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émanant des établissements d’enseignement et de
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http://arxiv.org/abs/1408.3527v2
mailto:chicherin@lapth.cnrs.fr
mailto:Emeri.Sokatchev@cern.ch
http://arxiv.org/abs/1408.3527


1 Introduction

In the paper [1], which generalizes the results of [2, 3] to the non-compact case, the three-

point correlators of two half-BPS operators and one unprotected operator in the SL(2)

sector were studied in the one-loop approximation. A conjecture was made, based on

integrability, for the values of the corresponding structure constants. It was successfully

confronted with the available perturbative results on the structure constants. In the absence

of direct calculations of the relevant three-point correlators with unprotected operators, use

was made of the OPE of the two-loop four-point correlators of half-BPS operators, which

produces sum rules for the structure constants. At the time when the paper [1] was written,

only results on four-point correlators of equal weights were available [4]. They allow one to

test only sum rules that contain the squares of the structure constants. In order to perform

a more detailed test of the integrability conjecture it is preferable to study more general sum

rules where products of two different structure constants appear. These can be obtained

from two-loop four-point correlators of half-BPS operators of different weights. Here we

present the calculation of one such correlator whose OPE gives rise to non-symmetric sum

rules. Our result has already been communicated to the authors of [1] who used it and

found perfect agreement with their integrability prediction.

Our aim is to find the two-loop approximation to the correlator

GN=4 = 〈O(2)(x1, Y1)O
(3)(x2, Y2)O

(3)(x3, Y3)O
(4)(x4, Y4)〉 (1.1)

of four half-BPS operators of weight k defined by

O(k) = YI1 · · ·YIkTr
(
ΦI1 · · ·ΦIk

)
.

Here ΦI , I = 1, · · · , 6 are the six real scalars of N = 4 SYM and YI denotes an SO(6) ∼

SU(4) null vector, (Yi · Yi) = 0 with (Yi · Yj) = (Yj · Yi) = Y I
i Y

I
j . These auxiliary

variables help us to keep track of the R symmetry indices. For our purposes it is more

convenient to parametrize them by unconstrained complex 2×2 matrices y a
a′ (with a = 1, 2,

a′ = 1′, 2′) transforming under the subgroup SU(2) × SU(2)′ ⊂ SU(4). In these terms

(Yi · Yj) = (yi − yj)
2 ≡ y2ij with y2 = −1

2y
a
a′y

a′

a .

N = 4 superconformal symmetry imposes restrictions on the form of the quantum

corrections to the four-point correlators of half-BPS operators [5, 6]. For example, in the

best known case of operators of weight k = 2, which are the lowest components of the

N = 4 stress-tensor multiplet, the correlator takes the general form

〈O(2)(x1, Y1)O
(2)(x2, Y2)O

(2)(x3, Y3)O
(2)(x4, Y4)〉 = (Born level) +RN=4G(u, v) . (1.2)

The loop corrections are encoded in the single function G(u, v) =
∑

n≥1 λ
nGn(u, v) of the

two conformal cross-ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

.

This function is expanded in powers of the gauge coupling constant g (or the ‘t Hooft

coupling λ = Ng2

16π2 ). The quantum correction part of (1.2) is characterized by the universal
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prefactor

RN=4 = u
y412y

4
34

x412x
4
34

+
y413y

4
24

x413x
4
24

+ v
y414y

4
23

x414x
4
23

+ (v − u− 1)
y212y

2
13y

2
24y

2
34

x212x
2
13x

2
24x

2
34

+

+(1− u− v)
y212y

2
14y

2
23y

2
34

x212x
2
14x

2
23x

2
34

+ (u− v − 1)
y213y

2
14y

2
23y

2
24

x213x
2
14x

2
23x

2
24

(1.3)

which supplies the necessary R symmetry and conformal weights at the four points. The

non-trivial part of the correlator that cannot be fixed by symmetry alone is encoded in

the functions Gn. In a generic correlator of four half-BPS operators of different weights

〈O(k1)O(k2)O(k3)O(k4)〉 (with ki ≥ 2), one needs an additional product of propagators

behind the universal prefactor (1.3) to supply the missing weights at each point. Due to

the specific weight configuration in (1.1) there exists only one such propagator structure

with additional weights (0, 1, 1, 2). Consequently, the correlator (1.1) involves a single

function of the cross-ratios in full analogy with (1.2),

GN=4 = (Born level) +RN=4
y224y

2
34

x224x
2
34

∑

n≥1

λnGn(u, v) . (1.4)

The result of this paper is the evaluation of the one- and two-loop contributions to

(1.4). Together with the Born approximation, they take the following form:

(Born level) =
9 CN

4(2π)12
y224y

2
34

x224x
2
34

[
1

2

y414y
4
23

x414x
4
23

+
1

2

y212y
2
13y

2
24y

2
34

x212x
2
13x

2
24x

2
34

+
y212y

2
14y

2
23y

2
34

x212x
2
14x

2
23x

2
34

+
y213y

2
14y

2
23y

2
24

x213x
2
14x

2
23x

2
24

]

G1 = −
9 CN

4(2π)12
Φ(1)(u, v) (1.5)

G2 =
9 CN

4(2π)12

[
v

2

[
Φ(1)(u, v)

]2
+Φ(2)(u, v) +

1

u
Φ(2)(1/u, v/u) +

2

v
Φ(2)(u/v, 1/v)

]

(1.6)

with the color factor

CN = (N2 − 1)(N2 − 4)(N2 − 6)/N2 . (1.7)

The functions Φ(1), Φ(2) correspond to the so-called one- and two-loop ladder integrals.

Their explicit expressions in terms of polylogarithms can be found in [7, 8]. One can easily

see that the crossing symmetry 2 ⇄ 3 is respected.

In order to check the correctness of our two-loop calculation we performed its OPE

and compared it with known data on the anomalous dimensions. The lowest dimension

representation of SU(4) in the overlap of the OPEs of the operators O(2)O(4) and O(3)O(3)

is [0, 2, 0]. The twist 2 operators in this channel are protected. Thus we have to consider the

contribution of the twist 4 scalar unprotected operators Θ± whose anomalous dimensions

were calculated in [9]. Their values are in full agreement with the OPE of (1.1). Another

powerful check, as already mentioned, is the confirmation of the integrability prediction

in [1].
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We find a similar result for the single-parameter family of correlators with k ≥ 1

GN=4 = 〈O(2)(x1, Y1)O
(k+2)(x2, Y2)O

(k+2)(x3, Y3)O
(2k+2)(x4, Y4)〉 ,

which is slight generalization of (1.1). This is a subset of the two-parameter family of

correlators satisfying the next-next-to-extremality condition which has been considered in

[10] at strong coupling1. Like in (1.1), its quantum corrections are encoded by a single

function of the cross-ratios,

GN=4 = (Born level) +RN=4

(
y224y

2
34

x224x
2
34

)k ∑

n≥1

λnGn(u, v) .

Setting k = 1 we get back to (1.1) and (1.4). The calculation of this correlator essentially

repeats that of (1.1), so here we just quote the two-loop result in the leading color limit

N → ∞. In the Born approximation we have for k ≥ 2

(Born level) =
4Nn+k

(8π2)(n+k+2)
(k + 1)(k + 2)2

(
y224y

2
34

x224x
2
34

)k [
2k
y414y

4
23

x414x
4
23

+
y212y

2
13y

2
24y

2
34

x212x
2
13x

2
24x

2
34

+

+(k + 1)
y212y

2
14y

2
23y

2
34

x212x
2
14x

2
23x

2
34

+ (k + 1)
y213y

2
14y

2
23y

2
24

x213x
2
14x

2
23x

2
24

+ k
y413y

4
24

x413x
4
24

+ k
y412y

4
34

x412x
4
34

]
,

while for k = 1 the last two terms should be omitted. The functional forms of the one- and

two-loop corrections G1 (1.5) and G2 (1.6) are unchanged, only the normalization factor is

different,

G1, G2 :
9 CN

4(2π)12
→

8(k + 1)(k + 2)2N2k+2

(8π2)2k+4
.

The case k = 0 is special since the weights at all four points are equal and the correlator

has full crossing symmetry. The answer for k = 0 can be found for example in [4].

In the rest of this note we sketch some details of our perturbative calculation based on

harmonic superspace Feynman rules.

2 Calculation in N = 2 harmonic superspace

2.1 Reduction N = 4 → N = 2

The N = 4 SYM theory can be formulated in terms of the N = 2 SYM multiplet and

N = 2 hypermultiplet matter,

SN=4 SYM = SN=2 SYM + SHM . (2.1)

The formulation in N = 2 harmonic superspace (HSS) [11, 12] is completely off shell.

This fact considerably facilitates the Feynman graph calculation using HSS supergraph

techniques in combination with the Lagrangian insertion procedure [13, 14] and the super-

conformal symmetry restrictions on the quantum corrections. For a recent review of the

method the reader is referred to Appendix A in [15].

1We are grateful to Hugh Osborn for drawing our attention to the paper [10].
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The evaluation of the N = 4 correlator (1.1) is reduced to the calculation of the

quantum corrections to the N = 2 correlator

GN=2 = 〈Q̃(2)(x1, u1)Q
(3)(x2, u2)Q

(3)(x3, u3) Q̃
(4)(x4, u4)〉, Q

(k) = Tr(q+)k , Q̃(k) = Tr(q̃+)k

(2.2)

where the half-BPS composite operators are constructed out of hypermultiplet matter.

The N = 2 hypermultiplet is described by a Grassmann analytic superfield on HSS with

coordinates xαα̇A , θ+α, θ̄+α̇, u±i, where the harmonic variables u±i form a matrix of SU(2),

||u|| ∈ SU(2) , u+iu−i = 1 , u+i = u−i = ǫiju
−j

and xαα̇A = xαα̇−4iθα(iθ̄α̇j)u+i u
−
j . The harmonics transform under global SU(2) (index i =

1, 2) and local U(1) (weight ±1), thus they parametrize the harmonic coset SU(2)/U(1) ∼

S2. Grassmann analyticity means that only half of the Grassmann variables θiα, θ̄iα̇ are

involved, namely the harmonic projections θ+α = u+i θ
iα, θ̄+α̇ = u+i θ̄

iα̇. The on-shell

hypermultiplet consists of an SU(2) doublet of scalars φi(x) and singlet fermions ψα, κ̄
α̇,

q+(xA, θ
+, θ̄+, u) = φi(xA)u

+
i + θ+αψα(xA) + θ̄+α̇ κ̄

α̇(xA) + 4iθ+σµθ̄+∂µφ
i(xA)u

−
i , (2.3)

where the physical fields φi, ψ, κ̄ satisfy their free equations of motion. The HM can be

lifted off shell by allowing it to depend on the harmonics in an arbitrary way, after which it

becomes possible to write down an off-shell action [11, 12]. The HM q+ in (2.3) is complex

and q̃+(xA, θ
+, θ̄+, u) is its conjugate with the same analyticity.

The composite gauge-invariant operators in (2.2) are half-BPS in the sense that they

depend on half of the Grassmann variables, Q(k)(xA, θ
+, θ̄+, u) and Q̃(k)(xA, θ

+, θ̄+, u),

just like their constituents q+ and q̃+. In this paper we are interested in the four-point

correlator (2.2) of their lowest components at θ = θ̄ = 0. Nevertheless, as we explain below,

the supersymmetric Feynman graph formalism that we use requires keeping track of the

dependence on the chiral θ+α .

The other ingredient in the N = 2 formulation of N = 4 SYM is the N = 2 gauge

multiplet. It is described by a chiral superfield (together with its antichiral conjugate) with

the on-shell content

W (x, θ) = ϕ(x) + θαi λ
i
α(x) + ǫijθαi θ

β
j Fαβ(x) , (2.4)

including a complex scalar ϕ, an SU(2) doublet of chiral fermions λ and the chiral (self-

dual) half of the gauge field strength F .

Like in the N = 4 case, the quantum corrections to the correlator in (2.2) have the

following partially non-renormalized form [5]

GN=2 = (Born level) +
(24)(34)

x224x
2
34

RN=2 G(u, v) (2.5)

with the universal prefactor

RN=2 = u
(12)2(34)2

x412x
4
34

+
(13)2(24)2

x413x
4
24

+ (v − u− 1)
(12)(13)(24)(34)

x212x
2
13x

2
24x

2
34

. (2.6)
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We denote the contractions of a pair of SU(2) harmonics (both having weight +1) referring

to points 1 and 2 as follows

(12) = −(21) = u+i
1 ǫiju

+j
2 .

Note that each term in (2.6) has uniform harmonic and conformal weights +2 at each point.

The prefactor in the quantum correction part in (2.5) supplies the additional weights needed

for the correlator (2.2).

It is important to realize that the loop correction function G(u, v) in the N = 2

correlator (2.5) is exactly the same as in the N = 4 one (1.4). This can be shown by

a reduction N = 4 → N = 2, as explained in [6, 16] in terms of harmonics and in [17]

using y-variables. Here we resort to the latter formalism. The field strength multiplet

WN=4 is reduced to its N = 2 projections, the chiral field strength multiplet W (x, θ) and

the analytic HMs q+, q̃+, by means of the SU(4) raising operators Da′

a : Da′

a y
b
b′ = δbaδ

a′

b′ .

After acting with it on WN=4, we set y 1
1′ , y

1
2′ , y

2
2′ → 0, y 2

1′ → y, thus reducing the SU(4)

harmonics to SU(2) harmonics (1,y) = u+i . The HMs are identified with the following

projections: WN=4 → q+, D2′
1 WN=4 → q̃+ while the N = 2 field strength is given by

D1′
1 WN=4 → W . In this way we obtain (2.5) as a particular projection of (1.4),

GN=2 =
1

48

(
D2′

1 |1
)2(

D2′
1 |4

)4
GN=4 .

One can easily check that this differential operator reduces the prefactor RN=4 to RN=2.

We chose the particular projection (2.2) since it is related in a very simple way to the

full N = 4 correlator (1.1) we are interested in. Indeed, in order to reconstruct GN=4 in

(1.1) from GN=2 in (2.2), we simply replace RN=2 by RN=4 and substitute the contractions

of SU(2) harmonics by SO(6) harmonics, keeping the same loop correction function G(u, v).

Moreover, as we show below, due to the particular choice of N = 2 half-BPS operators

in (2.2) the number of relevant topologies of the contributing Feynman diagrams is rather

small, so this projection can be calculated quite easily.

2.2 Lagrangian insertion and Feynman rules

We calculate the quantum corrections to the correlator by means of the Lagrangian inser-

tion procedure [13, 14]. Here we give a brief outline. Consider the four-point correlator of

some operators O(x, u) (not necessarily the same)

G = 〈O(1)O(2)O(3)O(4)〉 = (Born level) + g2G1−loop + g4G2−loop + · · · . (2.7)

The first quantum correction G1−loop is given by the derivative ∂ G/∂ g2|g=0. After rescaling

the gauge and matter superfields in the N = 4 action by the gauge coupling constant g,

the latter appears only in front of the chiral gauge filed strength W (x, θiα) in the N = 2

SYM Lagrangian

LN=2 SYM =
1

4g2
TrW 2 . (2.8)
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The differentiation with respect to g2 in the path integral brings down an insertion of the

N = 2 SYM action

SN=2 SYM =

∫
d4xd4θLN=2 SYM(x, θ) , (2.9)

and we obtain

∂ G

∂ g2
= −

i

g2

∫
d4x5d

4θ5〈O(1)O(2)O(3)O(4) LN=2 SYM(x5, θ5)〉 . (2.10)

This means that the one-loop correction in (2.7) is given by the five-point correlator in (2.10)

calculated at Born level and integrated over the insertion point x5, θ5. This correlator is

itself ∼ g2, therefore we can safely set g = 0 in (2.10) to obtain G1−loop. In the same way

the double differentiation of (2.7) results in a double Lagrangian insertion, still calculated

at Born level and integrated over the two insertion points. This gives the second quantum

correction G2−loop.

We remark that the N = 2 SYM filed strength W carries R charge2 +2 in units in

which the R charge of the chiral Grassmann variable θα equals +1, so that the action

(2.9) is chargeless. On the other hand, the HM has no R charge, therefore the five-point

correlator with the Lagrangian insertion in (2.10) has R charge +4. We conclude that the

five-point correlator in (2.10) must be nilpotent, ∼ θ45. So, although we are interested in

the bosonic four-point correlator (2.7) (i.e. the lowest component of a super-correlator),

the insertion formula requires a nontrivial dependence on the chiral Grassmann variables.

At the same time, we can set all antichiral θ̄ = 0.

As we explain below, in our perturbative calculation up to order g4 the gauge part of

the action (2.1) manifest itself solely as insertion points in the Feynman diagrams. The

gauge self-interaction is not relevant at this order. The HM action SHM in (2.1) gives rise

to the matter propagator and the gauge-matter interaction vertex.

The hypermultiplet propagator in the adjoint representation of the gauge group SU(N),3

evaluated at θ̄ = 0, takes the following very simple form:

1 a 2 b = 〈q̃+a (x1, θ
+
1 , 0, u1) q

+
b (x2, θ

+
2 , 0, u2)〉 =

(12)

(2π)2x212
δab . (2.11)

It consists of an ordinary scalar propagator 1/x212 and a harmonic factor (12) which keeps

track of the isodoublet indices of the scalar fields. Another basic building block in the

Feynman graphs is the Born level three-point function of two analytic hypermultiplet su-

perfields and one chiral superfield strength, the so-called T-block. It is a rational function

of the superspace coordinates calculated in [14]. For our purposes we will need it only at

θ̄+1,2 = 0 and u±1 = u±2 , which simplifies it significantly,

Tabc
152 = 〈q̃+a (1)Wb(5)q

+
c (2)〉u1=u2

=

1 a 2 c

5 b

= −
2gfabc
(2π)4

(ρ1 − ρ2)
2

x212
(2.12)

2The N = 2 R charge is the U(1) factor in U(1) × SU(2) ⊂ SU(4), obtained by reduction from N = 4.
3The generators of the fundamental irrep of the color group SU(N) are normalized as Tr(tatb) =

1

2
δab.
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1 2

43

1 2

43

1 2

43

(F1) (F2) (F3)

Figure 1. Three types of frames made of HM propagators.

where ρα̇r =
(
θi5(ur)

+
i − θ+r

)
α

(
x−1
5r

)αα̇
. As remarked above, this object carries the R charge

+2 of the chiral field strength W , therefore it is nilpotent, ∼ θ2.

2.3 One loop

In order to obtain the one-loop correction to the four-point correlator we apply the insertion

formula once, so we need to calculate the Born level five-point correlator

Gins
g2 = 〈Q̃

(2)
1 Q

(3)
2 Q

(3)
3 Q̃

(4)
4

1

g2
TrW 2

5 〉Born = (42)(43)Θ5 Gg2(x1, x2, x3, x4, x5) (2.13)

at θ̄5 = 0. The presence of the nilpotent invariant

Θ5 = θ45
RN=2∏4
i=1 x

2
i5

x212x
2
34x

4
13x

4
24 + (θ+ terms) (2.14)

is a corollary of N = 2 superconformal symmetry [14]. It carries harmonic weights +2

at each point and R charge +4. The harmonic prefactor (42)(43) completes the harmonic

weights to +2,+3,+3,+4 at points 1, 2, 3, 4, respectively.

We point out an important property of the correlator (2.13): it involves only harmonics

u+i with positive harmonic weight. This follows from one of the defining properties of the

half-BPS operators Q(k)(x, u), namely, they must be polynomials in u+i of degree k. This

property is called H-analyticity and reflects the fact that the operators are described by

finite-dimensional representations of the R symmetry group.

The relevant Feynman diagrams can be obtained from three types of free matter line

frames depicted in figure 1 by inserting an additional chiral vertex 1/g2 TrW 2(5) and con-

necting it with the frame lines by gauge/matter interactions (2.12). An example is shown

in eq. (2.16) below.

We wish to simplify the Feynman graph calculation as much as possible. The general

form of the correlator (2.13) with a single Lagrangian insertion suggests to partially identify

the harmonics,

u±1 = u±2 , u±3 = u±4 . (2.15)

As a result, the nilpotent invariant (2.14) simplifies significantly,

Θ5|u±

1
=u±

2
,u±

3
=u±

4

= (13)2(ρ1 − ρ2)
2(ρ3 − ρ4)

2 .
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However, such an identification would also make the harmonic prefactor in (2.13) vanish.

Indeed, the diagram in (2.16) has an extra free matter line ∼ (34) → 0 (see (2.11)). We

have to be more cautious. Following [4], we first pull the harmonic prefactor (42)(43)

out of the diagrams and only afterwards perform the identification (2.15). In (2.13) this

corresponds to factoring out the free matter lines 2-4 and 3-4 prior to the identification.

Note that we cannot impose further restrictions on the harmonics, otherwise either Θ5 or

the harmonic prefactor in (2.13) will vanish.

After the separation of the harmonic prefactor (42)(43) coming from the free hyper-

multiplet lines (2.11), we have to insert the gauge/matter interaction vertices into the

remaining lines connecting the pairs of outer points 1 and 2, and 3 and 4. This prevents

the diagram with the topology (F1) from vanishing upon the identification (2.15). The

second topology (F2) involves an extra free line 3-4, so it does not contribute. The last

topology (F3), after the insertion of the gauge/matter vertices, vanishes for color reasons.

So, the unique contribution, coming from the diagram with topology (F1), takes the

form

1 2

3 4

5
∼ (42)(43) × (13)(42)T453T152 . (2.16)

It contains the required harmonic prefactor from (2.13). The identification (2.15) in the

rest of the diagram immediately reproduces the nilpotent invariant Θ5, (13)(42)T453T152 →

−(13)2(ρ1 − ρ2)
2(ρ3 − ρ4)

2 = −Θ5. Thus the calculation is almost trivial. We just need to

take into account the color and symmetric factors to obtain

Gg2 =
9g2CNN

(2π)16
1

x212x
2
13x

4
24x

4
34

with CN defined in (1.7).

Finally, we apply the insertion formula

Gg2 = −
i

4

∫
d4x5d

4θ5G
ins
g2 . (2.17)

The Grassmann integration in (2.17) picks out the first term of the nilpotent invari-

ant (2.14), and the x-space integration produces the standard one-loop ladder integral

Φ(1)(u, v), as stated in (1.5).

In the calculation above we retained only the Feynman diagrams that contribute to

the correlator after the identification of harmonics. However, the calculation can also

be performed without this identification. In that case one has to deal with a number

of auxiliary Feynman diagrams which involve harmonics u− as well. According to the

general form (2.13) of the five-point nilpotent correlator and the underlying property of

H-analyticity, the harmonics u− must drop out after summing up all diagrams. As a check,

one can carry out the complete calculation and track the cancellation of the harmonics u−

in the sum.
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2.4 Two loops

According to the insertion procedure, the two-loop correction to the four-point correlator

is expressed through the Born-level six-point correlator with two N = 2 SYM Lagrangian

insertions,

Gins
g4 = 〈Q̃

(2)
1 Q

(3)
2 Q

(3)
3 Q̃

(4)
4

1

g2
TrW 2

5

1

g2
TrW 2

6 〉Born = (42)(43)Θ5,6 Gg4(x1, x2, x3, x4, x5, x6)

(2.18)

at θ̄5 = θ̄6 = 0. The new nilpotent invariant Θ5,6 is again a corollary of N = 2 conformal

supersymmetry [14]. It has the form

Θ5,6 =
[
θ45θ

4
6 x

2
12x

2
34x

4
13x

4
24RN=2 + . . .+

(
θ+1

)2 (
θ+2

)2 (
θ+3

)2 (
θ+4

)2
x456

] x456∏4
i=1 x

2
i5x

2
i6

(2.19)

and carries harmonic weights +2 at each point and R charge +8. The harmonic prefactor

(42)(43) completes the harmonic weights to +2,+3,+3,+4 at points 1, 2, 3, 4, respectively.

The dynamical information is contained in the conformally covariant function of the six

x-space coordinates Gg4 .

We are interested in the first component of Θ5,6 ∼ θ45θ
4
6+ . . . needed for the integration

over the insertion points. However, in order to simplify the Feynman graph calculation it

proves convenient to first choose the frame θ5 = θ6 = 0 in which the invariant (2.19) is

reduced to its last component. The advantage of this frame is that the analytic θ+ in the

last term carry harmonic weight +2 at each point. The remaining weights are supplied by

the explicit harmonics prefactor (42)(43) in (2.18). Then it becomes possible to identify

three pairs of harmonics, u±1 = u±2 = u±3 . We can do even better, as we did in the one-loop

case, by first pulling the residual prefactor (42)2 out of each Feynman diagram. After that

we are allowed to set all the harmonics equal,

u±1 = u±2 = u±3 = u±4 . (2.20)

Indeed, neither the harmonic-independent function Gg2 nor the invariant Θ5,6 vanish after

this identification. This enables us to considerably reduce the number of diagrams we need

to deal with. Indeed, each free HM line (i.e. a propagator without an insertion of the

gauge interaction vertex) connecting a pair of external points i and j is proportional to

(ij), see (2.11). Thus all diagrams with three or more free HM lines left vanish after the

identification of all harmonics (2.20), so we discard them and consider only diagrams with

no more than two free lines, which give rise to the harmonic prefactor (42)2. Then we note

that the diagrams with subgrahps like

54 3 = T453T453 ∼ (ρ3 − ρ4)
4 = 0

vanish due to the odd nature of ρα̇. We arrive at the set of relevant Feynman diagrams

with non-vanishing color factors depicted in figure 2.
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1 2

43

5

6

5

6

5

6

5
6

1 2

43

5
6

(A) (B) (C) (D) (E)

Figure 2. N = 2 supergraphs contributing at two-loop order.

They are constructed out of T-blocks (2.12) inserted in the mater line frames (F1),

(F2), (F3) and their nontrivial contributions are equal to

(A) = ρ22σ
2
3τ14 , (B) = ρ21σ

2
3τ24 , (C) = ρ21σ

2
2σ

2
3ρ

2
4 + σ21ρ

2
2ρ

2
3σ

2
4 + 16(σ1σ2)(ρ1ρ3)(ρ2ρ4)(σ3σ4) ,

(D) = ρ21σ
2
4τ23 , (E) = τ12τ34

where σ denotes the analog of ρ for the second insertion point 6, σα̇r =
(
θi6(ur)

+
i −

θ+r
)
α

(
x−1
6r

)αα̇
, and the shorthand notation τrs = ρ2rσ

2
s + ρ2sσ

2
r + 4(ρrρs)(σrσs) is used.

Here we do not display the overall factor (2g)4/(2π)20 coming from the T-blocks (2.12)

and the HM propagators, as well as the propagator factors 1
x2

12
x2

13
x4

24
x4

34

in diagrams (A),

(B), (C), (D) and 1
x4

12
x2

24
x6

34

in diagram (E). Let us also recall that we omit the harmonic

prefactor (42)2 which we singled out before the identification (2.20).

The symmetry and color factors for the above diagrams are as follows:

CA = CD =
9

2
CNN

2 , −CB = CC = CE =
9

4
CNN

2

with CN defined in (1.7). The color factors come from contractions of the color tensors

Tr(t(a tb)) , Tr(t(a tb tc)) , Tr(t(a tb tc td))

appearing in the external vertices, with each other and with the antisymmetric structure

constants fabc from the T-blocks (2.12).

We also need to take into account the crossing symmetry of the correlator under the

permutation of the external points 2 ⇄ 3 and of the insertion points 5 ⇄ 6. The latter

corresponds to the exchange ρ ⇄ σ. Thus we add to the list of diagrams (E)2⇄3, and

ρ⇄ σ for (A),(B),(B)2⇄3,(C) and (D). It is evident that the permutations do not alter the

color and symmetry factors.

Then we sum up the contributions of all diagrams and make use of the identities (in

the frame θ5 = θ6 = 0)

ρ2r =
(θ+r )

2

x2r5
, σ2r =

(θ+r )
2

x2r6
, τrs =

x2rsx
2
56(θ

+
r )

2(θ+s )
2

x2r5x
2
r6x

2
s5x

2
s6
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that enable us to explicitly identify the invariant Θ5,6 (2.19) in the expression for the

two-loop correction to the correlator (2.18). This yields

Gg4 =
36g4CNN

2

(2π)20
1

x212x
2
13x

4
24x

4
34

1

x656

[
x214x

2
23x

2
56 + x212(x

2
35x

2
46 + x236x

2
45) + x213(x

2
25x

2
46 + x226x

2
45)+

+x214(x
2
25x

2
36 + x226x

2
35) + x223(x

2
15x

2
46 + x216x

2
45)

]
.

Finally, in order to apply the double insertion formula

Gg4 = −
1

32

∫
d4x5d

4θ5

∫
d4x6d

4θ6 Gins
g4

we switch the invariant Θ5,6 (2.19) back to the frame θ+1,2,3,4 = 0. The x-space integrations

give rise to the square of the one-loop ladder integral the and the two-loop ladder integrals

from [7], as announced in (1.6).

Let us note that we applied the tricks of identification of the harmonics just in order

to perform the calculation in a concise way. We could have kept all the harmonics different

but this results in a proliferation of Feynman diagrams. Some of them are constructed not

only out of simple T-blocks (2.12) but also of the so-called double T-blocks. Moreover, each

individual Feynman diagram depends on a number of harmonics u− that cancel out in the

sum of all diagrams since the correlator has to respect H-analyticity at each perturbative

order. The cancellation of the harmonics u− is a rather nontrivial property that partially

fixes the relative numerical factors of the various diagrams and serves as a reliable check

of the calculation.
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