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Bistable flows in precessing spheroids
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Abstract. Precession driven flows are found in any rotating container filled with

liquid, when the rotation axis itself rotates about a secondary axis that is fixed in

an inertial frame of reference. Because of its relevance for planetary fluid layers,

many works consider spheroidal containers, where the uniform vorticity component

of the bulk flow is reliably given by the well-known equations obtained by Busse in

1968. So far however, no analytical result on the solutions is available. Moreover, the

cases where multiple flows can coexist have not been investigated in details since their

discovery by Noir et al. (2003). In this work, we aim at deriving analytical results on

the solutions, aiming in particular at, first estimating the ranges of parameters where

multiple solutions exist, and second studying quantitatively their stability. Using the

models recently proposed by Noir & Cébron (2013), which are more generic in the

inviscid limit than the equations of Busse, we analytically describe these solutions, their

conditions of existence, and their stability in a systematic manner. We then successfully

compare these analytical results with the theory of Busse (1968). Dynamical model

equations are finally proposed to investigate the stability of the solutions, which allows

to describe the bifurcation of the unstable flow solution. We also report for the first

time the possibility that time-dependent multiple flows can coexist in precessing triaxial

ellipsoids. Numerical integrations of the algebraic and differential equations have been

efficiently performed with the dedicated script FLIPPER (supplementary material).

Keywords: Rotating flows; Precession; Spheroids
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1. Introduction

A rotating solid object is said to precess when its rotation axis itself rotates about a

secondary axis that is fixed in an inertial frame of reference. In this work, we consider

a precessing spheroid of fluid, in rotation around its symmetry axis. This geometry is

indeed relevant for planetary fluid layers, such as the Earth liquid core [12], where

precession-driven flows may participate in the dynamo mechanism generating their

magnetic fields [4, 3, 23]. These flows may also have an astrophysical relevance, for

instance in neutron stars interiors where they can play a role in the observed precession

of radio pulsars [9]. Finally, precessing spheroids have been studied as turbulence

generators, in particular when the angle between the container rotation axis and the

precession axis is 90◦ [10, 11].

The first theoretical studies of this spheroidal geometry considered an inviscid fluid

[14, 30, 29]. Assuming a uniform vorticity, they obtained a solution, called Poincaré

flow, given by the sum of a solid body rotation and a potential flow. However, the

Poincaré solution is modified by the apparition of boundary layers, and some strong

internal shear layers are also created in the bulk of the flow [31, 5]. In 1968, Busse have

taken into account these viscous effects as a correction to the inviscid flow in a spheroid,

by considering carefully the Ekman layer and its critical regions (see also [5, 42, 43]).

Based on these works, [6] and [25] have proposed models for the flow forced in precessing

triaxial ellipsoids. Note that, beyond this correction approach, the complete viscous

solution (including the fine description of all the flow viscous layers) has recently been

obtained in the particular case of a weakly precessing spherical container [17].

When the precession forcing is large enough compared to viscous effects, instabilities

can occur, destabilizing the Poincaré flow. First, the Ekman layers can be destabilized

[20] through standard Ekman layer instabilities [19, 8]. In this case, the instability

remains localized near the boundaries. Second, the whole Poincaré flow can be

destabilized, leading to a volume turbulence: this is the precessional instability [23].

This small-scale intermittent flow confirm the possible relevance of precession for energy

dissipation or magnetic field generation, and has thus motivated many studies. Early

experimental attempts [40, 39] to confirm the theory of Busse [5] did not give very

good results [28]. Simulations have thus been performed in spherical containers [32, 36],

spheres [26], and finally in spheroidal containers [21, 22], allowing a validation of the

theory of Busse [5]. Experimental confirmation of the theory has then been obtained

in spheroids [24], a work followed by many experimental studies involving spheres

[10, 18, 2], and spherical containers [38].

Finally, the dynamo capability of precession driven flows has been demonstrated in

spheres [33, 34], spheroids [41] and cylinders [27], allowing the possibility of a precession

driven dynamo in the liquid core of the Earth [16] or the Moon [7].

In this work, we focus on the precession forced flow described by the system of

algebraic equations obtained by Busse in 1968 [5] for precessing spheroids. As shown

by Noir and co-workers [24], these equations reliably describe the flow but can lead to
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Figure 1. Sketch of the problem under consideration. We consider a container filled

with liquid and set in rotation at Ωo along its symmetry axis Oz. The spheroid axis

is tilted at the precession angle α and fixed on a rotating table, which rotates at the

precession rate Ωp. In a planetary context, the fluid corresponds to a liquid core, the

container to the mantle, and the rotating table plane to the orbital plane, i.e. the

ecliptic for the Earth.

multiple solutions for particular ranges of parameters . So far, these multiple solutions

cases have not been investigated in details. Indeed, the study of Noir and co-workers [24]

is the only work considering these possible multiple solutions, and they only calculate

the stability of the solutions in certain cases. In particular, the ranges of parameters

allowing multiple solutions are not known (which is also partly due to the absence of

any analytical result). No analysis of these equations have been performed to obtain

rigorous constraints on the solutions, or to estimate the solutions and their stability.

We propose here to tackle analytically these issues in order to obtain analytical

estimates and scaling laws, to compare our results to the exact solutions, and to

investigate analytically the solutions stability.

In section 2, we introduce the problem considered in this work in a general

framework. In section 3, we first present few multiple solutions cases (section 3.1)

and then, in section 3.2, we introduce recently proposed theoretical models [25],

which extends the Busse equations into a dynamical framework. Relying on this

new approach, theoretical investigations are tractable (section 3.3), and the obtained

analytical estimates are then compared with the predictions of the Busse model. The

stability of the solutions are studied in section 4.

2. Mathematical description of the problem

We consider an incompressible homogeneous fluid of density ρ and kinematic viscosity

ν enclosed in a spheroidal cavity, rotating along its symmetry axis at Ωo = Ωoez (ez

is a unit vector), and precessing at the angular velocity Ωp, with a precession angle

α , also called obliquity (see figure 1). Noting c the length of the spheroid symmetry

axis, we use the length a of the other principal axis as the length scale. Using 1/Ωo
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as a time scale, the problem is completely defined by four parameters: the oblateness

η3 = 1− c/a, or equivalently the flattening ellipticity e = (c2−a2)/(c2+a2), the Ekman

number E = ν/(Ωoa
2), the precession angle α, and the Poincaré number P = Ωp/Ωo

in the literature. The dimensionless components of the precession vector are then

naturally Px = P sinα, Py = 0, and Pz = P cosα (the axisymmetry naturally allows

the choice Py = 0 without any loss of generality). For planetary applications and

turbulence generators, works of the literature typically consider moderate values of e,

small Ekman number E ≪ 1, and values of α are typically moderate for planetary

cores (α ≈ 23.4◦ ≈ 0.41 rad for the Earth), or large for turbulence generators studies

(α = π/2) [10, 11].

Considering the dimensionless fluid rotation rateΩo, which is half the dimensionless

vorticity, one can derive a system of equations governing the uniform vorticity bulk

component of the flow (e.g. [24, 6])

Ω2
x + Ω2

y + Ω2
z − Ωz = 0, (1)

−Pz Ωy = η3 ΩyΩz + (λr ΩxΩ
1/4
z + λi ΩyΩ

−1/4
z )

√
E, (2)

Px Ωy = − λr Ω1/4
z (1− Ωz)

√
E, (3)

which are exactly equations (20)-(22) of [24], or the equations (21)-(23) of [6] in the

particular case of a spheroid (η2 = 0 in their notations, and Py = 0). As shown by

[24], this system of equations is equivalent to the well-known implicit expression (3.19)

of Busse [5]. Equation (1) is the so-called no spin-up condition (see the solvability

condition 3.14 of [5], or equation 12 of [24]) given that it imposes (Ω− ez) ·Ω = 0, i.e.

it forbids any differential rotation along Ω. Equations (2)-(3) are simply obtained from

a torque balance (see [24, 6] for details).

In equations (1)-(3), we have noted λ = λr+iλi the spin-over damping factor, with

λ ≈ −2.62 + 0.259i for the sphere. For E ≪ 1, an exact expression of λ has actually

been obtained [44], which undergoes viscous corrections for finite values of E [13, 26].

Even if equations (1)-(3) are obtained without any inner core, corrections have been

proposed in the case a = c to take an inner core into account. Using the dimensionless

inner radius ri, it has been proposed to simply modify λ by the factor (1 + r4i )/(1− r5i )

for a no-slip inner core [13], and by 1/(1− r5i ) for a stress-free inner core [36].

It is possible to give a geometrical interpretation of equations (1)-(3), which allows

to obtain analytical constraints on the solutions. Since these constraints are interesting,

but do not allow to really constrain the range of parameters allowing multiple solutions,

we give this geometrical interpretation and the associated constraints in Appendix A.

3. Multiple stationary solutions in precessing spheroids

As shown by Noir and co-workers [24], equations (1)-(3) can actually be recast in a

unique one, namely equation (24) of [24], which is exactly the implicit solution (3.19)

of [5]. Little algebra shows that this unique equation can be transformed into a lengthy

polynomial of degree 14 (which reduces to degree 8 in the sphere) for the unknown Ωz.
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Figure 2. Evolution of Ωz = Ω2 (see equation 1), with the Poincaré number P for

E = 2.10−5 (dashed line) and E = 10−9 (solid line), with c/a = 0.97, which gives

λr ≈ −2.646 and λi ≈ 0.306 (inviscid values obtained from the formula of Zhang and

co-workers [44]). (a) α = 30◦. (b) α = 81◦.

This polynomial feature guarantees us to obtain efficiently all the possible solutions.

However, one shall be careful since all the polynomial roots are not necessarily solutions

of equations (1)-(3). We thus systematically test a posteriori the obtained solutions by

replacing them into equations (1)-(3).

3.1. Examples of multiple solutions

In figure 2a, solutions of (1)-(3) are represented in function of the Poincaré number P ,

for a moderate precession angle of α = 30◦. This shows that, for large enough Ekman

numbers (e.g. E = 2.10−5 in the figure), equations (1)-(3) lead to only one solution

for each value of P . However, when the Ekman number is smaller than a certain

critical value Emax, certain values of P can lead to multiple solutions (figure 2a). In

this case, we can delineate three branches separated by a cusp point and a point where

∂Ω/∂P = ∞, and we note Ps and Pres the respective associated Poincaré numbers (in

figure 2a, Pres < Ps). Note that, according to Noir and co-workers [24], the branch

between Ps and Pres is unstable, and cannot be physically realized.

In figure 2b, we increase the precession angle to α = 81◦, leading to a quasi-

symmetrical problem when P is changed in −P (naturally, the problem is exactly

symmetrical P ↔ −P for α = 90◦). This is reflected by the vertical quasi-symmetry

in figure 2. Considering the case E = 10−9, i.e. the case E < Emax, this figure shows

that four singular points, delineating five branches, can exist when α is larger than

a certain value αlim. Starting from P = −∞, we note the four singular points as

Pres < Ps < Ps2 < Pres2. Note that this ordering is the opposite when c/a > 1 (prolate

spheroids), and that Ps2, and Pres2 only exist for large values of α. We thus define

non-ambiguously Ps as the cusp point existing for any α, Ps2 as the second cusp point
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(a) (b)

Figure 3. Within the solid lines, i.e. for P ∈ [Pres;Ps] and P ∈ [Ps2;Pres2], equations

(1)-(3) admit multiple solutions for c/a = 0.97, which gives λr ≈ −2.646 and λi ≈ 0.306

(inviscid values obtained from the formula of Zhang and co-workers [44]). Then, the

two figures show the ranges of P leading to multiple solutions (hatched areas), (a) in

function of E, for α = 83.7◦, and (b) in function of α, for E = 10−9. We clearly see

that Emax, obtained here around Emax ≈ 1.1 · 10−5, is actually given by Pres = Ps,

whereas αlim, obtained here around αlim ≈ 79◦, is actually given by Pres2 = Ps2

(Pres2 = Ps2 also defines Emax2, obtained here around Emax2 ≈ 3.1 · 10−6).

appearing when α is large enough, and Pres, Pres2 as the points where ∂Ω/∂P = ∞.

The point Pres exist for any α, whereas Pres2 only exists when α is large enough (in any

case, η3Pres < η3Ps < η3Ps2 < η3Pres2).

In figure 3, another point of view is proposed on these ranges of P where equations

(1)-(3) admit multiple solutions. In figure 3a, we fix α = 83.7◦ > αlim, which gives

two zones with multiple solutions. The zone between Pres and Ps exists as soon as

E < Emax, with Emax given by Ps = Pres. The second zone, between Pres2 and Ps2 only

exists at large precession angle (α > αlim), and for E < Emax2, where Emax2 is given by

Ps2 = Pres2. In this figure, we clearly see the seven quantities we are interested in, i.e.

Pres, Ps, Ps2, Pres2, Emax, Emax2, and αlim, which are bounds of the multiple solutions

areas. Our goal is thus to obtain estimates of these various quantities, in order to obtain

analytical insights on these multiple solutions zoness.

3.2. Busse stationary solutions seen as fixed points of a dynamical system

First, we did not manage to obtain analytical results directly from equations (1)-(3).

Second, within the mutiple solutions range of parameters, it would be interesting to test

if these solutions can be realized experimentally, i.e. to study the stability in time of

these solutions. To do so, equations (1)-(3) have to be obtained as fixed points of a

dynamical model for Ω. Fortunately, these two issues have been recently tackled [25].

Without any approximations, they show that Ω is governed by (see equations A14-A
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16 of [25] for a spheroid)

∂Ωx

∂t
= PzΩy − e [PzΩy + ΩyΩz] + LΓν · ex, (4)

∂Ωy

∂t
= PxΩz − PzΩx + e [PzΩx + ΩxΩz ] + LΓν · ey, (5)

∂Ωz

∂t
= − PxΩy − e PxΩy + LΓν · ez, (6)

with the viscous term LΓν . Contrary to equations (1)-(3), this reduced model does not

assume small flattening for the inviscid part, and the results obtained in the inviscid

limit E = 0 will thus be valid for any oblateness. We will thus pay a particular attention

to this limit, where this model gives more general and accurate results than equations

(1)-(3).

So far, the expression of the viscous term LΓν has not been obtained in the general

case. However, in the limit E ≪ 1, and if the angle between the fluid rotation vector

and the container rotation vector is small, one can obtain an expression of LΓν using

the linear asymptotic expression of spin-up and of the spin-over mode (see the so-called

generalized model, given by equation 2.28 of [25]):

LΓν =
√
EΩ









λr
so

Ω2









ΩxΩz

ΩyΩz

Ω2
z − Ω2









+
λi
so

Ω









Ωy

−Ωx

0









+ λsup
Ω2 − Ωz

Ω2









Ωx

Ωy

Ωz

















, (7)

with

λsup = −
√

π3/2

cΓ(3/4)2
F
(

[−1/4, 1/2], [3/4], 1− c2
)

, (8)

where Γ is simply the gamma function and F(n, d, z) is the usual generalized

hypergeometric function, also known as the Barnes extended hypergeometric function

(see respectively chap. 6 and 15 of [1]).

Naturally, equations (1)-(3), obtained in the very particular limit P ≪ 1 and

e ≪ 1, are recovered as the fixed points of the dynamical model (4)-(6) in this limit.

For instance, taking (4)×Ωx+ (5)×Ωy+ (6)×Ωz yields

(Ω− k) ·Ω =
ePxΩyΩz

λsup

√
E

. (9)

Then, in the limit ePx/
√
E ≪ 1, we recover the so-called no spin-up condition (1). This

condition is thus not valid in general for a spheroid of arbitrary ellipticity. In this limit,

which is the limit of validity of equations (1)-(3), the viscous term LΓν reduces to

LΓν = (EΩ)1/2









λr









Ωx

Ωy

Ωz − 1









+
λi

Ω









Ωy

−Ωx

0

















, (10)

by simply using the no spin-up equation Ωz = Ω2.

Finally, (1)-(3) are simply the fixed points of the dynamical system given by

equations (4)-(6) and (10), and the solutions stability can be calculated in this
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framework. However, we still need a simpler set of equations to perform tractable

analytical calculations. To do so, we follow [25], who showed that the viscous term (10)

can be very well approximated by the so-called reduced form (equation 2.29 of their

work [25])

LΓν = λ
√
E









Ωx

Ωy

Ωz − 1









, (11)

which is linear in Ω. One can notice that the linear viscous terms of the reduced model

does not include the coefficient λi, and thus neglect its influence (typically, a small

viscous modification of the values of P where the Poincaré flow undergoes a resonance,

see [25] for details).

The analytical calculations presented in this work have been performed with the

computer algebra system MAPLE. They have been compared with numerical solutions

of algebraic and differential equations (e.g. equations 1-3 and 4-6, respectively) solved

with the dedicated MATLAB script FLIPPER. This home-made script allows to solve

efficiently all the equations described above, either by time-stepping or by directly

looking for all the possible steady solutions. This script can also solve the system

of equations proposed by [6] and [25] for precessing triaxial ellipsoids, implementing the

various viscous terms (equations (7, 10, and 11), in each case. The script FLIPPER and

its documentation are provided in supplementary materials.

3.3. Analytical estimates, using the so-called reduced model

The calculation details are given in Appendix B, and we thus only report below the

important analytical results and steps of this calculation.

Focusing on stationary solutions of equations (4)-(6) with the viscous term (11),

these equations can be recast in a unique polynomial of degree 3 for the unknown Ωz,

which allows tractable algebra investigations. For the sphere (e = 0), this polynomial

reduces to a linear polynomial, and the explicit solution for Ω is then

Ωx =
P 2 sin 2α

2(P 2 + λ2E)
, (12)

Ωy = − P sin(α) λr

√
E

P 2 + λ2E
, (13)

Ωz =
λ2
rE + P 2 cos2 α

P 2 + λ2E
. (14)

For the sphere, there is thus always a unique solution for the reduced model. Note

also that the solution (12)-(14) is interesting in the limit E = 0. Indeed, calculating a

uniform vorticity solution of the Euler equations for a precessing spheroid leads to the

so-called Poincaré flow, which has a free parameter (as a consequence of the inviscid

hypothesis). Among this class of solutions, the one usually chosen in the literature is

defined arbitrarily by putting Ωz = 1 [35]. Here, equations (12)-(14) show that, for
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the sphere, the solution in the limit of vanishing viscosity is actually the Poincaré flow

defined with Ωz = cos2 α.

We consider below the case of a spheroid (e 6= 0). Little algebra shows that the

multiple solutions boundaries Ps and Ps2 (see figure 3) can be described by a unique

boundary Es = f(P ), where f(P ) is an analytically known root of a polynomial of

degree 3. An expansion for P ≪ 1 gives the following tractable expression at order

O(P 5)

λ2Es =
1− e2

e
s2i coP

3 +
1 + e

4e2
s2i [4c

2
o(1 + e2) + s2i (1 + e)− 8ec2o]P

4, (15)

where the branch Ps is obtained for sign(e)P > 0, and the branch Ps2 for sign(e)P <

sign(e)P inv
s2 . In the planetary relevant limit e ≪ 1, equation (15) gives

P =
λ2/3

s
2/3
i c

1/3
o

e1/3 E1/3
s +O(e7/3) for α 6= π

2
. (16)

At the order O(P 5) of equation (15), putting Es = 0 leads to two solutions for P . The

first solution is P = 0, corresponding to the inviscid limit P inv
s = 0 of Ps. The second

solution corresponds to the inviscid limit P inv
s2 of Ps2, given by

P inv
s2 =

4e(e− 1)co
1 + e+ c2o[3− e(9 − 4e)]

. (17)

Note that a compact accurate expansion of (15) can be obtained at the order O(P 20)

for the particular case α = π/2:

λ2Es = ζ1 + ζ2 +
3

2
ζ3 +

11

4
ζ4 +

91

16
ζ5 +

51

4
ζ6 +

969

32
ζ7 +

4807

64
ζ8, (18)

with ζk = (1 + e)1+ke−2kP 2(k+1)/4. Note also that the leading order of equation (15)

vanishes for α = π/2, which imposes to consider the next order. In the limit e ≪ 1,

equation (15) then gives

P =
√
2λ e1/2 E1/4

s +O(e3/2) for α =
π

2
. (19)

Since Pres and Pres2 are actually weakly dependent on E (see e.g. fig. 3), it turns

out that their inviscid limit values, noted respectively P inv
res and P inv

res2, provide good

estimates of these quantities. They are given by

P inv
res ≈

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α ≪ 1 :
e

1− e
− 3e[2(1 + e)]1/3α2/3

2(1− e)5/3
+

7e[2(1− e2)]2/3α4/3

4(1− e)3
+O(α2)

x = π/2− α ≪ 1 :
e

2
√
1 + e

− e(1− e)

2(1 + e)
x+

e(3e2 − 5e + 4)

4(1 + e)3/2
x2 +O(x3)

(20)

and

P inv
res2 ≈ − e

2
√
1 + e

− e(1− e)

2(1 + e)
x− e(3e2 − 5e + 4)

4(1 + e)3/2
x2 +O(x3), (21)

for x = π/2− α ≪ 1. It is naturally satisfying that the leading order of P inv
res for α ≪ 1

recovers the usual linear inviscid resonance Pr = e/(1− e) of the Poincaré flow [29, 6].
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Figure 4. We fix here c/a = 0.97. (a) Thick solid lines correspond, from bottom

to top, to P inv
res , P

inv
s , P inv

s2 , P inv
res2 (roots of D0, see Appendix B for details), whereas

the dashed lines are the associated expansions, respectively given by equation (20),

P inv
s = 0, equation (17), and equation (21). The vertical dashed line is given

by equation (22) for αinv
lim. (b) Thick solid lines corresponds to Emax and Emax2,

respectively estimated by the two intersection points between Ps and P inv
res , as well

as Ps2 and P inv
res2 (i.e. the solutions of the system ∆ = 0, D0 = 0, see Appendix B

for details). The dashed lines are the assiociated expansions, respectively given by

equations (23) and (24). We have used here λr = −2.62.

It is important to note that we provide here, for the first time, an analytical estimate

of the higher-order corrections to the linear resonance Pr of the Poincaré flow, i.e an

estimate of the so-called non-linear resonance [24]. It is also satisfying to retrieve the

quasi-symmetry of the problem (with respect to P = 0) in the expressions of Pres and

Pres2 for x = π/2− α ≪ 1.

Based on these estimates, one can calculate the critical values αlim and Emax. The

critical angle αlim is well estimated by its inviscid limit αinv
lim, given by

|αinv
lim| = arcos





√

1 + e

27e2 − 53e+ 28



 , (22)

which is decreasing between π/2, reached for e = −1, and 0, reached for e = 1. Finally,

Emax (resp. Emax2) is simply estimated by the intersection point between P inv
res and P inv

s

(resp. P inv
res2 and P inv

s2 ). We thus obtain

λ2Emax

e2
≈

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α ≪ 1 :
3(2

√
3− 3)(ξα)4/3

24/3
− (13

√
3− 18)(ξα)2

2
+O(α8/3)

x = π/2− α ≪ 1 :
−8 + 5φ

4
+

(5− 3φ)x

2ξ
− (39− 23φ)x2

10ξ2
+O(x3)

(23)

with ξ = (1 + e)1/2/(1 − e), and the golden ratio φ = (1 +
√
5)/2. Similarly, Emax2 is

given by

λ2Emax2

e2
≈ −8 + 5φ

4
− (5− 3φ)

2ξ
x− (39− 23φ)

10ξ2
x2 +O(x3), (24)
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(a) (b)

Figure 5. Hatched areas bounded by thick solid lines represent the two multiple

solutions zones of equations (1)-(3), whereas the dashed lines are our analytical

estimates. Parameters: (a) small precession angle of α = 2.86◦, with c/a = 0.98,

which gives λr ≈ −2.637 and λi ≈ 0.290 (inviscid values obtained from the formula of

Zhang and co-workers [44]); (b) large precession angle (α = 83.7◦), with c/a = 0.97,

which gives λr ≈ −2.646 and λi ≈ 0.306 (inviscid values obtained from the formula of

Zhang and co-workers [44]).

with x = π/2 − α ≪ 1. The problem symmetry for α = π/2 is recovered in the

expressions (23) and (24) since Emax = Emax2 in this case.

These various estimates have been represented in figure (4), showing that they

capture correctly the multiple solutions zones features in the inviscid limit. Now, we

can wonder how these estimates compare with the exact solutions of equations (1)-(3).

In figure 5, equations (1)-(3) are solved for two different precession angles and spheroids,

and the ranges of parameters where we have multiple solutions are located between the

thick solid lines. As expected, for a small precession angle (figure 5a), there is a unique

multiple solutions zone, whereas two multiple solutions zones exist for a large precession

angle (figure 5b, where we have added to figure 3a the various analytical estimates

we have obtained). Figure 5 confirms that the analytical estimates obtained from the

reduced model capture quite well these multiple solutions zones. The previously derived

expressions allow thus to bound quite accurately these zones, especially in the inviscid

limit.

4. Solutions stability

4.1. Estimates of the Jacobian eigenvalues

Having localized the ranges of parameters where multiple solutions exist for the flow in

a precessing spheroid, one can wonder if it is possible to observe experimentally these

multiple solutions, i.e. what is the stability of these solutions. According to Noir and co-

workers [24], the branch between Ps and Pres is unstable and cannot thus be physically

realized. However, very few details are provided, and we propose thus to reinvestigate
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Figure 6. (a) Time-evolution of Ωz (solid lines), starting from the three perturbed

fixed points(dashed lines) of the dynamical model (4)-(6), with the viscous term (10),

relevant for equations (1)-(3), for α = 81◦, P = −0.011, E = 10−6, and c/a = 0.97,

which gives λr ≈ −2.646 and λi ≈ 0.306 (inviscid values obtained from the formula of

Zhang and co-workers [44]). The (unstable) intermediate solution can evolve toward

the other fixed point with a different initial perturbation (dashed line). (b) Perturbing

the unstable fixed point in all the directions of the space (Ωx,Ωy,Ωz), we show here

that the time-evolution of this solution systematically follows the same path in this

space (circles correspond to the three fixed points). (c) Same as figure a, with only the

solution starting from the lowest Ω(t = 0) (stable fixed point). (d) Same as figure a,

with only the solution starting from the perturbed unstable equilibrium point. Time-

evolution of Ωz is plotted in this way to show the clear exponential growth, with a

measured growth rate of σ ≈ 0.0037.

this issue here, using the dynamical model described in section 3.2.

We consider the linear stability of the equilibrium solution Ω0, and we investigate

the fate of the flow Ω0 + ǫ (where |ǫ| = |(ǫx, ǫy, ǫz)| ≪ 1). Inserting this ansatz in the

dynamical reduced model (equations 4-4 and 11) leads to

∂ǫ

∂t
=









−λr

√
E Pz(1− e)− eΩ0

z −eΩ0
y

−Pz(1− e) + eΩ0
z −λr

√
E Px + eΩ0

x

0 −Px(1 + e) −λr

√
E









ǫ = Mrǫ, (25)
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Figure 7. Fixed points of (4)-(6), with the viscous term (10), for α = 81◦, E = 10−6,

and c/a = 0.97, which gives λr ≈ −2.646 and λi ≈ 0.306 (inviscid values obtained

from the formula of Zhang and co-workers [44]). The colorbar shows maxi Re(µi), i.e.

the maximum of the real part of the eigenvalues, indicating unstable solutions when

positive. (a) α = 30◦. (b) α = 81◦. It is clear than the fixed points are unstable only

on the branch linking Ps to Pres, and on the branch linking Ps2 to Pres2.

where the eigenvalues µi (with i = 1, 2, 3) of the Jacobian matrix Mr characterize

the stability of the equilibrium Ω0. Naturally, we can obtain similar Jacobian matrix

Mg and MB using respectively the viscous term (7) of the generalized model, or its

simplified form (10) in the validity limit of equations (1)-(3).

Considering the dynamical model (4)-(6), with the viscous term (10), relevant for

equations (1)-(3), we show in figure 6a the time evolution of Ωz, when we start from the

three perturbed fixed points (dashed lines). The solution with the intermediate initial

condition Ωz(t = 0) is clearly unstable, and evolves toward one of the two other fixed

points, depending on the initial perturbation. As a complementary view, we show in

figure 6b the time-evolution of this unstable solution in the space (Ωx,Ωy,Ωz), when

exploring all the possible perturbations. Note that the time-evolution of this solution

systematically follows the same path in this space.

Figure 6c is a zoom of figure 6a, showing only the solution starting from the smallest

Ωz(t = 0). This solution comes back to the fixed point as a damped harmonic oscillator,

decaying exponentially towards the equilibrium point at a decay rate of σ ≈ −8.9 ·10−4,

and oscillating at the frequency 9.6 · 10−3. For this solution, the three eigenvalues µi of

MB are µ1 ≈ −0.63 · 10−3, µ2 = (−0.88 + 9.5i) · 10−3, and µ3 = µ2, complex conjugate

of µ2. The real parts of the three eigenvalues are all negative, confirming the stability of

the fixed point, and the eigenvalues are in 1% agreement with the measured decay rate

and oscillation frequency. Using the eigenvectors, we have naturally chosen here the

right initial perturbation to test µ2, but the three eigenvalues can actually be checked

with the differential equations solution, by calculating numerically Mr at t = 0, using

∂ǫ/∂t. As expected, this approach gives very close eigenvalues.

Figure 6d is a zoom of figure 6a, showing only the solution starting from the unstable
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fixed point. The solution shows a clear exponential departure from the equilibrium point,

with a growth rate σ ≈ 3.7 · 10−3, and an oscillation frequency of 7.8 · 10−3. For this

solution, the three eigenvalues of MB are µ1 ≈ 3.73 ·10−3, µ2 = (−4.6+5.7i) ·10−3, and

µ3 = µ2. Since the real part of one eigenvalue is positive, this fixed point is confirmed to

be unstable, and the growth rate is in excellent agreement with the theoretical prediction

(oscillation frequencies are in less good agreement).

Finally, the eigenvalues for the last solutions are µ1 ≈ −2 · 10−3, µ2 = (−0.28 +

2.4i) · 10−2, and µ3 = µ2, in excellent agreement with the eigenvalues obtained from the

time-evolution of the solutions.

In figure 7, we consider the same parameters as figure 6, and we vary the Poincaré

number P , plotting maxi Re(µi) as a colorbar to indicate the stability of each solution.

It allows to clearly see that the fixed points are unstable only on the branch linking Ps

to Pres, and on the branch linking Ps2 to Pres2. In the particular case α < αlim, we thus

recover the conclusion of Noir and co-workers [24].

One can also investigate analytically, in particular cases, the eigenvalues of the

Jacobian matrix. Considering for instance the matrix (25), it is clear that this requires

an analytical estimate of Ω0
z (with Ω0

x, Ω
0
y respectively given by equations B.2, B.1).

The full analytical solutions (given by the roots of equation B.5) are very lengthy and

are thus not tractable, and we will thus work in two simplifying limit cases. The first

limit case is α ≪ 1, where

Ωz = 1 + α2

[

(1 + e)(K2 − e2)

e4
P 2 + 2

(1− e2)(2K2 − e2)

e5
P 3

]

+O(P 4 +K3) (26)

with K = −λr

√
E. The second limit case is α = π/2, where

Ωz =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

|P | < Pres =
e

2
√
1 + e

: Ωl
z =

K2

(1 + e)P 2

|P | < Pres & E < Emax : Ω∗

z =
(1 + e)P 2

e2

(

1− K2

e2

)

− K2

(1 + e)P 2

|P | < Pres : Ωu
z = 1−

[

1 + e

e2
− 1 + e

e4
K2
]

P 2

, (27)

at the order O(P 4+K3). In this case, we have clearly three possible solutions, the lower

one Ωl
z, the unstable one Ω∗

z , and the upper one Ωu
z .

Based on these expansion, one can estimate the eigenvalues in the limit α ≪ 1,

µ1 = −K, (28)

µ2 = −K + i(1− e)(P − Pr), (29)

µ3 = µ2 (30)

where Pr is the (linear) Poincaré resonance (see equation 20). Here, the solution is

stable, and, if perturbed, the oscillation frequency |Imµ2| = |Imµ3| is proportional to
P − Pr. Note that the third eigenvalue is systematically the complex conjugate of µ2,

and is thus not considered hereinafter.
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Figure 8. Fixed points of (4)-(6) for α = 90◦, E = 10−6, and c/a = 1.1, which gives

λr ≈ −2.536 and λi ≈ 0.120 (inviscid values obtained from the formula of Zhang and

co-workers [44]). (a) With the viscous term (10). The colorbar shows maxi Re(µi),

and the dashed lines are given by equation (27), obtained with the reduced viscous

term (11). (b) Dots are calculated with the viscous term (10), crosses with the reduced

viscous torque (11), and the dashed line corresponds to equation (33).

In the limit α = π/2, we have

µl
1 = −K, (31)

µl
2 = −K + iP

√
1 + e, (32)

for Ωl
z, and

µ∗

1 = −K + [(1 + e)KP 2]1/3 − 2

3e2
[(1 + e)5P 10/K]1/3, (33)

µ∗

2 = −K − [(1 + e)KP 2]1/3(1− i
√
3)

2
+

[(1 + e)5P 10/K]1/3(1 + i
√
3)

3e3
,(34)

for Ω∗

z

µu
1 = −K + (1 + e)KP 2/e2, (35)

µu
2 = −K + i[e− P 2(1 + 1/e)], (36)

for Ωu
z . The solution Ω∗

z becomes unstable due to the driving term χ = [(1 + e)KP 2]1/3

in equation (33), which is thus the control parameter of this instability. Note that the

real part of the two other eigenvalues of Ω∗

z is always negative, denoting a saddle-node

bifurcation of Ω∗

z.

In figure 8a, we consider the limit case α = 90◦, which is a perfectly symmetrical

configuration for P and −P . In figure 8, the growth rate/decay of the dynamical model

corresponding to the Busse equation are shown, and compared with the results of the

reduced model. The estimate (33) is also shown, capturing correctly the global behaviour

of the growth rate/decay, with a maximum reached for a Poincaré number of

Pmax = ± 1
√

(1 + e)K

(

3e2K2

10

)3/8

, (37)
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giving an analytical estimate of the most unstable Poincaré number.

One can wonder if we can interpret the previous results in the framework of the

dynamical systems theory, and, for instance, obtain typical bifurcation diagrams. In

section 4.2, we focus on the case α = π/2, where exact calculations can be performed

analytically without any expansion or hypothesis, in order to investigate the onset, i.e.

the zone around Emax.

4.2. Nature of the bifurcation

Considering the cubic equation governing the fixed points of Ωz, given by equation (B.5),

one can obtain easily obtain P = f(e,K,Ωz) as roots of a quadratic equation (without

any hypothesis). Equation ∂P/∂Ωz = 0, which defines Pres = ∂Ωz/∂P = ∞, is, in the

general case, a polynomial of degree 6. However, it reduces to a cubic polynomial for

α = π/2, given by

−2e2Ω3
z + e2Ω2

z −K2 = 0. (38)

Note that, for K = 0, we obtain Ωres
z = 1/2 and Ωres

z = 0, which naturally allows to

recover P = f(e,K,Ωz) = e/(2
√
1 + e) = Pres. The discriminant ∆res of the polynomial

(38) is such that

∆res =
K2(27K2 − e2)

108e4
= 0 ⇐⇒ K = −λrE =

e

33/2
. (39)

Then, when λ2
rE ≥ e2/27, equation (38) have only one real solution, and, at most, three

solutions otherwise. Since we are considering the resonant Poincaré number P , this

shows that we have obtained the rigorous value λ2
rEmax = e2/27 for α = π/2. At this

particular point K = e/(33/2), the three roots of equation (38) are equal to ΩEmax

z = 1/3,

and P is given by

PEmax

res = f(e,K,Ωz) =
1

2

√

32

27

e√
1 + e

. (40)

We now focus on the onset of the instability by perturbing Emax into the perturbed

Ekman number

Emax =
e2

27λ2
r

(1− δ), (41)

which is equivalent to consider the perturbed quantity K = e(1− δ/2)/(33/2). We then

have

PEmax

res = f(e,K,Ωz) =
e

36
√
1 + e

[√
384−

√
6 δ +

√
2 δ3/2

]

+O(δ2). (42)

When δ ≤ 0, the unique solution of equation (38) is thus

Ωbasic
z =

1

3
− 1

27
δ, (43)

at leading order in δ. This corresponds to the basic state. Note that, for δ ≤ 0, we

naturally do not have ∂Ωz/∂P = ∞ anymore ; this basic state simply corresponds to
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Figure 9. Results for the fixed points of (4)-(6) with the reduced viscous term

(11), using c/a = 1.1, α = π/2, and the perturbed Ekman number (41), such that

K = e(1−δ/2)/(33/2). (a) Comparison of the exact Pres (solid line) with the expansion

(42). (b) Comparison of the two exact solutions, Ωup
z and Ωlo

z (solid lines), bifurcating

from the unique solution Ωbasic
z (existing for δ ≤ 0) with their respective expansions

(44), and (45).

the flow obtained when P is given by equation (42) and E by equation (41). When

δ ≥ 0, equation (38) has the two following solutions ,

Ωup
z = Ωbasic

z +

√
3

9

√
δ (44)

Ωlo
z = Ωbasic

z − 2
√
3

9

√
δ +

1

9
δ, (45)

at the order O(δ5/4). Note that the two solutions, the upper one Ωup
z and the lower one

Ωlo
z , are not symmetrical with respect to the basic state Ωbasic

z . In figure 9, we compare

the expansions (42), (44), and (45), with their exact counterparts. The agreement is

very good, and one can notice the clear bifurcation of the solution Ωz = 1/3 into the

two solutions Ωup
z and Ωlo

z for δ > 0.

One can now calculate how the eigenvalues vary with δ by using the Jacobian matrix

(25). We obtain, at the order δ3/2,

µup
1

e
= 0, (46)

µup
2

e
=

µup
3

e
= −

√
3

6
+ i

(√
69

18
+

611
√
23 + 1656

√
3

69(611 + 72
√
69)

√
δ

)

, (47)

for the solution Ωup
z , and

µlo
1

e
= −

√
3

8
δ, (48)

µlo
2

e
=

µlo
3

e
= −

√
3

6
+ i

(√
69

18
− 2

611
√
23 + 1656

√
3

69(611 + 72
√
69)

√
δ

)

, (49)
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Figure 10. (a) Considering the figure 11 of the experiments [11] in a spheroid for

α = π/2, and a/c = 0.9, which gives λr ≈ −2.738 and λi ≈ 0.404 (inviscid values

obtained from [44]), the rounds indicates the two scaling laws, in P ∼ E0.4 and

P ∼
√
E, proposed by [11] for the experimental instability onset (P = 2E0.4 for

the empty rounds, and P = 5.5
√
E for the solid rounds, determined by fitting their

experimental results). The solid line represent the multiple solutions zone for equations

(1)-(3), without any adjustable parameter. According to estimate (15), the lower solid

line scales as E1/3 when α 6= π/2, and as E1/4 when α = π/2 (eq. 1-3, which do

not use any approximation, rather give E1/3 here, probably because λi 6= 0 in these

equations). (b) Considering a triaxial ellipsoid (b/a = 0.8, c/a = 0.7, E = 10−7,

α = 0.3, P = −0.0255) and using the reduced viscous term (11), we start from the

three possible steady solutions for Ω obtained in the spheroid with the same c/a. The

time-evolutions clearly show that two possible flows can exist, and both are periodic

in time and remain close from the stable solutions of the spheroid.

for the solution Ωlo
z . At the considered order, the solution Ωz = 1/3 bifurcates for δ > 0

into the marginally stable solution Ωup
z and the stable solution Ωlo

z .

To summarize this study at α = π/2, the fixed point of the dynamical system (4-6)

with the viscous term (11) loses stability when λ2
rEmax < e2/27, as the real eigenvalue

(46) crosses 0, which indicates a pitchfork bifurcation. Besides, one can notice the usual

square root dependency of the amplitude above the onset (equations 44 and 45), which

is clear in figure 9. The two other eigenvalues are complex congugates with a negative

real part, indicating that the pitchfork bifurcation originates from a saddle-node.

5. Discussion

We can conclude from the previous sections that two stable solutions can coexist on

the branches linking Ps to Pres, and Ps2 to Pres2. However, to the knowledge of the

author, these coexistent solutions have never been observed in the literature, neither

experimentally, nor in numerical simulations. In presence of a strong enough noise, the

dynamical system could jump intermittently from one stable fixed point to the other.

In this case, this could have been interpreted as an instability. In figure 10, we present
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the very recent experimental results obtained by Goto and co-workers [11], and we

compare them to the multiple solutions zones given by equations (1)-(3). A rather good

agreement is found, without any adjustable parameter. Note that this apparent good

agreement could also be linked with the fact that, around Pres, the solution suddenly

jumps to another branch. This drastically modifies the flow, and the new flow may then

excite an instability (e.g. an inertial one, as described by [15]).

One can wonder if the Earth has undergone, during its evolution, parameters

allowing states with possible coexistent flows. Using the values given by [37] for a Earth-

Moon distance varying between its current value and half of this value, and assuming a

constant flattening equal to its current value e ≈ −0.003, we obtain that P remains of

the order P ≈ −10−7, which is larger than Ps ∈ [−10−5;−10−6]. A multiple solutions

state is thus not expected for the Earth. One can ask the same question for the Moon.

Based on [37] and [7], considering a Earth-Moon distance varying between its current

value and half of this value, and assuming a constant flattening equal to its current value

e ≈ −2.5 · 10−5, we obtain that P remains of the order P ≈ −10−3, which is smaller

than P inv
res ≈ e ≈ −2.5 · 10−5. Contrary to the Earth, the Moon has thus a Poincaré

number which is too small for multiple solutions, but one can notice that planetary

typical values do not allow to discard the possibility of multiple solutions on simple

orders of magnitude arguments.

Note that, because of its synchronized state, the Moon is rather a precessing triaxial

ellipsoid than a spheroid rotating along its symmetry axis [25]. The solutions are then

time-periodic, and one can thus wonder if such multiple solutions can still exist in this

case. Figure 10b shows that the model proposed by [25], and solved by the script

FLIPPER (supplementary material), allows these multiple solutions when the reduced

viscous term (11) is used. As already noticed by [25], the solutions in the triaxial

ellipsoid remain close from their analogs in the spheroids. Having checked that these

multiple solutions also exist using the other viscous terms (7) and (10), we thus believe

that our estimates for the Moon are quite accurate. A more detailed study of the triaxial

ellipsoid case is beyond the scope of this paper.

6. Conclusion

In this work, we investigate the ranges of parameters allowing multiple solutions for

the flow forced by precession in a spheroid. To do so, we first solve the equations very

efficiently, with the dedicated script FLIPPER, provided as a supplementary material.

Then, we obtain various analytical results on the solutions. For instance, we obtain

analytical estimates of the ranges of parameters allowing these multiple solutions,

and these analytical results are successfully compared with numerical solutions of the

equations. Finally, the stability of the solutions is analytically obtained, extending the

results of [24] in a quantitative manner. This dynamical model approach also allows an

accurate description of the bifurcation of the unstable flow solution.

Naturally, it would be interesting to investigate exprimentally or numerically these
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co-existent solutions, which have not been observed yet. However, the required values of

the Ekman number are quite small, preventing an easy use of local methods. Moreover,

usual spherical harmonics codes can only deal with a spherical geometry, where a unique

solution is always expected. In order to investigate this issue, we plan to develop a

spectral method designed to deal with spheroids.
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Appendix A. Geometrical interpretation, constraints on the solutions

In the set of equations (1)-(3), for a given Ωz, each equation admits solutions in the

plane (Ωx,Ωy). In this plane, the solution of the complete system is then given by the

intersection points of these different solutions locations.

The so-called no spin-up equation (1) describes a sphere of center (0, 0, 1/2) and

radius 1/2. For a given Ωz, solutions are thus on circles of center (0, 0), and radius

r =
√

Ωz(1− Ωz) =
√

1/4− (Ωz − 1/2)2. (A.1)

Since, r2 = 1/4 − (Ωz − 1/2)2 ≥ 0, we see that Ωz ∈ [0; 1], and Ωx, Ωy ∈ [0; 1/2]. In

the following, we are then considering geometrical constraints for a given Ωz, i.e. in the

plane (Ωx,Ωy).

Equation (2) can be rewritten as Ωy = f1Ωx + g1, describing a ligne. This line goes

through the origin (Py = 0), which leads to two points of intersection with the circle.

The distance d of this line from the circles centers described by equation (1), i.e. to the

origin, is given by d2 = g21/(1 + f 2
1 ). A solution of the system of equations (1-2) is thus

only possible if an intersection point exists, i.e. if d2 ≤ r2 ⇔ g21 ≤ Ωz(1 − Ωz)(1 + f 2
1 ).

For x = 1 − Ωz ≪ 1, the expansion of Ωz(1 − Ωz)(1 + f 2
1 )/g

2
1 leads to Ωz ≤ 1, using

E ≪ 1. This is not a supplementary constraint on Ωz.

Equation (3) can be rewritten as Ωy = f2Ωx + g2, which describes a line. This line

is horizontal when B = 0, since we then have Ωy = g2 . This leads to the constraint

g22 ≤ Ωz(1−Ωz)(1 + f 2
2 ). For x = 1−Ωz ≪ 1, the expansion of g22/[Ωz(1−Ωz)(1 + f 2

2 )]

leads to Ωz ≥ 1 − P 2
x/(λ

2
rE), which is trivial since E ≪ 1. This is thus always verified

in this limit.

The two lines are crossing when Ωy = f1Ωx + g1 = f2Ωx + g2, i.e. Ωx =

(g2 − g1)/(f1 − f2). We thus have |Ωx| ≤ r, i.e.

g2 − g1
f1 − f2

≤
√

Ωz(Ωz − 1). (A.2)

For x = 1− Ωz ≪ 1, the expansion leads to

Ωz ≥ 1− P 2
x

(Pz + η3 − η2 + λi

√
E)2

, (A.3)
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Appendix B. Reduced model: calculation details

Focusing on stationary solutions of equations (4)-(6), these equations can be recast in

a polynomial of degree 3 for the unknown Ωz. Indeed, equation (6) gives

Ωy =
(Ωz − 1)λr

√
E

Px(1 + e)
, (B.1)

which can be replaced in equation (4), leading to

Ωx =
[e(Ωz + Pz)− Pz)](Ωz − 1)

Px(1 + e)
. (B.2)

Finally, using these two expressions, (5) can be written as

e2Ω3
z + e(2ecoP − 2coP − e) Ω2

z + (P 2s2i + e2c2oP
2 + P 2s2i e− 2ec2oP

2 (B.3)

− 2e2coP +K2 + 2ecoP + c2oP
2) Ωz −K2 + [e(2 − e)− 1]c2oP

2 (B.4)

= 0, (B.5)

where co = cosα, si = sinα and K = λr

√
E. One can first notice that, for the sphere

(e = 0), this equation reduces to a linear polynomial, which gives the solution (12)-(14).

We are interested by the number of solutions of equation (B.5), which implies to

study the sign of the discriminant ∆ of this cubic equation. It turns out that the

discriminant ∆ is given by an equation of degree 3 in k = λ2
rE, which allows to obtain

explicitly the roots k1, k2, and k3, of ∆. An expansion for P ≪ 1 gives at order O(P 5)

k1 =
1− e2

e
s2i coP

3 +
1 + e

4e2
s2i [(4c

2
o(1 + e2) + s2i (1 + e)− 8ec2o]P

4, (B.6)

and, at order O(P 3),

k2 = − e2 + 2e[co(1− e)− ϑ]P + [ϑ2c
2
o + co(1− e)ϑ− 3

2
s2i (1 + e)]P 2, (B.7)

k3 = − e2 + 2e[co(1− e) + ϑ]P + [ϑ2c
2
o − co(1− e)ϑ− 3

2
s2i (1 + e)]P 2, (B.8)

where ϑ = si
√

2(1 + e), and ϑ2 = 2 − e2 − 1. The root k1 corresponds actually to Ps

and Ps2 (equation 15), and k1 is thus important for the caracterization of the multiple

soution zone. A more accurate expansion of this important root has been obtained for

α = π/2, which is given by equation (18).

We consider now the inviscid limit E = 0, which gives k1 = 0. At the order of

equation (15), k1 = 0 for two different values of P . The first one is P = 0, which

corresponds to the inviscid limit P inv
s = 0 of Ps. The second one is given by equation

(17), which is the inviscid limit P inv
s2 of Ps2.

Focusing on the inviscid limit E = k/λ2
r = 0, the discriminant ∆ reduces to

D0 = ∆(k = 0). Noting that P = 0 is a solution, we consider D0/P
3, which is an

algebraic equation of degree 3 in P . Since ∆ is the discriminant of equation (B.5),

the roots of D0 naturally correspond to the multiple solutions zones boundaries in the

inviscid limit. Thus, the roots of D0 will allow to obtain P inv
res , P

inv
res2, P

inv
s , and P inv

s2 .

The solution P = 0 of D0 is naturally the inviscid limit P inv
s2 = 0 of Ps2 (which has
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been seen above). The three remaining roots, which are the analytically known roots of

D0/P
3, naturally correspond to P inv

res , P
inv
res2 (equations 20 and 21), and P inv

s2 , given by

the following expansion

P inv
s2 ≈ 4e(e− 1)

1 + e
x+

2e(1− e)(24e2 − 53e+ 19)

3(1 + e)2
x3 +O(x5), (B.9)

where α = π/2−x ≪ 1. Note that these expressions of Ps2 and P inv
res2 are not real when α

is lower than a certain value αlim, determined below, and their expansions around α = 0

are thus not relevant. An expansion of (17) around x = 0 allows to recover exactly the

expression (B.9) at order 4 (but the term in x5 differs in the two expansions). In the

invscid limit, P inv
s2 is thus given accurately by (17) for P ≪ 1 and arbitrary α, and by

(B.9) for arbitrary P but π/2− α ≪ 1.

The sign of ∆ = 0 gives the number of solution for Ωz, i.e. the zones where mutiple

solutions are possible. As shown in figure 3a, two zones of multiple solutions can exist

in the plane (E, P ). In the inviscid limit, the number of zones is thus directy given by

the number of solution of D0 = 0, i.e. by the sign of the discriminant ∆0 of D0/P
3.

This discriminant is given by

∆0 =
s4i e

6(1 + e)2

432

[(27e2 − 53e+ 28)c2o − 1− e]3

[e(e− 3)c2o − e− 1]8
, (B.10)

which is equal to ∆0 = 0 for α = 0 or

cosα = ±
√

1 + e

27e2 − 53e+ 28
, (B.11)

which naturally gives the inviscid limit αinv
lim of αlim (equation 22).

By definition, Emax is the intersection point of Ps and Pres, whereas Emax2 is the

intersection point of Ps2 and Pres2. One can thus use our previous estimates to calculate

them. To do so, we replace P in ∆ = 0 (which defines Ps and Ps2), by the inviscid

estimates P inv
res and P inv

res2 of, respectively, Pres and Pres2 (equations 20 and 21). This

gives respectively Emax and Emax2 (from the roots k = λ2
rE of ∆).
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