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Abstract

In this paper we study the existence of exponentially-bounded solu-
tions of the following non-linear system of parabolic equations with
homogeneous Neumann boundary conditions

ut = D∆u + f(t, u), t ≥ 0, u ∈ <n,

∂u

∂η
= 0, on ∂Ω

where f ∈ C1(< × <n), D = diag(d1, d2, . . . , dn) is a diagonal ma-
trix with di > 0, i = 1, 2, . . . , n and Ω is a bounded domain in <N .
Under some conditions we prove the existence of a continuous man-
ifold such that any solution with initial condition in this manifold is
exponentially bounded.
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1 Introduction

In this paper we shall study the existence of exponentially bounded solutions

for the following system of parabolic equations with homogeneous Neumann

boundary conditions

ut = D∆u+ f(t, u), t ≥ 0, u ∈ <n, (1)

∂u

∂η
= 0, on ∂Ω (2)

where f ∈ C1(<× <n), D = diag(d1, d2, . . . , dn) is a diagonal matrix with

di > 0, i = 1, 2, . . . , n and Ω is a bounded domain in <N ,where N is a

non-negative integer.

We shall assume the following hypothesis:

H1) There exists Lf > 0 such that

|f(t, 0)| ≤ Lf , ∀t ∈ <. (3)

H2) f is globally Lipschitz in u,i.e, there exists L > 0 such that

|f(t, u1) − f(t, u2)| < L|u1 − u2|, ∀u1, u2 ∈ <n. (4)

The fact that the first eigenvalue λ1 of −∆ with Neumann boundary con-

ditions is equal zero, does not allow us to prove the existence of bounded

solutions of (1). However, under above assumptions, roughly speaking we

prove the following statement:

If d = 2 min{di : i = 1, 2, . . . , n}, λ2 is the second eigenvalue of −∆

and η is positive numbers such that η < λ2d, then there exists a continuous
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manifold M = M(η, d, f) such that any solution u of (1) starting in M

satisfies the following estimate

sup
t∈<

e−η|t|

{

sup
x∈Ω

‖u(t, x)‖

}

<∞.

Several mathematical models may be written as a reaction-diffusion system

of the form (1), like a model of vibration of plates (see [1]) and a Lotka-

Volterra system with diffusion (see [7]). Some notations for this work can be

found in [4], [5], [2] and [6].

2 Notation and Preliminaries

In this section we shall choose the space where this problem will be set.

Let X = L2(Ω) = L2(Ω,<) and consider the linear unbounded operator

A : D(A) ⊂ X → X defined by Aφ = −∆φ, where

D(A) = {φ ∈ H2(Ω,<) :
∂φ

∂η
= 0 on ∂Ω}. (5)

Since this operator is sectorial, then the fractional power space Xα associated

with A can be defined. That is to say: for α ≥ 0, Xα = D(Aα
1 ) endowed

with the graph norm

‖x‖α = ‖Aα
1x‖, x ∈ Xα and A1 = A+ aI, (6)

where Reσ(A1) > 0. The norm ‖ · ‖ does not depend on a (see D. Henry [3]

pg 29).



BOUNDED SOLUTIONS FOR PARABOLIC EQS. 4

Precisely we have the following situation: Let 0 = λ1 < λ2 < · · · < λn →

∞ be the eigenvalues of A each one with finite multiplicity γj equal to the

dimension of the corresponding eigenspace. Therefore

a) there exists a complete orthonormal set {φj,k} of eigenvector of A.

b) for all x ∈ D(A) we have

Ax =
∞
∑

j=1

λj

γj
∑

k=1

< x, φj,k > φj,k =
∞
∑

j=1

λjEjx, (7)

where < ·, · > is the inner product in X and

Ejx =
γj
∑

k=1

< x, φj,k > φj,k. (8)

So, {Ej} is a family of orthogonal projections in X and x =
∑∞

j=1Ejx, x ∈

X.

c) −A generates an analytic semigroup {e−At} given by

e−Atx = E1x +
∞
∑

j=2

e−λj tEjx. (9)

d) for a > 0

Xα = D(Aα
1 ) = {x ∈ X :

∞
∑

j=1

(λj + a)2α‖Ejx‖
2 <∞},

and

Aα
1x =

∞
∑

j=1

(λj + a)αEjx. (10)

Also, we shall use the following notation:

Z := L2(Ω,<n) = Xn = X × · · · ×X ,
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with the usual norm.

Now, we define the following operator

AD : D(AD) ⊂ Z → Z, ADψ = −D∆ψ = DAψ, (11)

where

D(AD) = [D(A)]n = {φ ∈ H2(Ω,<n) :
∂φ

∂η
= 0 on ∂Ω}.

Therefore, AD is a sectorial operator and the fractional power space Zα

associated with AD is given by

Zα = D(Aα
D1) = Xα × · · · ×Xα = [Xα]n. (12)

endowed with the graph norm

‖z‖α = ‖Aα
D1z‖, z ∈ Zα and AD1 = AD + aI, (13)

where

a > 0, Aα
D1z =

∞
∑

j=1

Dα(λj + a)αPjz, Dα = diag(dα
1 , d

α
2 , · · · , d

α
n), (14)

and Pj = diag(Ej, Ej, · · · , Ej), n× n matrix.

The co−semigroup {e−ADt}t≥0 generated by −AD is given as follow

e−ADtz = P1z +
∞
∑

j=2

e−λjDtPjz, z ∈ Z. (15)

Clearly, {Pj} is a family of orthogonal projections in Z, which is complete.

Hence, for z = (z1, z2, ..., zn)T ∈ Zα we have that

z =
∞
∑

j=1

Pjz , ‖z‖
2 =

∞
∑

j=1

‖Pjz‖
2 and ‖z‖2

α =
∞
∑

j=1

‖Pjz‖
2
α

=
∞
∑

j=1

n
∑

i=1

((λj + a)di)
2α‖Ejzi‖

2 .
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Using the foregoing notations we shall prove the following propositon

Proposition 2.1 Let π0 = P1 and πs = I − P1. Then for all z ∈ Zα the

following inequalities hold

‖e−ADtπ0z‖α ≤ ‖z‖α, t ∈ < (16)

‖e−ADtπsz‖α ≤ e−λ2dt‖z‖α, t ≥ 0 (17)

‖e−ADtπsz‖α ≤Mt−αe−λ2dt‖z‖, t > 0 (18)

IZ = π0 + πs, Z = Zc ⊕ Zs, (19)

whereM = supt≥0

{

((λj + a)dit)
αe−λj

di
2

t, i = 1, 2, . . . , n; j = 1, 2, . . .
}

, 2d =

min{di : i = 1, ..., n} and Z0 = Range(π0) = R(π0), Zs = Range(πs) =

R(πs).

Proof . From the above notation, for z ∈ Zα we have that

‖e−ADtπ0z‖
2
α = ‖Aα

De
−ADtπ0z‖

2 = ‖DαaαE1z‖
2 ≤ ‖z‖2

α.

Therefore,

‖e−ADtπ0z‖α ≤ ‖z‖α.

Next, we shall prove the second inequality,

‖e−ADtπsz‖
2
α =

∞
∑

j=1

n
∑

i=1

((λj + a)di)
2αe−2λjdit‖Ejzi‖

2

≤ e−2λ2dt
∞
∑

j=1

n
∑

i=1

((λj + a)di)
2α‖Ejzi‖

2

≤ ‖z‖2
αe

−2λ2dt
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Therefore,

‖e−ADtπsz‖α ≤ ‖z‖αe
−λ2dt, t ≥ 0.

Finally, we prove the last inequality

‖e−ADtπsz‖
2
α =

∞
∑

j=2

n
∑

i=1

((λj + a)di)
2αe−2λjdit‖Ejzi‖

2

=
1

t2α

∞
∑

j=2

n
∑

i=1

{((λj + a)dit)
αe−λjdit}2‖Ejzi‖

2

=
1

t2α

∞
∑

j=2

n
∑

i=1

{((λj + a)dit)
αe−λj

di
2

t}2{e−λj
di
2

t}2‖Ejzi‖
2

≤
1

t2α

∞
∑

j=2

n
∑

i=1

M2e−λjdit‖Ejzi‖
2 ≤

1

t2α
M2e−2λ2d‖z‖2.

Therefore,

‖e−ADtπsz‖α ≤Mt−α‖z‖e−dλ2t, t > 0.

From Theorem 1.6.1 (pp. 39-40 ) in D.Henry [3] it follows for 0 < α < 1

that the following inclusion is continuous

Zα ⊂ Lp(Ω,<n), p ≥ 2. (20)

Hence, there exists R > 0 such that

‖z‖ ≤ R‖z‖α, z ∈ Zα. (21)

Now, the system (1)-(2) can be written in an abstract way on Z as follows:

z′ = −ADz + f e(t, z), z(t0) = z0, t ≥ t0, (22)
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where f e : <× Zα → Z is given by:

f e(t, z)(x) = f(t, z(x)), x ∈ Ω. (23)

To show that equation (22) is welll posed in Zα we need the following

proposition.

Proposition 2.2 The function f e given in (23) satisfies the estimation

‖f e(t, z1) − f e(t, z2)‖ ≤ LR‖z1 − z2‖α, t ∈ <, z1, z2 ∈ Zα , (24)

where L and R are as in (4) and (21), respectively. Also,

‖f e(t, 0)‖ ≤ µ(Ω)Lf , t ≥ 0, (25)

where µ(Ω) is the Lebesgue measure of Ω.

Proof .

‖f e(t, z1) − f e(t, z2)‖ =
{
∫

Ω
|f(t, z1(x)) − f(t, z2(x))|

2dx

}
1

2

≤ L‖z1 − z2‖

≤ LR‖z1 − z2‖α, t ∈ <, z1, z2 ∈ Zα.

On the other hand, (3) implies (25).

3 Main Theorem

From the proposition 2.2 and Theorem 7.1.4 in D.Henry ([3]), for all t ≥ t0,

we have that a continuous function z(·) : (t0,∞) → Zα is solution of the
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integral equation

z(t) = e−AD(t−t0)z0 +
∫ t

t0

e−AD(t−s)f e(s, z(s))ds, t ≥ t0 (26)

if and only if z(·) is a solution of (22).

Now, for all η ≥ 0, we denote by Zα
η the Banach space

Zα
η = {z ∈ C(<, Zα) : ‖z‖α,η := sup

t∈<
e−η|t|‖z(t)‖α <∞} . (27)

Theorem 3.1 Suppose that f satisfies H1 and H2. Then for some a and

d positive, and 0 < η < λ2d, there exists a continuous manifold M =

M(a, d, f) such that any solution z(t) of (22) with z(0) ∈ M satisfies the

estimate

sup
t∈<

e−η|t|‖z(t)‖α <∞ ,

Moreover, there exists a globally Lipschitz function ψ : R(π0) → R(πs) such

that

M = {z0 + ψ(z0) : z0 ∈ R(π0)} . (28)

Before the proof of Theorem 3.1 we shall prove some preliminaries lemmas.

Lemma 3.1 Let z ∈ Zα
η and η < λ2d . Then z is a solution of (22) if and

only if there exists z0 ∈ R(π0) such that

z(t) = e−ADtz0 +
∫ t

0
e−AD(t−s)π0f

e(s, z(s))ds

+
∫ t

−∞
e−AD(t−s)πsf

e(s, z(s))ds, t ∈ < . (29)
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Proof . Suppose that z is a solution of (22). Using the fact that

z(t) = π0z(t)+πsz(t) and the variation of constants formula (26) , we obtain

π0z(t) = e−ADtπ0z(0) +
∫ t

0
e−AD(t−s)π0f

e(s, z(s))ds, t ∈ <,

and

πsz(t) = e−AD(t−t0)πsz(0) +
∫ t

t0

e−AD(t−s)πsf
e(s, z(s))ds, t ≥ t0. (30)

Using (17), we obtain

‖e−AD(t−t0)πsz(t0)‖α ≤ e−λ2d(t−t0)‖z(t0)‖α.

Therefore,

‖e−AD(t−t0)πsz(t0)‖α ≤ e−λ2d(t−t0)eη|t0 |‖z‖α,η .

Since η < λ2d, then right side of this inequality goes to zero as t0 goes to

−∞.

Now, from (18) and Proposition 2.1 the following chain of inequalities

hold

‖
∫ t

−∞
e−AD(t−s)πsf

e(s, z(s))ds‖α ≤
∫ t

−∞
M(t− s)−αe−λ2d(t−s)‖f e(s, z(s))‖ds

≤ MLR

∫ t

−∞
(t− s)−αe−λ2d(t−s)‖z(s)‖αds

+ MLfµ(Ω)
∫ t

−∞
(t− s)−αe−λ2d(t−s)ds

≤ MLR‖z‖α,η

∫ t

−∞
(t− s)−αe−λ2d(t−s)eη|s|ds

+ MLfµ(Ω)
∫ t

−∞
(t− s)−αe−λ2d(t−s)ds .
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We now pay attention to the integrals
∫ t
−∞(t − s)−αe−λ2d(t−s)eη|s|ds and

∫ t
−∞(t − s)−αe−λ2d(t−s)ds. If t < 0, then through the change of variables

t− s = u and λ2du = v we can obtain that

∫ t

−∞
(t− s)−αe−λ2d(t−s)eη|s|ds ≤ e−ηt(λ2d)

1−αΓ(1 − α)

= eη|t|(λ2d)
1−αΓ(1 − α) .

The previuos changes of variables also allow us to show that if t > 0, then

∫ t

−∞
(t− s)−αe−λ2d(t−s)eη|s|ds ≤ 2eη|t|(λ2d)

1−αΓ(1 − α).

For the integral
∫ t
−∞(t− s)−αe−λ2d(t−s)ds, we obtain the following estimate

∫ t

−∞
(t− s)−αe−λ2d(t−s)ds ≤

∫ t

−∞
(t− s)−αe−λ2d(t−s)eη|s|ds

≤ eη|t|2(λ2d)
1−αΓ(1 − α) .

Going back to the expresion ‖
∫ t
−∞ e−AD(t−s)πsf

e(s, z(s))ds‖α, we obtain that

‖
∫ t

−∞
e−AD(t−s)πsf

e(s, z(s))ds‖α ≤ 2Meη|t|(λ2d)
1−αΓ(1 − α)[LR‖z‖α,η + Lfµ(Ω)].

Hence, the improper integral
∫ t
−∞ e−AD(t−s)πsf

e(s, z(s))ds exists and passing

to the limit in (30), as t0 goes to −∞ produces

πsz(t) =
∫ t

−∞
e−AD(t−s)πsf

e(s, z(s))ds, t ∈ <.

Therefore, letting z0 = π0z(0) we get (29).

Conversely, suppose z is a solution of (29). Then

z(t) = e−ADtz0 +
∫ t

0
e−AD(t−s)π0f

e(s, z(s))ds



BOUNDED SOLUTIONS FOR PARABOLIC EQS. 12

+
∫ t

0
e−AD(t−s)πsf

e(s, z(s))ds+
∫ 0

−∞
e−AD(t−s)πsf

e(s, z(s))ds

= e−ADt[z0 +
∫ 0

−∞
e−AD(−s)πsf

e(s, z(s))ds] +
∫ t

0
e−AD(t−s)f e(s, z(s))ds

= e−ADtz0 +
∫ t

0
e−AD(t−s)f e(s, z(s))ds ,

where

z(0) = z0 +
∫ 0

−∞
e−AD(−s)πsf

e(s, z(s))ds . (31)

This concludes the proof of the lemma.

Inspired in (29), the manifold M we are looking for is defined by

M = {z(0) : z ∈ Zα
η and satisfies (29)} . (32)

A useful characterization of M, to prove later Theorem 3.1, that follows from

(31) is given by

M = {z0 + πsz(0) : (z0, z) ∈ R(π0) × Zα
η , (z0, z) satisfying (29)} .(33)

We shall need some definitions and notations :

(a) For each z0 ∈ R(π0) we define the function Sz0 : < → Zα by

(Sz0)(t) = e−ADtz0, t ∈ < .

(b) For each function z ∈ Zα
η we define the function G : Zα

η → Zα
η by

G(z)(t) =
∫ t

0
e−AD(t−s)π0f

e(s, z(s))ds

+
∫ t

−∞
e−AD(t−s)πsf

e(s, z(s))ds, t ∈ < .



BOUNDED SOLUTIONS FOR PARABOLIC EQS. 13

The fact that G(Zα
η ) ⊂ Zα

η follows from (24)-(25) and a similar computation

done in proposition 2.1. Now, with the previous notations (29) can be written

in the following equivalent form in Zα
η

z = Sz0 +G(z) (34)

Lemma 3.2 (a) For 0 < η < λ2d, S is a bounded linear operator from R(π0)

in Zα
η .

(b) G is globally Lipschitz. Moreover, given z1 and z2 in Zα
η we have

‖G(z1) −G(z2)‖α,η ≤ K‖z1 − z2‖α,η, (35)

where

K := LR

(

2M(λ2d)
1−αΓ(1 − α) +

(d̄a)α

η

)

, (36)

and d̄ = ‖D‖.

Proof . (a) Clearly S is linear and ‖Sz0‖α,η ≤ ‖z0‖α for all z0 ∈ R(π0).

(b) Let z1, z2 be given in Zα
η .

If t > 0, then

‖
∫ t
0 e

−AD(t−s)π0[f
e(s, z1(s)) − f e(s, z2(s))] ds‖α

≤
∫ t

0
‖DαaαE1[f

e(s, z1(s)) − f e(s, z2(s))]‖ ds ≤
(d̄a)αLR

η
eη|t|‖z1 − z2‖α,η.

For t < 0, the same estimations hold. Hence, for all t ∈ <,

‖
∫ t

0
e−AD(t−s)π0[f

e(s, z1(s)) − f e(s, z2(s))] ds‖α
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≤
(d̄a)αLR

η
eη|t|‖z1 − z2‖α,η . (37)

Now, for all t ∈ <,

‖
∫ t

−∞
e−AD(t−s)πs[f

e(s, z1(s)) − f e(s, z2(s))] ds‖α

≤ 2MLR(λ2d)
1−αΓ(1 − α)eη|t|‖z1 − z2‖α,η . (38)

Finally, from (37) and (38) we get

‖G(z1)(t) −G(z2)(t)‖α ≤ ‖
∫ t

0
e−AD(t−s)π0[f

e(s, z1(s)) − f e(s, z2(s))] ds‖α

≤ ‖
∫ t

−∞
e−AD(t−s)πs[f

e(s, z1(s)) − f e(s, z2(s))] ds‖α

≤ Keη|t|‖z1 − z2‖α,η ,

and this implies (35).

Proof of Theorem 3.1 .

Let, a and d be given such that K < 1. Then I − G : Zα
η → Zα

η is a

homeomorphism with inverse Ψ : Zα
η → Zα

η . Ψ is also globally Lipschitz and

for all z1, z2 ∈ Zα
η we have

‖Ψ(z1) − Ψ(z2)‖α,η ≤ (1 −K)−1‖z1 − z2‖α,η. (39)

Therefore, the equation (34) has a unique solution given by

z(t) = (I −G)−1(Sz0)(t)

= Ψ(Sz0)(t), t ∈ <.
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Hence, from (33) we get that

M = {z0 + πsΨ(Sz0)(0) : z0 ∈ R(π0)}

and defining ψ : R(π0) → R(πs) by ψ(z0) = πsΨ(Sz0)(0) we obtain (28).

Next, we prove that ψ is globally Lipschitz. In fact, let z0, z1 be given in

R(π0). Then the estimation (39) implies

sup
t∈<

e−η|t|‖πsΨ(Sz0)(t) − πsΨ(Sz1)(t)‖α = ‖πs[Ψ(Sz0) − Ψ(Sz1)]‖α,η

≤ (1 −K)−1‖πs‖‖z0 − z1‖α ,

and, in particular for t = 0 we get

‖ψ(z0) − ψ(z1)‖α ≤ (1 −K)−1‖πs‖‖z0 − z1‖α .
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