hence f is Bohr almost periodic; by virtue of the invariance
of d∞ and a diagonalization argument f may easily be seen to be Bochner almost
periodic, too.

To neatly visualize H(f) let (ϑt)t∈R denote the minimal Kronecker flow on
the two torus T 2 := R2/Z2 according to ϑt : (x, y) 7→ (x+t, y+

√
2t). Also define

a continuous function h0 : T 2 → C as (x, y) 7→ 1 + 1
2 (e2πix + e2πiy). Evidently,

h(t) = h0(ϑt(0, 0)) for all t ∈ R. The assignment θtf 7→ ϑt(0, 0) may be extended
to a homeomorphism Ψ : H(f) → T 2 which satisfies Ψ ◦ θt = ϑt ◦ Ψ for all t.
The Bebutov flow θ on H(f) is therefore flow equivalent to the Kronecker flow
ϑ on T 2.

According to Definition 3.2(i) a function f is Bohr almost periodic precisely
if it is uniformly recurrent with respect to the d∞-metric; by (ii) Bochner almost
periodicity is equivalent to H(f) being compact in that topology. The following
proposition allows one to simply speak of almost periodic functions.

Proposition 3.5. Let f : T × Rd → Rd be continuous. The following three
statements are equivalent:

(i) f is Bohr almost periodic.

(ii) f is Bochner almost periodic.

(iii) Any sequence in T contains a subsequence (tn)n∈N such that for some
continuous function g

θ(tn)f → g and θ(−tn)g → f

in C(T × Rd,Rd) with respect to the d∞-metric, i.e. uniformly on sets
T ×K where K ⊂ Rd is a compact set.

Proof. (i) ⇔ (ii) follows similarly as for functions f : R → C with the standard
arguments of Fink [33] which we do not repeat here.

(ii) ⇒ (iii). By compactness d∞(θ(tn)f, g) → 0 for some subsequence (tn)n∈N

and appropriate g. Since d∞ is invariant under θ property (iii) follows.
(iii) ⇒ (ii). This is obvious.

The classical Definition 3.2 rests on the hybrid metric d∞. This metric is
not easy to operate with. For example, general compactness results are much
more sensibly formulated in the dco-topology (e.g. the Arzela-Ascoli theorem).
Furthermore, θ may not be continuous, even when restricted to individual orbits.
The following lemma allows to circumvent these unpleasant facts; its content
will also motivate the formal definition of an almost periodic point given later.

Lemma 3.6. Let f : T × Rd → Rd be continuous. Then f is almost periodic if
and only if for every ε > 0 there exists a relatively dense set Lε ⊂ T such that

dco(θ(t)g, g) < ε for all t ∈ Lε, g ∈ H(f) .
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Proof. (⇒) Let f be almost periodic. It is easy to see that f is bounded and
uniformly continuous on every set T × K where K ⊂ Rd is compact. Hence
H∞(f) = Hco(f), and this set is compact in both topologies. Assume that
dco(θ(tn)f, h) → 0 for some sequence (tn) in T and h ∈ C(T×Rd,Rd). By com-
pactness every subsequence of d∞(θ(tn)f, h) has a subsequence that converges
to 0. Therefore d∞(θ(tn)f, h) → 0 itself, and the two metrics are equivalent on
H(f). Since obviously d∞(θ(t)g, g) < ε for all g ∈ H(f) and t taken from an
appropriate relatively dense set Lε the claim follows.

(⇐) Conversely, if dco(θ(t)g, g) < ε for all g ∈ H(f) and t ∈ Lε then
dco(θ(t + τ)f, θ(τ)f) < ε for all τ ∈ T, t ∈ Lε. From this it is easy to see that
d∞(θ(t)f, f) < ε for all t ∈ Lε, hence f is (Bohr) almost periodic.

Applications (most prominently from differential equations) may require a
notion slightly weaker than almost periodicity. The concept of almost auto-
morphy provides such a weakening of almost periodicity. It was introduced by
Bochner [16] in 1955 in a work on differential geometry and was subsequently
studied by many others, notably by Veech [69, 70].

Definition 3.7 (Almost Automorphic Functions). Let f : T × Rd → Rd

be a continuous function. This function is almost automorphic if every sequence
in T has a subsequence (tn)n∈N such that for some function g

θ(tn)f → g and θ(−tn)g → f

holds pointwise, i.e. limn→∞ θ(tn)f(t, x) = g(t, x) and limn→∞ θ(−tn)g(t, x) =
f(t, x) for all (t, x) ∈ T × Rd.

Example 3.8. Let T = Z, fix an irrational real number ν and consider the real-
valued function (sequence) f = (fk)k∈Z = (sign(cos 2πνk))k∈Z. (In essence, this
example stems from Furstenberg’s seminal paper [36].) Since for any s 6= t the
sequences θsf and θtf differ at least at one position, f is certainly not almost
periodic. Given any sequence in T there is a subsequence (tn)n∈N such that

(θtnf)k = sign(cos(2πνk + 2πνtn)) =: gk,n

converges for all k as n→ ∞. Ideally, one would like to write

gk := lim
n→∞

gk,n = sign(cos(2πνk + 2πρ))

for this limit, with some ρ ∈ [0, 1[. However, such a representation is not correct
if 4ρ ≡ 4νl (mod 1) for some l, because in this case there are two possible limits
for (θtnf)n∈N, see also Example 3.17 below. With g = (gk)k∈Z an elementary
calculation confirms that nevertheless limn→∞(θ−tng)k = fk holds for all k, i.e.
f is an almost automorphic function.

Example 3.9. The pointwise convergence in Definition 3.7 may be complicated
to work with in practice. For example, the function g does not need to be
continuous. In addition one can easily end up with non-compact hulls, as the
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following example illustrates. Recall the complex valued function h in Example
3.4 but define now f : R → R2 as f(t) := (<h(t),=h(t))/|h(t)|. (This function is
quite popular in publications on almost automorphy.) We claim that f is almost
automorphic in the sense of Definition 3.7 (yet not almost periodic). An easy
way to see this is as follows. Let (ϑt)t∈R denote the same minimal Kronecker
flow on the two-torus T 2 as before. With f0 : T 2\{( 1

2 ,
1
2 )} → R2 defined as

f0(x, y) := (<h0(x, y),=h0(x, y))/|h0(x, y)| we clearly have f(t) = f0(ϑt(0, 0))
for all t ∈ R. From this representation we deduce (as in Example 3.8) that f
is not almost periodic. Since the function f0 has directional limits at ( 1

2 ,
1
2 ) it

follows that from any sequence in R we may extract a subsequence (tn)n∈N such
that limn→∞ θtn

f(t) =: g(t) exists for all t, and also limn→∞ θ−tn
g(t) = f(t).

Therefore f is almost automorphic. It is, however, easy to choose (tn)n∈N in
such a way that g is not continuous. Moreover, as f is not uniformly continuous,
the hull H(f) is not compact (in the dco-topology), a fact immediately ruling
out many techniques from topological dynamics.

For all situations of practical relevance the following lemma provides a sat-
isfactory class of almost automorphic functions.

Lemma 3.10. Let f : T × Rd → Rd be uniformly continuous and bounded
on every set T × K with K ⊂ Rd denoting a compact set. Then f is almost
automorphic if and only if any sequence in T contains a subsequence (tn)n∈N

such that for some continuous function g

θ(tn)f → g and θ(−tn)g → f

with respect to the dco-metric, i.e. uniformly on compact subsets of T × Rd.

Proof. (⇒) If f is bounded and uniformly continuous on every set T×K then
every sequence in T contains a subsequence (tn)n∈N such that dco(θ(tn)f, g) → 0
and dco(θ(−tn)g, h) → 0 for appropriate continuous functions g, h. If f is almost
automorphic then h = f , and thus the convergence in Definition 3.7 is in fact
locally uniform.

(⇐) This is obvious.

Remark 3.11. The class of functions showing up in Lemma 3.10 coincides
with the class of admissible (sic!) functions defined and dealt with exclusively
in Shen and Yi [62]; see also Theorem 2.7.

Lemmas 3.6 and 3.10, respectively, characterize almost periodicity and al-
most automorphy of a function in terms of the corresponding Bebutov flow. It
is natural to imitate these results on a formal level so as to provide a definition
of almost periodic and almost automorphic points under arbitrary flows.

Definition 3.12 (Almost Periodic and Almost Automorphic Point).
Let θ : T × P → P be a continuous flow on a complete metric space (P, d).

(i) A point p ∈ P is called almost periodic (abbreviated henceforth as a.p.)
if for every ε > 0 there exists a relatively dense set Lε ⊂ T such that

d(θ(t)q, q) < ε for all t ∈ Lε, q ∈ H(p) .
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(ii) A point p ∈ P is called almost automorphic (a.a.) if any sequence in T

contains a subsequence (tn)n∈N such that for some q ∈ P

θ(tn)p→ q and θ(−tn)q → p .

The orbit of an a.p. or a.a. point p naturally inherits from T the structure of
an abelian group. For Theorem 3.1 to be useful in this dynamical context (so as
to yield for instance a uniquely ergodic system) we have to check whether H(p)
is a compact group. A simple condition which ensures that the group structure
of the orbit O(p) can be extended to H(p) reads as follows.

Proposition 3.13. If the family (θ(t))t∈T is equicontinuous then H(p) is a
group. Whenever H(p) is a group then it is also a minimal set.

Proof. Let (θ(sn)p)n∈N, (θ(tn)p)n∈N denote two sequences converging to q, r in
H(p), respectively. We are going to show that limn→∞ θsn−tn

p yields a well-
defined element q 	 r ∈ H(p). Indeed, given ε > 0 we find by equicontinuity
that (θ(−tn)p)n∈N is a Cauchy sequence and hence converges. But then also

d(θ(sn − tn)p, θ(sm − tm)p)

≤ d(θ(sn − tn)p, θ(sn − tm)p) + d(θ(sn − tm)p, θ(sm − tm)p) < ε

for m,n sufficiently large. Therefore (θ(sn − tn)p)n∈N is a Cauchy sequence
itself. A completely similar reasoning reveals that the limit thereof does not
depend on the choice of the approximating sequences. Consequently, H(p) is a
topological abelian group.

In order to prove the second statement we notice that the orbit of every
q ∈ H(p) is just a rotated version of O(p), more precisely O(q) = q ⊕ O(p).
Since rotations are homeomorphisms, every orbit is dense in H(p).

Remark 3.14. (i) It should be pointed out that the proof of Proposition 3.13
(and also of Theorem 3.20 below) only requires the family (θt)t∈T to be locally
equicontinuous. Since, however, even simple one-dimensional examples show
that (local) equicontinuity is not necessary for H(p) to be a group we have
refrained from relaxing the assumptions in Proposition 3.13 by using the rather
unusual notion of local equicontinuity.

(ii) Notice that minimality is not sufficient for the closure H(p) to be a
group, even if it happens to be compact. Take for example T = Z and θ
a minimal diffeomorphism of the two-torus T 2 which admits more than one
ergodic measure (see Katok and Hasselblatt [41] for an explicit construction).
It is easy to see that each of these measures would be invariant under rotations
of the compact set H(p) = T 2, which therefore cannot be a topological group.
(Evidently, the algebraic structure induced by θ does not coincide with the usual
group structure of T 2.)

Corollary 3.15. If H(p) is a group then it is either homeomorphic and iso-
morphic to 〈T,+〉, or every point q ∈ H(p) is recurrent.
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Proof. Suppose first that α(p) ∪ ω(p) = ∅. Then H(p) = O(p), and the map
ψ : O(p) → T with ψ(θ(t)p) := t is easily seen to be both a homeomorphism
and a group isomorphism. If α(p) ∪ ω(p) is not empty, then minimality yields
α(q) = ω(q) = H(p) for every q ∈ H(p).

Example 3.16. Consider once more the almost periodic function f introduced
in Example 3.4. An inspection of the first half in the proof of Lemma 3.6 shows
that (θt)t∈R is equicontinuous; hence H(f) is a compact group. The map Ψ
in Example 3.4 constitutes a group isomorphism and homeomorphism between
〈H(f),⊕〉 and 〈T 2,+〉.

Example 3.17. In general, H(p) is not a group, not even if p is a.a. To see
this let f be again the sequence (sign(cos 2πνk))k∈Z of Example 3.8. By taking
appropriate sequences in T = Z it is easy to see that both g+ = (g+

k )k∈Z and
g− = (g−k )k∈Z are elements of H(f) where

g±k :=

{

sign(sin 2πνk) if k 6= 0 ,
±1 if k = 0 .

Let (tn) denote a sequence in T for which 2νtn decreases to 0 (mod 1). Then

θtnf → f , θtng+ → g+ and θtng− → g+ as n→ ∞ .

If there were a continuous group structure on H(f) then

g+ = lim
n→∞

θtng− = lim
n→∞

θtnf ⊕ g− = f ⊕ g− = g− ,

an obvious contradiction.

This example shows that the orbit closure of an a.a. point need not be a
group and therefore Theorem 3.1 may be out of reach. However, if H(p) is
compact then there always exist θ-invariant probability measures on H(p) by
virtue of the Krylov–Bogoljubov theorem. According to the next proposition
the orbit closure of an a.a. point is compact. Moreover, almost automorphy
apparently is not far from almost periodicity.

Proposition 3.18. If p is almost automorphic then H(p) is compact and p is
uniformly recurrent. If p is uniformly recurrent then H(p) is a minimal set.
(For compact H(p) the converse of the latter statement is also true.)

Proof. By its very definition, every a.a. point has a precompact orbit. Fur-
thermore, if q ∈ H(p) then θ(tn)p → q for an appropriate sequence, and (sup-
pressing subscripts) also θ(−tn)q → p by automorphy. Hence p ∈ H(q), and
H(p) is minimal. Consider any open set U containing p. It is easily seen that
O(p) ⊂ H(p) ⊂ θ(t1)(U) ∪ . . . ∪ θ(tn)(U) for appropriate t1, . . . , tn ∈ T. This
shows that p is uniformly recurrent. Assume in turn that p is uniformly recurrent
and q ∈ H(p). Given ε > 0 there exists δ1 > 0 such that d(θ(t)p, θ(t)r) < ε/3
and d(θ(t)p, p) < ε/3 whenever d(p, r) < δ1 and |t| < δ1. By uniform recurrence
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we also have d(θ(tk)p, p) < δ1 where T := supk∈Z(tk+1 − tk) < ∞. Continu-
ity at q implies d(θ(δ1l)q, θ(δ1l)s) < ε/3 whenever d(q, s) < δ2, provided that
|l| ≤ T/δ1+1. Putting all estimates together we see that d(p, θ(δ1l)q) < ε for an
appropriate l. Hence p ∈ H(q), and H(p) is minimal. Finally, if H(p) is com-
pact and minimal, then the same reasoning as above shows that p is uniformly
recurrent.

A general result from topological dynamics due to Ellis and Gottschalk [32]
asserts that one can assign to the restriction θ|M of the flow θ : T × P → P to
any compact minimal set M ⊂ P a dynamical system θ′ : T ×M ′ →M ′ which
is the maximal equicontinuous factor of (M, θ|M ) in the following sense:

(i) (M ′, θ′) is a factor of (M, θ|M ), i.e. π◦θ(t)|M = θ′(t)◦π for some continuous
surjective map π : M →M ′ and all t ∈ T;

(ii) (θ′(t))t∈T is equicontinuous;

(iii) every other equicontinuous factor of (M, θ|M ) is a factor of (M ′, θ′).

It is easy to see that the maximal equicontinuous factor is unique up to flow
equivalence. Moreover, the points at which the factor map is one-to-one are
characterized by the following celebrated theorem.

Theorem 3.19 (Veech [69]). Let M ⊂ P be a compact minimal set. Then

{m ∈ M : m is an a.a. point} = {m ∈M : #π−1{π(m)} = 1} ,

i.e., the a.a. points in a compact minimal set are exactly those points with one-
point π-fibers over the maximal equicontinuous factor.

We are now in a position to prove the main result of this section. It char-
acterizes the situation when H(p) is a compact abelian group and relates this
to equicontinuity, recurrence, almost periodicity, and almost automorphy. (Re-
member that throughout this section θ(t) stands for the restriction of θ(t) to
H(p).)

Theorem 3.20. The following statements are equivalent:

(i) The family (θ(t))t∈T is equicontinuous, and p is recurrent.

(ii) H(p) is a compact abelian group.

(iii) p is almost periodic.

(iv) Every point q ∈ H(p) is almost automorphic.

Proof. (i) ⇒ (ii). Let us first show that p is uniformly recurrent. Given ε > 0
there exists δ > 0 such that d(θ(t)a, θ(t)p) < ε/3 whenever d(a, p) < δ, and
also d(θ(tk)p, p) < δ for some sequence (tk)k∈Z. But then d(θ(tk + tl)p, p) < ε
for all k, l ∈ Z implying that p is uniformly recurrent. It remains to show that
H(p) is compact. As P is complete this boils down to verifying that H(p)
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is totally bounded. Consider the sequence (tk)k∈Z with d(θ(tk)p, p) < δ from
above. For any t we have d(θ(t)p, θ(t − t̂)p) < ε/3 where t̂ denotes the element
of (tk)k∈Z closest to and lower than t. As every finite ε/3-cover of the compact
set {θ(t)p : 0 ≤ t ≤ supk∈Z(tk+1 − tk)} naturally yields a finite ε-cover of H(p),
the latter set is compact.

(ii) ⇒ (iii). Observe that (θt)t∈T is a family of translations, due to θ(t)q =
q⊕θ(t)p for all q ∈ H(p). Consequently, H(p) is a minimal set. It is well known
that there exists a metric d′ on H(p), uniformly equivalent to d, with respect
to which θt is an isometry for all t ∈ T (see Walters [71]). More formally, given
ε > 0 there exist δ1(ε), δ2(ε) > 0 such that d′(a, b) < ε whenever d(a, b) < δ1,
and d(a, b) < ε whenever d′(a, b) < δ2. Fix now ε > 0 and argue as in the
proof of Proposition 3.18 to find a uniformly recurrent point r ∈ H(p), i.e.
d(θ(tk)r, r) < δ1(δ2(ε)) for all k, and also supk∈Z(tk+1 − tk) <∞. Then

d′(θ(tk)q, q) = d′(θ(tk)r, r) < δ2(ε)

for all k and all q ∈ H(p), implying that p is almost periodic.
(iii) ⇒ (iv). We observe that by virtue of a diagonalization argument every

sequence in H(p) has a Cauchy subsequence. By completeness H(p) is compact.
Given q ∈ H(p) and any sequence in O(q) we therefore may find a subsequence
such that θ(tn)q → r as well as θ(−tn)r → s for appropriate r, s ∈ H(p). It
remains to show that s = q. Given ε > 0 and d(θ(t′k)a, a) < ε for all a ∈ H(p)
and k ∈ Z where T := supk∈Z(t′k+1 − t′k) < ∞ we see that for some t with
|t| ≤ T both d(r, θ(t)q) < ε and d(r, θ(t)s) < ε hold. Since ε was arbitrary,
q = s follows; hence q is a.a.

(iv) ⇒ (i). We just have to recall that H(p) is compact and then apply
Veech’s Theorem 3.19 to see that π is in fact a homeomorphism. Therefore
(θ(t))t∈T is equicontinuous. By Proposition 3.18 p is (uniformly) recurrent.

Remark 3.21. The conditions in Theorem 3.20(i) are independent. On the
one hand, θ(t) : x 7→ x + t is equicontinuous (T = R = P ), and H(p) is a
group which is not compact because no point is recurrent. On the other hand,
consider the space {0, 1}Z endowed with the product topology, and let θ1 = σ
be the left-shift (T = Z). If p is a recurrent point with dense orbit, then H(p) is
compact but certainly not a group (with its algebraic structure being induced
by σ).

In topological dynamics the following corollary is sometimes drawn on for
another yet equivalent definition of almost periodicity (Brown [21]).

Corollary 3.22. Let H(p) be compact. The family (θ(t))t∈T is equicontinuous
if and only if p is almost periodic.

Although it is an immediate consequence of Theorem 3.20 we wish to em-
phasize the following observation by singling it out as a statement of its own.

Corollary 3.23. Let θ : T × P → P be a compact minimal flow. Then every
point in the maximal equicontinuous factor of (P, θ) is a.p.

18



Example 3.24. Consider again the function f = (fk)k∈Z = (sign(cos 2πνk))k∈Z

of Example 3.8. As in Example 3.17 we see that every limit point in H(f) either
is of the form (sign(cos(2πνk+2πρ)))k∈Z where 4ρ 6∈ Z+4νZ, or otherwise equals
θlg± for some l ∈ Z. The assignment θtf 7→ e2πiνt (t ∈ Z) may be extended to
yield a continuous map π from H(f) onto S1 for which π ◦ θ1 = Rν ◦ π holds
with Rν denoting the rotation of S1 by an angle 2πν. Moreover, except for the
countable set Me := O(g+) ∪ O(g−) ⊆ H(f) the factor map π is one-to-one. It
is easy to check that every point in H(f)\Me is a.a. whereas no point in Me is.
This identifies (S1, Rν) as the maximal equicontinuous factor of (H(f), θ).

We summarize by arranging in a diagram below some of the dynamical
properties we have been dealing with in this section. Implications which have
been proved are indicated by double-line arrows. (The other ones are obvious.)
None of these implications can be reversed in general, as we have had occasion
to observe above.PSfrag replacements

p periodic p a.p. p a.a.

H(p) group p unif. recurrent

H(p) minimal

H(p) compact

p recurrent

With all these results at hand we can now put into perspective the well-
known fact that almost periodicity gives rise to a uniquely ergodic flow.

Corollary 3.25. Under the conditions of Theorem 3.20 the family (θ(t))t∈T is
uniquely ergodic on H(p).

Proof. The orbit of the neutral element is dense in H(p). The claim thus
follows directly from Theorem 3.1.

At this point it is worth recalling that the dynamical systems studied in
their own right here will serve as driving systems for general NDS in the next
section. As has been pointed out earlier, assumptions on the base dynamics are
typically imposed in order to make the driven NDS fall into the scope of general
techniques. Dynamical regularity, ensured e.g. by unique ergodicity, plays a
crucial role in this context. For the rest of the present section we therefore
discuss the topic of unique ergodicity and also the somehow related property of
vanishing entropy.

Example 3.26. Recall that Example 3.24 yielded (S1, Rν) as the maximal
equicontinuous factor of the discrete-time system (H(f), θ) from Example 3.8.
Under the factor map π the exceptional set Me projects onto

π(Me) = {±ie2πiνk : k ∈ Z} = {z ∈ S1 : #π−1({z}) > 1} ,
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a set of vanishing Haar measure, λS1(π(Me)) = 0. Therefore (H(f), θ) is
uniquely ergodic with respect to a probability measure that projects onto λS1

under π. For the topological entropy of (H(f), θ) we have htop(θ) = 0 by virtue
of the variational principle (Walters [71]). These facts consistently indicate that
even though the system (H(f), θ) fails to be a.p. it is nevertheless rather regular
and dynamically well-behaved.

We mention in passing that everything that has been said about the dynam-
ics of (fk)k∈Z = (sign(cos(2πνk)))k∈Z under θ = θ1 may be given a continuous-
time analogue by means of a straightforward suspension construction. Indeed,
the function

f(t) :=
∑

k∈Z

fk max{0, 1− 2|t− k|}

is a.a. under (θt)t∈R, and (H(f), θ) has as its maximal equicontinuous factor the
suspension flow of (S1, Rν), a minimal Kronecker flow on T 2. Essentially the
same arguments as before show that the system (H(f), θ) is uniquely ergodic
and has zero entropy. (See Berger, Siegmund and Yi [13] for details and more
examples.)

The observations in the last example concerning unique ergodicity and zero
entropy are fairly general. Let M be a minimal set under θ and denote by
(M ′, θ′) the maximal equicontinuous factor. According to Corollary 3.25 there
exists a unique θ′-invariant probability measure µ′ on M ′. Let Me denote the
exceptional set in M , that is

Me := {m ∈M : #π−1{π(m)} > 1} .

By invariance of Me and (unique) ergodicity of the almost periodic (maximal
equicontinuous) factor we get µ′(π(Me)) ∈ {0, 1}. If µ′(π(Me)) = 1 then (M, θ)
is also uniquely ergodic. (This situation occurs in Example 3.26.) If on the other
hand µ′(π(M0)) = 0 then the question of unique ergodicity is more delicate
and has to be tackled by other means. Examples show that both positive and
negative results may be found ([13, 50, 62]). As far as entropy is concerned we
have the following simple fact.

Proposition 3.27. Let P,Q denote compact metric spaces, and let (Q,ϑ) be
a factor of (P, θ) via π : P → Q. If supq∈Q #π−1({q}) < ∞ then htop(ϑ) =
htop(θ).

Proof. We have to show that htop(θ) ≤ htop(ϑ) because the reverse inequality
is obvious. By a theorem due to Bowen [19] the estimate htop(θ) ≤ htop(ϑ) +
supq∈Q htop(θ, π

−1({q})) holds. Since the last summand vanishes for all q due
to the finiteness of π−1({q}) the result follows.

As an application of this proposition we could have proved htop(θ) = 0 in
Example 3.26 without invoking the variational principle.

Example 3.28. We briefly sketch an a.a. system which lacks unique ergodicity
and also has positive entropy; all the relevant details may be found in [13]. Let
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Σ2 = {0, 1}Z denote the space of bi-infinite sequences on two symbols, endowed
with any metric inducing the product topology. The (left) shift map on Σ2 is
denoted by σ. Fix ω = (ωk)k∈Z ∈ Σ2 and consider the sets

Jn := (jn + 2N+n
Z) ∪ (−jn + 2N+n

Z) ⊆ Z (n ∈ N0) ,

where N ≥ 2 and the integers jn are determined inductively according to

j0 := 0 and jn+1 := min
{

k ≥ 0 : k 6∈
n
⋃

i=0

Ji

}

.

Evidently, Z equals the disjoint union of the sets Jn. Define a point x(ω) ∈ Σ2

by setting

(x(ω))k = xk(ω) :=

∞
∑

n=0

ωn1Jn
(k) .

In other words, xk(ω) = ωn whenever k ∈ Jn. It is easy to see that x(ω) is
a.a. with respect to σ. Moreover, x(ω) is not a.p. unless (ωk)k∈Z is constant
eventually. It is shown in [13] that for every ε > 0 there exists an integer
N(ε) and a residual set Ωε ⊆ Σ2 such that for N ≥ N(ε) and for every ω ∈
Ωε the symbolic dynamical system (H(x(ω)), σ) lacks unique ergodicity and
has entropy htop(σ|H(x(ω))) > log 2 − ε, which is close to the largest possible
value log 2. The corresponding maximal equicontinuous factor turns out to be
〈Z2,⊕1〉, i.e. the (totally disconnected) group of dyadic integers together with
the addition by one.

Example 3.29. In Example 3.9 we already observed that for the almost auto-
morphic function f given there the hull H(f) is not compact in the compact-
open topology. Nevertheless, a neat description of H(f) may again be given
by means of a function resembling the function Ψ in Example 3.4. To this
end let P denote the complement of the “forbidden” trajectory of ( 1

2 ,
1
2 ) under

ϑ, i.e. P := T 2\{ϑt(
1
2 ,

1
2 ) : t ∈ R}, metricized as a subspace of T 2. Defining

Ψ : P → C(R,R2) by Ψ(x, y) := f0(ϑ•
(x, y)) again yields a continuous one-to-

one map. Furthermore Ψ ◦ ϑt = θt ◦Ψ for all t ∈ R, and Ψ maps P onto H(f).
Since Ψ(x, y)(t) = f0(ϑt(x, y)) varies rapidly whenever ϑt(x, y) is near ( 1

2 ,
1
2 ),

two points (x, y) and (x′, y′) of P are near to each other only if Ψ(x, y) is close
to Ψ(x′, y′), i.e., the inverse map Ψ−1 is also continuous. Therefore (P, ϑ|P ) and
(H(f), θ) are flow equivalent. As a consequence, the latter system is uniquely
ergodic, its unique invariant probability measure being ΨλT 2 |P .

Example 3.30. As the preceding example shows, a lack of compactness of
H(p) does not necessarily rule out (finite) ergodic theory as a tool. However,
it may also happen that no invariant probability measure exists on H(p) at all.
Consider for instance the Bebutov flow θ of the function

A(t) := 2t cos t2 .

We claim that there does not exist any θ-invariant probability measure onH(A).
This may easily be seen as follows.
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Let (ϑt)t∈R denote the flow corresponding to a unit velocity motion to the
right on the real line, i.e. ϑt : x 7→ x+ t. A cumbersome yet elementary analysis
confirms that for some α > 0 the estimate

sup
|t|≤1

|θs1
f(t) − θs2

f(t)| ≥ αmin{1, |s1 − s2|}

holds where α does not depend on s1, s2. The assignment Ψ : θtf 7→ t = ϑt(0)
therefore is uniformly continuous (with respect to the metric dco), and clearly
Ψ(θtf) = ϑt ◦Ψ(f). Hence any θ-invariant probability measure on H(A) would
induce via Ψ a ϑ-invariant probability measure on R, an object which evidently
does not exist.

As indicated by the above examples, the case of non-compact H(p) typically
needs a refined analysis, and invariant probability measures have to be looked for
by means of techniques tailored to the particular system under consideration. As
merely one general fact we mention the following consequence of Prokhorov’s
theorem (Stroock [68]). Recall that we have constantly assumed P to be a
complete space.

Theorem 3.31. If the metric space P is separable (and hence Polish) then
there exists a θ-invariant probability measure if and only if for some probabil-
ity measure µ and any ε > 0 one can find a compact set Kε ⊂ P such that
µ(θt(Kε)) > 1 − ε holds for all t ∈ T.

As we have seen throughout this section, almost periodicity is easy to grasp
from a topological as well as from a statistical viewpoint. Almost automorphy,
though seemingly still denominating a regular pattern of recurrence, may al-
ready indicate a certain dynamical complexity, noticeable e.g. through a lack
of unique ergodicity, positive entropy etc. Even for an a.a. point p, however,
H(p) is a compact set, and notions from both topological dynamics and ergodic
theory apply automatically.

4 Nonautonomous Dynamics

In this section we give a series of examples which illustrate the current gap
between random dynamical systems and continuous skew products by surveying
selected topics and comparing the achieved results for both concepts.

Example 4.1 (Lyapunov’s second method). To recall Lyapunov’s second
method let ϕ be a continuous dynamical system on a locally compact metric
space X and let A be a nonvoid compact set which is invariant under ϕ. Then
the following two statements are equivalent (Bhatia and Szegö [14]):

(a) A is asymptotically stable, i.e.

(i) for all ε > 0 there exists a δ > 0 such that ϕ(t)Uδ(A) ⊂ Uε(A) for all
t ≥ 0, where Uε(A) := {x ∈ X : d(x,A) < ε}, d(x,A) := infy∈A d(x, y), is
the open ε-neighborhood of A,

(ii) A is the attractor of ϕ, i.e. limt→∞ d(ϕ(t, x), A) = 0 for all x ∈ X .
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(b) There exists a Lyapunov function V : X → R+ for A, i.e.

(i) V is continuous,

(ii) V is uniformly bounded, i.e. for all C > 0 there exists a compact set
K ⊂ X such that V (x) ≥ C for all x 6∈ K,

(iii) V is positive-definite, i.e. V (x) = 0 if x ∈ A, and V (x) > 0 if x 6∈ A,

(iv) V is strictly decreasing along orbits of ϕ, i.e. V (ϕ(t, x)) < V (x) for
x 6∈ A and t > 0.

In an excellent paper [9] Arnold and Schmalfuss generalize Lyapunov’s second
method for RDS. It is a special feature of their work that it identifies the match-
ing random notions of stability, Lyapunov functions and attraction which allow
for a coherent extension of the deterministic result. For example there are at
least two different notions of a random attractor, i.e. a random compact set A
which is invariant, i.e. satisfies ϕ(t, ω)A(ω) = A(θ(t)ω) for all t ∈ T:

(i) A is a pullback attractor in a universe D, i.e. a collection of families
D = (D(ω))ω∈Ω of nonvoid subsets of X which is closed with respect to set
inclusion (i.e. D1 ∈ D and D2(ω) ⊂ D1(ω) implies D2 ∈ D), if for all D ∈ D

lim
t→∞

d(ϕ(t, θ(−t)ω)D(θ(−t)ω)|A(ω)) = 0,

where d(A|B) := supx∈A d(x,B) is the Hausdorff semi-metric.
(ii) A is an attractor in probability if for any random variable x

P- lim
t→∞

d(ϕ(t, ·)x(·), A(θ(t) ·)) = 0,

i.e. if limt→∞ P{ω : d(ϕ(t, ω)x(ω), A(θ(t)ω)) > ε} = 0 for all ε > 0.
Note that (i) implies P- limt→∞ d(ϕ(t, ·)D(·)|A(θ(t) ·)) = 0.
It turns out in [9] that (ii) is the adequate notion to prove Lyapunov’s

second method for RDS and therefore deserves the name random attractor.
Note that (i) has an obvious correspondence for SPF, whereas (ii) is a random
notion which intrinsically makes use of the probability measure on the base.
For SPF Lyapunov’s second method is not established yet. This seems to be an
interesting problem since the answer would indicate the “correct” generalization
of the attractor notion for SPF. However, there are already many contributions
on nonautonomous Lyapunov functions and especially pullback attractors by
Kloeden (see e.g. [43]) and Cheban, Kloeden and Schmalfuss (see e.g. [22] and
the references therein).

The next example shows two numerical NDS which are neither viewed as
RDS nor SPF, and it suggests that numerics for RDS which are done pathwise,
i.e. for fixed ω, have the same structure as numerics for SPF.

Example 4.2 (Numerical NDS). Consider a numerical scheme for an ODE
ẋ = f(x) as in Kloeden, Keller and Schmalfuss [45]. An explicit one-step nu-
merical scheme with variable time steps hn > 0 is often written as

xn+1 = Fhn
(xn) := xn + hfhn

(xn)
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with increment function fhn
(e.g. in the Euler scheme hn = h > 0, fh(x) = f(x),

and in the Heun scheme hn = h > 0, fh(x) = 1
2 [f(x) + f(x + hf(x))]). Let

the base P be the set of positive bi-infinite sequences h = (hj)j∈Z which form
divergent series in both directions with θ as the shift operator, i.e. with h′ = θnh
defined by h′j := hn+j . Then the cocycle

ϕ(0, h)x0 := x0, ϕ(n, h)x0 := Fhn−1
◦ · · · ◦ Fh0

(x0)

for n ≥ 1, h = (hj) and x0 ∈ Rd defines an NDS which models the numerical
scheme. For an application to the discretization of attractors see Kloeden and
Schmalfuss [44].

Another class of numerical NDS describes a numerical method for both
RDS and SPF, namely the box algorithm of Dellnitz and Junge (see e.g. Dell-
nitz, Froyland and Junge [29] for an introduction). It was used by Keller and
Ochs [42] to compute random attractors and by Siegmund [66] to approximate
nonautonomous invariant manifolds. The abstract formulation for an NDS
ϕ : Z × P × Rd → Rd is as follows: Choose a compact set Q ⊂ Rd, a step
size K ∈ N and a finite collection B = (Bi)

m
i=1 of connected, closed subsets Bi

of Q with (i)
⋃m

i=1 Bi = Q and (ii) intBi ∩ intBj = ∅ if i 6= j, 1 ≤ i, j ≤ m.

Then ϕ̂ : Z
+
0 × P × P(B) → P(B) is the box NDS over θ̂ = θK , where

P(B) := {BI = ∪i∈IBi : I ⊂ {1, . . . ,m}}

and ϕ̂(n, p) = ϕ̂(1, θ(n−1)Kp) ◦ · · · ◦ ϕ̂(1, p) is defined by

ϕ̂(1, p)BI := BJ =
⋃

j∈J

Bj

with J = {j ∈ {1, . . . ,m} : ϕ(K, p)BI ∩ Bj 6= ∅}. Here the state space P(B) is
a metric space with the Hausdorff metric. Note that ϕ̂ is a (semi-) NDS with
nonnegative time.

The next example is on linear theory for RDS and SPF and explains the
relation between the Lyapunov exponents provided by the multiplicative ergodic
theorem of Oseledets and the spectral intervals of the Sacker-Sell spectrum,
which is well-understood if the base is compact (Johnson, Palmer and Sell [39]).

Example 4.3 (Oseledets and Sacker-Sell spectrum). Assume that P is a
compact metric space. Let Φ : T × P → Gl(d,R) be a linear continuous skew
product flow over a driving system θ : T×P → P . Let Φλ(t, p)x := e−λtΦ(t, p)x
be the shifted cocycle. Recall that Φλ has an exponential dichotomy over P if
there is a (continuous) projector (p, x) 7→ (p,Q(p)x) on Rd and constantsK ≥ 1,
α > 0 such that

‖Φλ(t, p)Q(p)Φ−1
λ (s, p)‖ ≤ Ke−α(t−s), t ≤ s,

‖Φλ(t, p)[I −Q(p)]Φ−1
λ (s, p)‖ ≤ Keα(t−s), t ≥ s,

for all p ∈ P and t, s ∈ T. The set of λ ∈ R for which Φλ fails to have
an exponential dichotomy over P is defined to be dyn Σ, the dynamical (or
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dichotomy or Sacker-Sell) spectrum. The spectral theorem (Sacker and Sell [57])

assures us that dyn Σ =
⋃k

i=1[ai, bi] is the union of k nonoverlapping compact
intervals, where 1 ≤ k ≤ d. The boundary of dynΣ is the finite collection of
end points {a1, . . . , ak, b1, . . . , bk}. If µ is an ergodic measure on P then the
set Σ(µ) = {λ1, . . . , λk} of Lyapunov exponents of Φ is the Oseledets spectrum
(w.r.t. µ). If P is additionally connected then

boundary dyn Σ ⊂
⋃

µ

measΣ(µ) ⊂ dyn Σ ,

where the union is taken over all ergodic measures µ on P (a slightly more
technical inclusion result where the union is taken over all invariant probability
measures on P can be found in [39]).

What can be said if the base P is not compact? Consider the scalar differ-
ential equation ẋ = A(t)x with A(t) = 2t cos(t2), t ∈ R, from Example 3.30.
Let ϕ be the continuous skew product flow over the Bebutov flow θ on the hull
H(A) = cl{A(·+s) : s ∈ R} in some topology (e.g. the compact-open topology).
Then for θsA = 2(· + s) cos(· + s)2 ∈ H(A) we get

ϕ(t, θsA)x = exp(sin(s+ t)2 − sin s2)x.

Now we show that the hull H(A) cannot be compact. Arguing negatively,
assume that H(A) is compact. Using the continuity there is an ε > 0 such that

|ϕ(t, σ(s, A))| < 2 for |t| < ε and all s ∈ R.

Now choose k ∈ N with t :=
√

π/2 + 2kπ −
√

−π/2 + 2kπ < ε and s :=
√

−π/2 + 2kπ to obtain the contradiction

exp(2) = exp(sin(s+ t)2 − sin s2) < 2,

proving that the hull is not compact for no topology. A simple computation
shows that the dynamical spectrum of this equation is dyn Σ = {0} and that
the Lyapunov exponent exists as a limit and equals 0. On the other hand the
multiplicative ergodic theorem is not applicable because there exists no ergodic
measure on the hull as we have seen in Example 3.30.

In the following example one can see that once the linear theories are pro-
vided, one can expect analog qualitative theories for RDS and SPF, and also
the proofs are similar if one knows how to cope with the nonuniformity of RDS.

Example 4.4 (Hartman-Grobman and normal forms). Invariant mani-
fold theory is one of the cornerstones of qualitative theory. It dates back to
Hadamard (Graph transformation method) as well as Lyapunov and Perron
(Lyapunov-Perron method). We cannot survey the vast literature on the subject
but let us mention some results for SPF with compact base space which use
exponential dichotomy and the Sacker-Sell spectral theory, namely Sell [60] for
generalized center manifolds and Yi [74, 75] and Chow and Yi [23] for the
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classical manifolds. Invariant manifold theory for RDS is part of smooth ergodic
theory and was started in 1976 by Pesin. His technique to cope with the non-
uniformity of the linear theory provided by the multiplicative ergodic theory
can be adapted to RDS. Later Wanner [73] used this technique to transfer the
deterministic construction of center manifolds and foliations to RDS and he
thereby was also able to prove the Hartman-Grobman result for RDS using
the same ideas as in the deterministic case [72]. Once an Oseledets splitting
Rd = E1(ω)⊕ · · · ⊕En(ω) for the linearized cocycle Φ is given, a random norm
‖x‖κ,ω is constructed which crucially improves the uniformity in the behavior
of Φ because of

eλi−κ|t| ≤ ‖Φ(t, ω)Ei(ω)‖κ,ω,θ(t)ω ≤ eλi+κ|t| for all t ∈ T,

where λ1, . . . , λn are the corresponding Lyapunov exponents provided by the
multiplicative ergodic theorem of Oseledets.

In contrast to the topological linearization of hyperbolic systems provided by
the Hartman-Grobman theorem, the aim of normal form theory is to simplify
(ultimately linearize) a system by means of a smooth coordinate transforma-
tion. However, obstructions against transforming away certain terms called
“resonances” appear, so that the “simplest possible” form in general is non-
linear. It was Poincaré who founded the normal form theory in his thesis in
1879. For a system ẋ = f(x) with rest point 0 and eigenvalues λ1, . . . , λn of the
linearization Df(0) he formulates a nonresonance condition

`1λ1 + · · · + `nλn 6= λj

which ensures the existence of a smooth transformation eliminating the j-th
component of the Taylor coefficient 1

`1!···`n!D
`1
x1
. . . D`n

xn
f(0) of the nonlinearity.

Normal form theory for RDS generated by random differential/difference equa-
tions or stochastic differential equations is elegantly developed and described
in Arnold [4]. The linear theory of course is again provided by the multiplica-
tive ergodic theorem and the eigenvalues in Poincaré’s nonresonance condition
are replaced by the Lyapunov exponents. Later Siegmund [64, 65] and Colo-
nius and Siegmund [25] extended normal form theory also to SPF generated by
nonautonomous differential/difference equations and control systems (see Colo-
nius and Kliemann [24]), respectively. Here the linear theory is provided by
the Sacker-Sell or dichotomy spectrum consisting of disjoint compact intervals
λi = [ai, bi], where bi < ai+1, i = 1, . . . , n− 1, we also write λ1 < · · · < λn. The
corresponding nonresonance condition which generalizes Poincaré’s condition
takes now the form

`1λ1 + · · · + `nλn < λj or `1λ1 + · · · + `nλn > λj

where multiples and sums of sets are taken pointwise.

An extension of bifurcation results for dynamical systems to RDS and SPF
is anything but obvious and it seems that new concepts have to be found.
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Example 4.5 (Bifurcation theory). Bifurcation theory for NDS is a rela-
tively new branch which has been developed almost independently for RDS and
SPF so far. Remarkable success has been achieved for RDS by Ludwig Arnold
and his “Bremen Group”. The basic concepts of their theory are laid down in
Chapter 9 (Bifurcation Theory) of the monograph [4]. One approach is dynam-
ical or D–bifurcation which is related to sign changes of Lyapunov exponents
λi(µα) of ϕα-invariant measures µα, α a bifurcation parameter, as opposed to
qualitative changes of stationary densities of the corresponding Markov process
(denoted P-bifurcations), the latter being not related to the stability measured
by Lyapunov exponents of the RDS. Examples show that the concept of D–
bifurcation is more adequate to generalize deterministic bifurcation scenarios.
Moreover, as it is summarized by Arnold in [5], the complete analysis of the case
of stochastic differential equations (SDE) with state space R, done by Crauel,
Imkeller and Steinkamp [28], shows that in dimension 1 invariant measures bifur-
cate from invariant measures at parameter values where the Lyapunov exponent
is equal to zero, and this is all that can happen! Bifurcation theory for SPF
seems to be intricate as the few technical papers on the subject suggest. Johnson
and Yi e.g. investigate a Hopf bifurcation from nonperiodic solutions of differ-
ential equations, thereby continuing earlier investigations on the bifurcation of
invariant tori (see [38], [40] and the references therein). In analogy to RDS
they use the linearization and its spectrum to analyze the nonlinear bifurcating
system. More precisely they assume that a one-parameter family of C3 vector
fields admits a one-parameter family µ 7→ Yµ of compact invariant sets such that
(i) Yµ is an asymptotically stable attractor for µ < 0, (ii) Yµ is no longer an
attractor for µ > 0 and (iii) all Yµ are homeomorphic (but not diffeomorphic)
to a 2-torus. Using a variant of center manifold theory and rotation numbers
they provide assumptions under which a parameter interval (0, δ) contains an
open and dense subset such that the system admits a stable attracting 2-torus
Zµ which depends in a strongly discontinuous way on µ ∈ (0, δ).

Today monotone methods and comparison arguments are integrated with dy-
namical systems theory (see e.g. Smith [67] and the literature quoted therein).
Monotonicity simplifies the investigation of the long-time behavior and of in-
variant objects of a dynamical system.

Example 4.6 (Monotone systems). In a series of papers Arnold and Chue-
shov [6, 7, 8] developed a systematic study of order-preserving (or monotone)
RDS culminating in a limit set trichotomy for order preserving random systems.
Their definition of an order preserving RDS naturally extends to NDS. Thereto
let X 6= ∅ be a subset of a real Banach space V and let V+ ⊂ V be a closed
convex cone such that V+ ∩ (−V+) = {0}. This cone defines a partial order
relation on X as follows: We have x ≥ y iff x − y ∈ V+, and we write x > y
when x ≥ y but x 6= y. If V+ has nonempty interior int(V+) we say that V is
strongly ordered and write x � y if x − y ∈ int(V+). Moreover, assume that
every bounded set B in X is contained in an order interval. Then an NDS (θ, ϕ)
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is said to be strongly order-preserving if

x > y implies ϕ(t, p)x � ϕ(t, p)y for all t ≥ 0 and p ∈ P.

Shen and Yi show in the monograph [62] that a scalar parabolic PDE generates
a strongly order-preserving SPF. Exploiting zero number properties which hold
for this special class of PDEs they get e.g. the result that if the driving system is
compact and has a unique ergodic probability measure P then unique ergodicity
of a minimal set E ⊂ P ×X of the SPF (θ, ϕ) is equivalent to

P{p ∈ P : #E(p) = 1} = 1,

where #E(p) denotes the cardinality of the fiber of E over p. The unique ergodic
probability measure on E then is a lifting of P. The lifting problem for RDS
is investigated by Crauel [26]. It would be interesting to compare the methods
and results for RDS and SPF in more detail, and for example get a limit set
trichotomy theorem also for order-preserving SPF.

5 Conclusions

What is the gap between random dynamical systems (RDS) and continuous
skew products (SPF)? In Section 2 we observed as their obvious common struc-
ture that they both consist of a cocycle over a group action of time (the driving-
system). We named this common structure a nonautonomous dynamical system
(NDS). It is the gap between ergodicity and continuity of the driving system
which is mainly responsible for the gap between RDS and SPF. As we quoted
from Oxtoby earlier, although the concepts look similar one should not expect
too much from mere analogies. Nevertheless, in the uniquely ergodic case the
gap disappears, and the concepts coincide to a large extent. Almost periodic dy-
namics (which are always conjugate to a group rotation) provide the best-known
examples for such a coincidence. On the other hand Shen and Yi have justi-
fied in [62] that “almost automorphy [. . . ] is essential and fundamental in the
qualitative study of almost periodic differential equations”. Example 3.17 shows
that almost automorphic dynamics do not yield a group in general, although an
almost automorphic flow always is compact and minimal by Proposition 3.18.
Example 3.26 on the other hand points out that in order to better understand
almost automorphic dynamics it is essential to understand its maximal equicon-
tinuous (hence almost periodic) factor. If the set of one-point fibers over this
factor has full Haar measure the almost automorphic flow has zero entropy. In
other words, an almost automorphic flow can have positive (topological) entropy
only if the set of one-point fibers has zero Haar-measure as in Example 3.28.
Measure-theoretic entropy quantifies on average the complexity inherent to the
system whereas its topological counterpart quantifies the maximal complexity.
The well-known variational principle asserts that in fact the topological entropy
equals the supremum over the measure-theoretic entropy taken at all ergodic
measures. A relation quite similar exists between the Oseledets and the Sacker-
Sell spectrum in Example 4.3. The union of the Lyapunov exponents over all
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ergodic measures is an inner approximation for the Sacker-Sell spectrum which
measures the exponential growth rates uniformly over the base.

It seems as if some issues of uniformity or maximality of concepts for SPF
might be handled successfully by considering the corresponding concepts for the
family of RDS in view of all ergodic measures of the driving system. As has been
pointed out in Section 4, so far only ad-hoc techniques exist in this context. A
careful, systematic analysis also assessing the potential of the approach therefore
constitutes one of the directions along which in our opinion further investigations
will be worth while. Another pressing problem suggests itself through Example
4.1 on Lyapunov’s second method. Have we really found the natural definition
of attractor for SPF yet? Does it allow a coherent generalization of Lyapunov’s
second method to SPF, just as the notion of random attractor does for RDS? It
is the similar structure of results for RDS and SPF, as apparent e.g. in Example
4.2 and 4.4, which encourages this simultaneous study. It would be interesting
to find out whether such a structure also exists for monotone NDS. As a possible
strategy one could first prove a limit set theorem for monotone SPF, and then
compare it with the result for RDS in Example 4.6 in order to understand up
to which extent the new findings reflect a property of the abstract NDS alone,
not depending on the particular driving system.

Certainly, a refined knowledge about the similarities and differences between
RDS and SPF will be an invaluable help when trying to profit from the work
in both areas. As one field of future research which definitely requires such a
two-sided perspective we mention the development of a comprehensive bifurca-
tion theory for NDS. To the best of our knowledge, this highly interesting yet
challenging subject has not entered the phase of a substantial breakthrough yet.
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