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Abstract

In this paper we study the existence of exponentially-bounded solu-
tions of the following non-linear system of parabolic equations with
homogeneous Neumann boundary conditions

w = DAu+ f(t,u), t>0, ueR",

0

e 0, on 0f

on
where f € C'(R x R"), D = diag(dy,da,...,d,) is a diagonal ma-
trix with d; >0, i=1,2,...,n and Q is a bounded domain in RY.
Under some conditions we prove the existence of a continuous man-

ifold such that any solution with initial condition in this manifold is
exponentially bounded.
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1 Introduction

In this paper we shall study the existence of exponentially bounded solutions
for the following system of parabolic equations with homogeneous Neumann

boundary conditions

u = DAu+ f(t,u), t>0, ueR", (1)
ou
P 0, on 0N (2)

where f € C*(R x R"), D = diag(dy,ds, . ..,d,) is a diagonal matrix with
d, >0, i=12....,nand Q is a bounded domain in RY where N is a
non-negative integer.

We shall assume the following hypothesis:

H1) There exists Ly > 0 such that
|f(t,0)| < Ly, VteR. (3)
H2) f is globally Lipschitz in w,i.e, there exists L > 0 such that
|f(t,ur) — f(t,ug)| < Llug —us|, Yup,us € R". (4)

The fact that the first eigenvalue A\; of —A with Neumann boundary con-
ditions is equal zero, does not allow us to prove the existence of bounded
solutions of (1). However, under above assumptions, roughly speaking we
prove the following statement:

If d =2min{d; : i = 1,2,...,n}, Ay is the second eigenvalue of —A

and 7 is positive numbers such that n < Aod, then there exists a continuous
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manifold M = M(n,d, f) such that any solution u of (1) starting in M

satisfies the following estimate

sup e~ {sup ||u(t,x)||} < 00.
teR €N

Several mathematical models may be written as a reaction-diffusion system
of the form (1), like a model of vibration of plates (see [1]) and a Lotka-
Volterra system with diffusion (see [7]). Some notations for this work can be

found in [4], [5], [2] and [6].
2 Notation and Preliminaries

In this section we shall choose the space where this problem will be set.
Let X = L?(Q) = L*(Q,R) and consider the linear unbounded operator

A:D(A) C X — X defined by Ap = —A¢, where

D(A) = {¢ € HAQR) : g—f]’ —0 on 00}, (5)

Since this operator is sectorial, then the fractional power space X associated
with A can be defined. That is to say: for « > 0, X = D(A{) endowed

with the graph norm
|lz]lo = [|ATZ||, z€ X* and Ay = A+al, (6)

where Rec(A;) > 0. The norm || - || does not depend on a (see D. Henry [3]

pg 29).
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Precisely we have the following situation: Let 0 = A\ < Ay < --- < A\, —

oo be the eigenvalues of A each one with finite multiplicity 7, equal to the

dimension of the corresponding eigenspace. Therefore

a) there exists a complete orthonormal set {¢;} of eigenvector of A.

b) for all z € D(A) we have

2]

AI’:Z)\]

o0
< T, 05k > Gik = NEju,
=1 k=1 =1

where < -, - > is the inner product in X and

Vi
Ej!lﬁ' = Z < ZL',QS]',]C > ¢j,k-
k=1

So, {E;} is a family of orthogonal projections in X and = = >°32, Ejz,

X.

c) —A generates an analytic semigroup {e~4!} given by

9]
—At,. Nt
e Mr=FEx+) e VB
=2

d) for a > 0

X*=D(AY) ={zeX:> (N\+ a)*|| E;jz||* < oo},

i=1

and

Atz =) (A + a)*Ejx.

j=1

Also, we shall use the following notation:

7 =LQR)=X"=Xx--xX,

(8)

S
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with the usual norm.

Now, we define the following operator

Ap:D(Ap) C Z — Z, App = —DAY = DA, (11)
where
n 2 n a(b
D(Ap) = [D(A)]" = {¢ € H*(Q,R") : e 0 on 00}

Therefore, Ap is a sectorial operator and the fractional power space Z¢

associated with Ap is given by
Z%=D(ADH)) = X x - x X =[X". (12)
endowed with the graph norm
Izlle = AD12]l, z€ Z% and Ap; = Ap +al, (13)
where

a>0, A} z= Z D*(\; +a)*P;z, D®=diag(dy,ds,---,d;), (14)

i=1

and P; = diag(E}, Ej, -+ -, Ej), n x n matrix.
The c,—semigroup {42!}~ generated by —Ap is given as follow
el =P+ Y e NPPz, z€ Z. (15)
=2

Clearly, {P;} is a family of orthogonal projections in Z, which is complete.

Hence, for z = (21, 29, ..., 2,)T € Z® we have that
o o o

2 2 2 2

2= Pz, |lz]F =) _[I1Pz|” and ||2]]7 = Z Pizll;,
=1 =1 =

= ZZ (A +a)d 2a||E ZZ||2

=1 1=

.
—_
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Using the foregoing notations we shall prove the following propositon

Proposition 2.1 Let m1g = P, and w7y = [ — P;. Then for all z € Z* the

following inequalities hold

le™P*mozlla < [l2llas ¢ € R (16)
le™ P mez]la < e 22]la, 20 (17)

e APt 2]|o < Mt~ %2242, >0 (18)
Iy =mg+ms, Z=274.®Z,, (19)

where M = sup,s {(()\j + a)dit)"e_kﬂ%t, 1=1,2,...,n;7=1,2,.. .}, 2d =
min{d; : 1 = 1,...,n} and Zy = Range(my) = R(m), Zs = Range(m,) =
R(7s).

Proof . From the above notation, for z € Z¢ we have that
le™ P moz5 = [ ADe™ P moz||? = | D*a™Enz|* < ||z

Therefore,

le™*P*moz[la < [l2]la-

Next, we shall prove the second inequality,

[e.e] n
ety = 3300y +a)d) e

1i=1

IN

_2)\2dtzz )\ —|-(I 2a||E Zz||2

Jj=1l1i=1
< falfpe e
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Therefore,

||e_ADt7rsz||a < ||z||ae_’\2dt, t>0.

Finally, we prove the last inequality

e rimzl2 = 30 SO + @)d) e By
j=21i=1
1 e} n "
= ;;}:}j (N + a)dit) e 42| B 2|12
j: =1
1 o n . .
= S SOy + @) e N H PRSP By
t j=21i=1
1 o0 n 1 -
< tTZZM € jzin < t2_aM2€ 2)‘2deH2,
j=21=1
Therefore,

e AP 2|0 < Mt™%||2]le”2 ¢ > 0.

O
From Theorem 1.6.1 (pp. 39-40 ) in D.Henry [3] it follows for 0 < ao < 1

that the following inclusion is continuous
Z% C LP(Q,R"), p>2. (20)
Hence, there exists R > 0 such that
Iz < Rlzlla, z € 27 (21)
Now, the system (1)-(2) can be written in an abstract way on Z as follows:

Y= —Apz+ f(t,2), z(ty) =20, t>to, (22)
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where f¢: R x Z* — Z is given by:

fe(t, 2)(x) = ft,2(z)), =€ (23)

To show that equation (22) is welll posed in Z¢ we need the following

proposition.
Proposition 2.2 The function f¢ given in (23) satisfies the estimation
N fe(t,21) — fO(t,22)|| < LR||z1 — 22||las t € R, 21,20 € Z%,  (24)
where L and R are as in (4) and (21), respectively. Also,
1£@E0l < u(Q)Ly, t >0, (25)
where u($2) is the Lebesgue measure of .

Proof .

£tz = skl = { [ IF (@) = £t @) Pde}

L|jz1 — 2|

IA

< LR[[z1 — 22lla, t € R, 21,20 € Z°

On the other hand, (3) implies (25). 0

3 Main Theorem

From the proposition 2.2 and Theorem 7.1.4 in D.Henry ([3]), for all ¢ > ¢,

we have that a continuous function z(-) : (tg,00) — Z¢ is solution of the
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integral equation

t
(1) = e Apl=to) 5 4 [ o=Ap(t=s) fe( o (s5))ds, t >t (26)

to
if and only if z(+) is a solution of (22).

Now, for all n > 0, we denote by Z;* the Banach space
Zy ={2€ C(R, Z%) : ||2||ayy := sup e‘"‘””z(t)”a < oo} . (27)
teR

Theorem 3.1 Suppose that [ satisfies Hy and Hy. Then for some a and
d positive, and 0 < 1 < Aod, there exists a continuous manifold M =
M(a,d, f) such that any solution z(t) of (22) with z(0) € M satisfies the
estimate

sup e~ M| z(1)]| < o0,
teR

Moreover, there exists a globally Lipschitz function ¢ : R(my) — R(7ms) such

that
M = {Zo + w(ZO) 12 € R(?T(])} . (28)
Before the proof of Theorem 3.1 we shall prove some preliminaries lemmas.

Lemma 3.1 Let z € Z and n < A\od . Then z is a solution of (22) if and

only if there exists zg € R(my) such that

t
2(t) = e‘Atho—l—/ e~ AP £¢(s, 2(s))ds
0

t
b e (s, teR L (29)
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Proof . Suppose that z is a solution of (22). Using the fact that

2(t) = mpz(t) + msz(t) and the variation of constants formula (26) , we obtain
t
mat) = e Am(0) + [ e A Im (s, 2(s))ds, tE R,
0
and

t
m2(t) = e AU 2(0) + [ e AP n fo(s, 2(s))ds, t > to. (30)

to

Using (17), we obtain

e = (to)l < e a(tg)o
Therefore,

le= P r 2 (to)]lo < el ]|,

Since 1 < Aod, then right side of this inequality goes to zero as ty goes to
—00.
Now, from (18) and Proposition 2.1 the following chain of inequalities

hold

| [ et o ss)dslla < [ M(E =) eI (s, 2(5))ds

t
MLR / (t — 8)~%2=9) || 2(s)|| udls

IA

t
+ MLpu(Q) / (t — 5)~ e ed(t=5) g

t
MLR”ZHam/ (t _ S)—ae—)\zd(t—s)en\s|d8

—00

IN

t
+ MLpu(Q) / (t — §)~OeNedlt=5)gs
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We now pay attention to the integrals [*_(t — s)"@e *2d(t=3)enslds  and
Jro(t —s) e 2dt=9)ds. If t < 0, then through the change of variables

t — s = u and Asdu = v we can obtain that

t
/ (t —s) e 2U=9enslgs < e (\yd) T (1 — @)

= M (\d) T (1 —a) .
The previuos changes of variables also allow us to show that if ¢ > 0, then
/_t (1= ) eI s < 260 (gd) T (1 - ).
For the integral [*__(t — s)~®e *2%=*)ds, we obtain the following estimate

t t
/ (t _ S)—ae—)\zd(t—s)ds S / (t . S)—ae—)\gd(t—s)en|s|d8

— 00

< eM2(N\d) T (1 — o) .
Going back to the expresion || [*_ e APt~ x, f¢(s, 2(s))ds]| o, we obtain that

t
| [ e et m (s 2()dslla < 2MeM )= T(1 = @)Lzl + Ly(S2)

Hence, the improper integral [*__ e™Ar(t=3)x f¢(s, 2(s))ds exists and passing

to the limit in (30), as ¢y goes to —oo produces
t
ms2(t) = / e~ A=) fe(s 2(s))ds, t € R.

Therefore, letting zp = m2(0) we get (29).

Conversely, suppose z is a solution of (29). Then

t
z(t) = e‘Atho+/ e~ A=) fe(s. 2(s))ds
0
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+ / —Ap(t=9) 7 £e(s, 2(s) ds—l—/ —Ap(t=9)r £(s, 2(s))ds
T / Ao (s, 2(5))ds] + [ Lo An(=3) pe (g 2 (s))ds

— —.ADtZ +/ p(t— Sfe S Z(S))dS 7
where
2(0) = ZO+/_O e~ A=) £(s, 2(s))ds . (31)

This concludes the proof of the lemma. 0

Inspired in (29), the manifold M we are looking for is defined by
M = {2(0):z € Z,) and satisfies (29)} . (32)

A useful characterization of M, to prove later Theorem 3.1, that follows from

(31) is given by
M = {2+ 72(0) : (20, 2) € R(mo) x Z,), (20, 2) satisfying (29)} (33)

We shall need some definitions and notations :

(a) For each zy € R(m) we define the function Sz, : ® — Z by
(Sz0)(t) = e APlz, tER .
(b) For each function z € Z we define the function G : Zi* — Z2 by

GENO = [ e Imf (s, 2(s)ds
+ /_t e~ A= fe(s 2(s))ds, teR .
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The fact that G(Z)) C Z; follows from (24)-(25) and a similar computation
done in proposition 2.1. Now, with the previous notations (29) can be written

in the following equivalent form in Z}*
z =82+ G(z) (34)

Lemma 3.2 (a) For0 < n < X\od, S is a bounded linear operator from R(m)
in Zy.

(b) G is globally Lipschitz. Moreover, given z and z; in Zy we have

1G(21) = G(22)[lay < Kllz1 — 22]la, (35)
where
K = LR <2M(>\2d)1‘af(1 —a)+ (_f;)a> , (36)
and d = ||D||.

Proof . (a) Clearly S is linear and [|S%gla,; < [|20]|a for all 2y € R(m).
(b) Let 21, 22 be given in Z;".

If t > 0, then

| e An o mo[ (s, 21 (5)) — f(5, 2(5))] dslla

e"|z1 — 2ol an-

< [ 1Bl s n(0) - f (e ds < T

For ¢t < 0, the same estimations hold. Hence, for all t € R,

I [ 4ot [f(s,21(5)) — £5(5, ()] dsla
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< (da)*LR

> e |21 — 22 ||om7 . (37)
n

Now, for all t € R,

I /_too e~ AP [£9(s, 21(5)) — f4(s, 22(5))] dslla

<2MLR(Md)™°T(1—a)e™ |z — zollay, - (38)
Finally, from (37) and (38) we get

6620 = Gl <1 [} ml o 2(6) = 5 2] sl
< N[ (s () — 1G5 ()] dsla

< Ke'l|z — 22| +

and this implies (35). 0
Proof of Theorem 3.1 .

Let, a and d be given such that K’ < 1. Then I — G : Z — Z7 is a
homeomorphism with inverse W : Z% — Z7. W is also globally Lipschitz and

for all z1, 2 € Zy we have
[9(z1) = ¥(z2)lla < (1= K)7 21 = 2]l (39)
Therefore, the equation (34) has a unique solution given by

At) = (I=G) " (Sz)(t)

= U(Sz)(t), teR
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Hence, from (33) we get that
M = {z0+7V(52)(0) : 20 € R(mo)}

and defining 1 : R(my) — R(7s) by ¢ (20) = ms¥(S%20)(0) we obtain (28).
Next, we prove that v is globally Lipschitz. In fact, let zg,2; be given in

R(mo). Then the estimation (39) implies

sup e~ M| m U (Sz) (1) — m U (Sz)(Dla = [Im[¥(Sz0) = U(S21)][lay

teR

IA

(1= K) 7m0 = z1lla »
and, in particular for ¢t = 0 we get

1U(20) = ¥(z)lla < (1= E)7Hmllllz0 — 21la -
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