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ABSTRACT

We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using ob-
servations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature,
but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from
the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find
excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad
range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness,
kurtosis, multi-normality, N -point functions, and Minkowski functionals indicate consistency with Gaussianity, while
a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a
peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected
with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the
large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a poste-
riori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a
significance that is dependent on the details of the approach. We perform the first examination of polarization data,
finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations.
Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and
provide our most thorough view of the statistics of the CMB fluctuations to date.

Key words. cosmology: observations – cosmic background radiation – polarization – methods: data analysis – methods:
statistical
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1. Introduction

This paper, one of a set associated with the 2015 release
of data from the Planck1 mission (Planck Collaboration I
2015), describes a set of studies undertaken to determine
the statistical properties of both the temperature and po-
larization anisotropies of the cosmic microwave background
(CMB).

The standard cosmological model is described well by
the Friedmann-Lemaître-Robertson-Walker solution of the
Einstein field equations. This model is characterized by a
homogeneous and isotropic background metric and a scale
factor of the expanding Universe. It is hypothesized that
at very early times the Universe went through a period
of accelerated expansion, the so-called “cosmological infla-
tion,” driven by a hypothetical scalar field, the “inflaton.”
During inflation the Universe behaves approximately as a
de Sitter space, providing the conditions by which some of
its present properties can be realized and specifically re-
laxing the problem of initial conditions. In particular, the
seeds that gave rise to the present large-scale matter distri-
bution via gravitational instability originated as quantum
fluctuations of the inflaton about its vacuum state. These
fluctuations in the inflaton produce energy density pertur-
bations that are distributed as a statistically homogeneous
and isotropic Gaussian random field. Linear theory relates
those perturbations to the temperature and polarization
anisotropies of the CMB, implying a distribution for the
anisotropies very close to that of a statistically isotropic
Gaussian random field.

The aim of this paper is to use the full mission Planck
data to test the Gaussianity and isotropy of the CMB as
measured in both intensity and, in a more limited capacity,
polarization. Testing these fundamental properties is cru-
cial for the validation of the standard cosmological scenario,
and has profound implications for our understanding of the
physical nature of the Universe and the initial conditions
of structure formation. Moreover, the confirmation of the
statistically isotropic and Gaussian nature of the CMB is
essential for justifying the corresponding assumptions usu-
ally made when estimating the CMB power spectra and
other quantities to be obtained from the Planck data. In-
deed, the isotropy and Gaussianity of the CMB anisotropies
are implicitly assumed in critical science papers from the
2015 release, in particular those describing the likelihood
and the derivation of cosmological parameter constraints
(Planck Collaboration XI 2015; Planck Collaboration XIII
2015). Conversely, if the detection of significant deviations
from these assumptions cannot be traced to known system-
atic effects or foreground residuals, the presence of which
should be diagnosed by the statistical tests set forth in
this paper, this would necessitate a major revision of the
current methodological approaches adopted in deriving the
mission’s many science results.

∗ Corresponding author: A. J. Banday anthony.banday@irap.
omp.eu
1 Planck (http://www.esa.int/Planck) is a project of the Eu-
ropean Space Agency (ESA) with instruments provided by two
scientific consortia funded by ESA member states and led by
Principal Investigators from France and Italy, telescope reflec-
tors provided through a collaboration between ESA and a sci-
entific consortium led and funded by Denmark, and additional
contributions from NASA (USA).

Well-understood physical processes due to the inte-
grated Sachs-Wolfe (ISW) effect (Planck Collaboration
XVII 2014; Planck Collaboration XXI 2015) and gravita-
tional lensing (Planck Collaboration XIX 2014; Planck Col-
laboration XV 2015) lead to secondary anisotropies that
exhibit marked deviation from Gaussianity. In addition,
Doppler boosting, due to our motion with respect to the
CMB rest frame, induces both a dipolar modulation of
the temperature anisotropies and an aberration that cor-
responds to a change in the apparent arrival directions of
the CMB photons (Challinor & van Leeuwen 2002). Both
of these effects are aligned with the CMB dipole, and were
detected at a statistically significant level on small angular
scales in Planck Collaboration XXVII (2014). Beyond these,
Planck Collaboration XXIII (2014, hereafter PCIS13) es-
tablished that the Planck 2013 data set showed little evi-
dence for non-Gaussianity, with the exception of a number
of CMB temperature anisotropy anomalies on large angu-
lar scales that confirmed earlier claims based on WMAP
data. Moreover, given that the broader frequency cover-
age of the Planck instruments allowed improved compo-
nent separation methods to be applied in the derivation of
foreground-cleaned CMB maps, it was generally considered
that the case for anomalous features in the CMB had been
strengthened. Hence, such anomalies have attracted consid-
erable attention in the community, since they could be the
visible traces of fundamental physical processes occurring
in the early Universe.

However, the literature also supports an ongoing debate
about the significance of these anomalies. The central issue
in this discussion is connected with the role of a posteri-
ori choices — whether interesting features in the data bias
the choice of statistical tests, or if arbitrary choices in the
subsequent data analysis enhance the significance of the fea-
tures. Indeed, the WMAP team (Bennett et al. 2011) base
their rejection of the presence of anomalies in the CMB on
such arguments. Of course, one should attempt to correct
for any choices that were made in the process of detect-
ing an anomaly. However, in the absence of an alternative
model for comparison to the standard Gaussian, statisti-
cally isotropic one adopted to quantify significance, this is
often simply not possible. In this work, whilst it is recog-
nized that care must be taken in the assessment of signif-
icance, we proceed on the basis that allowing a posteriori
reasoning permits us to challenge the limits of our existing
knowledge (Pontzen & Peiris 2010). That is, by focusing
on specific properties of the observed data that are shown
to be empirically interesting, we may open up new paths
to a better theoretical understanding of the Universe. We
will clearly describe the methodology applied to the data,
and attempt to study possible links among the anomalies
in order to search for a physical interpretation.

The analysis of polarization data introduces a new op-
portunity to explore the statistical properties of the CMB
sky, including the possibility of improvement of the sig-
nificance of detection of large-scale anomalies. However,
this cannot be fully included in the current data assess-
ment, since the component-separation products in polar-
ization are high-pass filtered to remove large angular scales
(Planck Collaboration IX 2015), owing to the persistence of
significant systematic artefacts originating in the High Fre-
quency Instrument (HFI) data (Planck Collaboration VII
2015; Planck Collaboration VIII 2015). In addition, limi-
tations of the simulations with which the data are to be
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compared (Planck Collaboration XII 2015), in particular a
significant mismatch in noise properties, limit the extent to
which any polarization results can be included. Therefore,
we only present a stacking analysis of the polarized data, al-
though this is a significant extension of previous approaches
found in the literature.

With future Planck data releases, it will be important
to determine in more detail whether there are any pecular-
ities in the CMB polarization, and if so, whether they are
related to existing features in the CMB temperature field.
Conversely, the absence of any corresponding features in
polarization might imply that the the temperature anoma-
lies (if they are not simply flukes) could be due to a sec-
ondary effect such as the ISW effect, or alternative scenarios
in which the anomalies arise from physical processes that
do not correlate with the temperature, e.g., texture or de-
fect models. Either one of these possible outcomes could
yield a breakthrough in understanding the nature of the
CMB anomalies. Of course, there also remains the possibil-
ity that anomalies may be found in the polarization data
that are unrelated to existing features in the temperature
measurements.

Following the approach established in Planck Collabo-
ration XXIII (2014), throughout this paper we quantify the
significance of a test statistic in terms of the p-value. This
is the probability of obtaining a test statistic at least as ex-
treme as the observed one, under the assumption that the
null hypothesis (i.e., primordial Gaussianity and isotropy of
the CMB) is true. In some tests, where it is clearly justified
to only use a one-tailed probability, the p-value is replaced
by the corresponding upper- or lower-tail probability.

This paper covers all relevant aspects related to the phe-
nomenological study of the statistical isotropy and Gaus-
sian nature of the CMB measured by the Planck satel-
lite. Specific theoretically-motivated model constraints on
isotropy or non-Gaussianity, as might arise from non-
standard inflationary models, the geometry and topology
of the Universe, and primordial magnetic fields are pro-
vided in the companion papers (Planck Collaboration XVII
2015; Planck Collaboration XX 2015; Planck Collaboration
XVIII 2015; Planck Collaboration XIX 2015). The paper is
organized as follows. Section 2 summarizes the Planck full
mission data used for the analyses, and important limita-
tions of the polarization maps that are studied. Section 3
describes the characteristics of the simulations that consti-
tute our reference set of Gaussian sky maps representative
of the null hypothesis. In Sect. 4 the null hypothesis is tested
with a number of standard tests that probe different aspects
of non-Gaussianity. Several important anomalous features
of the CMB sky, originally detected with the WMAP data
and subsequently confirmed in PCIS13, are reassessed in
Sect. 5. Aspects of the CMB fluctuations specifically related
to dipolar asymmetry are examined in Sect. 6. Section 7
presents tests of the statistical nature of the polarization
signal observed by Planck using a local analysis of stacked
patches of the sky. Finally, Sect. 8 provides the main con-
clusions of the paper.

2. Data description
In this paper, we use data from the Planck-2015 full mis-
sion data release. This contains approximately 29 months
of data for the HFI and 50 months for the Low Frequency
Instrument (LFI). The release includes sky maps at nine

frequencies in intensity (seven in polarization), with corre-
sponding “half-mission” maps that are generated by split-
ting the full-mission data sets in various ways. The maps
are provided in HEALPix format (Górski et al. 2005),2 with
a pixel size defined by the Nside parameter. This set of maps
allows a variety of consistency checks to be made, together
with estimates of the instrumental noise contributions to
our analyses and limits on time-varying systematic arte-
facts. Full details are provided in a series of companion
papers (Planck Collaboration II 2015; Planck Collabora-
tion III 2015; Planck Collaboration IV 2015; Planck Col-
laboration V 2015; Planck Collaboration VI 2015; Planck
Collaboration VII 2015; Planck Collaboration VIII 2015).

Our main results are based on estimates of the CMB
generated by four distinct component-separation algo-
rithms — Commander, NILC, SEVEM, and SMICA — as de-
scribed in Planck Collaboration IX (2015). These effectively
combine the raw Planck frequency maps in such a way as to
minimize foreground residuals from diffuse Galactic emis-
sion. Note that the additional information in the full mis-
sion data set allows us to improve the reconstruction noise
levels by roughly a factor of 2 (in temperature) as com-
pared to the Planck-2013 nominal mission data release. The
CMB intensity maps were derived using all channels, from
30 to 857GHz, and provided at a common angular reso-
lution of 5′ FWHM and Nside=2048. The intensity maps
are only partially corrected for the second order tempera-
ture quadrupole (Kamionkowski & Knox 2003). Therefore,
where appropriate, the component-separated maps should
be corrected for the residual contribution, as described in
Planck Collaboration IX (2015). The polarization solutions
include all channels sensitive to polarization, from 30 to
353GHz, at a resolution of 10′ FWHM and Nside=1024.
Possible residual emission is then mitigated in our analyses
by the use of sky-coverage masks, provided for both inten-
sity and polarization.

Since in some cases it is important to study the fre-
quency dependence of the cosmological signal, either to es-
tablish its primordial origin or to test for the frequency
dependence associated with specific effects such as Doppler
boosting (see Sect. 6.4), we also consider the foreground-
cleaned versions of the 100, 143, and 217GHz sky maps
generated by the SEVEM algorithm (Planck Collaboration
IX 2015), hereafter referred to as SEVEM-100, SEVEM-143,
and SEVEM-217, respectively.

For the present release, a post-processing high-pass-
filtering has been applied to the CMB polarization maps
in order to mitigate residual large-scale systematic errors
in the HFI channels (Planck Collaboration VII 2015). The
filter results in the elimination of structure in the maps on
angular scales larger than about 10◦, and a weighted sup-
pression of power down to scales of 5◦, below which the
maps remain unprocessed.

Lower-resolution versions of these data sets are also used
in the analyses presented in this paper. The downgrading
procedure for maps is to decompose them into spherical har-
monics on the full sky at the input HEALPix resolution. The
spherical harmonic coefficients, a`m, are then convolved to
the new resolution using

aout
`m = bout

` pout
`

bin` p
in
`

ain
`m, (1)

2 http://healpix.sourceforge.net
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Table 1. Standardized data sets used in this paper. The resolu-
tions of the sky maps used are defined in terms of the Nside pa-
rameter and corresponding FWHM of the Gaussian beam with
which they are convolved. The corresponding common masks
and the fraction of unmasked pixels used for analysis are also
specified.

FWHM Mask Unmasked
Nside [arcmin] pixels [%]
2048 . . . . . . . 5 UT78 77.6
2048 . . . . . . . 5 UTA76 76.1
1024 . . . . . . . 10 UT102476 75.6
512 . . . . . . . 20 UT51274 73.7
256 . . . . . . . 40 UT25673 72.5
128 . . . . . . . 80 UT12870 69.7
64 . . . . . . . 160 UT6467 67.0
32 . . . . . . . 320 UT3264 63.8
16 . . . . . . . 640 UT1658 58.4

1024 . . . . . . . 10 UPB77 77.4

where b` is the beam transfer function, p` is the HEALPix
pixel window function, and the “in” and “out” superscripts
denote the input and output resolutions. They are then
synthesized into a map directly at the output HEALPix res-
olution. Masks are downgraded in a similar way. The bi-
nary mask at the starting resolution is first downgraded
like a temperature map. The smooth downgraded mask is
then thresholded by setting pixels where the value is less
than 0.9 to zero and all others to unity in order to make
a binary mask. Table 1 lists the Nside and FWHM values
defining the resolution of these maps, together with the dif-
ferent masks and their sky coverages that accompany the
signal maps. In general, we make use of standardized masks
that are the union of those associated with the individual
component-separation methods.

As recommended in Planck Collaboration IX (2015),
the mask UT78 is adopted for all high-resolution analyses
of temperature data. UTA76 is an extended version of this
mask more suitable for some non-Gaussianity studies. The
mask preferred for polarization studies, UPB77, is again the
union of those determined for each component separation
method, but in addition the polarized point sources de-
tected at each frequency channel are excluded. These masks
are then downgraded for lower-resolution studies. As a con-
sequence of the common scheme applied in order to gen-
erate such low-resolution masks, they are generally more
conservative than the corresponding ones used in the 2013
analyses.

In what follows, we will undertake analyses of the data
at a given resolution denoted by a specific Nside value. Un-
less otherwise stated, this implies that the data have been
smoothed to a corresponding FWHM as described above,
and a standardized mask employed. Irrespective of the res-
olution in question, we will then often simply refer to the
latter as the “common mask.”

3. Simulations
The results presented in this paper are derived using the
extensive full focal plane (FFP8) simulations described in
Planck Collaboration XII (2015). Of most importance are
the Monte Carlo (MC) simulations that provide the refer-
ence set of Gaussian sky maps used for the null tests em-
ployed here. They also form the basis of any debiasing in the

analysis of the real data as required by certain statistical
methods.

The simulations include both CMB signal and instru-
mental noise realizations that capture important character-
istics of the Planck scanning strategy, telescope, detector
responses, and data reduction pipeline over the full mis-
sion period. In particular, the signal realizations include
FEBeCoP (Mitra et al. 2011) beam convolution at each of the
Planck frequencies, and are propagated through the various
component-separation pipelines using the same weights as
derived from the Planck full mission data analysis.

The FFP8 fiducial CMB power spectrum has been
adopted from our best estimate of the cosmological pa-
rameters from the first Planck data release (Planck Col-
laboration I 2014). This corresponds to a cosmology with
baryon density given by ωb = Ωbh

2 = 0.0222, cold dark
matter density ωc = Ωch

2 = 0.1203, neutrino energy den-
sity ων = Ωνh2 = 0.00064, density parameter for the
cosmological constant ΩΛ = 0.6823, Hubble parameter
H0 = 100h km s−1 Mpc−1 with h = 0.6712, spectral index
of the power spectrum of the primordial curvature pertur-
bation ns = 0.96, and amplitude of the primordial power
spectrum (at k = 0.05 Mpc−1) As = 2.09× 10−9, and with
the Thomson optical depth through reionization defined to
be τ = 0.065. Each realization of the CMB sky is generated
including lensing, Rayleigh scattering, and Doppler boost-
ing effects, the latter two of which are frequency-dependent.
A second order temperature quadrupole (Kamionkowski &
Knox 2003) is added to each simulation with an ampli-
tude corresponding to the residual uncorrected contribu-
tion present in the observed data, as described in Planck
Collaboration XII (2015).

However, the Planck maps were effectively renormalized
by approximately 2% to 3% in power in the time between
the generation of the FFP8 simulations and the final maps.
As discussed in Planck Collaboration XII (2015), correction
for this calibration effect should have no significant impact
on cosmological parameters. As recommended, in this paper
the CMB component of the simulations is simply rescaled
by a factor of 1.0134 before analysis.

Of somewhat more importance is an observed noise
mismatch between the simulations and the data. Whilst
this has essentially no impact on studies of temperature
anisotropy, it imposes important limitations on the statis-
tical studies of polarization sky maps that can be included
here. Conversely, analyses based on 1-point statistics, such
as the variance, and the N -point correlation functions have
played important roles in establishing the nature of this
mismatch, which seems to be scale-dependent with an am-
plitude around 20% at lower resolutions but falling to a
few per cent at higher resolution. As a consequence, this
paper only includes results from a stacking analysis of the
polarized data, in which the stacking of the data themselves
necessarily acts to lower the effect of the noise mismatch.
Polarization studies that do not rely on auto-statistics can
still yield interesting new results, as found in Planck Col-
laboration XIII (2015); Planck Collaboration XVII (2015);
Planck Collaboration XVIII (2015).

4. Tests of non-Gaussianity
There is no unique signature of non-Gaussianity, but the
application of a variety of tests over a range of angular

Article number, page 4 of 61



Planck Collaboration: Isotropy and statistics of the CMB

scales allows us to probe the data for departures from the-
oretically motivated Gaussian statistics. One of the more
important tests in the context of inflationary cosmology
is related to the analysis of the bispectrum. This is dis-
cussed thoroughly in Planck Collaboration XVII (2015),
and is therefore not discussed further in this paper. In this
section, we present the results from a variety of statistical
tools. Unless otherwise specified, the analyses are applied to
all four component separation products (Commander, NILC,
SEVEM, and SMICA) at a given resolution with the accompa-
nying common mask, and significance levels are determined
by comparison with the corresponding results derived from
the FFP8 simulations, with typically 1000 being used for
this purpose. Establishing the consistency of the results de-
rived from the different component-separation techniques is
essential in order to be able to make robust claims about the
statistical nature of the observed temperature fluctuations,
and potential deviations from Gaussianity.

4.1. One-dimensional moments

In this section we consider simple tests of Gaussianity based
on the variance, skewness, and kurtosis of the CMB tem-
perature maps. Previous analyses found an anomalously low
variance in the WMAP sky maps (Monteserín et al. 2008;
Cruz et al. 2011), which was subsequently confirmed in an
analysis of the Planck 2013 data (PCIS13).

Cruz et al. (2011) developed the unit variance estimator
to determine the variance, σ2

0 , of the CMB signal on the sky
in the presence of noise. The normalized CMB map, uX , is
given by

uXi (σ2
X,0) = Xi√

σ2
X,0 + σ2

i,noise

, (2)

where Xi is the observed temperature at pixel i and σ2
i,noise

is the noise variance for that pixel. Although this esti-
mator is not optimal, Cruz et al. (2011) and Monteserín
et al. (2008) have demonstrated that it is unbiased and suf-
ficiently accurate for our purposes. The noise variance is
estimated from the noise simulations for each component-
separation algorithm. The CMB variance is then estimated
by requiring that the variance of the normalized map uX

is unity. The skewness and kurtosis can then be obtained
from the appropriately normalized map.

Figure 1 presents results for the variance, skewness, and
kurtosis determined from the data at a resolution of 5′,
Nside = 2048. Good agreement between the component sep-
aration techniques is found, with small discrepancies likely
due to sensitivity to the noise properties and their variation
between methods.

Table 2 summarizes the lower-tail probabilities, defined
as the percentage of MC simulations that show a lower vari-
ance, skewness, or kurtosis than the observed map, for these
analyses. The results are in good agreement with PCIS13;
the skewness and kurtosis are compatible with simulations,
but the variance is marginally lower than in the simulations.

Although the variance is observed to be low, the re-
sults could still be affected by the presence of residual fore-
grounds at small scales in these maps, so that the true vari-
ance would be lower still. We assess this by application of
the estimator to the cleaned frequency maps SEVEM-100,
SEVEM-143, and SEVEM-217. The results, also presented in
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Fig. 1. Variance, skewness, and kurtosis for the four different
component-separation methods — Commander (red), NILC (or-
ange), SEVEM (green), and SMICA (blue) — compared to the dis-
tributions derived from 1000 Monte Carlo simulations.

Table 2. Lower-tail probabilities for the variance, skewness, and
kurtosis of the component-separated maps.

Probability [%]

Method Variance Skewness Kurtosis

Commander . . . . 3.2 17.2 35.3
NILC . . . . . . . . . 3.3 20.9 30.9
SEVEM . . . . . . . . 1.9 20.5 56.8
SMICA . . . . . . . . 1.4 21.1 48.2

SEVEM-100 . . . . 3.4 13.4 67.5
SEVEM-143 . . . . 2.4 16.9 61.2
SEVEM-217 . . . . 3.4 11.4 58.3

Table 3. Lower-tail probabilities for the N -pdf χ2 statistics
derived from the Planck 2015 component-separated maps at
Nside = 16 and 32.

Probability [%]

Nside Comm. NILC SEVEM SMICA

16 . . . . . . . . 24.7 26.2 25.4 24.5
32 . . . . . . . . 11.9 20.8 10.6 10.8

Table 2, are similar to those found for the combined map,
although slightly less significant, which is most likely at-
tributable to higher noise in the cleaned frequency maps.

In conclusion, a simple statistical assessment of the
Planck 2015 data using skewness and kurtosis shows no
evidence for non-Gaussianity, although a low variance is
found, which we will readdress in Sect. 5.1.

4.2. Testing the multi-normality of the CMB

Under the assumption of Gaussianity, the probability den-
sity function (PDF) of the N -dimensional pixelized tem-
perature map is given by a multivariate Gaussian function:

Article number, page 5 of 61



A&A proofs: manuscript no. planck_2015_iands

f (T ) = 1
(2π)Npix/2 det C1/2

exp
[
−1

2

(
TC−1T T

)]
, (3)

where T is a vector formed from the measured temperatures
T (x) over all positions allowed by the applied mask, Npix is
the number of pixels in the vector, and C is the covariance
of the Gaussian field (of size Npix ×Npix).

Although the calculation of TC−1T T can be achieved by
conjugate gradient methods, the evaluation of det C remains
computationally difficult for the full Planck resolution at
HEALPix Nside = 2048. At a lower resolution, the problem
is tractable, and the noise level can also be considered negli-
gible compared to the CMB signal. That implies that under
the assumption of isotropy the covariance matrix C is fully
defined by the Planck angular power spectrum (C`):

Cij =
`max∑
`=2

2`+ 1
4π C`b

2
`P` (cos θij) , (4)

where Cij is the covariance between pixels i and j, θij is
the angle between them, P` are the Legendre polynomials,
b` is an effective window function describing the combined
effects of the instrumental beam and pixel window at reso-
lution Nside, and `max is the maximum multipole probed.

Under the multivariate Gaussian hypothesis, the argu-
ment of the exponential in Eq. (3) should follow a χ2 distri-
bution with Npix degrees of freedom, or, equivalently (for
Npix � 1) a normal distribution N

(
Npix,

√
2Npix

)
.

These χ2 statistics are computed for the Planck 2015
component-separated CMB maps at Nside = 16 and 32,
then compared with the equivalent quantities derived from
the corresponding FFP8 simulations. For those cases in
which the covariance matrix is ill-conditioned, we use a
principal component analysis approach to remove the low-
est degenerate eigenvalues of the covariance matrix (see,
e.g., Curto et al. 2011). This process is equivalent to adding
uncorrelated regularization noise of amplitude ≈ 1µK to
the data before inversion. The results of the analysis are
presented in Table 3 and indicate that the data are consis-
tent with Gaussianity. We note that the lower-tail probabil-
ities for the N -pdf decrease when the resolution of the data
is increased from Nside = 16 to 32. However, this behaviour
is consistent with that seen for simulations, and should not
be considered to be significant.

4.3. N-point correlation functions

In this section, we present tests of the non-Gaussianity of
the Planck 2015 temperature CMB maps using real-space
N -point correlation functions. While harmonic-space meth-
ods are often preferred over real-space methods for study-
ing primordial fluctuations, real-space methods have an ad-
vantage with respect to systematic errors and foregrounds,
since such effects are usually localized in real space. It is
therefore important to analyse the data in both spaces in
order to highlight different features.

An N -point correlation function is defined as the aver-
age product of N temperatures, measured in a fixed relative
orientation on the sky,

CN (θ1, . . . , θ2N−3) = 〈T (n̂1) · · ·T (n̂N )〉 , (5)

where the unit vectors n̂1, . . . , n̂N span an N -point poly-
gon. Under the assumption of statistical isotropy, these
functions depend only on the shape and size of the N -point
polygon, and not on its particular position or orientation
on the sky. Hence, the smallest number of parameters that
uniquely determines the shape and size of the N -point poly-
gon is 2N − 3.

The correlation functions are estimated by simple prod-
uct averages over all sets of N pixels fulfilling the geometric
requirements set by θ1, . . . , θ2N−3 characterizing the shape
and size of the polygon,

ĈN (θ1, . . . , θ2N−3) =
∑
i

(
wi1 · · ·wiN

) (
T i1 · · ·T iN

)∑
i

(
wi1 · · ·wiN

) . (6)

Pixel weights wi1, . . . , wiN can be introduced in order to re-
duce noise or mask boundary effects. Here they represent
masking by being set to 1 for included pixels and to 0 for
excluded pixels.

The shapes of the polygons selected for the analysis are
the pseudo-collapsed and equilateral configurations for the
3-point function, and the rhombic configuration for the 4-
point function, composed of two equilateral triangles that
share a common side. We use the same definition of pseudo-
collapsed as in Eriksen et al. (2005), i.e., an isosceles trian-
gle where the length of the baseline falls within the second
bin of the separation angles. The length of the longer edge
of the triangle, θ, parameterizes its size. Analogously, in the
case of the equilateral triangle and rhombus, the size of the
polygon is parameterized by the length of the edge, θ. Note
that these functions are chosen for ease of implementation,
not because they are better suited for testing Gaussianity
than other configurations. For a Gaussian field, Wick’s the-
orem (Wick 1950) means that the ensemble average of the
4-point function may be written in terms of the 2-point
function. In the following, all results refer to the connected
4-point function, i.e., are corrected for this Gaussian con-
tribution.

We use a simple χ2 statistic to quantify the agreement
between the observed data and simulations, defined by

χ2 =
Nbin∑
i,j=1

(
ĈN (θi)− 〈CN (θi)〉

)
M−1
ij

(
ĈN (θj)− 〈CN (θj)〉

)
.

(7)

Here, ĈN (θi) is the N -point correlation function for the
bin with separation angle θi, 〈CN (θi)〉 is the correspond-
ing average from the MC simulation ensemble, and Nbin is
the number of bins used for the analysis. If ĈkN (θi) is the
kth simulated N -point correlation function and Nsim is the
number of simulations, then the covariance matrix Mij is
given by

Mij = 1
N ′sim

Nsim∑
k=1

(
Ĉ

(k)
N (θi)−

〈
CN (θi)

〉)
×(

Ĉ
(k)
N (θj)−

〈
CN (θj)

〉)
, (8)

where N ′sim = Nsim − 1. Following Hartlap et al. (2007),
we then correct for bias in the inverse covariance matrix by
multiplying it by the factor (N ′sim−Nbin− 1)/N ′sim. Below,
we quote the significance level in terms of the fraction of
simulations with a larger χ2 value than the observed map.
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Table 4. Probabilities of obtaining values for the χ2 statistic
of the N -point functions for the Planck fiducial ΛCDM model
at least as large as the observed values of the statistic for the
Planck 2015 temperature CMB maps with resolution parameter
Nside = 64, estimated using the Commander, NILC, SEVEM, and
SMICA methods.

Probability [%]

Function Comm. NILC SEVEM SMICA
2-pt. . . . . . . . . . . . . . . . . . . . 97.2 98.9 97.4 98.1
Pseudo-coll. 3-pt. . . . . . . . . 92.1 94.7 91.8 92.2
Equil. 3-pt. . . . . . . . . . . . . . 74.0 80.4 75.8 79.0
Rhombic 4-pt. . . . . . . . . . . . 64.6 70.9 65.6 65.9

We analyse the CMB estimates at a resolution of Nside
= 64, this being constrained by computational limitations.
The results are presented in Fig. 2, where we compare the
N -point functions for the data and the mean values es-
timated from 1000 MC simulations. The probabilities of
obtaining values of the χ2 statistic for the Planck fiducial
ΛCDM model at least as large as the observed values are
given in Table 4.

It is worth noting that the values of the N -point func-
tions for different angular separations are strongly corre-
lated, and for this reason the figures show only one profile
of each function in multi-dimensional space. Since the esti-
mated probabilities take into account the correlations, they
provide more reliable information on the goodness of fit be-
tween the data and a given model than simple inspection
of the figures.

The results show excellent consistency between the
CMB maps estimated using the different component-
separation methods. No statistically significant deviations
of the CMB maps from Gaussianity are found. Indeed, the
slight preference for super-Gaussianity of the equilateral 3-
point and 4-point functions observed for the 2013 data is
now less pronounced. That may be caused by differences
between the masks used for the analysis. Interestingly, the
2-point function shows clear evidence of a lack of struc-
ture for large separation angles. Such behaviour was origi-
nally noted for the WMAP first-year data by Bennett et al.
(2003), and has subsequently been discussed at length in
the literature (Efstathiou 2004; Copi et al. 2007; Copi et al.
2013). We will return to this issue in Sect. 5.2.

4.4. Minkowski functionals

Table 5. Probability P
(
χ2 > χ2

Planck
)
as a function of resolu-

tion for the unnormalized, classical Minkowski functionals.

Probability [%]

Nside Comm. NILC SEVEM SMICA
1024 . . . . . . . 91.4 90.7 95.5 95.8
512 . . . . . . . 95.4 90.9 62.6 92.6
256 . . . . . . . 55.8 34.5 55.9 55.9
128 . . . . . . . 43.6 56.4 19.9 19.2
64 . . . . . . . 59.3 37.8 22.7 80.0
32 . . . . . . . 62.0 16.2 29.9 67.0
16 . . . . . . . 43.4 45.8 47.7 31.0

The Minkowski functionals (hereafter MFs) describe the
morphology of fields in any dimension and have long been

Table 6. Probability P
(
χ2 > χ2

Planck
)
as a function of resolu-

tion determined using normalized MFs.

Probability [%]

Nside Comm. NILC SEVEM SMICA
2048 . . . . . . . 97.2 77.7 99.0 93.0
1024 . . . . . . . 93.1 98.0 90.2 92.6
512 . . . . . . . 53.7 36.7 30.4 77.6
256 . . . . . . . 89.0 85.9 96.8 58.1
128 . . . . . . . 93.0 63.5 94.1 37.1
64 . . . . . . . 37.1 70.4 54.1 62.5
32 . . . . . . . 28.9 77.4 75.5 46.7
16 . . . . . . . 11.3 41.3 79.5 24.5

Table 7. Probability P
(
χ2 > χ2

Planck
)
as a function of needlet

scale.

Probability [%]

Needlet scale (` range) Comm. NILC SEVEM SMICA

3 (4,16) . . . . . . . . . . 32.1 36.1 40.4 39.8
4 (8,32) . . . . . . . . . . 84.0 57.9 79.4 59.4
5 (16,64) . . . . . . . . . 23.8 11.2 29.1 43.8
6 (32,128) . . . . . . . . 14.8 38.9 33.5 34.1
7 (64,256) . . . . . . . . 11.9 7.5 15.4 1.1
8 (128,512) . . . . . . . 46.1 55.2 67.7 52.2

used as estimators of non-Gaussianity and anisotropy in
the CMB (see e.g., Mecke et al. 1994; Schmalzing & Buchert
1997; Schmalzing & Gorski 1998; Komatsu et al. 2003; Erik-
sen et al. 2004b; Curto et al. 2007; De Troia et al. 2007;
Spergel et al. 2007; Curto et al. 2008; Hikage et al. 2008;
Komatsu et al. 2009; Planck Collaboration XXIII 2014).
They are additive for disjoint regions of the sky and invari-
ant under rotations and translations. In the literature, the
contours are traditionally defined by a threshold ν, usually
given in units of the sky standard deviation (σ0).

We compute MFs for the regions colder and hotter than
a given threshold ν. Thus, the three MFs, namely the area
V0(ν) = A(ν), the perimeter V1(ν) = C(ν), and the genus
V2(ν) = G(ν), are defined respectively as

V0(ν) = A(ν) = Nν
Npix

, (9)

V1(ν) = C(ν) = 1
4Atot

∑
i

Si, (10)

V2(ν) = G(ν) = 1
2πAtot

(
Nhot −Ncold

)
, (11)

where Nν is the number of pixels where ∆T/σ0 > ν, Npix is
the total number of available pixels, Atot is the total area of
the available sky, Nhot is the number of compact hot spots,
Ncold is the number of compact cold spots, and Si is the
contour length of each hot spot.

For a Gaussian random field in pixel space, the MFs can
be written in terms of two functions: Ak, which depends
only on the power spectrum, and vk, which is a function
only of the threshold ν (see, e.g., Vanmarcke 1983; Pogosyan
et al. 2009; Gay et al. 2012; Matsubara 2010; Fantaye et al.
2015). The analytical expressions are

Vk(ν) = Akvk(ν), (12)
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Fig. 2. N -point correlation functions determined from the Nside=64 Planck CMB 2015 temperature maps. Results are shown for
the 2-point, pseudo-collapsed 3-point (upper left and right panels, respectively), equilateral 3-point, and connected rhombic 4-point
functions (lower left and right panels, respectively). The red dot-dot-dot-dashed, orange dashed, green dot-dashed, and blue long
dashed lines correspond to the Commander, NILC, SEVEM, and SMICA maps, respectively. Note that the lines lie on top of each other.
The black solid line indicates the mean determined from 1000 SMICA simulations. The shaded dark and light grey regions indicate
the corresponding 68 % and 95 % confidence regions, respectively. See Sect. 4.3 for the definition of the separation angle θ.

with

vk(ν) = exp(−ν2/2)Hk−1(ν), k ≤ 2, (13)

v3(ν) = e−ν
2

erfc
(
ν/
√

2
) , (14)

and

Hn(ν) = eν
2/2
(
− d

dν

)n
e−ν

2/2. (15)

The amplitude Ak depends only on the shape of the power
spectrum C` through the rms of the field σ0 and its first

derivative σ1:

Ak = 1
(2π)(k+1)/2

ω2

ω2−kωk

(
σ1√
2σ0

)k
, k ≤ 2, (16)

A3 = 2
π

(
σ1√
2σ0

)2
, (17)

where ωk ≡ πk/2/Γ(k/2 + 1).
Since this factorization is still valid in the weakly non-

Gaussian case, we can use the normalized MFs, vk, to focus
on deviations from Gaussianity, with a reduced sensitivity
to cosmic variance.

Apart from the characterization of the MFs using full-
resolution temperature sky maps, we also consider results
at different angular scales. In this paper, two different ap-
proaches are considered to study these degrees of freedom:
in real space via a standard Gaussian smoothing and degra-
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dation of the maps; and, for the first time, in harmonic
space by using needlets. Such a complete investigation pro-
vides an insight regarding the harmonic and spatial nature
of possible non-Gaussian features detected with the MFs.

First, we apply scale-dependent analyses in real space
by considering the sky maps at different resolutions. The
three classical MFs — area, contour length, and genus —
are evaluated over the threshold range −3 ≤ ν ≤ 3 in σ
units, with a step of 0.5. This provides a total of 39 differ-
ent statistics. The values of these statistics for the Planck
data are all within the 95% confidence region when com-
pared with Gaussian simulations for all of the resolutions
considered. A χ2 value is computed for each component-
separation method by combining the 39 statistics and tak-
ing into account their correlations (see e.g., Curto et al.
2007, 2008). The corresponding covariance matrix is com-
puted using 1000 simulations. The p-value of this χ2 test is
presented in Table 5 for each component separation tech-
nique and for map resolutions between Nside = 1024 and
Nside = 16. We find no significant deviations from Gaus-
sianity for any of the resolutions considered.

Then we consider the four normalized functionals de-
scribed above. For every scale we used 26 thresholds ranging
between −3.5 and 3.5 in σ units, except for θ = 640′ where
13 thresholds between −3.0 and 3.0 in σ units were more
appropriate. Table 6 indicates that no significant deviation
from Gaussianity is found.

Third, we tested MFs on needlet components. The
needlet components of the CMB field as defined by Marin-
ucci et al. (2008) and Baldi et al. (2009) are given by:

βj(n̂) =
Bj+1∑
`=Bj−1

b2
(
`

Bj

)∑
m

a`mY`m(n̂)

=
Bj+1∑
`=Bj−1

b2
(
`

Bj

)
T`(n̂) . (18)

Here, T`(n̂) denotes the component at multipole ` of the
CMB map T (n̂), i.e.,

T (n̂) =
∑
`

T`(n̂) , (19)

where n̂ ∈ S2 denotes the pointing direction, B is a fixed
parameter (usually taken to be between 1 and 2) and b(.)
is a smooth function such that

∑
j b

2(`/Bj) = 1 for all `.
Fantaye et al. (2015) show in a rigorous way that a general
analytical expression for MFs at a given needlet scale j,
which deals with an arbitrary mask and takes into account
the spherical geometry of the sky, can be written as

V jk =
k∑
i=0

t(2−i)A
j
ivi, (20)

where t0 = 2, t1 = 0, and t2 = 4π are respectively the
Euler-Poincaré characteristic, boundary length, and area of
the full sphere. The quantities vk are the normalized MFs
given in Eq. (13), while the needlet scale amplitudes Ajk
have a similar form as Ak but with the variances of the

map and its first derivative given by

σ2
0 =

∑
`

b4
(
`

Bj

)
C`

2`+ 1
4π , (21)

σ2
1 =

∑
`

b4
(
`

Bj

)
C`

2`+ 1
4π

`(`+ 1)
2 . (22)

Implementing the MFs in needlet space has several ad-
vantages: the needlet filter is localized in pixel space, hence
the needlet component maps are minimally affected by
masked regions, especially at high-frequency j; and the
double-localization properties of needlets (in real and har-
monic space) allow a much more precise, scale-by-scale, in-
terpetation of any possible anomalies. While the behaviour
of standard all-scale MFs is contaminated by the large cos-
mic variance of the low multipoles, this is no longer the case
for MFs evaluated at the highest needlet scales; in such cir-
cumstances, the variance of normalized components may
be shown to decrease steadily, entailing a much greater de-
tection power in the presence of anomalies. Finally, and
most importantly, the needlet MFs are more sensitive to
the shape of the power spectrum than the corresponding
all-scale MFs.

The needlet parameters we use in this analysis are
B = 2, j = 3, 4, 5, 6, 7, 8. Since the masks in pixel space
are map-resolution dependent, we also use different masks
for each needlet scale. These new masks are constructed
by multiplying the high-resolution common mask with the
upgraded version of the appropriate low-resolution com-
mon mask. For needlet scales j = 2 and j = 3, we use
the common mask defined at Nside = 16, and upgraded
to Nside = 2048. Similarly, for the higher needlet scales,
j = 2n, where n = 4, 5, 6, 7, 8, we use upgraded versions of
the common masks defined at Nside = 2n.

The results concerning needlet MFs from the
Commander, NILC, SEVEM, and SMICA foreground-cleaned
temperature maps for needlet scales B = 2, j = 4, 6, 8 are
shown in Fig. 3. All cases are computed using 26 thresholds
ranging between −3.5 and 3.5 in σ units. The figure shows
the fractional difference between the Planck data and the
FFP8 simulations in area (top panels), boundary length
(middle panels), and genus (bottom panels) for different
needlet scales. The jth needlet scale has compact support
over the multipole ranges [2j−1, 2j+1]. All the scales
we considered are consistent with the Gaussian FFP8
simulations. This can be seen in Fig. 4, where we compare
the data and simulation χ2 values, which are computed by
combining the three MFs with an appropiate covariance
matrix. The vertical lines in these figures represent the
data, while the histogram shows the results for the 1000
FFP8 simulations. We also show in Table 7 the p-values
for the four component-separation methods, as well as
all needlet scales we considered. Despite the relatively
small p-values for some scales, the Planck temperature
maps show no significant deviation from the Gaussian
simulations up to `max = 512, which corresponds to the
maximum multipole of our highest-frequency needlet map.

4.5. Multiscale analyses

Multiscale data analysis is a powerful approach for probing
the fundamental hypotheses of the isotropy and Gaussian-
ity of the CMB. The exploration of different scales (in an
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Fig. 3. Needlet space MFs for Planck 2015 data using the four component-separated maps, Commander (red), NILC (orange),
SEVEM (green), and SMICA (blue); the grey regions, from dark to light, correspond, respectively, to 1, 2, and 3σ confidence regions
estimated from the 1000 FFP8 simulations processed by the Commander method. The columns from left to right correspond to the
needlet parameters j = 4, 6, and 8, respectively; the jth needlet parameter has compact support over multipole ranges [2j−1, 2j+1].
The `c = 2j value indicates the central multipole of the corresponding needlet map. Note that to have the same range at all the
needlet scales, the vertical axis has been multiplied by a factor that takes into account the steady decrease of the variance of the
MFs as a function of scale.

almost independent manner) not only helps to test the spe-
cific predictions of a given scenario for the origin and evo-
lution of the fluctuations, but also is an important check on
the impact of systematic errors or other contaminants on
the cosmological signal.

There are several ways of performing a multiscale analy-
sis, the simplest being to smooth/degrade the CMB map to
different resolutions. However, in this section, we will focus
on image processing techniques related to the application
of wavelets and more general band-pass filtering kernels to
the original CMB fluctuations. The advantage of wavelet-
like analyses over scale degradation is clear: they allow the
exploration of characteristics of the data that are related to
specific angular scales. Wavelets have already been exten-
sively used in the study of the Gaussianity and isotropy of
the CMB (e.g., McEwen et al. 2007; Vielva 2007). Indeed,
a wavelet-based (needlet) analysis of the Planck 2015 data
has already been presented in Sect. 4.4.

We recall that in the 2013 analysis, some of the applied
estimators deviated from the null hypothesis. In particu-
lar, it was determined that the cold area of the spherical

Mexican hat wavelet (SMHW, Martinez-González et al.
2002) coefficients at scales of around 5◦ yielded a p-value
of 0.3%. In addition, we also found an excess in the kurto-
sis of the wavelet coefficients on the same scales. Previous
analyses (for a review, see Vielva 2010) have suggested that
the “Cold Spot” (see Sect. 5.7) was the major contributor
to these statistical outliers.

In what follows, we will consider the application of the
SMHW, together with matched filters for a 2D-Gaussian
profile (GAUSS), and for generalized spherical Savitzky-
Golay kernels (SSG, Savitzky & Golay 1964, see Ap-
pendix A).

The application of a filter ψ(R, p) to a signal on the sky
S(p) can be written as

ωS (R, p) =
`max∑
`=0

m=∑̀
m=−`

s`mW
ψ
` (R)Y`m (p) , (23)

where p represents a given position/pixel, R parameterizes
a characteristic scale for the filter (e.g., a wavelet scale),
Wψ
` (R) is the window function associated with the filter
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Fig. 4. Histograms of χ2 for the Planck 2015 Commander (red), NILC (orange), SEVEM (green), and SMICA (blue) foreground-cleaned
maps analysed with the common mask. The χ2 is obtained by combining the three MFs in needlet space with an appropiate
covariance matrix. The histograms are for the FFP8 simulations, while the vertical lines are for the data. The figures from left to
right are for the needlet scales j = 4, 6, and 8, with the central multipoles `c = 2j shown in each panel.

ψ(R, p), `max is the maximum multipole allowed by the cor-
responding HEALPix pixelization, and Y`m (p) is the spher-
ical harmonic basis. Here, s`m, the spherical harmonic co-
efficients of the analysed map, are given by

s`m =
∫

dΩY ∗`m (p)S (p) , (24)

where dΩ = dθ sin θdφ and the asterisk denotes complex
conjugation. Note that the filtered map (or the wavelet coef-
ficient map, if ψ(R, p) is a continous wavelet) conserves the
statistical properties of the original map, since the convolu-
tion is a linear operation. In particular, if S(p) is a Gaussian
and statistically isotropic random signal, ωS (R, p) is also
Gaussian and statistically isotropic.

In the present work, the signal S(p) corresponds to a
temperature map T (p). Several statistics can then be com-
puted from the derived filtered map as a function of the
filter scale, in particular, the first moments (the dispersion
σR, the skewness SR, and the kurtosis KR), the total area
above/below a given threshold, and the peak distribution.
These statistics are compared to the corresponding results
determined from the FFP8 simulations to establish the de-
gree of compatibility with the null hypothesis.

4.5.1. First-order moments of the multiscale maps

For the three filters considered (SMHW, GAUSS, and
SSG843) the variance, skewness, and kurtosis are computed
at 18 scales, R(arcmin) = {2, 4, 7, 14, 25, 50, 75, 100,
150, 200, 250, 300, 400, 500, 600, 750, 900, 1050}. These
scales are chosen to be consistent with previous analyses.
They cover a wide angular range, and are selected so that
the intervals between them increase with scale. Notice that,
for a given scale, the three filters do not cover exactly the
same multipole range, since that depends on the specific
filter definition. This can be seen in Fig. 5: the SMHW is
the narrowest filter, followed by SSG84, then GAUSS. The
three filters have an equivalent effective `max, but differ in
the effective `min. Overall, the differences between the fil-
ters become smaller with increasing effective scale. In this
paper, we refer to both the scale, R, and FWHM as pa-
rameters defining the size of the filters. For the SMHW,
3 The digits 8 and 4 denote the order of the spherical Savitzky-
Golay kernel and the smoothing weight, described in Ap-
pendix A.

these are related by FWHM = R
√

8 ln 2, whereas for the
GAUSS and SSG84 filters, the scale is defined to be half
the FWHM. The latter definition is appropriate for filters
that include pre-whitening since it is simple yet matches
the `-space bandwidth reasonably well.

Following the procedure explained in PCIS13, after con-
volution with a given filter, the common mask is extended
to omit pixels from the analysis that could be contaminated
by the mask. These pixels introduce an extra correlation
between the data and the simulations, degrading the sta-
tistical power of the comparison with the null hypothesis
(see, e.g., Vielva et al. 2004). For a given scale R, the ex-
clusion mask is defined by extending an auxiliary mask by
a distance 2R from its border, where the auxiliary mask is
that part of the common mask related to residual diffuse
Galacic emission (i.e., the auxiliary mask does not mask
point sources).

The following figures represent the upper-tail probabil-
ity (UTP) for a given statistic, i.e., the fraction of sim-
ulations that yield a value equal to or greater than that
obtained for the data. In fact, as explained in PCIS13, if a
given UTP is larger than 0.5, a new quantity is defined as
mUTP = 1−UTP. Therefore, mUTP is constrained to lie
between 1/N and 0.5, where N is the number of simulations
used for each statistic.

Fig. 6 presents the comparison of the CMB temperature
maps with the corresponding simulations for the SMHW,
GAUSS, and SSG84 filters. The full mission Planck data
confirm the results already obtained with the 2013 release
for temperature. In particular, for the SMHW, we find
(i) an excess of kurtosis (≈ 0.8 %) at scales of around 300′;
(ii) that the dispersion of the wavelet coefficients at these
scales and at around 700′ is relatively low (≈ 1 %); and
(iii) that the dispersion of the wavelet coefficients at scales
below 5′ is significantly high (. 0.1 %).

The excess of kurtosis has been previously associated
with the “Cold Spot” (e.g., Vielva et al. 2004), and the
low value of the standard deviation of the coefficients on
large scales could be related to the low variance discussed
in Sect. 5.1. Regarding the large dispersion of the coeffi-
cients on the smallest scales, this can be understood either
by the presence of residual foreground contributions (extra-
galactic point sources) or by incomplete characterization of
the true instrumental noise properties by the FFP8 simu-
lations. We explore these possibilities with two additional
tests undertaken with the SMHW.
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Fig. 5. Comparison of the window functions (normalized to
have equal area) for the SMHW (blue), GAUSS (yellow), and
SSG84 (magenta) filters. The scales shown are 25′ (top) and 250′
(bottom).

Figure 7 shows the significance of the statistics derived
from the SEVEM-100, SEVEM-143, and SEVEM-217 maps.
The three cleaned maps yield very consistent values of the
mUTP for the standard deviation, skewness, and kurto-
sis of the wavelet coefficients, with only small differences
seen at small scales. This frequency-independence of the
results argues against the foreground residuals hypothesis.
Figure 8 presents the same statistics as applied to an es-
timator of the noise properties of the CMB maps. This is
derived from the half-difference of the half-ring data sets,
which provides the best estimate of the noise properties
of the full mission data set. However, since there is still a
known mismatch in noise properties, any conclusions will be
more qualitative than quantitative. Nevertheless, the noise
study reveals that, at the smallest scales, there are some
discrepancies with the FFP8 simulations, and in particular
the estimated dispersion of the SMHW noise coefficients is
higher than predicted.

4.5.2. The area above/below a threshold

In the context of the study of the Cold Spot, the area
above/below a given threshold, as a function of the SMHW
wavelet scale, has been demonstrated to provide a useful
and robust statistic (e.g., Cruz et al. 2005), since it is rather
independent of any masking required. Our previous analy-
sis (PCIS13) confirmed that the CMB temperature fluctu-
ations exhibit an anomalously large cold area on scales of
around 10◦, which can be mostly associated with the Cold
Spot. Here, we extend the analysis by including results de-
rived using the GAUSS and SSG84 filters.

At a given scale R and threshold ν, the cold (A−νR ) and
hot (A+ν

R ) areas of a filtered map are defined as

A−νR ≡ #{ωS (R, p) < −ν} , (25)
A+ν
R ≡ #{ωS (R, p) < +ν} ,

where the operator # represents the number of pixels p in
which the condition defined between the braces is satisfied.

Table 8 summarizes the results for the hot and cold ar-
eas determined for the four CMB temperature maps anal-
ysed with the common mask (and its associated exclu-
sion masks). The results are similar to those obtained in
2013, with some small differences on those scales related
to the Cold Spot (between 200′ and 400′). Specifically, the
cold area is slightly less significant for smaller values of R,
whereas the anomalous behaviour remains for larger filter
scales. The three filters are in reasonable agreement, but, as
expected from Fig. 6, the SMHW yields higher significance
levels than the SSG84 and GAUSS filters. However, it is
worth recalling that, for a given scale, the three filters are
not probing exactly the same multipole range and therefore
some differences should be expected.

In Fig. 9 we plot the areas for thresholds ν > 3.0, where
the threshold is defined in units of σR, as determined from
the SEVEM temperature map. The results for Commander,
NILC, and SMICA are in good agreement with these. The
panels refer to SMHW scales of R = 200′, 250′, 300′, and
400′. The most extreme value (in terms of σR) for each area
is indicated.

The coldest area corresponds to the Cold Spot with the
minimum value of the wavelet coefficient at the position
(209◦,−57◦) in Galactic coordinates. The hottest area has
already been identified in the WMAP data (e.g., Vielva
et al. 2007). The results are insensitive to the choice of
CMB temperature map that is adopted. It is clear that the
southern Galactic hemisphere yields more anomalous sig-
natures than the northern one. These results confirm the
importance of the Cold Spot as the most extreme feature
in the analysed sky. More insights about its nature are pro-
vided in Sect. 5.7.

4.5.3. Peak statistics

The statistical properties of local extrema (both minima
and maxima, which we refer to collectively as “peaks”)
provide an alternative approach to search for evidence of
non-Gaussianity in the data. Such peaks, defined as pix-
els whose amplitudes are higher or lower than the corre-
sponding values for all of their nearest neighbours, trace
topological properties of the data. Peak locations and am-
plitudes, and various derived quantities, such as their corre-
lation functions, have previously been used to characterize
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Fig. 6. Modified upper tail probabilities (mUTP) obtained from the analyses of the filter coefficients as a function of the filter scale
R for the Commander (red), NILC (orange), SEVEM (green), and SMICA (blue) sky maps. From left to right, the panels correspond
to standard deviation, skewness, and kurtosis results, when determined using the SMHW (top), GAUSS (middle), and SSG84
(bottom) filters. The squares represent UTP values above 0.5, whereas circles represent UTP values below 0.5.
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Fig. 7. Modified upper tail probabilities (mUTP) obtained from the analyses of the SMHW coefficients as a function of the wavelet
scale R for the SEVEM-100 (blue), SEVEM-143 (yellow), SEVEM-217 (magenta), and SEVEM (green) maps. From left to right, the panels
correspond to the standard deviation, skewness, and kurtosis.

the WMAP sky maps by Larson & Wandelt (2004, 2005)
and Hou et al. (2009).

The statistical properties of peaks for a statistically
isotropic Gaussian random field were derived by Bond &
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Fig. 8. Modified upper tail probabilities (mUTP) obtained from the analyses of the SMHW coefficients as a function of the wavelet
scale R for the Commander (red), NILC (orange), SEVEM (green), and SMICA (blue) half-ring half-difference noise estimates. From left
to right, the panels correspond to the standard deviation, skewness, and kurtosis.

Table 8. Modified upper tail probability (mUTP ) for the cold
(top) and hot (bottom) areas. Results are given for the ν >
4σR threshold of the SMHW, GAUSS, and SSG84 coefficients.
The four most significant scales related to the Cold Spot feature
are shown. An ellipsis (. . . ) indicates that no area above that
threshold was found in the data.

Probability [%]
Area Scale Comm. NILC SEVEM SMICA

[arcmin]

SMHW
200 3.8 5.1 3.7 3.8

Cold . . . . . . 250 1.4 2.4 1.4 1.4
300 0.4 1.5 0.4 0.4
400 0.9 0.9 0.9 0.9

200 2.0 2.6 1.7 1.5
Hot . . . . . . 250 2.4 3.0 2.1 2.0

300 4.2 5.0 4.1 3.9
400 . . . . . . . . . . . .

GAUSS
200 1.7 2.7 1.7 1.7

Cold . . . . . . 250 1.2 1.2 1.2 1.2
300 1.6 1.8 1.2 1.8
400 . . . . . . . . . . . .

200 2.9 3.5 2.8 2.6
Hot . . . . . . 250 5.7 6.4 5.6 5.4

300 . . . . . . . . . . . .
400 . . . . . . . . . . . .

SSG84
200 9.4 11.0 9.4 9.0

Cold . . . . . . 250 12.3 13.4 10.8 12.3
300 1.4 2.6 1.4 1.5
400 0.9 1.9 0.8 0.9

200 1.1 1.8 1.0 0.9
Hot . . . . . . 250 4.8 5.1 4.5 4.3

300 . . . . . . . . . . . .
400 . . . . . . . . . . . .

Efstathiou (1987). The integrated number density of peaks,
npk (composed of maxima and minima with corresponding
densities nmax and nmin), with amplitudes x above a certain

threshold ν = x/σ is given by

nmax + nmin

npk

(x
σ
> ν

)
=

√
3

2π γ
2 ν exp

(
−ν

2

2

)
(26)

+1
2 erfc

 ν√
2− 4

3 γ
2

 ,
where σ is the rms fluctuation amplitude measured on the
sky, and γ is the spectral shape parameter of the underly-
ing field. Uncharacteristically cold and hot spots are then
manifested as extreme outliers in the peak values, and can
constitute evidence for non-Gaussianity or deviation from
isotropy.

Here, we consider the peak statistics of the Planck
component-separated temperature maps at Nside = 2048.
The maps are pre-whitened as described in Appendix A.
This step allows the construction of an estimator that is
nearly optimal with respect to the fiducial CMB properties.
After application of the common mask, weighted convolu-
tions of the data are performed with either SSG or GAUSS
kernels of variable scale. In order to avoid potential contam-
ination by boundary effects, the mask is extended by reject-
ing pixels with an effective convolution weight that differs
from unity by more than 12%. Peaks are extracted from
the filtered map (removing any that are adjacent to masked
pixels), their positions and values are recorded for further
analysis, and their cumulative density function (CDF) is
constructed by sorting peak values. Table 9 presents peak
counts for the component-separated sky maps for several
different kernels and representative filtering scales, together
with the number of peaks that are common to all maps.
There is excellent agreement between the various CMB es-
timates. All statistical inference is then performed by com-
parison of the peak distributions derived from the data with
equivalently processed simulations. As an internal consis-
tency check, the properties of the FFP8 simulations are
found to be in agreement with the predictions of Eq. (26).

Figure 10 presents the distributions of peaks for the
SMICA CMB map filtered with two representative kernels
on scales of 40′ and 800′ FWHM. The lower panels show
the empirical peak CDFs as a function of peak value x,
defined for a set of n peaks at values {Xi} as

Fn(x) = 1
n

n∑
i=1

IXi≤x, IXi≤x ≡
{

1, if Xi ≤ x
0, otherwise . (27)
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Fig. 9. Cold and hot areas for thresholds ν > 3.0 as determined
from the SEVEM temperature map. From top to bottom, the maps
are for SMHW scales of R = 200′, R = 250′, R = 300′, and
R = 400′.

For plotting purposes alone, the horizontal axis is scaled in
units of σ defined by Eq. (26) and derived from the underly-
ing median CDF, F̄ (x), of the simulations. The upper pan-
els show the difference between the observed and median
simulated CDF values,

√
n [Fn(x) − F̄ (x)], with the grey
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Fig. 10. Cumulative density function of the peak distribu-
tion for the SMICA CMB temperature map. The top row shows
the peak CDF for maps filtered with a GAUSS kernel of 40′
FWHM. The bottom row shows the corresponding peak CDF
for an SSG84 kernel of 800′ FWHM. The spectral shape parame-
ter γ (see Eq. 26) is the best-fit value for the simulated ensemble,
as indicated by the cyan circle in Fig. 11. Similar results are ob-
tained for the other component-separation methods.

bands representing the 68.3%, 95.4%, and 99.7% regions
of the simulated CDF distributions. The maximal value of
this difference defines a Kolmogorov-Smirnov (KS) devia-
tion estimator:

Kn ≡
√
n sup

x

∣∣Fn(x)− F̄ (x)
∣∣ . (28)

This forms the basis of a standard KS test of consistency
between the two distributions. Although the KS deviation
has a known limiting distribution, we also derive its CDF
directly from the simulations.

The temperature peak distributions in Fig. 10 are con-
sistent with Gaussian peak statistics, apart from a single
anomalously cold peak on scales around 800′ FWHM. This
corresponds to the previously reported Cold Spot. Although
this exercise confirms that the Cold Spot is a rare cold fea-
ture, as already noted by Cruz et al. (2005) and confirmed
in this paper, the most peculiar characteristic of the Cold
Spot is not its coldness, but rather its size. A more detailed
analysis of its nature is presented in Sect. 5.7.
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Fig. 11. Distribution of best-fit Gaussian peak CDF spectral
shape parameters, σ and γ (as defined in Eq. 26), recovered
from 1000 simulations, as indicated by the black dots and the
smoothed density map and compared to those derived for the
observed sky (shown by the red star). The blue contours enclose
68% and 95% of the parameter distribution, and the cyan cir-
cle represents the best-fit parameters for the median peak CDF
determined from simulations. The upper panel shows the peak
CDF parameters for the SMICA map filtered with a GAUSS ker-
nel of 40′ FWHM. The lower panel shows the corresponding
peak CDF for an SSG84 kernel of 800′ FWHM. Similar results
are obtained for the other component-separation methods.

The probability that the observed sky exceeds the value
of the KS deviation for the adopted fiducial cosmology can
be determined by counting the number of simulations with
Kn′ > K

(sky)
n . The p-values for the KS test comparing the

CDF of the observed sky with the median peak CDF de-
rived from simulations for several different kernels and rep-
resentative scales are summarized in Table 10. The similarly
derived p-values for the total peak counts are summarized
in Table 11. Most of the results indicate that the two distri-
butions are highly consistent, with the exception of results
for the SSG84 filter on scales of about 500′ FWHM. This
deviation appears to be related to a hemispherical asym-
metry in the peak CDFs, and will be discussed further in
Sect. 5.6.
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Fig. 12. Cumulative density function of the mean amplitude
of all extrema, maxima (red) and minima (blue), derived from
simulations, compared to the equivalent values observed for the
SMICA CMB temperature map. The upper panel shows the peak
mean amplitudes for maps filtered with a GAUSS kernel of 40′
FWHM. The lower panel shows the corresponding peak CDF
for an SSG84 kernel of 800′ FWHM. Similar results are obtained
for the other component separation methods. Since the filter
kernel normalization is free, and the pre-whitened map to which
the filter is applied is dimensionless, the plots are essentially in
arbitrary units.

Table 9. Peak counts in maps filtered to different scales.

Number of minima/maxima

Filter Scale Comm. NILC SEVEM SMICA Match
[arcmin]

SMHW
200 . . . . . . . . 176/187 170/178 173/182 169/182 161/169
250 . . . . . . . . 105/105 104/103 107/123 105/107 97/ 99
300 . . . . . . . . 70/ 70 71/ 70 70/ 72 68/ 71 66/ 66
400 . . . . . . . . 43/ 32 46/ 32 44/ 31 43/ 33 37/ 30

GAUSS
200 . . . . . . . . 152/170 152/166 157/179 156/165 142/155
250 . . . . . . . . 102/ 93 104/ 95 108/ 99 99/101 92/ 85
300 . . . . . . . . 60/ 63 57/ 62 63/ 64 56/ 62 50/ 53
400 . . . . . . . . 33/ 28 29/ 29 31/ 33 29/ 28 24/ 27

SSG84
200 . . . . . . . . 180/187 178/183 180/185 183/183 167/175
250 . . . . . . . . 131/119 118/114 122/123 121/110 109/103
300 . . . . . . . . 68/ 69 73/ 68 73/ 73 70/ 68 56/ 61
400 . . . . . . . . 29/ 35 29/ 36 29/ 32 30/ 38 27/ 27

One can also test whether the observed values of the
parameters, σ and γ as defined in Eq. (26), are consistent
with the simulation ensemble, under the assumption that
the peak distributions in the Planck data are described by
a Gaussian peak CDF. Figure 11 demonstrates the consis-
tency of the best-fit values of these parameters, correspond-
ing to the peak distributions in Fig. 10, with equivalent
values derived from the simulations.
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Fig. 13. Fraction of the Gaussian random field realizations in which the coldest peak is as cold as or colder than that observed,
as a function of SMHW filter scale for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue).

Table 10. Modified upper tail probability (mUTP) for the KS
test, comparing the data with the median peak CDF derived
from simulations.

Probability [%]

Filter Scale Comm. NILC SEVEM SMICA
[arcmin]

SMHW
200 . . . . . . . . . . 22.0 42.8 45.9 40.5
250 . . . . . . . . . . 11.3 17.6 3.1 11.4
300 . . . . . . . . . . 49.4 38.5 38.4 32.1
400 . . . . . . . . . . 32.6 24.7 35.3 24.7

GAUSS
200 . . . . . . . . . . 41.3 46.6 14.4 47.2
250 . . . . . . . . . . 43.7 34.8 7.6 48.4
300 . . . . . . . . . . 46.3 9.9 28.0 7.7
400 . . . . . . . . . . 30.7 5.6 35.8 6.6

SSG84
200 . . . . . . . . . . 37.1 36.7 24.0 37.5
250 . . . . . . . . . . 0.5 1.7 0.8 5.4
300 . . . . . . . . . . 17.5 12.2 0.3 9.3
400 . . . . . . . . . . 47.4 44.6 47.5 47.8

Inspired by the analysis of the WMAP first-year data
in Larson & Wandelt (2004) which found fewer extreme
peaks than expected, we additionally evaluate whether the
distributions of maxima and minima are separately con-
sistent with simulations. The mean of all maxima, and
the negative of the mean of all minima, are calculated for
the filtered map, and the observed values are compared to
the simulated distributions in Fig. 12. The observed min-
ima/maxima means are found to be in good agreement with
the fiducial values.

The probability that the coldest peak seen on the sky is
consistent with the adopted fiducial cosmology is evaluated
as a function of both filter shape and size by counting the
number of simulations with xcoldest < x

(sky)
coldest. The results

obtained for the SMHW filter are summarized in Fig. 13.
Consistent behaviour is seen when the GAUSS and SSG84
filters are applied. The error bars represent the sampling
uncertainty due to the finite number of realizations, and

Table 11. Modified upper tail probability (mUTP) for the to-
tal peak count, comparing the data with the peak count CDF
derived from simulations.

Probability [%]

Filter Scale Comm. NILC SEVEM SMICA
[arcmin]

SMHW
200 . . . . . . . . . . 6.1 36.9 16.2 27.2
250 . . . . . . . . . . 32.9 47.5 1.0 25.6
300 . . . . . . . . . . 48.8 51.7 44.7 44.3
400 . . . . . . . . . . 33.8 16.2 34.6 26.4

GAUSS
200 . . . . . . . . . . 7.1 11.2 0.7 8.7
250 . . . . . . . . . . 18.2 11.2 2.1 8.1
300 . . . . . . . . . . 29.0 12.8 48.2 10.0
400 . . . . . . . . . . 11.9 3.0 26.6 2.8

SSG84
200 . . . . . . . . . . 0.2 3.0 1.0 1.7
250 . . . . . . . . . . 0.1 1.7 0.1 2.1
300 . . . . . . . . . . 9.3 22.6 50.7 12.2
400 . . . . . . . . . . 0.3 0.4 0.1 2.3

are determined using a bootstrap method. As the filters
overlap substantially, different points are highly correlated.
The Planck CMB maps are consistent with the expecta-
tions of a statistically isotropic Gaussian model. The most
significant deviation, found at an effective filter bandwidth
given by ` = 20, is attributable to a single region on the
sky — the Cold Spot.

4.5.4. Peak locations as a function of scale

The application of a filter kernel of variable size to a map
extends it into what can be considered a “multiscale space,”
such that features on different scales are represented by a
one-parameter family of smoothed maps. This technique
is often used for feature detection and mathematical mor-
phology analysis. Here, we introduce a morphological de-
scription of temperature maps based on the peak connect-
edness graph in multiscale space, and apply this technique
to a statistical analysis of the Planck CMB data. Like most
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Fig. 14. Peak positions and CDF rank summarized for all filtering scales. The three sky-view panels in the top row show a
Lambert projection of the north pole, the usual full sky Mollweide projection, and a Lambert projection of the south pole. The
lower panel shows the peak heights (in percentile of the peak distribution on the horizontal axis) as a function of filter scale (on
the vertical axis, in logarithmic scale), truncated to larger scales for clarity. Circles represent peaks (nodes of the graph) coloured
according to their percentile level, and scaled according to kernel size. Black lines represent edges connecting peaks at different
scales (according to a minimal distance measure). The components connected to the coldest and hottest peaks at any scale are
highlighted by thicker edges, and are navy blue and dark red in colour. Note that there are thick lines that do not touch the 0 and
1 percentiles in the plot view. Those edges are connected to extreme percentile values, but at scales smaller than those shown in
the plot. The Cold Spot is represented by the connected nodes that have the smallest percentiles except for the coarsest scale in
the plot view.

morphological analyses, it is equally applicable to intrinsi-
cally non-Gaussian maps, but here we focus on the Gaussian
random field statistics and attempt to understand what fea-
tures of the CMB temperature map are responsible for the
Cold Spot.

To construct a multiscale representation, we trace the
location of the peaks in the smoothed, whitened CMB
map as the smoothing scale is varied. As the smoothing
scale increases, peaks merge and the total peak count de-
creases. Linking closest peak neighbours in position-scale
space, from the finest to the coarsest resolution, produces
an acyclic graph that encapsulates the peak “merger tree”
history as the scale is varied. A summary of all the peak po-
sitions and CDF ranks for the SSG84 filter kernel on scales
ranging from 120′ to 1200′ FWHM is shown in Fig. 14. The
peaks are represented by discs of varying size (reflecting
the filter scale) and colour (reflecting the peak tempera-
ture rank), with peaks at all scales projected onto a single
map. The lower panel shows the peak linkage graph on the
coarser scales; for the statistical analysis 81 filter scales are
used, log-spaced from 120′ to 1200′. Peaks of the same type
(i.e., maxima to maxima and minima to minima) are linked
to the closest peak on the coarser scale according to a dis-
tance measure, ds2 + df2, where ds2 is the metric on the
unit sphere, and df2 is the difference of peak temperature
ranks (but only if that distance is within a predetermined
fraction of the filter scale FWHM).

The resulting peak linkage graph is then analysed for
connectedness. The simplest quantifiable measure is the

0 1 2 3 4 5 6 7 8 9 10 11

Node degree

10
0

10
1

10
2

10
3

10
4

10
5

N
o

d
e

co
u

n
t

Fig. 15. Distribution of node degrees in the multiscale peak
linkage graph determined for the SMICA map (cyan), compared
with the median (red line), first to third quartile (blue box), and
95% (whiskers) derived from 1000 FFP8 simulations.

node-degree distribution, shown in Fig. 15 for SMICA. The
node-degree distribution is highly peaked at 2; this pop-
ulation corresponds to a single peak being traced across
multiple scales. Pre-whitening effectively decorrelates the
Gaussian map across different scales, so that the resulting
node distribution shows a sizeable population of degree 0
and 1 nodes. When compared to the linkage graphs derived
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from the simulation ensemble, the node-degree distribution
of the peak linkage graph derived from Planck CMB data
is consistent, with a slight excess in node counts of degrees
5 and 6.

5. Anomalies in the microwave sky
The previous section established the lack of evidence for
significant non-Gaussianity in the Planck data. Here we
consider several important anomalies that were originally
detected in the WMAP sky maps, and later confirmed in
the analyses described in PCIS13. Many of these are con-
nected to evidence for a violation of isotropy, or to a pre-
ferred direction, in the CMB. Tests that involve dipolar
power asymmetry, either directly or via measures of direc-
tionality, are collected together in Sect. 6. In this section
we consider only those anomalies not directly related to
dipolar power asymmetry.

The microwave sky is intrinsically statistically
anisotropic due to our motion with respect to the
CMB rest frame. The resulting Doppler boosting effect,
introduced in Sect. 1, was detected in the 2013 Planck data
(Planck Collaboration XXVII 2014). For completeness,
Appendix B repeats the analysis with the Planck full
mission data set. However, since the effects of Doppler
boosting are now included in the simulations used for
that analysis, this constitutes a consistency check for
this release. More importantly, since both the data and
simulations now include the effect, it is not necessary
to consider deboosted data in many of the studies re-
ported here, unlike in PCIS13 (although one exception in
Sect. 6.4 makes use of unboosted simulations to search
for the frequency-dependent signature of the effect in the
SEVEM-100, SEVEM-143, and SEVEM-217 sky maps).

Before presenting our results, we return to the issue of
a posteriori correction, which particle physicists refer to
as correcting for the “look-elsewhere effect” (LEE). Since
there are many tests that can be performed on the data to
look for a violation of statistical isotropy, we expect some
to indicate detections at, for example, roughly 3σ levels,
since even a statistically isotropic CMB sky is a realization
of an underlying statistical process corresponding to many
independent random variables. However, in the absence of
an existing theoretical framework (i.e., a physical model)
to predict such anomalies, it is difficult to interpret their
significance. It is then necessary, and equally challenging,
to address the question of how often such detections would
be found for statistically isotropic Gaussian skies. Unfortu-
nately, it is not always clear how to answer this question.

There will always be a degree of subjectivity when de-
ciding exactly how to assess the significance of these types
of features in the data. As an example, one could argue
that the large-scale dipole modulation signal we see is com-
ing specifically from super-Hubble modes, in which case
performing a LEE correction for dipole modulation that
could have been seen on small scales (` & 100) would not
make sense. Models for such a super-Hubble modulation ex-
ist and an example was examined in Planck Collaboration
XX (2015), the conclusion being that the model could only
explain part of the dipole modulation and that the allowed
part was perfectly consistent with cosmic variance.

In this paper, we adopt a pragmatic approach. When
there is a clear mechanism for doing so, we attempt to cor-
rect for the “multiplicity of tests,” or the possible ways in

which an anomalous signal might have been detected but
was not, as a consequence of any a posteriori (data-driven)
choices made in searching for it. In such cases, a strong
dependence of the significance on the correction would in-
dicate that we should be cautious about the uncorrected
result. When such an obvious correction is not possible, we
clearly describe the methodology applied to the data and
its limitations. With this approach, we also recognize that
any statistical assessment is partially subjective, including
those that purport to correct for the LEE.

Although many of the observed effects described in this
and the next section may elude theoretical prediction today,
we continue to highlight them since there is a real possibil-
ity that the significance of one or more might increase at a
later date, perhaps when polarization data are included in
the analysis, and lead to new insights into early Universe
physics. Alternatively, such observations may directly moti-
vate the construction of models that can make predictions
for features that can be sought in new data sets. This is
particularly the case for anomalies on the largest angular
scales, which may have a specific connection to inflation.

5.1. Variance, skewness, kurtosis

Previous analyses of the WMAP data (Monteserín et al.
2008; Cruz et al. 2011; Gruppuso et al. 2013) have reported
that the variance of the CMB sky is lower than that of
simulations based on the ΛCDM model. PCIS13 confirmed
this, and proposed a possible explanation of the apparent
incompatibility of the observed variance with a fiducial cos-
mological model that has been determined from the same
data set. Specifically, whilst the map-based variance is dom-
inated by contributions from large angular scales on the sky,
the cosmological parameter fits are relatively insensitive to
these low-order `-modes, and are instead largely dominated
by scales corresponding to ` > 50. Therefore the variance
of the map appears to be anomalous, since there is a dearth
of large-angular scale power compared to the model.

In Sect. 4.1, we again confirmed the presence of low
variance in the data. Here, we extend the analysis to inves-
tigate which angular scales are responsible for the low vari-
ance by applying the unit variance estimator to lower res-
olution component-separated maps, specifically those from
Nside = 1024 to Nside = 16, with the corresponding com-
mon masks, and then comparing the results with those de-
termined from 1000 MC simulations. The results are shown
in Fig. 16.

All of the component-separation methods that we con-
sider yield very consistent results which indicate an increas-
ingly anomalous low variance at lower resolutions, with the
lower-tail probability reaching a minimum value of 0.5%
at Nside = 16. We then consider the impact of a possible
look-elsewhere effect by evaluating the minimum lower tail
probability of each simulation irrespective of the Nside reso-
lution at which it occurs. By comparing the distribution of
these values with that of the data, we infer that the prob-
ability is slightly weakened to a value of about 1%. These
results are compatible with a lack of power on large angu-
lar scales. Since the variance estimator is heavily weighted
towards low-` modes, this has an increasing impact on the
observed variance when going from high to low resolution
sky maps. Conversely, the skewness and kurtosis are consis-
tent with the simulations, although there is some indication
of a weak scale-dependence (albeit at low significance).
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Fig. 16. Lower tail probability of the variance (top panel), skew-
ness (centre panel), and kurtosis (bottom panel) obtained at
different resolutions from the Commander (red), NILC (orange),
SEVEM (green), and SMICA (blue) sky maps.

Table 12. Lower-tail probability for the variance, skewness, and
kurtosis of the low resolution Nside = 16 component-separated
maps obtained with the common mask and two extended ver-
sions thereof.

Probability [%]

Method Variance Skewness Kurtosis
Common mask (fsky = 58 %)

Commander . . . . . 0.5 14.6 88.4
NILC . . . . . . . . . . 0.5 16.9 87.1
SEVEM . . . . . . . . . 0.5 17.2 84.8
SMICA . . . . . . . . . 0.5 16.6 82.7

fsky = 48 %
Commander . . . . . 0.1 29.4 65.0
NILC . . . . . . . . . . 0.1 29.6 60.8
SEVEM . . . . . . . . . 0.1 29.4 62.4
SMICA . . . . . . . . . 0.1 29.4 57.3

fsky = 40 %
Commander . . . . 0.4 35.2 32.4
NILC . . . . . . . . . 0.4 34.4 28.7
SEVEM . . . . . . . . 0.4 34.3 30.2
SMICA . . . . . . . . 0.4 33.8 25.5

We also investigate the stability of the results at Nside =
16 with respect to the possible presence of residual fore-
grounds by considering two additional masks obtained by
extending the edge of the Nside = 16 common mask by 5◦
and 9◦, reducing the usable sky fraction from 58% to 48%
and 40%, respectively. We then re-apply the unit variance
estimator to the low resolution component-separated maps
with these masks and determine the variance, skewness, and
kurtosis values (see Table 12).

The results from 48% of the sky reveal that only 1 sim-
ulation in 1000 is found to be more anomalous (i.e., exhibit
lower variance) than the observed map. In addition, both
the skewness and kurtosis become more compatible with the
ΛCDM model. With the more aggressive mask, the lower-
tail probability slightly increases again. However, given the

Table 13. Probabilities of obtaining values for the S1/2 and
χ2

0 statistics for the Planck fiducial ΛCDM model at least as
large as the observed values of the statistic for the Planck 2015
temperature CMB maps with resolution parameter Nside = 64,
estimated using the Commander, NILC, SEVEM, and SMICA maps.
We show also the corresponding estimation of the global p-value
for the S(x) statistic.

Probability [%]

Statistic Comm. NILC SEVEM SMICA
S1/2 . . . . . . . . . . . . . . . . . . . 99.5 99.6 99.5 99.6
S(x) (global) . . . . . . . . . . . 97.7 97.8 97.8 97.9
χ2

0(θ > 60◦) . . . . . . . . . . . . 98.1 98.8 98.1 98.4

limited number of pixels involved in the analysis, this shift
may be related to the effects of sample variance.

Overall, our results may be explained by the presence
of a low-variance anomaly in the primordial CMB signal —
the stability of the low-variance significance argues against
foreground contamination being responsible for the lack
of observed power. This is reinforced by the decrease in
variance when regions close to the common mask borders,
where foreground residuals are most likely to be observed,
are omitted from the analysis.

5.2. N -point correlation function anomalies

5.2.1. Lack of large-angle correlations

We first reassess the lack of correlation seen in the 2-point
angular correlation function at large angular separations as
reported in Sect. 4.3, and previously noted for both WMAP
and the 2013 Planck temperature maps (Bennett et al.
2003; Copi et al. 2013). We attempt to quantify this lack
of structure using the statistic proposed by Spergel et al.
(2003):

S(x) =
∫ x

−1

[
Ĉ2(θ)

]2
d(cos θ) , (29)

where Ĉ2(θ) is our estimate of the 2-point correlation func-
tion. Generally, the upper limit on the integral has been
taken to correspond to a separation angle of 60◦, possibly
(as noted by Copi et al. 2009) motivated by the COBE-
DMR 4-year results (Hinshaw et al. 1996). Inspection of
the top panel of Fig. 2 suggests that the Planck 2-point
function lies close to zero between 80◦ and 170◦, but for
consistency with previous work we compute the statistic
S1/2, for x ≡ cos 60◦ = 1

2 . The results are presented in Ta-
ble 13. We find that the data indeed show a lack of correla-
tions on large angular scales, with a significance consistent
with that found by Copi et al. (2013) (although note that
the sense of the p-values differs between the papers).

Possible criticisms of the S1/2 statistic include that it
has been designed a posteriori to test for a lack of large-
angle correlations, and that it does not account for the
high degree of correlation between bins at different angular
scales. We can address these concerns, at least in part, by
considering a modified version of the commonly used and
well understood χ2 statistic used in previous studies. In or-
der to test the same hypothesis as the S1/2 statistic — that
there are no correlations on scales larger than some angular
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Table 14. Probabilities of obtaining values for the χ2 statistic
for the Planck fiducial ΛCDM model at least as large as the
observed values of the statistic for the Planck 2015 temperature
CMB maps with resolution parameter Nside = 64, estimated
using the Commander, NILC, SEVEM, and SMICA maps.

Probability [%]

Statistic Comm. NILC SEVEM SMICA

χ2(θ < 60◦) . . . . . . . . . . . . . 91.5 93.3 91.6 91.7
χ2(θ > 60◦) . . . . . . . . . . . . . 96.8 98.3 96.9 98.1

cut-off — we do not subtract an averaged 2-point function
when computing the χ2, i.e., we use a statistic defined as

χ2
0(θmin, θmax) =

imax∑
i,j=imin

Ĉ2(θi)M−1
ij Ĉ2(θj) , (30)

where imin, imax denote the index of the bins corresponding
to the minimum and maximum value of the separation an-
gles θmin and θmax, respectively. In this analysis, we adopt
θmin = 60◦ and θmax = 180◦. Mij is the covariance ma-
trix given by Eq. (8), estimated using MC simulations cor-
responding to the fiducial ΛCDM model. The results are
shown in Table 13. The significance level of the anomaly is
slightly smaller for the χ2

0 statistic than that derived with
S1/2. We note that this statistic is closely related to the
A(x) measure proposed by Hajian (2007).

A further potential criticism of the S1/2 statistic relates
to the a posteriori choice of 60◦ for the separation angle
that delineates the interesting region of behaviour of the
correlation function. We therefore consider the generalized
statistic S(x) and compute its value for all values of x, both
for the data and for the simulations. Then, for each value
of x, we determine the number of simulations with a higher
value of S(x), and hence infer the most significant value of
the statistic and the separation angle that it corresponds
to. However, since such an analysis is sensitive to the LEE,
we define a global statistic to evaluate the true significance
of the result. Specifically, we repeat the procedure for each
simulation, and search for the largest probability irrespec-
tive of the value of x at which it occurs. The fraction of
these probabilities higher than the maximum probability
found for the data defines a global p-value. As seen in Ta-
ble 13, this corresponds to values of order 98% for all of
the CMB estimates.

The previous analyses essentially test how consistent the
observed 2-point correlation function data is with a lack of
correlations on large angular scales, in particular for separa-
tion angles θ > 60◦. A conventional χ2 statistic allows us to
test the consistency of this quantity with the predictions of
the ΛCDM model. In this case, the statistic is defined as in
Eq. (7), except that we constrain the computations to those
bins that correspond to the intervals defined by θ < 60◦ and
θ > 60◦. The results of these studies are shown in Table 14.

The analysis for θ < 60◦ indicates that the observed 2-
point function is a good match to the mean 2-point function
predicted by the ΛCDM model. Moreover, for θ > 60◦ the
results suggest that the problem is that the fit of the data
to the model is too good, and this is even more pronounced
for an analysis in the full separation angle range.

Overall, the tests indicate an unusually good fit of the
observed 2-point function both to zero and to the predic-

tions of the ΛCDM model for angles above 60◦. This prob-
lem may be related to the fact that the theoretical variance
for the best-fit model is larger than the observed value at
large scales, so that the simulations based on this model
that have been used in all of the statistical tests may over-
estimate the variance of the 2-point function.

5.2.2. Hemispherical asymmetry

We now turn to a reassessment of the asymmetry between
the real-space N -point correlation functions computed on
hemispheres reported previously for the WMAP (Eriksen
et al. 2005) and Planck 2013 temperature maps (PCIS13).
We initially focus the analysis on the hemispheres de-
termined in the ecliptic coordinate frame for which the
largest asymmetry was observed. However, we also carry
out the corresponding calculations in other relevant refer-
ence frames, such as those defined by the Doppler boost
(DB, see Sect. 6.4, Appendix B, and Planck Collaboration
XXVII 2014) and the dipole modulation (DM, see Sect. 6.2)
directions. We use the same configurations of the N -point
functions as described in Sect. 4.3. However, here the func-
tions are not averaged over the full sky and depend on
a choice of specific direction, so they constitute tools for
studying statistical isotropy rather than non-Gaussianity
(Ferreira & Magueijo 1997).

As in Sect. 4.3, we analyse the CMB estimates at a res-
olution of Nside = 64 and quantify their agreement with the
fiducial cosmological model using a χ2 statistic. The results
determined from the Planck 2015 temperature data for the
ecliptic hemispheres are shown in Fig. 17. If we consider
that the χ2 statistic itself can act as a measure of fluc-
tuation level, then asymmetry between the two measured
hemispheres can be quantified by the ratio of the corre-
sponding χ2 values. The probabilities of obtaining values
of the χ2 statistic or ratio for the Planck fiducial ΛCDM
model at least as large as the observed values are given in
Table 15. Since we do not have any predictions concerning
the behaviour of a given hemisphere, in the case of the χ2

ratios we provide the complementary probabilities of the
2-tailed statistic.

The significance levels of the 3- and 4-point functions in
the northern hemisphere are nominally very high, exceeding
99.9% for the pseudo-collapsed 3-point function. However,
proper interpretation requires that one recognize that the
analysis is affected by a posteriori choices for the smoothing
scale and reference frame defining the hemispheres. This
typically leads to an overestimation of the significance of
the results. Accounting for such effects requires the repeti-
tion of the analysis for all possible reference directions and
also for data at other resolutions. Unfortunately, because
of computational limitations, such an extended analysis is
not possible for these higher-order statistics. Nevertheless,
the observed properties of the Planck data are consistent
with a clear lack of fluctuations in a direction towards the
north ecliptic pole. However, the χ2-ratio statistic indicates
a slightly smaller significance level for the asymmetry, not
exceeding 99% for any of the N -point functions.

The results for the N -point correlation functions deter-
mined in the DB and DM reference frames for the SMICA
map are shown in Fig. 18 and the probabilities are presented
in Table 16. Note that the positive hemisphere for the eclip-
tic reference frame corresponds to the southern hemisphere
in the previous table. Whilst the largest asymmetry is seen
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Table 15. Probabilities of obtaining values for the χ2 statistic
and ratio of χ2 of the N -point functions shown in Fig. 17 for the
Planck fiducial ΛCDM model at least as large as the observed
values of the statistic for the Planck 2015 CMB maps estimated
on northern and southern ecliptic hemispheres.

Probability [%]

Hemisphere Comm. NILC SEVEM SMICA

2-point function
Northern . . . . . . . . . . . . . . . 89.7 90.6 89.8 88.0
Southern . . . . . . . . . . . . . . . 80.5 82.7 82.9 77.6
χ2-ratio . . . . . . . . . . . . . . . . 22.6 21.0 19.7 22.3

Pseudo-collapsed 3-point function
Northern . . . . . . . . . . . . . . . >99.9 >99.9 >99.9 99.7
Southern . . . . . . . . . . . . . . . 35.1 34.9 35.8 31.4
χ2-ratio . . . . . . . . . . . . . . . . 98.8 98.5 98.5 98.4

Equilateral 3-point function
Northern . . . . . . . . . . . . . . . 98.6 98.6 98.8 98.4
Southern . . . . . . . . . . . . . . . 45.7 45.7 47.8 42.6
χ2-ratio . . . . . . . . . . . . . . . . 86.6 86.7 86.6 86.7

Rhombic 4-point function
Northern . . . . . . . . . . . . . . . 99.7 99.7 99.7 99.6
Southern . . . . . . . . . . . . . . . 22.8 22.5 23.2 20.1
χ2-ratio . . . . . . . . . . . . . . . . 97.3 97.1 97.2 97.0

Table 16. Probabilities of obtaining values for the χ2 statistic
and ratio of χ2 of the N -point functions shown in Fig. 18 for the
Planck fiducial ΛCDM model at least as large as the observed
values of the statistic for the SMICA map on hemispheres de-
fined by the ecliptic (first column), Doppler boost (DB, second
column), and dipolar modulation (DM, third column) reference
frames.

Probability [%]

Hemisphere Ecl. DB DM
2-point function

Negative . . . . . . . . . . . . . . . 88.0 86.9 61.8
Positive . . . . . . . . . . . . . . . . 77.6 91.1 59.9
χ2-ratio . . . . . . . . . . . . . . . . 22.3 5.1 7.7

Pseudo-collapsed 3-point function
Negative . . . . . . . . . . . . . . . 99.7 64.1 95.9
Positive . . . . . . . . . . . . . . . . 31.4 79.3 48.3
χ2-ratio . . . . . . . . . . . . . . . . 98.4 23.3 78.6

Equilateral 3-point function
Negative . . . . . . . . . . . . . . . 98.4 54.8 >99.9
Positive . . . . . . . . . . . . . . . . 42.6 95.0 78.4
χ2-ratio . . . . . . . . . . . . . . . . 86.7 67.7 88.2

Rhombic 4-point function
Negative . . . . . . . . . . . . . . . 99.6 46.4 97.5
Positive . . . . . . . . . . . . . . . . 20.1 86.3 23.2
χ2-ratio . . . . . . . . . . . . . . . . 97.0 57.9 92.5

in ecliptic coordinates, a substantial asymmetry is present
also for the DM direction. This can be explained by the fact
that the DM direction is more closely aligned with the south
ecliptic pole (with a separation of around 47◦) than the DB
direction is. For the DB direction we do not find any sig-
nificant asymmetry. The equivalent results for Commander,
NILC, and SEVEM are consistent with those shown here.

In conclusion, the correlation functions for the Planck
2015 temperature data are consistent with the results pre-
sented in PCIS13. Specifically, we observe that the northern
hemisphere correlation functions are relatively featureless
(both the 3- and 4-point functions lie very close to zero),

whereas the southern hemisphere functions exhibit a level
of structure consistent with Gaussian simulations.

5.3. Constraints on quadrupolar modulation

The most natural extension of the class of statistically
anisotropic models that we have considered previously in-
volves the quadrupolar modulation of an initially statisti-
cally isotropic CMB sky map. No detection of a correspond-
ing quadrupolar power asymmetry is currently claimed. An
initial BipoSH analysis of the WMAP 7-year data (Ben-
nett et al. 2011) found evidence of corresponding non-zero
spectra, A20

`` and A20
``+2, in ecliptic coordinates. However,

Hanson et al. (2010) demonstrated that the signal could be
attributed to an incomplete treatment of beam asymmetries
in the data. The corresponding analysis of the Planck 2013
data indicated consistency with statistical isotropy (Planck
Collaboration XXIII 2014).

Here, we proceed further and consider the quadrupolar
modulation of the primordial power spectrum as suggested
by Ackerman et al. (2007):

P (k) = P (k)
[

1 +
∑
M

g2M Y2M (k̂)
]
. (31)

Given such a spectrum, the CMB temperature field is ex-
pected to exhibit a correlation between a`m and a∗`±∆m′

with ∆ = 0, 2. Therefore, the BipoSH coefficients A2M
`` and

A2M
``+2 are sensitive to g2M . In the limit of weak anisotropy,

Kim & Komatsu (2013) proposed an optimal estimator for
g2M :

ĝ2M = 1
2
∑
M ′

(
F−1)

MM ′

∑
`m

∑
`′m′

∂C`m,`′m′
∂g2M ′

∣∣∣∣
g2M =0

(32)

×
[
(C−1a∗)`m(C−1a)`′m′
−〈 (C−1a∗)`m(C−1a)`′m′〉

]
g2M =0 ,

where a is the CMB data vector in harmonic space and C
is its covariance matrix, and

FMM ′ ≡
1
2
∑
`m

∑
`′m′[

(C−1)`m
∂C`m,`′m′
∂g2M

(C−1)`′m′
∂C`′m′,`m
∂g2M ′

]
g2M =0

. (33)

Here, 〈 (C−1a∗)`m(C−1a)`′m′〉g2M =0 is the mean field in
the absence of the quadrupolar modulation. Observation-
specific issues such as incomplete sky coverage, inhomoge-
neous noise, and asymmetric beams will result in a non-zero
mean field, which can be estimated for the Planck data us-
ing simulations. Due to the otherwise prohibitive compu-
tational cost, we adopt a diagonal approximation for the
inverse of the covariance matrix:

(C−1)`m,`′m′ ≈ 1/(C` +N`) δ``′δmm′ , (34)

where C` and N` are the signal and noise power spectra
respectively. Uncertainties are computed by applying the
estimator to simulations.

Table 17 presents results from an analysis of the Planck
data using the extended common mask, UTA76, and limit-
ing the range of multipoles to 2 ≤ ` ≤ 1200. When including
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Fig. 17. Difference of the N -point correlation functions determined from the Nside = 64 Planck CMB 2015 temperature estimates
and the corresponding means estimated from 1000 simulations. Results are shown for the 2-point, pseudo-collapsed 3-point (upper
left and right panels, respectively), equilateral 3-point, and connected rhombic 4-point functions (lower left and right panels,
respectively). Correlation functions are shown for the analysis performed on northern (blue) and southern (red) hemispheres
determined in the ecliptic coordinate frame. The solid, dashed, dot-dashed, and dotted lines correspond to the Commander, NILC,
SEVEM, and SMICA maps, respectively. Note that the lines lie on top of each other. The shaded dark and light grey regions indicate,
for reference, the 68 % and 95 % confidence regions, respectively, determined from the SMICA simulations.

Table 17. Constraints on the quadrupolar modulation, determined from the Commander, NILC, SEVEM, and SMICA foreground-
cleaned maps. The first three columns correspond to the five independent parts of the quadrupolar modulation, which we have
chosen to present using a complex notation for g2M . The quoted error bars are at the 68 % confidence level. The quadrupolar
modulation amplitude is given in the fourth column, while the mean and standard deviation of g2, estimated from simulations,
are provided in the fifth column.

g2M × 102 g2 × 102

Method M = 0 M = 1 M = 2 Data Simulation
Commander . . . . . 1.31± 1.22 (0.43± 0.86) + i (−0.01± 0.68) (1.08± 0.89) + i (−0.38± 0.86) 0.97 1.12± 0.37
NILC . . . . . . . . . . 0.88± 1.21 (0.37± 0.85) + i ( 0.33± 0.67) (0.87± 0.88) + i (−0.26± 0.86) 0.77 1.11± 0.37
SEVEM . . . . . . . . . 0.85± 1.22 (0.35± 0.85) + i ( 0.34± 0.67) (1.00± 0.88) + i (−0.25± 0.86) 0.81 1.11± 0.37
SMICA . . . . . . . . . 1.10± 1.10 (0.46± 0.81) + i ( 0.26± 0.64) (0.93± 0.83) + i (−0.26± 0.82) 0.85 1.05± 0.34

data at higher `-values, simulations show evidence for large statistical uncertainties in the recovered g2M values that
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Fig. 18. Difference of the N -point correlation functions determined from the Nside = 64 Planck SMICA CMB 2015 temperature
estimates and the corresponding means estimated from 1000 simulations. Results are shown for the 2-point, pseudo-collapsed 3-
point (upper left and right panels, respectively), equilateral 3-point, and connected rhombic 4-point functions (lower left and right
panels, respectively). Correlation functions are shown for the analysis performed on negative (blue) and positive (red) hemispheres
determined in the ecliptic (solid lines), Doppler boost (DB, dashed lines), and dipole modulation (DM, dot-dashed lines) coordinate
frames. The shaded dark and light grey regions indicate the 68 % and 95 % confidence regions, respectively.

are a consequence of the many holes in the mask related
to point sources. Therefore, imposing this limit ` ≤ 1200
does not significantly affect the constraining power of the
analysis. We then estimate the amplitude of the quadrupo-
lar modulation using the relation g2 =

(
1/5

∑
M |g2M |2

)1/2.
Due to the nature of the estimator, which is necessarily pos-
itive, the estimation is biased. For an unbiased assessment,
we estimate the mean and standard deviation of g2 from
simulations. We find no evidence for quadrupolar modula-
tion of the primordial power spectrum. However, the de-
rived limits allow us to impose tight constraints on sta-
tistically anisotropic inflationary models, such as those in-
cluding vector fields during inflation. A companion paper,
Planck Collaboration XX (2015), contains a more complete
discussion on the theoretical implications of this constraint.

5.4. Point-parity asymmetry

The CMB anisotropy field defined on the sky, T (n̂), may be
divided into symmetric, T+(n̂), and antisymmetric, T−(n̂),
functions with respect to the centre of the sphere, as pre-
viously described in PCIS13. These functions have even
and odd parity, and thus correspond to spherical harmon-
ics with even and odd `-modes, respectively. On the very
large scales corresponding to the Sachs-Wolfe plateau of the
temperature power spectrum (2 ≤ ` ≤ 30), the Universe
should be parity neutral with no particular parity prefer-
ence exhibited by the CMB fluctuations. However, an odd
point-parity preference has previously been observed in the
WMAP data releases (Land & Magueijo 2005a,b; Kim &
Naselsky 2010a,b; Gruppuso et al. 2011) and the Planck
2013 results. Here, we investigate the parity asymmetry in
the 2015 temperature maps at Nside = 32. We consider the
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Fig. 19. The ratio RTT(`max) for Commander (red), NILC (or-
ange), SEVEM (green), and SMICA (blue) determined atNside = 32.
The shaded grey regions indicate the distribution of the statistic
derived from the SMICA MC simulations, with the dark, lighter,
and light grey bands corresponding to the 1, 2, and 3σ confi-
dence levels.

following estimator:

RTT(`max) =
DTT

+ (`max)
DTT
− (`max)

, (35)

where D+(`max) and D−(`max) are given by

DTT
+,− = 1

`+,−tot

+,−∑
`=2,`max

`(`+ 1)
2π CTT

` , (36)

`+,−tot is the total number of even (+) or odd (−) multipoles
included in the sum up to `max, andDTT

` is the temperature
angular power spectrum computed using a QML estimator
(Gruppuso et al. 2011). The `(`+1)/(2π) factor in Eq. (36)
effectively flattens the spectrum across the `-range of the
Sachs-Wolfe plateau (up to ` = 50) in a ΛCDM model.

Figure 19 presents the ratio, RTT(`max), for the 2015
component-separated maps, together with the distribution
determined from the SMICA MC simulations which serves
as a reference for the expected behaviour of the statis-
tic in a parity-neutral Universe. The distributions for the
other CMB maps are very similar. The four component-
separation products are in good agreement, indicating an
odd-parity preference at very large scales for the multipole
range considered in this test.

Figure 20 shows the lower-tail probability for the data as
compared to simulations as a function of `max. The results
are in good agreement with those in PCIS13. The cleaned
CMB maps yield generally consistent profiles which signify
an anomalous odd-parity preference in the multipole region
`max = 20–30. The minimum in the lower-tail probability
occurs at ` = 28 corresponding to a value of 0.2% for NILC,
SEVEM, and SMICA, and 0.3% for Commander.4

4 In the case where we would like to test the probability of
finding a Universe with either odd or even parity preference, the
probability would be higher by a factor of about two.
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Fig. 20. Lower-tail probability of the point-parity estimator
for Commander (red), NILC (orange), SEVEM, (green), and SMICA
(blue).

As a first attempt to quantify any a posteriori effects in
the significance levels, we consider how many MC simula-
tions appear in the lower tail of the MC distribution with
a probability equal to, or lower than, 0.2%, for at least one
`max value over a specific range. For `max in the range 3–50,
the total number of simulated maps with this property is
less than 20 over 1000 MC maps, implying that, even con-
sidering the LEE, an odd-parity preference is observed with
a lower-tail probability of less than 2%.

5.5. Mirror-parity asymmetry

For the Planck 2013 data release, we studied the prop-
erties of the temperature data at a resolution of Nside =
16 under reflection with respect to a plane to search for
mirror symmetries. Such a symmetry might be connected
to non-trivial topologies (Starobinsky 1993; Stevens et al.
1993; de Oliveira-Costa et al. 1996). In Planck Collabo-
ration XXIII (2014), we reported evidence for an anti-
symmetry plane, with a perpendicular direction given by
(l, b) = (264◦,−17◦), However, the probability of the results
was slightly dependent on the method of foreground clean-
ing, with a p-value ranging from 0.5% for Commander-Ruler
to 8.9% for SMICA. The same direction was also found in
the WMAP 7-year data (Finelli et al. 2012), and is close
to that determined for the dipole modulation in the Planck
2013 data release (PCIS13), suggesting possible connections
between the two directional anomalies.

We now proceed to reanalyse the status of mirror sym-
metries using the Planck 2015 full mission temperature data
at bothNside = 16 andNside = 32. In order to avoid possible
bias introduced by the use of the Galactic mask5 the results
are derived from the full-sky Commander, NILC, and SMICA
maps described in Sect. 2. For SEVEM, a customized map is
first produced by inpainting about 3% of the map along the
Galactic plane using a diffusive inpainting technique. This
5 The Galactic mask induces a preferred direction in the analy-
sis of the MC simulation ensemble, which affects the significance
of the results determined from the data. See Ben-David & Kovetz
(2014) for a discussion.
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is then smoothed to the appropriate lower resolutions for
further analysis. Following Finelli et al. (2012), we consider
the estimators in the pixel domain given by:

S±(n̂i) = 1
Npix

Npix∑
j=1

[
1
2

(
δT

T
(n̂j)±

δT

T
(n̂k)

)]2
, (37)

where the sum is over all Npix HEALPix pixels, (δT/T )(n̂j)
is the CMB temperature anisotropy measured at the pixel
defined by the unit vector n̂j , and n̂k is the opposite direc-
tion with respect to the plane defined by n̂i, i.e.,

n̂k = n̂j − 2 (n̂i · n̂j)n̂i . (38)

Note that we expect S+ to be small if the points on opposite
sides of the mirror are negatives of each other, and S− to
be small when they are the same.

We compute these quantities for each of the 3072
(12288) directions defined at resolution Nside = 16 (32),
and allow the j and k indices to run over all of the pixels
of the low-resolution full-sky maps. We perform the same
analysis on 1000 FFP8 simulations and store the minimum
value of S± for each of these to compute probabilities. The
results are summarized in Table 18 and Fig. 21.

We confirm that the full mission temperature Planck
at Nside = 16 exhibits the most anomalous mirror anti-
symmetry in the direction (l, b) = (264◦,−17◦), consistent
with the result from the 2013 nominal mission data, with
a probability which ranges from 1.6% for SEVEM to 2.9%
for Commander. This is within 40◦ of the preferred direction
identified by the dipole modulation analysis in Sect. 6.2.
The corresponding results at Nside = 32 yield approxi-
mately the same direction, (l, b) = (264◦,−16◦), with a
slightly increased probability, ranging from 0.8% for SEVEM
to 1.9% for Commander.

We also note that the CMB pattern exhibits a mir-
ror symmetry in the direction (l, b) = (260◦, 48◦), consis-
tent with that found in the WMAP 7-year data (Finelli
et al. 2012), and close to that identified by the solar dipole
(Planck Collaboration VIII 2015). However, the significance
of the symmetry pattern is less than in the antisymmetric
case.

This extension of the analysis to higher resolution than
in our previous work shows that the antisymmetry prop-
erty does not seem to be confined to the largest angular
scales, although we have not attempted to correct for any
a posteriori choices made in the analysis. The detailed con-
nection of this antisymmetry property to the low-variance
and hemispherical asymmetry observed on these scales re-
mains an open issue.

5.6. Local peak statistics

Local extrema or peaks, as introduced in Sect. 4.5.3, can
be employed to search for localized anomalies on the CMB
sky by examining how their statistical properties vary in
patches as a function of location.

Initially, we consider a further test for asymmetry by
examining the differences in the peak distribution when
divided according to orientation with respect to a previ-
ously specified asymmetry direction. In particular, we se-
lect the peaks both in a disc of radius 70◦ centred on
(l, b) = (225◦,−18◦) (the positive direction of the dipole
defined in Sect. 6.2 for SMICA) and in the corresponding

Table 18. The lower-tail probability for the S± statistics of the
component-separated maps at Nside = 16 and Nside = 32.

Probability Direction
Estimator [%] (l, b) [◦]

Nside = 16
Commander

min(S+) . . . . 2.9 (264.4,−17.0)
min(S−) . . . 12.0 (260.4, 48.1)

NILC
min(S+) . . . . 2.3 (264.4,−17.0)
min(S−) . . . 16.8 (260.4, 48.1)

SEVEM
min(S+) . . . . 1.6 (264.4,−17.0)
min(S−) . . . 13.5 (260.4, 48.1)

SMICA
min(S+) . . . . 2.7 (264.4,−17.0)
min(S−) . . . 19.1 (260.4, 48.1)

Nside = 32
Commander

min(S+) . . . . 1.9 (264.4,−15.7)
min(S−) . . . 10.0 (265.3, 46.2)

NILC
min(S+) . . . . 1.2 (264.4,−15.7)
min(S−) . . . 10.3 (265.3, 46.2)

SEVEM
min(S+) . . . . 0.8 (264.4,−15.7)
min(S−) . . . 11.1 (265.3, 46.2)

SMICA
min(S+) . . . . 1.7 (264.4,−15.7)
min(S−) . . . 11.6 (265.3, 46.2)

antipodal disc, then construct the empirical peak height
CDFs to be compared with the full-sky median FFP8 dis-
tribution, as shown in Fig. 22. For maps filtered with a
40′ FWHM GAUSS filter the distribution of the peaks
for the positive-direction disc is in general agreement with
the full sky result, while that for the negative-direction is
marginally different. Moreover, this pattern of behaviour
is seen over a number of filtering scales, both for the KS
deviation from the median full-sky simulated CDFs, and
the spread of extremal values when comparing positive and
negative regions. We also find that the properties of the
negative disc affect the p-value results for a full sky KS test
on data filtered with an SSG84 filter of 500′ FWHM, as
seen in Sect. 4.5.3.

We can then extend the analysis for the 40′ GAUSS-
filtered data by considering the variation in the peak sta-
tistical properties for a set of discs, each of which is centred
on a pixel defined at Nside = 256. The simplest statistics
to consider are the peak number counts. We therefore con-
sider discs of 30◦ diameter and compute the peak counts
for each disc. These are then compared to the correspond-
ing peak count CDFs determined from simulations, and the
upper- and lower-tail probabilities are assigned by counting
the number of simulations above and below the observed
counts at the same location. These quantities can then be
visualized in the form of Nside = 256 sky maps. The derived
−log10(UTP) maps for each component-separation method
are shown in Fig. 23. While we find that the total counts of
peaks for the sky coverage defined by the common mask is
consistent with simulations, significant regional variation is
seen. Indeed, the p-value for certain disc locations drops to

Article number, page 26 of 61



Planck Collaboration: Isotropy and statistics of the CMB

500 600 700 800 900 1000 1100

0
.

0
.0

5
0
.1

0
.1

5
0
.2

minHS+ L @ΜK2D

N

400 500 600 700 800

0
.

0
.0

5
0
.1

0
.1

5
0
.2

0
.2

5

minHS- L @ΜK2D

N

Fig. 21. Histograms of the S+ (top panel) and S− (bottom
panel) statistic. The vertical lines show the minimum value for
the estimator computed at Nside = 32 for Commander (red), NILC
(orange), SEVEM (green), and SMICA (blue) maps. The grey area
shows the same quantity computed from 1000 simulated SMICA
maps.

0.1% (i.e., the sky counts exceed anything seen in simula-
tions). However, one needs to account for the a posteriori se-
lection of significant regions in the determination of the true
significance. It should also be noted that regional variations
of the UTP are seen at similar levels when inspecting the
peak-count statistics maps derived for randomly selected
realizations of the simulations. Moreover, the significance
of such peak-counting anomalies is degraded with larger
disc diameters, and becomes insignificant for counts on the
full sky. Thus, no significant anomalies can be claimed for
the peak-count statistics of the Planck data.

A powerful non-parametric test of statistical isotropy is
provided by the two-sample KS-deviation between the full
sky empirical peak height CDF Fn(x) (see Eq. 27) and an
empirical peak height CDF Fn′(x) derived from a subsam-
ple of the distribution, again defined by the peaks within
discs of 30◦ diameter as defined above. The two-sample KS-
deviation

Knn′ ≡
√

nn′

n+ n′
sup
x
|Fn′(x)− Fn(x)| (39)

for a partial sky region shares samples between the two
CDFs, and can be calculated extremely efficiently using
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Fig. 22. KS-deviation of the peak distribution for 70◦ radius
discs centred on the positive and negative asymmetry directions
determined from the SMICA CMB temperature map in Sect. 6.2.
From top to bottom, the plots correspond to maps filtered with
a GAUSS kernel of 40′ FWHM, an SSG84 filter of 500′ FWHM,
and an SSG84 filter of 800′ FWHM, respectively.

rank statistics according to

Knn′ ≡
√

nn′

n+ n′
max
i

∣∣∣∣r′(i)− 1
n′ − 1 − r(i)− 1

n− 1

∣∣∣∣ , (40)

where r and r′ denote the ranks of a value with index i in
the full set of n and restricted set of n′ samples, respectively.
Maps of the upper tail probability are then determined by
comparison with the equivalent quantities computed from
simulations; −log10(UTP) maps are shown in Fig. 24. The
majority of the selected locations are consistent with the
full-sky distribution, thus indicating the statistical isotropy
of the Planck maps. The most prominent feature in each of
the local KS-deviation maps appears south of the Galactic
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centre and may be associated with a cold region crossing
the Galactic plane. However, as with the peak counts, it
cannot be interpreted as statistically anomalous.

5.7. The Cold Spot

Since its discovery in the WMAP first-year data (Vielva
et al. 2004), the Cold Spot, centred at Galactic coordi-
nates (l, b) = (210◦,−57◦) has been one of the most exten-
sively studied large-scale CMB anomalies. In the 2013 re-
lease (Planck Collaboration XXIII 2014), Planck confirmed
the apparently anomalous nature of this feature in temper-
ature, in terms of the area of the SMHW coefficients on
angular scales of ≈ 10◦ on the sky; the 2015 release has
also confirmed this feature (see Sects. 4.5.2 and 4.5.3). The
CMB temperature anisotropies around the Cold Spot as ob-
served by Planck are shown in the top panel of Fig. 25. The
peak merger tree within the Cold Spot region is presented
in the lower panel of the figure and provides a multiscale
view of its structure (see Sect. 4.5.4 for details).

The robustness of the detection of the anomalies dis-
cussed in this paper is a non-trivial issue. For the particu-
lar case of the Cold Spot, this has been reviewed by Vielva
(2010), and addressed in detail by Cruz et al. (2006), paying
specific attention to the impact of a posteriori choices. In
particular, the latter study focused on the original test that
indicated the presence of this feature on the sky, confirming
a significance between 1% and 2%. An alternative analysis
of the significance based on two statistical tests with differ-
ent levels of conservativeness was made by McEwen et al.
(2005), providing values of 0.1% and 4.7%, respectively.
The statistical significance of the Cold Spot was questioned
by Zhang & Huterer (2010) who found a low significance
after performing a study based on different kernels. As dis-
cussed in more detail by Vielva (2010), this result can also
be interpreted as evidence that not all kernels are neces-
sarily suitable for the detection of arbitrary non-Gaussian
features.

The possibility that the Cold Spot arises from instru-
mental systematics (Vielva et al. 2004) or foreground resid-
uals (Liu & Zhang 2005; Cruz et al. 2006) has been largely
rejected. However, several non-standard physical mecha-
nisms have been proposed as possible explanations. These
include the gravitational effect produced by a collapsing
cosmic texture (Cruz et al. 2007), the linear and nonlin-
ear ISW effect caused by a void in the large-scale structure
(e.g., Tomita 2005; Inoue & Silk 2006; Rudnick et al. 2007;
Tomita & Inoue 2008; Finelli et al. 2014), a cosmic bub-
ble collision within the eternal inflation framework (Czech
et al. 2010; Feeney et al. 2011; McEwen et al. 2012), and a
localized version of the inhomogeneous reheating scenario
within the inflationary paradigm (Bueno Sanchez 2014).

Since the other scenarios lack additional evidence, the
void hypothesis would seem to be the most plausible, de-
pending on the sizes, density contrasts, and profiles as-
sumed in the computations, some of which are not in agree-
ment with either observation (Cruz et al. 2008) or current
N -body studies (Cai et al. 2010; Watson et al. 2014). How-
ever, Szapudi et al. (2014) have recently detected a large
void in the WISE-2MASS galaxy catalogue aligned with the
Cold Spot, with an estimated radius of around 200h−1 Mpc,
an averaged density contrast of δ̄ ≈ −0.1, and centred on a
redshift of z ≈ 0.15. Large voids with similar characteristics
are not unusual in the standard ΛCDM model (Nadathur

Table 19. Probabilities of obtaining values for the χ2 statistic
of the angular profiles of the estimators shown in Fig. 26 larger
than those determined from the data.

Probability [%]
Angular profiles Comm. NILC SEVEM SMICA

Mean . . . . . . . . . . . . 0.9 0.8 1.0 0.9
Variance . . . . . . . . . . 40.0 40.0 38.0 42.0
Skewness . . . . . . . . . 79.0 82.0 85.0 80.0
Kurtosis . . . . . . . . . . 75.0 56.0 75.0 77.0

et al. 2014). In fact, N -body simulations predict about 20
such voids in the local Universe (z < 0.5). However, Zibin
(2014) and Nadathur et al. (2014) indicate that the ex-
pected signal due to the linear and nonlinear ISW effects
caused by this structure is not large enough to explain the
temperature decrement associated with the Cold Spot.

The new Planck data release allows us to further ex-
plore the statistical nature of the Cold Spot. Two previous
studies (Zhao 2013; Gurzadyan et al. 2014) have claimed
inconsistencies of the internal properties of the Cold Spot
with the Gaussian hypothesis, which we re-address here. In
particular, we consider the small-scale fluctuations within
a disc-like region of radius ≈ 25◦.

Several statistical quantities are computed from the full-
resolution temperature maps within the Cold Spot region.
This is divided into a central disc of diameter 1◦ surrounded
by a set of 13 concentric annuli with central radii spaced
in steps of about 2◦, thus allowing us to build angular pro-
files for the mean, variance, skewness, and kurtosis. These
are then compared to specialized CMB realizations, gen-
erated as follows. A set of Gaussian CMB skies is simu-
lated using the FFP8 reference spectrum, and convolved
with a Gaussian beam of 5′ FWHM. As for the FFP8 sim-
ulations themselves, these maps are rescaled, as discussed
previously. Only those that contain a spot as extreme as
the Cold Spot at a scale R = 300′ in SMHW space are
retained, and these are rotated such that each simulated
cold spot is relocated to the actual position of the Cold
Spot (this ensures that the noise properties are identical
for both data and simulations). This selection criterion cor-
responds to the characteristic that originally indicated the
presence of the Cold Spot in the observed sky. As a final
step, for each remaining CMB simulation a noise realiza-
tion is added, consistent with each component-separation
method.

The results are presented in Fig. 26. Focusing on the
profile of the mean value, it is apparent that the largest de-
viations from the simulations appear on scales around 15◦,
which corresponds to a hot ring structure, as seen in Fig. 25
and previously discussed in Cayón et al. (2005) and Na-
dathur et al. (2014). Notice that on the smallest scales the
mean profile is also somewhat deviant with respect to the
simulations, but this may be connected to selection bias,
since we are considering CMB simulations containing a spot
that is at least as cold as the Cold Spot. However, if we con-
sider the distribution of the profiles corresponding to the
coldest spots instead of the spots as extreme as the Cold
Spot (removing the bias at the smallest scales) then the
results do not change substantially (see below).

In order to quantify possible deviations from Gaussian-
ity, we determine the probability of finding a χ2 value larger
than that of the data for each statistic, as summarized in
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−log10(UTP)
Fig. 23. Map of −log10(UTP) for peak counts in the Planck 40′ GAUSS-filtered temperature data, where each pixel encodes the
probability determined for a 30◦ diameter disc centred on it.

Commander NILC SEVEM SMICA

−log10(UTP)
Fig. 24. Map of −log10(UTP) for the two-sample KS-deviation where each pixel encodes the probability determined for a 30◦
diameter disc centred on it, as computed from the Planck 40′ GAUSS-filtered temperature data.

Table 19. The χ2 value for the data is computed using an
estimate of the covariance matrix between different radial
scales determined from the Cold Spot simulations (1000 for
each component-separation method), and then compared to
the theoretical χ2 distribution with 13 degrees of freedom.
The results indicate that the angular profile for the mean
is poorly described by the simulations, of which less than
1% are found to have a higher χ2 than the data (when
considering the distribution corresponding to the coldest
spot this probability becomes approximately 2%). We have
checked that this deviation is not obviously associated with
a particular sub-range of angular scales, implying that the
mean profile is anomalous over the full range considered.
Conversely, the radial profiles of the higher-order moments
are compatible with the Gaussian simulations. The latter
results are then in contradiction with a similar analysis (us-
ing discs instead of rings) by Zhao (2013) for the WMAP
9-year data. However, it appears that this may be related to
the criteria applied for the selection of the Gaussian sim-
ulations used to define the null hypothesis. In particular,
Zhao (2013) used the coldest pixel in real space as a means
to identify those simulations that should be retained, as op-
posed to the existence of cold spots as extreme as the Cold
Spot selected in the SMHW coefficient map at R = 300′.
Since it is not implicit that such a temperature extremum
is necessarily associated with an extended cold region, par-
ticularly one defined in wavelet space, the simulations used
by Zhao (2013) did not contain features comparable to the
nature of the Cold Spot. This explains why the Cold Spot
seemed to be anomalous when looking at the small-scale
fluctuations.

In conclusion, it appears that only the mean tempera-
ture profile of the Cold Spot should be considered anoma-
lous when compared to CMB cold spots that are as statis-
tically extreme. All other measures of its internal structure
are consistent with expectations.

As a final remark, we note that the high-pass filtering
currently applied to the Planck CMB polarization maps
severely limits the possibility of conducting targeted analy-
ses to discriminate between different possible origins of the
Cold Spot. For example, no polarization signal would be
expected in those models producing secondary anisotropies
due to a gravitational effect, whereas a specific pattern
might be expected in a bubble collision scenario (Czech
et al. 2010). Appropriate tests will be pursued in future
work, once the large-scale polarization data are available.

6. Dipole modulation and directionality
In this section, we examine isotropy violation related to
dipolar asymmetry, various forms of which have been noted
since the early WMAP releases (Eriksen et al. 2004a). We
perform a non-exhaustive series of tests in an attempt to
narrow down the nature of the asymmetry (on the assump-
tion that it is not simply a statistical fluke). First, we will
briefly describe some similarities and differences between
the tests that are important for making a proper compari-
son of the results.

All the tests in this section share in common the fitting
of a dipole. This is done either by fitting for a dipole explic-
itly in a map of power on the sky (Sects. 6.1 and 6.5), by
employing Bayesian techniques in pixel space for a specific
model (Sect. 6.2), or by measuring the coupling of ` to `±1
modes in the CMB covariance matrix (Sects. 6.3, 6.4, and
6.6). The differences arise from how the fitted dipoles are
combined, which determines the specific form of asymmetry
that the test is sensitive to.

The tests can be divided into two categories, amplitude-
based and direction-based. Sections 6.1 to 6.4 are all sen-
sitive to the amplitude of a dipole modulation. Specifically,
Sect. 6.1 looks for dipole modulation in the pixel-to-pixel
variance of the data, while Sects. 6.2, 6.3, and 6.4 all search
for dipole modulation of the angular power spectrum. The
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Fig. 25. Top: temperature patch centred on the Cold Spot. Bot-
tom: Peak merger tree within the Cold Spot region. The figure
shows a region centred on Cold Spot location in gnomonic pro-
jection, with all the peaks in SSG84-filtered maps with FWHM
ranging from 80′ to 1200′ overlaid on the same plot. The size
of the coloured circles is proportional to the filtering scale. The
colour corresponds to the peak value, normalized in units of σ
for a given filter scale. In both panels the data are from the
SMICA CMB map at full resolution.

distinction between these two approaches is mainly one of
` weighting.

Sections 6.5 and 6.6 both examine aspects of direction-
ality in the data, where the directions are extracted from
dipole fits but combined in different ways. Section 6.5 fits
for dipoles in band power (with similar results for variance)
and only uses the direction information, while Sect. 6.6
weights each dipole equally across all scales and uses the
amplitude information as well.

The differences between the approaches of these sections
should be kept in mind when comparing their results. For
example, although Sects. 6.5 and 6.6 both look for a direc-
tional signal in the data, they are optimized for different
forms of deviations from statistical isotropy. It is therefore
unsurprising that they arrive at different results. However,
the signal found in Sect. 6.5, if not simply a statistical fluke,
is constrained by the results of Sect. 6.6.

6.1. Variance asymmetry

The study of power asymmetry via the local variance of
the CMB fluctuations was first performed by Akrami et al.
(2014) for the Planck 2013 and WMAP 9-year tempera-
ture data. The approach was motivated by its conceptual
and implementational simplicity, its directly intuitive in-
terpretation, and by virtue of being defined in pixel space,
a useful complementarity to other mostly harmonic-based
methods. The statistic was computed over patches of dif-
ferent sizes and positions on the sky, and compared with
the values obtained from statistically isotropic simulations.
It was found that none of the 1000 available simulations
had a larger variance asymmetry than that estimated from
the data. This suggested the presence of asymmetry at a
statistical significance of at least 3.3σ, with a preferred di-
rection (l, b) ≈ (212◦,−13◦) in good agreement with other
studies. In this section, we revisit the variance asymmetry
and report the results of the analysis for the Planck 2015
temperature maps at full resolution, Nside = 2048.

The analysis proceeds as follows. We consider a set of
discs of various sizes centred on the pixels of a HEALPix
map defined by a specific Nside value. For each sky map,
we first remove the monopole and dipole components from
the masked sky and then compute the variance of the fluc-
tuations on a given disc using only the unmasked pixels.
This yields a local-variance map at the HEALPix resolution
of interest. We also estimate the expected average and vari-
ance of the variance on each disc from the simulations and
then subtract the resulting average variance map from both
the observed and simulated local-variance maps. Finally, we
define the amplitude and direction of the asymmetry by fit-
ting a dipole to each of the local-variance maps, where each
pixel is weighted by the inverse of the variance of the vari-
ances computed from the simulations at that pixel. At all
stages, we use only the discs for which more than 10 % of the
area is unmasked, although our results are robust against
the choice of this value. The computed local-variance am-
plitudes are then used to compare the data with statisti-
cally isotropic simulations. Note that we use only the dipole
amplitudes of the local-variance maps to measure the sig-
nificance of the asymmetry; the amplitudes of higher mul-
tipoles were shown by Akrami et al. (2014) to be consistent
with statistically isotropic simulations and we therefore do
not consider them in the present paper.

In Akrami et al. (2014), the sensitivity of the method to
the disc size was assessed using both statistically isotropic
and anisotropic simulations. The free parameters, i.e., the
number and size of the discs, were then fixed by these sim-
ulations. It was found that for 3072 patches centred on the
set of pixels defined atNside = 16, the simulated asymmetry
signals were not detected when either very small (rdisc < 4◦)
or very large (rdisc > 16◦) discs were used.

The former effect is due to a combination of the low
number of pixels per disc and an insufficient number of
discs to cover the entire sky when Nside = 16 reference
grids are used. However, it has recently been shown by Ad-
hikari (2015) that using a larger number of small discs (by
increasing Nside to 32, 64, 128, and 256, depending on the
disc size) in order to cover the entire sky allows the local-
variance method to detect the large-scale anomalous asym-
metry as well as the Doppler boost signal from the Planck
2013 data, at a significance of > 3.3σ. Fantaye (2014) has
demonstrated that the Doppler boost signal can be detected
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Fig. 26. From left to right: the mean, variance, skewness, and kurtosis angular profiles computed for rings at radii θ centred on
the Cold Spot position for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue). The expected value obtained from
the simulations is denoted by the black dashed line and the grey regions represent the 1σ and 2σ intervals.

at a similar level of significance using needlet bandpass fil-
tering of the data, even with large discs, when simulations
are deboosted. Here, in contrast to the 2013 analysis, we
use maps which contain Doppler boosting, for both simula-
tions and data, and therefore we do not detect any Doppler
boost signal when using a large number of small discs.

The low observed significance levels when large discs
are used is due to the cosmic variance associated with the
largest-scale modes. Motivated by the analysis of Fantaye
(2014), and in order to address this issue, we also perform
analyses using a Butterworth high-pass filter,

H(`) = (`/`0)4

1 + (`/`0)4 , (41)

centred at multipoles `0 = 5, 10, 15, 20, and 30. In addition,
the filtering of low multipoles allows us to establish the
contribution of such modes to any detected asymmetry.

Here, based on the analysis of Akrami et al. (2014), we
restrict our analysis to those disc sizes for which 3072 discs,
corresponding to an Nside = 16 map, cover the entire sky,
i.e., to the range 4◦–90◦. Consistent results can be obtained
by choosing other values of Nside for a given disc size pro-
vided that the entire sky is covered by the discs. Here, for
simplicity, we work with the same Nside (= 16) for all disc
sizes.

Our results for the measured amplitude of the variance
asymmetry, compared to the values from the simulations,
as well as the corresponding dipole directions, are shown in
Fig. 27. The p-values are given for different disc sizes and
in terms of the number of simulations with local-variance
dipole amplitudes greater than the ones measured from the
data. Note that since the discs with different sizes used in
our analysis are correlated, the significance levels are also
correlated. For this reason we choose to show the p-values
as a function of disc size instead of combining them into a
single number. Moreover, it should be noted that the signif-
icance values we present here do not incorporate any correc-
tions to account for the choice of parameters adopted during
method calibration, specifically the dipole amplitudes and
directions for the anisotropic simulations that were used to
fix the range of disc sizes and number of patches.

It can be seen from the upper panel of Fig. 27 that for
the unfiltered map the significance of the power asymmetry
drops quickly when we increase the disc size to radii greater

than 16◦. This is no longer the case, however, when the low-
est multipoles are filtered out. For example, when the filter
scale is set to `0 = 5, i.e., when the very low multipoles
which are affected most by cosmic variance are suppressed,
the variance asymmetry is detected at the 3σ level for all
disc sizes, as shown in Fig. 27. Table 20 presents the p-
values of the variance asymmetry using 8◦ discs and for
various values of `0. Our results show that variance asym-
metry is detected with a remarkable significance for all disc
sizes when very low multipoles are filtered out. In addition,
the variance asymmetry amplitude slowly decreases with
increasing `0, as seen in the upper panel of Fig. 28. For
`0 & 20, the dipole amplitude becomes too small and we
find no significant variance asymmetry. It is interesting to
note, however, that the dipole directions found for large `0
are closely aligned with those found for `0 < 20.

Table 20. p-values for the variance asymmetry measured by 8◦
discs for the four component-separated temperature maps and
different high-pass filter scales. The values represent the fraction
of simulations with local-variance dipole amplitudes larger than
those inferred from the data.

p-value [%]

`0 Comm. NILC SEVEM SMICA

Unfiltered . . 0.1 0.1 0.1 0.1
5 . . . . . . . . . . <0.1 <0.1 <0.1 <0.1
10 . . . . . . . . . <0.1 <0.1 <0.1 <0.1
15 . . . . . . . . . 0.1 0.0 0.1 <0.1
20 . . . . . . . . . 0.4 <0.1 0.3 0.2
30 . . . . . . . . . 1.8 0.8 1.8 1.7

The lower panel of Fig. 27 shows the dipole directions
we find using different disc sizes and different filter scales for
SMICA. The dipole directions for the Commander, NILC, and
SEVEM component-separated maps are very similar to those
shown. The asymmetry directions found here are consistent
with those determined by other analyses in this paper.

In the upper panel of Fig. 28, we show the local-
variance dipole amplitudes for the 8◦ discs as a function
of the central multipole of the high-pass filter, `0. In the
lower panel of the same figure we show, as an example,
the mean-subtracted and inverse-variance-weighted local-
variance map using 8◦ discs for the Commander component-
separation method. The pixels of the map are given in terms
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Fig. 27. Upper panel: p-values for variance asymmetry measured
as the number of simulations with local-variance dipole ampli-
tudes larger than those inferred from the data, as a function of
disc radius for the four component-separated maps, Commander
(red), NILC (orange), SEVEM (green), and SMICA (blue), and for
unfiltered and high-pass-filtered cases. For the filtered case,
the Commander curve is covered by the SMICA curve for small
(rdisk ≤ 8) disks, and by the SEVEM curve for large disks
(rdisk > 8). Lower panel: local-variance dipole directions for the
SMICA map. The colours, as indicated by the colourbar, corre-
spond to different values of the high-pass filter central multipole
`0. The size of a marker disc corresponds, from small to large,
to the size of the disc used in the analysis, namely 4◦, 12◦, 20◦,
and 70◦. The dipole directions from the Commander, NILC, and
SEVEM component-separation methods are consistent with the
case shown here. The low-` and WMAP-9 directions are identi-
cal to those in Fig. 35.

of the lower- and upper-tail probabilities of the values from
the data compared to the values from the simulations. The
maps for NILC, SEVEM, and SMICA are very similar. The nu-
merical values of the local-variance dipole amplitudes and
directions for the Commander method are given in Table 21;
the values for NILC, SEVEM, and SMICA methods are similar.

6.2. Dipole modulation: pixel-based likelihood

In PCIS13 we presented an analysis of the apparent
anisotropic distribution of large-scale power in the Planck
2013 temperature data within the parametric framework
defined by Gordon (2007) and Hoftuft et al. (2009), who
introduced an explicit dipole modulation field to model po-
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Fig. 28. Upper panel: local-variance dipole amplitude for 8◦
discs as a function of the central multipole of the high-pass fil-
ter, `0, for the four component-separation methods, Commander
(red), NILC (orange), SEVEM (green), and SMICA (blue). The grey
regions, from dark to light, correspond, respectively, to 1σ, 2σ,
and 3σ percentiles from the 1000 FFP8 simulations processed
by the Commander method. Lower panel: mean-subtracted and
inverse-variance-weighted local-variance map for the 8◦ discs
and for the Commander component-separation method; each pixel
is given in terms of the lower- and upper-tail probability of the
measured value on that pixel compared to the values from the
simulations. The pixels in grey correspond to the centres of the
8◦ discs on which the number of unmasked pixels in the full
resolution map is lower than our threshold. The black curve
superposed on the map indicates the boundary of the oppos-
ing hemispheres along the asymmetry axis. It is clear that the
largest fraction of >95% outliers (red pixels) lie on the pos-
itive amplitude hemisphere of the local variance dipole, while
the <5% outliers (blue pixels) are on the opposite hemisphere.
The corresponding maps for NILC, SEVEM, and SMICA are very
similar to the one shown here.

tential hemispherical power asymmetry. The following is a
direct update of that analysis using the Planck 2015 CMB
data at Nside = 32. All results are found to be in excellent
agreement with previous work. In the following, we there-
fore only consider a smoothing scale of 5◦ FWHM as a rep-
resentative example. This is the highest angular resolution
accessible for an Nside = 32 map.
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Table 21. Local-variance dipole amplitudes and directions.
All values quoted here are for 8◦ discs. This table is for the
Commander component-separation method, but the results are
similar for the other methods.

Direction
`0 Aa (l, b) [◦]

Unfiltered . 0.052± 0.016 (210,−26)
5 . . . . . . . . . 0.046± 0.014 (208,−24)
10 . . . . . . . . 0.040± 0.014 (199,−16)
15 . . . . . . . . 0.038± 0.012 (206,−16)
20 . . . . . . . . 0.028± 0.010 (202,−18)
30 . . . . . . . . 0.025± 0.010 (199,−19)

a A = 2(APlanck − 〈AFFP8〉), where APlanck and AFFP8 are the
local-variance dipole amplitudes of the data and the FFP8 sim-
ulations, respectively. The quoted errors are the dispersion of
the simulation amplitudes. Assuming a pure dipole modulation
model, A to first order would correspond to the modulation am-
plitude.

Table 22. Summary of dipole modulation results at a smoothing
scale of 5◦ for all Planck 2015 CMB temperature solutions, as
derived by the brute-force likelihood given by Eq. 42.

Method 2013 2015
Dipole modulation amplitude, α

Commander . . . . . 0.078± 0.021 0.066± 0.021
NILC . . . . . . . . . . 0.069± 0.021 0.061± 0.022
SEVEM . . . . . . . . . 0.066± 0.021 0.065± 0.021
SMICA . . . . . . . . . 0.065± 0.021 0.066± 0.021

Dipole modulation direction, (l, b) [◦]
Commander . . . . . (227,−15)± 19 (230,−16)± 24
NILC . . . . . . . . . . (226,−16)± 22 (228,−19)± 29
SEVEM . . . . . . . . . (227,−16)± 24 (226,−17)± 25
SMICA . . . . . . . . . (226,−17)± 24 (225,−18)± 24

Power spectrum amplitude, q
Commander . . . . . · · · 0.961± 0.025
NILC . . . . . . . . . . · · · 0.954± 0.024
SEVEM . . . . . . . . . · · · 0.966± 0.025
SMICA . . . . . . . . . · · · 0.960± 0.025

Power spectrum tilt, n
Commander . . . . . · · · 0.082± 0.043
NILC . . . . . . . . . . · · · 0.077± 0.043
SEVEM . . . . . . . . . · · · 0.077± 0.043
SMICA . . . . . . . . . · · · 0.081± 0.043

Recall first the basic data model adopted in the dipole
modulation approach: rather than assuming the CMB sky
to be a statistically isotropic Gaussian field, we allow for
an additional dipole modulation, resulting in a data model
of the form d = BMs + n, where Mij = (1 + α p̂ · n̂i)δij is
an offset dipole field multiplying an intrinsically isotropic
signal s with a dipole of amplitude α pointing towards
some preferred direction p̂. B denotes convolution with
an instrumental beam, and n denotes instrumental noise.
Additionally, we model the power spectrum of the un-
derlying statistically isotropic field in terms of a two-
parameter amplitude–tilt model of the form C`(q, n) =
q (`/30)n CΛCDM

` , where CΛCDM
` is the best-fit Planck 2015

ΛCDM spectrum (Planck Collaboration XI 2015). The two
parameters q and n can accommodate a deficit in power
at low ` as compared to the best-fit cosmology that would
otherwise create a tension with the underlying statistically
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Fig. 29. Top: Marginal constraints on the dipole modulation
amplitude, as derived from Planck 2015 temperature observa-
tions at a smoothing scale of 5◦ FWHM for Commander (red),
NILC (orange), SEVEM (green), and SMICA (blue). The plot corre-
sponds directly to Fig. 32 of Planck Collaboration XXIII (2014).
The Commander, SEVEM, and SMICA posteriors coincide almost
perfectly both internally, and with the corresponding SMICA 2013
posterior, shown as a dashed black line. Bottom: Corresponding
marginal two-dimensional constraints on the low-` power spec-
trum amplitude and tilt, (q, n), defined relative to the best-fit
Planck 2015 ΛCDM model.

isotropic model and result in the analysis measuring a com-
bination of both asymmetry and power mismatch.

In the absence of any dipole modulation, α = 0, the
total data covariance matrix is given by C = BSisoBT + N,
where Siso is the standard statistically isotropic CMB co-
variance matrix given by the power spectrum, C`, N is the
noise covariance matrix, and the corresponding likelihood
is given by the usual expression for a multivariate Gaus-
sian distribution. With dipole modulation, this generalizes
straightforwardly to C = BMSisoMTBT + N, with the likeli-
hood given by

L(α, p̂, q, n) ∝
exp [− 1

2d
t(BMSMTBT + N)−1d]√
|BMSMTBT + N|

. (42)
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Table 23. The amplitude and direction of the low-` dipole mod-
ulation signal determined from the QML analysis for the range
` ∈ [2, 64]. The errors are calculated from the cosmic variance
expected for statistically isotropic CMB realizations.

Direction
Method Amplitude (l, b) [◦]

Commander . . . . . 0.063+0.025
−0.013 (213,−26)± 28

NILC . . . . . . . . . . 0.064+0.027
−0.013 (209,−25)± 28

SEVEM . . . . . . . . . 0.063+0.026
−0.013 (211,−25)± 28

SMICA . . . . . . . . . 0.062+0.026
−0.013 (213,−26)± 28

Figure 29 and Table 22 summarize this five-dimensional
likelihood in terms of marginal parameters for each of the
four Planck CMB maps, as evaluated over the common
mask using the multi-dimensional grid-based Snake algo-
rithm (Mikkelsen et al. 2013). All results correspond to a
smoothing scale of 5◦ FWHM, the highest resolution sup-
ported by an Nside = 32 HEALPix grid, but, as in 2013, we
consider all smoothing scales between 5◦ and 10◦ FWHM,
reaching similar conclusions in each case: The dipole mod-
ulation results derived from the Planck 2015 temperature
maps are essentially identical to the 2013 results, with im-
proved internal consistency between the four CMB maps
due to better mitigation of systematic errors. The best-
fit dipole modulation amplitude at 5◦ FWHM is 6–7%
whilst the low-` power spectrum has an approximately 3–
5% lower amplitude compared to the best-fit ΛCDM pre-
diction. These results are fully consistent with expectations
given that the Planck 2013 sky maps were already cosmic-
variance-limited on these angular scales, and the 2015 maps
differ from the 2013 maps at the level of only a few mi-
crokelvin (Planck Collaboration IX 2015).

6.3. Dipole modulation: QML analysis

In this section we use the quadratic maximum likelihood
(QML) estimator introduced in Moss et al. (2011) and de-
scribed in Appendix C to assess the level of dipole mod-
ulation or directionality in our CMB sky. The specific im-
plementation is essentially identical to that used in Hanson
& Lewis (2009), Planck Collaboration XVII (2014), and
Planck Collaboration XXVII (2014), and exploits the fact
that dipole modulation of any cosmological parameter is
equivalent to coupling of ` to `± 1 modes in the CMB co-
variance matrix to leading order (see Appendix C). Planck
Collaboration XX (2015) presents an alternate analysis for
a specific isocurvature model.

Since we are interested in dipole modulation there are
three independent estimators. For our particular approach,
these are a real-valued m = 0 and a complex-valued m = 1
estimator, and take the form

X̃0 = 6
f10

∑
`m δC``+1A`m(T ∗`mT`+1m − 〈T ∗`mT`+1m〉)∑

` δC
2
``+1(`+ 1)F`F`+1

,

(43)

X̃1 = 6
f11

∑
`m δC``+1B`m(T ∗`mT`+1m+1 − 〈T ∗`mT`+1m+1〉)∑

` δC
2
``+1(`+ 1)F`F`+1

.

(44)
Here T`m are C-inverse filtered data and F` ≡ 〈T`mT ∗`m〉.
We adopt the inverse-variance filter from Planck Collabo-

ration XVII (2014), where the approximate filter functions
are also specified. We define δC``+1 ≡ dC`/dX+dC`+1/dX,
whereX is the parameter modulated, and A`m and B`m are
numerical coefficients (details can be found in Appendix C).
The factor f1m corrects the normalization for errors intro-
duced by masking:

f1m ≡
∫

dΩY ∗1m(Ω)M(Ω), (45)

where M(Ω) is the mask. Finally, we correct the direc-
tion for the effects of inhomogeneous noise which is not ac-
counted for in the filtering process, by weighting the X̃m by
the inverse of the variance derived from filtered and mean-
field corrected simulations.

The physics is readily accessible in this estimator: the
`-dependence in modulation determined by the parameter
X is expressed in the δC``+1 factor, and the relevant scales
appear directly in the limits of the sum. We consider the
estimator over the range `min = 2 ≤ ` ≤ `max. The modu-
lation amplitude and direction are then given by

Ã =
√
X̃2

0 + 2|X̃1|2, (46)

θ̃ = cos−1
(
X̃0

Ã

)
, (47)

φ̃ = − tan−1
(

Im[X̃1]
Re[X̃1]

)
. (48)

It is worth re-emphasizing that the quantities Ã, θ̃, and φ̃
are all dependent on the ` range considered.

As a consequence of the central limit theorem, for suf-
ficiently large `max the X̃s are Gaussian-distributed with
mean zero, so that the amplitude parameter has a Maxwell-
Boltzmann distribution. We fit to this distribution for
`max ≥ 10 when computing the p-value, so as not to be
influenced by Poisson noise in the tails of the empirical dis-
tribution (and we have determined that this is a good fit
to the simulations by applying a KS test). For the case of
scalar amplitude modulation (i.e., X = As), and `min = 2,
the cosmic-variance-limited expectation for the modulation
amplitude from statistically isotropic skies is〈

∆As

As

〉
≈

√
48

π(`max + 4)(`max − 1) . (49)

This is the cosmic variance for a scale-invariant dipole mod-
ulation, and gives a more explicit expression than the `−1

max
scaling discussed in Hanson & Lewis (2009).

The top panel of Fig. 30 presents results for the p-value
of the fitted modulation amplitude as a function of `max.
Note that there are several peaks, at ` ≈ 40 and ` ≈ 67 (the
focus of most attention in the literature), and ` ≈ 240. The
latter peak, while not previously emphasized, is also present
in the WMAP results (see Fig. 15 in Bennett et al. 2011).
It is also interesting to note that a modulation amplitude is
observed at `max ≈ 800 that is somewhat lower than what
one would typically expect for a statistically isotropic sky.
However, the significance is not at the level of the excess
dipole modulation at low ` and will not be discussed fur-
ther. The dip at `max ≈ 67, with a p-value of 0.9–1.0%,
corresponds to the well-known low-` dipole modulation.6

6 Actually only SEVEM and SMICA achieve their minimum at
`max = 67, whereas NILC and Commander achieve theirs at
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Fig. 30. Probability determined from the QML analysis for a
Monte Carlo simulation to have a larger dipole modulation am-
plitude than the Commander (red), NILC (orange), SEVEM (green),
or SMICA (blue) data sets, with (top panel) `min = 2 or (bottom
panel) `min = 100. No significant modulation is found once the
low-` signal is removed. We emphasize that the statistic here is
cumulative and apparent trends in the curves can be misleading.

Table 23 presents the corresponding dipole modulation pa-
rameters, which are seen to be consistent with previous
studies. Note that the mean amplitude expected for a set
of statistically isotropic simulations at this `max is 2.9%
(in close agreement with the expected value due to cosmic
variance, Eq. 49).

We have therefore determined a phenomenological sig-
nature of modulation for ` = 2–67 with a p-value of 0.9–
1.0%. If such a signal had been predicted by a specific
model, then we could claim a significance of about 3σ. How-
ever, in the absence of such an a priori model, we can assess
how often we might find a 3σ effect by chance, given that it

`max = 14 and 240, respectively. Such scatter is expected when
searching over a large number of possible ` ranges. The recon-
structed amplitudes for each component-separation method are
well within the error budgets of the estimator.

could have occurred over any ` range. Since we are looking
for a large-scale phenomenon, we assume that the analysis
should include the corresponding low-` modes and start at
` = 2. In order to correct for a posteriori effects we then
adopt the following scheme.

1. We calculate the modulation of each simulation on the
scales 2–`, where ` ∈ [10, `max]. For each simulation we
find the modulation that gives the smallest probability,
η (in the same way that was done for the data).

2. With the distribution of ηs given by the simulations we
then compare this to the data. That is, we calculate
the probability that one would find oneself in a Hubble
patch with a modulation amplitude up to ` ∈ [10, `max]
that is as significant as (or more significant than) the
modulation in the real data.
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Fig. 31. Probability determined from the QML analysis for ob-
taining a dipole modulation amplitude at least as anomalous as
the Commander (red), NILC (orange), SEVEM (green), and SMICA
(blue) data sets, for the range ` ∈ [10, `max]. The vertical line
corresponds to `max = 132 which was used as the search limit
in Bennett et al. (2011). The probability grows approximately
logarithmically with `max. This means that the adopted proba-
bility to exceed is fortunately not very sensitive to `max, and for
any reasonable choice is above 10%.

If `max = 132 (as chosen by Bennett et al. 2011), the
probability of achieving a modulation as large as the Planck
data in this range is higher than 10% (see Fig. 31). This is
in agreement with the findings of the WMAP team (which
found 10% and 13% in the same `-range, using two differ-
ent masks). Here, we do not quote a specific PTE for the
dipole modulation since it depends on the choice of both
`max (albeit not so sensitively) and `min (which we have
decided not to marginalize over). However, it appears to
be the case that the dipole modulation that we observe is
quite unremarkable. That is, Gaussian fluctuations in a sta-
tistically isotropic Universe will reasonably often result in
a dipole modulation with a comparable level of significance
to that presented here.

Beyond this, evidence for dipole modulation is found at
` ≈ 200–300, with a smaller dip at ` ≈ 500. Given that
the dipole modulation estimator is a cumulative quantity,
it is possible that these features are statistically enhanced
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by the usual low-` signal. To test this we analyse the dipole
modulation as a function of `max again, with the restriction
`min = 100 applied in order to completely remove any low-`
influence. The outcome is presented in Fig. 30 (bottom). It
is clear that even before introducing posterior corrections
no significant modulation is found, indicating that the p-
values of the features at ` > 100 were indeed exaggerated
by the low-` modulation.

6.4. Bipolar spherical harmonics

In the absence of the assumption of statistical isotropy, the
CMB two-point correlation function C(n̂1, n̂2) . C(n̂1 · n̂2)
can be most generally expanded in the bipolar spherical
harmonic (BipoSH) basis representation as follows:

C(n̂1, n̂2) =
∑

LM`1`2

ÃLM`1`2
{Y`1(n̂1)⊗ Y`2(n̂2)}LM . (50)

The BipoSH basis functions, {Y`1(n̂1) ⊗ Y`2(n̂2)}LM are
tensor products of ordinary spherical harmonic functions,
and the corresponding expansion coefficients are termed
BipoSH coefficients (Hajian & Souradeep 2003; Hajian &
Souradeep 2006). The BipoSH basis provides a complete
representation of any form of statistical isotropy violation
with the key advantage of separating the angular scale-
dependence of the signal in spherical harmonic multipoles,
`, from the nature of the violation indexed in the bipolar
multipole space by L. Consequently, it is possible to simul-
taneously determine that such a signal is dipolar (L = 1),
quadrupolar (L = 2), octopolar (L = 3), and so on, in na-
ture and that the power is restricted to specific ranges of
angular scales.

The estimation of BipoSH coefficients from CMB maps
is a natural generalization of the more routinely undertaken
estimation of the angular power spectrum Cl. To allow a di-
rect connection to the angular power, we further introduce
a set of BipoSH spectra at every bipolar harmonic moment,
(L,M), labelled by a difference index d, defined as follows:

ALM``+d = ÃLM``+d
ΠL

Π`(`+d)CL0
`0(`+d)0

, (0 ≤ d ≤ L) , (51)

where CLM`1m1`2m2
are the Clebsch-Gordon coefficients and

for brevity the notation Π`1`2..`n
=
∏n
i=1

√
(2`i + 1). Bi-

poSH spectra, clearly, are then simply a generalized set of
CMB angular power spectra, with the standard CMB an-
gular power spectrum C` = A00

`` being one of them.7 While
A00
`` quantifies the properties of the statistically isotropic

part of the CMB fluctuations, the additional BipoSH co-
efficients quantify the statistically anisotropic part of the
CMB two-point correlation function.

Thus BipoSH provides a mathematically complete de-
scription of all possible violations of statistical isotropy in
7 The BipoSH spectra, as defined in Eq. (51), restrict us to
working with only even-parity BipoSH coefficients (L+d is even)
due to the vanishing of CL0

`0`+d0 otherwise. While most known
isotropy-violating phenomena like weak lensing, Doppler boost,
non-circular beams, etc., can only produce even-parity BipoSH
spectra, measurement of odd-parity BipoSH spectra can be used
to test for systematic effects, or to search for the signatures of
exotic effects such as the lensing of CMB photons by tensor
metric perturbations.

a Gaussian CMB sky map. It is then always possible to
translate any specific model for such a signal into the lan-
guage of BipoSH and provide a common approach for the
multiple specialized tests that have been implemented pre-
viously in this paper and elsewhere. However, improving on
the analysis of the 2013 Planck data, a new formalism is
developed in order to reliably analyse a masked sky, as con-
cisely described in Appendix D. Aluri et al. (2015) provides
a more detailed description of the approach and includes an
explicit demonstration of its validity using simulations.

Initially, we revisit the simple phenomenological model
of dipole modulation of the CMB sky from Sect. 6.2,

T (n̂) = T0(n̂) (1 +M(n̂)) , (52)

where T (n̂) represents the modulated CMB sky, T0(n̂) is
the underlying (statistically isotropic) random CMB sky,
and M(n̂) is a dipolar field. The BipoSH coefficients re-
sulting from such a modulation are given by

A1M
``+1 = Ā1M

``+1 +m1MG
1
``+1 ;

G1
``+1 = C` + C`+1√

4π

√
(2`+ 1)(2`+ 3)

3 C10
`0(`+1)0 . (53)

Here Ā1M
``+1 corresponds to the BipoSH coefficients of the

unknown, but statistically isotropic, unmodulated CMB
field, m1M are the spherical harmonic coefficients of the
modulation field, and C` is the best-fit CMB angular power
spectrum.

The BipoSH representation further enables an estimate
of the modulation field to be made over specific angular
scales by windowing regions in multipole space in the sum
over multipoles ` in Eq. (53). This additional information is
important for identifying the origin of the isotropy-breaking
signal, which could be either cosmological or due to system-
atic artefacts.

We perform the analysis for the Nside = 2048 compo-
nent separated CMB maps with an apodized version of the
common mask at that resolution and reconstruct the mod-
ulation signal in independent bins of width ∆` = 64 up to
`max = 512. The application of the common mask intro-
duces a mean field bias in the BipoSH coefficients derived
from the data. This bias is estimated from the FFP8 sim-
ulations and subtracted from the derived coefficients. The
process of masking induces a coupling between the modu-
lation field and the mask that results in a modification of
the spectral shape of the modulation signal by the mod-
ified shape function (MSF) (see Appendix D for details).
Further, the covariance of the bias-subtracted BipoSH co-
efficients is not easy to derive analytically in this case. To
overcome this problem, we consider the diagonal approxi-
mation to the covariance matrix and estimate it from sim-
ulations.

The results presented in the top panel of Fig. 32 in-
dicate that the dipole modulation signal is most signifi-
cant in the lowest multipole window ` ∈ [2, 64]. Note that
the power in the dipole modulation field m1 = (|m11|2 +
|m10|2 + |m1−1|2)/3 is related to the dipole amplitude by
A = 1.5

√
m1/π. The best-fit amplitude (A) and direction

corresponding to the reconstructed dipole modulation field
from this lowest multipole bin is quoted in Table 24 for each
component-separation method.

Since the amplitude of the dipole modulation field is
consistent with zero within 2σ for all of the higher `-bins

Article number, page 36 of 61



Planck Collaboration: Isotropy and statistics of the CMB

0 100 200 300 400 500
`

10
−

4
10
−

3
10
−

2
10
−

1
10

0

m
1
/π
×

10
3

 

32 96 160 224 288 352 416 480

∗
•

⊗

+

+

240 ◦

300 ◦

0◦

0
◦

60
◦

12
0◦

-45◦

45◦
CMB dipole

low-ℓ

WMAP-9
SEP

NEP

ℓcentral

Fig. 32. Top: Measured dipole modulation (L = 1) power in
non-overlapping CMB multipole bins for Commander (red), NILC
(orange), SEVEM (green), and SMICA (blue) as determined from
a BipoSH analysis of the data. The power in the dipole of the
modulation field is a χ2-distributed variable with 3 degrees of
freedom. The shaded regions in the plot depict, in dark-grey,
grey, and light-grey respectively, the 1, 2, and 3σ equivalent
intervals of the distribution function derived from simulations,
while the solid black line denotes its median. Significant power in
the dipole modulation is seen to be limited to ` = 2–64 and does
not extend to higher multipoles. Bottom: Dipole modulation di-
rection as determined from the SMICA map. The directions found
from the other component separation maps are consistent with
this analysis. The coloured circles denote the central value of
the multipole bin used in the analysis, as specified in the colour
bar. The low-` and WMAP-9 directions are identical to those in
Fig. 35.

considered, it is plausible that the simple modulation model
in Eq. (52) is inadequate to describe the features seen in the
BipoSH spectra and should minimally allow for the ampli-
tude, A(`), of the dipole to depend on CMB multipole, `.
Although this may appear to be a more complex model, it
does not necessarily lack motivation. It is readily conceiv-
able that physical mechanisms that cause a dipolar modu-
lation of the random CMB sky would be scale-dependent
and possibly significant only at low wavenumbers. It is also
intriguing to note that, although in most cases the ampli-
tude of the modulation dipole is seen at low significance, the
directions in the first four bins, `32 ∈ [2, 64], `96 ∈ [65, 128],
`160 ∈ [129, 192], and `224 ∈ [193, 256], are seen to be clus-

Table 24. Amplitude (A) and direction of the dipole modula-
tion in Galactic coordinates as estimated for the multipole range
` ∈ [2, 64] using a BipoSH analysis. The measured values of the
dipole amplitude and direction are consistent for all maps.

Direction
Method A (l, b) [◦]

Commander . . 0.067± 0.023 (230,−18)± 31
NILC . . . . . . . 0.069± 0.022 (228,−17)± 30
SEVEM . . . . . . 0.067± 0.023 (230,−17)± 31
SMICA . . . . . . 0.069± 0.022 (228,−18)± 30

tered together, as shown in the bottom panel of Fig. 32.
Note that the lower significance of the modulation for the
multipole bins at ` > 64 results in larger errors for their re-
spective directions than the value quoted for the ` ∈ [2, 64]
bin recorded in Table 24.

We extend our analysis to carry out the dipole modu-
lation reconstruction in cumulative bins up to `max = 512,
making cumulative increments in the multipole in steps of
∆` = 64. The results of this analysis are summarized in
Fig. 33.

As noted previously, as a consequence of our motion
with respect to the CMB rest frame, the observed CMB
map is expected to be statistically anisotropic, as has been
demonstrated in Planck Collaboration XXVII (2014) and
Appendix B. Reassuringly, in PCIS13 it was established
that such a signal would not contaminate a dipole modula-
tion signal up to `max ≈ 700. We now confirm the Doppler
boost signal using the BipoSH methodology.

An equivalent description of the Doppler boost in terms
of BipoSH coefficients is given by

A1M
`1`2

= Ā1M
`1`2

+ β1MG
1
`1`2

, (54)
G1
`1`2

=
{
bν [G1

`1`2
]M − [G1

`1`2
]φ
}
×√

(2`1 + 1)(2`2 + 1)
12π C10

`10`20 ,[
G1
`1`2

]M = [C`1 + C`2 ] ,[
G1
`1`2

]φ = [C`1 + C`2 ]
+ [C`1 − C`2 ] [`1(`1 + 1)− `2(`2 + 1)] /2 ,

where β1M =
∫

dnY1M (n̂)β · n̂, β = v/c denotes the pe-
culiar velocity of our local rest frame with respect to the
CMB, and bν is the frequency-dependent boost factor, as
discussed in more detail in Planck Collaboration XXVII
(2014).

Since the Doppler boost signal has a frequency de-
pendence, we perform our analysis on the SEVEM-100,
SEVEM-143, and SEVEM-217 maps at Nside = 2048, and
adopt values of bν = 1.51, 1.96, and 3.07, respectively. A
minimum variance estimator for β1M , as discussed in Ap-
pendix D, is adopted with the shape function GL`1`2

replaced
by the corresponding Doppler boost term given in Eq. (54).
Corresponding unboosted CMB simulations were also used,
in particular to correct for the mean field bias. However, we
use a set of Doppler-boosted simulations in order to esti-
mate the error on the reconstructed Doppler boost vector.

Since it is expected that the low multipole modes of the
A1M
l,l+1 spectrum are contaminated by the dipolar signal re-

ported previously, in order to monitor the impact of this
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Fig. 33. Top: Measured dipole modulation power in cumula-
tive CMB multipole bins for Commander (red), NILC (orange),
SEVEM (green), and SMICA (blue) as determined from a BipoSH
analysis of the data.. Colour coding as in Fig. 32. Note that
the measurements in cumulative bins indicate a power in excess
of 2σ up to multipole `max ∼ 320. The value on the horizon-
tal axis denotes the maximum multipole used in the analysis,
with `min = 2. Bottom: Modulation dipole direction as recov-
ered from the SMICA map. The directions found from the other
component-separation maps are consistent with these directions.
The colour-coded points represent the directions recovered for
the specific `max used in the analysis, with `min = 2. The low-`
and WMAP-9 directions are identical to those in Fig. 35.

anomalous signal on the Doppler reconstruction we imple-
ment a cumulative analysis using multipoles with a vary-
ing `min from 2 to 640 in increments of ∆`min = 128 and
a fixed `max = 1024.8 The recovered Doppler amplitudes
from the three SEVEM frequency cleaned maps as a func-
tion of `min are shown in the top panel of Fig. 34, while
the lower panel indicates the corresponding direction β̂ in
Galactic coordinates determined from the SEVEM-217 data.
Table 25 records the best-fit amplitudes and directions for
` ∈ [640, 1024].

8 We fix `max = 1024 since at higher ` values the mismatch
between the data and simulation power spectra becomes more
important and is a concern for the bias subtraction applied when
reconstructing the Doppler boost signal.
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Fig. 34. Top: Amplitude |β| of the Doppler boost from the
SEVEM-100, SEVEM-143, and SEVEM-217 maps for different mul-
tipole bins determined using a BipoSH analysis. The maximum
multipole of each bin is fixed at `max = 1024, while `min is in-
cremented from ` = 2 to ` = 640 in steps of ∆` = 128. The
dashed line corresponds to the actual dipole boost amplitude,
|β| = 1.23× 10−3. Bottom: Doppler boost direction β̂ measured
in Galactic coordinates from SEVEM-217. The coloured circles
denote `min used in the analysis, while `max = 1024 is held
fixed. The low-` and WMAP-9 directions are identical to those
in Fig. 35.

Table 25. The Doppler boost amplitude (|β|) and direction
in Galactic coordinates derived over the multipole range ` ∈
[640, 1024] as evaluated from a BipoSH analysis. The errors are
estimated from an identical analysis of a set of 1000 Doppler
boosted simulations for each frequency.

Direction
Map |β| × 10−3 (l, b) [◦]

SEVEM-100 . . . . 1.24± 0.66 (277, 40)± 50
SEVEM-143 . . . . 1.35± 0.56 (264, 39)± 39
SEVEM-217 . . . . 1.28± 0.45 (257, 42)± 32

6.5. Angular clustering of the power distribution

In the Planck 2013 data release we reported a possible devi-
ation from statistical isotropy in the multipole range ` = 2–
600, thus confirming earlier findings based on the WMAP
data (Hansen et al. 2009; Axelsson et al. 2013). This claim
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of asymmetry extending to higher multipoles was made only
on the basis of the alignment of preferred directions as de-
termined from maps of the power distribution on the sky
for specific multipole ranges. In particular, it was found
that the directions of the dipoles fitted to such maps in the
multipole range ` = 2–600 were significantly more aligned
than in simulations. In addition, we showed that the ratio of
the power spectra in the two opposite hemispheres defined
by the asymmetry axis for ` = 2–600 was not statistically
anomalous (as later confirmed by Quartin & Notari 2014).

Here, we test for the alignment in the Planck 2015 data
set. We adopt the approach for the estimation of the dipole
alignment that was described in detail in PCIS13, a brief
summary of which follows.

1. Local power spectra are estimated from the data at
Nside = 2048 for 12 patches of the sky corresponding
to the Nside = 1 HEALPix base pixels. Only those high-
resolution pixels surviving the application of the com-
mon mask are included in the analysis.9 As a conse-
quence of this masking, when patches based on HEALPix
pixels with Nside > 1 are used, the available sky fraction
for those patches close to the Galactic plane is too small
for power-spectrum estimation. For most of the analysis,
we use the cross-spectra determined from half-mission
data sets.10 Due to a mismatch between the noise level
in the data and the simulated maps, the results based
on auto-spectra are less reliable and also more prone
to other systematic effects than the cross-spectra. We
therefore do not consider such results here. The spectra
are binned over various bin sizes between ∆` = 8 and
∆` = 32.

2. For each power spectrum multipole bin, an Nside = 1
HEALPix map with the local power distribution is con-
structed.

3. The best-fit dipole amplitude and direction are esti-
mated from this map using inverse-variance weighting,
where the variance is determined from the local spec-
tra computed from the simulations. We do not compute
error bars for the direction, but expect this to be ac-
counted for in part by the use of equivalently treated
simulations in the clustering analysis.

4. A measure of the alignment of the different multipole
blocks is then constructed. In PCIS13, we considered
the mean angle between all possible pairs of dipole di-
rections up to a given `max. Here, for greater consistency
with Sect 6.6, we use the mean of the cosine of the
angles, rather than of the angles themselves, between
all pairs of dipoles. This effectively corresponds to the
Rayleigh statistic (RS) introduced formally in Sect. 6.6,
and we will refer to it as such, although it differs by ig-
noring all amplitude information. Clearly, smaller values
of the RS correspond to less clustering.

5. The clustering as a function of `max is then assessed us-
ing p-values determined as follows. We first construct

9 Departing from the analysis in PCIS13, we do not use an
apodized version of the common mask. Simulations indicate that
the error on the power spectrum for those multipoles in the range
300 to 500 where the significance is highest is up to 20 % larger
in this case, with the corresponding error on preferred direction
being typically 8 % larger.

10 Note that simulated half-mission noise maps were generated
by adjusting the properties of the existing 1000 (10 000 in the
case of SMICA) noise simulations appropriately, thus explaining
why only 500 (5000) simulations are used in this analysis.

the RS using all multipoles up to `max. The p-value is
then given by the fraction of simulations with a higher
RS than for the data for this `max. A small p-value there-
fore means that there are few simulations that exhibit
as strong clustering as the data. Note that the p-values
are highly correlated as the RS is a cumulative function
of `max.

6. We then define two measures of significance. To achieve
this, it is necessary to reduce the 1499 different p-values
determined for `max ∈ [2, 1500] to a single measure of
clustering. We do this in two different ways, using the
mean of these p-values, and by finding the minimum of
the p-values, for both the data and for each available
simulation. We then determine the percentage of sim-
ulations with (i) a lower mean p-value and (ii) a lower
minimum p-value than the data. Note that these two
measures of significance take into account different as-
pects of the data. Note further that since the RS is cu-
mulative and the p-values therefore correlated, different
scales are weighted unequally and a detection in the
mean and/or minimum p-value may be difficult to in-
terpret and to correct for the multiplicity of tests effect
(LEE).
Note that the statistics defined in step 6 above corre-

spond to two choices of what were referred to as “global
statistics” in PCIS13 in order to assess the degree to which
the significance of the results depends on a specific choice
for `max. The mean p-value over all available `max mea-
sures the degree to which clustering is present over large
multipole ranges independently of whether the clustering is
strongly focused in one given direction. Clearly the p-values
for different `max are strongly correlated, but if the cluster-
ing is present only over a small multipole range, the RS will
drop and the corresponding p-values will eventually rise.
By comparing this value to simulations, we test not only
whether the dipole alignment in the data is stronger than in
statistically isotropic random simulations, but also whether
it is present over larger ranges of multipoles than expected.
The minimum p-value will give strong detections if there is a
strong asymmetry over a limited multipole range or weaker
clustering over larger multipole ranges when the clustering
is strongly focused in a given direction.

For Commander, NILC, and SEVEM, only 500 simulations
are available. However, 5000 simulations are available for
SMICA, which allows a better estimate of significance to be
determined when the probabilities obtained are very low. In
this case, we use half of the 5000 simulations to calibrate the
statistic (obtain p-values following step 5 above) and the re-
maining half to determine significance levels (compute the
mean and minimum over these p-values as a function of
`max following step 6). When using 500 simulations, it is
necessary to use the same set of simulations to calibrate as
well as to obtain probabilities. A related issue with these
results is that this set of simulations (corresponding to the
first 500 out of the 5000 available for SMICA) are observed
to yield higher p-values for the clustering angle due to a
statistical fluctuation. Another 9 sets of 500 simulations
that can be obtained from partitioning the 5000 available
SMICA simulations all result in lower p-values. As a conse-
quence, we observe that results based on the larger number
of simulations often give lower p-values than when only 500
simulations are used.

In Fig. 35 we show the dipole directions of the 15 lowest
100-multipole bins for the SMICA map. Here, the binning has
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Fig. 35. Dipole directions for independent 100-multipole bins of the local power spectrum distribution from ` = 2 to 1500 in the
SMICA map with the common mask applied. We also show the preferred dipolar modulation axis (labelled as “low-`”) derived in
Sect. 6.2, as well as the total direction for `max = 600 determined from WMAP-9 (Axelsson et al. 2013). The average directions
determined from the two multipole ranges ` ∈ [2, 300] and ` ∈ [750, 1500] are shown as blue and red rings, respectively. The error
on the derived direction that results from masking the data is about 60◦, with only small variations related to bin size.

been chosen for visualization purposes; in further analysis
of the Planck data we use finer `-intervals. The preferred
low-` modulation direction determined in Sect. 6.2 is also
indicated, along with the WMAP-9 result determined over
the range ` = 2 to 600 (Axelsson et al. 2013). The observed
clustering of the dipole directions is similar to that shown
in figure 27 of PCIS13. Note that differences in masking,
foreground subtraction, and residual systematic effects will
displace the direction of a given dipole with respect to the
previous analysis. Similar behaviour is seen for all of the
Planck component-separated maps.

In PCIS13, we calculated the mean angle between all
possible pairs of dipole directions determined from maps
of the local power in multipole bins of size ∆` = 16. Here
we test the possible bias arising from such a choice by con-
sidering bin sizes between ∆` = 8 and ∆` = 32 in steps
of 2. The lower limit avoids significant bin-to-bin coupling
in the power spectra for smaller binnings, whilst the upper
limit excludes cases where there are an insufficient number
of derived dipoles from which the mean angle can be calcu-
lated, this leading to poor statistics. In addition to showing
results for each bin size, we also calculate the variance-
weighted mean of the power spectra over all bin sizes (the
C` for a given bin size is weighted by 1/

√
Nb where Nb

is the bin size). In this way, we marginalize over bin sizes
to obtain local power spectra and thereby the RS for each
single multipole.
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Fig. 36. Derived p-values for the angular clustering of the power
distribution as a function of `max, determined for Commander
(red), NILC (orange), SEVEM (green), and SMICA (blue), based
on 500 simulations. For SMICA, the p-values based on 2500
simulations are also shown (black). The p-values are based on
the fraction of simulations with a higher RS, determined over
the `-range up to the given `max, compared to the data. The
results shown here have been marginalized over bin sizes in the
range ∆` = 8 to ∆` = 32.

Figure 36 shows the p-values for the different
component-separated maps, derived as described in step
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5 above. We see that the results based on 500 simulations
for NILC, SEVEM, and SMICA are in good agreement. The
Commander results are less consistent, but this may be re-
lated to the fact that component separation was performed
independently for the half-mission solutions, in contrast to
the other methods, where component-separation solutions
were obtained from the full mission data only. For SMICA, we
also show p-values based on 2500 simulations. These more
accurate results show lower p-values, and may indicate that
those determined from only 500 simulations are not suf-
ficiently stable. Note also that for ` < 100 the p-values
are not consistent with the detection of a low-` asymme-
try/modulation, as seen by other methods in this paper.
However, for ` < 100, there are very few bins and the vari-
ance of the RS might therefore be too high for this effect
to be visible.

In agreement with the conclusions in PCIS13, a large
degree of alignment is seen at least to `max ≈ 600. How-
ever, in contrast to the earlier results where the p-values
started increasing systematically for `max > 1000, the
current p-values remain low for `max > 750. The full
component-separated maps which have higher resolution
and sensitivity are used for the current analysis, instead of
the single-frequency foreground-cleaned map (SEVEM-143)
used in PCIS13. We note that the results for the updated
SEVEM-143 map are consistent with the earlier analysis,
both with and without correction for the Doppler mod-
ulation. Note also that the SMICA results with improved
statistics (based on 2500 simulations) generally show lower
p-values than the corresponding results based on 500 sim-
ulations.

Table 26 presents the fraction of simulations with a
lower mean/minimum p-value than in the data for a num-
ber of different cases. The table shows probabilities for
SMICA with different bin sizes (showing only every second
bin size since these are correlated), as well as for the re-
sults marginalized over bin sizes. We also show results for
the different component-separated maps, results based on
half-ring cross-spectra instead of half-mission cross-spectra,
and results using a different `-weighting scheme, specifically
(2`+1)C` instead of `(`+1)C`, the former being a measure
of the variance of the temperature fluctuations. The ta-
ble indicates probabilities of approximately 0–2% for most
of these cases, although results for the smallest bin size
show much less significant results. This could be due to
the strong anticorrelations between adjacent bins found for
this bin size in those Galactic Nside = 1 patches with very
small available sky fraction. For the other bin sizes, these
correlations are much weaker. Note that many of the sig-
nificances based on minimum p-value are only upper limits.
This is due to the fact that the limited number of simula-
tions in some cases results in the lowest minimum p-value
being zero. When the minimum p-value in the data is zero,
we show the percentage of simulations which also have zero
as the minimum p-value. Clearly this fraction is only an
upper limit on the real significance.

In order to further investigate the `-dependence of the
asymmetry, we follow two approaches from PCIS13. Firstly,
we restrict the analysis to multipoles above a minimum
multipole `min. Table 26 indicates that clustering at the
< 1 % significance level is still found when considering only
those multipoles with `min greater than 100. However, when
this limit is increased to 200, no significant clustering is
found. We then calculate the RS between pairs of dipoles
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Fig. 37. Derived p-values for the angular clustering analysis as
a function of `max, determined from SMICA based on 2500 sim-
ulations. The p-values are based on the fraction of simulations
with a higher Rayleigh statistic up to the given `max than in
the data. The RS here is calculated over all pairs of dipole di-
rections where one dipole in each pair is computed in the range
[`lim, `max], and the other is determined in the range [2, `lim]. The
plot shows p-values for `lim = 300 (purple), `lim = 400 (yellow),
`lim = 500 (pink), and `lim = 700 (cyan). The results have been
marginalized over bin sizes in the range ∆` = 8 to ∆` = 32.

where one dipole is determined from an `-range above a
certain limiting multipole `lim, and the other dipole below
this limit. Figure 37 shows the RS as a function of `max
for some selected values of `lim. The `lim = 300 curve (pur-
ple) indicates that dipole directions for ` > 1000 are sig-
nificantly aligned with dipoles for ` < 300. Similarly, the
`lim = 700 curve (cyan) indicates that the dipole directions
for ` = 700–1000 are strongly correlated with the dipole
directions for ` < 700.

Combining these results, we note that when using only
multipoles with (i) ` > 200, or (ii) ` < 200, no significant
clustering is found. The strong clustering significance shown
to persist to high multipoles in Fig. 36 must therefore be the
result of clustering of the dipole directions between low and
high multipoles as supported by Fig. 37. The low p-values
can be explained by the alignment of dipole directions for
multipoles extending all the way to ` = 1500 correlated with
directions for ` < 200. The observed asymmetry is therefore
not consistent with a model based on dipole modulation or
power asymmetry located in one specific multipole range
or for one given direction, but rather as a correlation of
the dipole directions between ` < 200 and ` > 200. This
correlation with lower multipoles is found to persist all the
way to `max = 1500.

An advantage of the directional analysis performed here
is that it focuses on a central issue for tests of deviation from
isotropy — whether there is a preferred direction. Indeed,
Bunn & Scott (2000) noted that the CMB may exhibit a
pattern that cannot be identified from the power spectrum,
but which would indicate some non-trivial large-scale struc-
ture. Evidence for the close correlation and alignment of
directions on different angular scales may present a signa-
ture of broken statistical isotropy, since in the standard
model, these directions should all be independent random
variables. In this context, we do not quote a specific direc-
tion for such asymmetry here since our results indicate a
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clustering of angles between different multipoles, but not
necessarily that all multipoles are clustered about one spe-
cific direction. However, crucially we have shown that the
measured clustering is driven by the correlations of direc-
tions between higher and lower multipoles.

Some of the analyses in other sections of the paper fo-
cus on dipolar modulation, a specific model for a dipolar
power enhancement of the statistically isotropic CMB field
towards a preferred direction of the sky, and use methods
optimized for the detection of such a signal. While the re-
sults of Sect. 6.6 show no detection of the clustering of
directions, there is no clear contradiction with the results
presented here, since they are based on tests for a`m correla-
tions between different multipoles as expected in the dipolar
modulation model. The clustering analysis presented here
is a model-independent test for deviations from statistical
isotropy which could induce very different correlation struc-
ture. It is therefore sensitive to other forms of asymmetry,
such as the addition of power in one part of the sky or more
general phase correlations.

6.6. Rayleigh statistic: QML analysis

Results from Sect. 6.5 and in PCIS13 suggest that, beyond
a dipole modulation of power on large angular scales, some
form of directional asymmetry continues to small scales.
There are also indications from Sect. 6.5 that the direc-
tions of dipolar asymmetry are correlated between large and
small angular scales. Since the nature of the asymmetry is
unknown we use the RS, a generic test for directionality
that makes minimal assumptions about the nature of the
asymmetry. This statistic has been used both in previous
CMB studies (Stannard & Coles 2005) and other areas of
cosmology (Scott 1991). In our context, for a statistically
isotropic sky this statistic is identical to a three-dimensional
random walk. The implementation here incorporates all in-
formation pertaining to modulation, not just the direction.
The approach in this section differs from that of Sect. 6.5 in
the method of reconstructing power, the choice of binning,
and the choice of how to weight directions in each bin. An-
other important difference is that Sect. 6.5 only considers
the direction of dipolar asymmetry and does not take into
account its amplitude.

The statistic is cumulative and thus narrowing down the
specific scales from which a signal may be originating is a
non-trivial task. However, it is the case that all statistics
that measure this form of asymmetry (dipole modulation or
large-scale clustering of power) are in some way cumulative
and so we will not worry about this issue any further. An-
other disadvantage of this approach is that it will generally
be less powerful than a test that uses a specific model for
the directionality. Again, this is a distinction shared when
one compares any non-parametric versus parametric statis-
tic.

The construction of the statistic is as follows.

1. Beginning with the estimator from Eqs. (43) and (44),
compute the following binned quantities for the data

Table 26. Significance of the angular clustering of the power
distribution. We indicate the actual mean/min p-value of the
data, determined from Fig. 36 and written as a fraction of the
number of simulations used to assess the values, together with
the percentage of simulations with a lower mean/minimum p-
value than the data. Unless otherwise specified, the numbers
are determined from half-mission cross spectra C``(` + 1), for
all multipoles in the range ` = 2–1500, and for the common
mask.

Bin Mean % Min. %
Method size p-value (mean) p-value (min)

SMICA . . . . . . 8 261/2500 1.60 35/2500 16.2
SMICA . . . . . . 10 51/2500 0.08 3/2500 2.36
SMICA . . . . . . 12 75/2500 0.20 1/2500 0.96
SMICA . . . . . . 14 83/2500 0.16 2/2500 1.52
SMICA . . . . . . 16 78/2500 0.24 4/2500 2.00
SMICA . . . . . . 18 51/2500 0.04 1/2500 0.68
SMICA . . . . . . 20 21/2500 <0.04 1/2500 0.76
SMICA . . . . . . 22 60/2500 0.08 2/2500 1.24
SMICA . . . . . . 24 34/2500 0.08 2/2500 1.00
SMICA . . . . . . 26 38/2500 0.08 1/2500 0.96
SMICA . . . . . . 28 42/2500 0.20 0/2500 <0.52
SMICA . . . . . . 30 27/2500 0.20 0/2500 <0.60
SMICA . . . . . . 32 21/2500 0.04 0/2500 <0.52
SMICA . . . . . . marg. 43/2500 <0.04 0/2500 <1.00
SMICAa . . . . . marg. 48/2500 <0.04 1/2500 1.70
SMICAb . . . . . marg. 47/2500 <0.04 0/2500 <1.16
SMICAc . . . . . marg. 50/2500 <0.04 0/2500 <0.76
SMICAd . . . . . marg. 254/2500 1.52 34/2500 20.1
Comm. . . . . . . marg. 9/500 <0.20 0/500 <2.60
NILC . . . . . . . marg. 10/500 <0.20 0/500 <3.60
SEVEM . . . . . . marg. 13/500 <0.20 0/500 <4.00
SMICA . . . . . . marg. 11/500 <0.20 0/500 <3.60
Comm.b . . . . . marg. 11/500 <0.20 0/500 <3.00
NILCb . . . . . . marg. 10/500 <0.20 0/500 <3.80
SEVEMb . . . . . marg. 12/500 <0.20 0/500 <3.40
SMICAb . . . . . marg. 11/500 <0.20 0/500 <3.80
Comm.c . . . . . marg. 8/500 0.20 0/500 <4.00
NILCc . . . . . . marg. 14/500 0.20 1/500 7.20
SEVEMc . . . . . marg. 17/500 0.20 1/500 8.40
SMICAc . . . . . marg. 15/500 0.20 1/500 7.60
a Half-ring maps instead of half-mission maps.
b C`(2`+ 1) instead of C``(`+ 1).
c Restricted to multipoles ` > 100.
d Restricted to multipoles ` > 200.

and simulation:

X̃0, ` = 6
f10

∑
mA`m(T ∗`mT`+1m − 〈T ∗`mT`+1m〉)

δC``+1F`F`+1(`+ 1) , (55)

X̃1, ` = 6
f11

∑
mB`m(T ∗`mT`+1m+1 − 〈T ∗`mT`+1m+1〉)

δC``+1F`F`+1(`+ 1) .

(56)

For each ` this computes the coupling of ` to `+ 1. We
emphasize that this is a very natural choice of binning
the estimator, since any parameter that is dipole mod-
ulated will lead to coupling of ` to ` ± 1 modes, albeit
with different `-weightings (below we describe why this
is not an important issue).
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2. Construct a three-dimensional vector out of the three
estimators for both the data and the simulations,11 as
defined by Eqs. (46–48).

3. Compute the mean amplitude from simulations and di-
vide all vectors (data and simulations) by this ampli-
tude. This choice ensures that each vector is treated
equally, since we have no a priori reason to weight some
scales more than others.

4. Add this new vector to the previous vector. If this is the
first time going through this process the previous vector
is the zero vector.

5. Repeat with ` → ` + 1. Note that the statistics of
this process are identical to a three dimensional random
walk.

Given that a dipole modulation amplitude of roughly 3σ
significance is known to exist at low ` (before a posteriori
correction), one would expect a similar level of detection
of asymmetry to be determined by the RS. Indeed, we find
that asymmetry is present out to ` ≈ 240. Figure 38 (top)
presents the p-values derived when the RS is computed as a
function of `max from ` = 2. The minimum p-value obtained
by the data is 0.1–0.2%, to be compared to the value of
0.9–1.0% obtained for the dipole modulation amplitude at
`max = 67. The direction preferred by the data for `max ≈
240 is (l, b) = (208◦,−29◦), which is approximately 20◦
away from the dipole modulation direction determined to
` ≈ 64.

We correct for a posteriori statistics using the same pro-
cedure as in Sect. 6.3. Specifically, we count how often sim-
ulations find asymmetry in the range 10 ≤ ` ≤ `max that is
more significant than that found for the data. From Fig. 39
it is clear that generic asymmetry at the significance level
found in our CMB sky occurs about 6% or 8% of the time
(depending on the range of ` one decides to search over).

While the PTE here is not very low, it is nevertheless
somewhat lower than for the usual dipole modulation test.
Hence, it seems worth exploring whether any of this sig-
nal comes from higher multipoles. Therefore we compute
the RS starting at `min = 100, to avoid the influence of
asymmetry at lower `. The lower panel of Fig. 38 presents
the corresponding p-values as a function of `max. There is
a striking similarity with the lower panel of Fig. 30. It is
clear that, even in the absence of a posteriori correction,
we find no significant asymmetry at larger `. Hence most of
the signal we are seeing in Fig. 38 (top) is due to the usual
low-` asymmetry.

We would like to stress that the results here are very
similar to the results of the previous section. For each of
the statistics used we are simply asking whether there is
significant coupling of ` with `±1 modes. The details of how
to optimally combine these couplings for a given ` range
depends on whether we are talking about dipole modulation
or directionality (or some other related test, e.g., variance
asymmetry). These details will change the range of scales
over which the strongest signal in the data is found.

11 Note that here we have not specified what δC``+1 is (it is
fully specified by choosing a parameter X to modulate). This
is because we have decided to weight each ` equally and thus
any strictly positive choice for δC``+1 will be equivalent, since
in step 3 we force the mean length of the vectors at each ` to be
equal.
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Fig. 38. Rayleigh statistic p-values determined from the QML
analysis as a function of `max for the Commander (red), NILC
(orange), SEVEM (green), and SMICA (blue) data sets, with (top
panel) `min = 2 and (bottom panel) `min = 100. The general
pattern of peaks is very similar to that in Fig. 30. We emphasize
that the statistic here is cumulative and as such trends in the
curves can be misleading.

7. Polarization analysis
As previously discussed in Sect. 2, large angular-scale CMB
fluctuations in the Planck polarization data have been sup-
pressed by a post-processing high-pass filter to minimize
the impact of systematic artefacts. Therefore, no polariza-
tion results concerning CMB statistical anomalies on such
scales are presented in this paper. In addition, a noise mis-
match between simulations and data also limits our ability
to study polarization more generally. Nevertheless, a local
analysis of the polarization data for stacked patches of the
sky can still be performed, in order to test the statistical
properties of the CMB anisotropies. In this case, the stack-
ing procedure mitigates the impact of the small-scale noise
and potential systematic effects.

Traditionally, the Stokes parameters Q and U are used
to describe the CMB polarization anisotropies (e.g., Zaldar-
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Fig. 39. Probability to exceed (PTE) the p-value of the signal
from the Commander (red), NILC (orange), SEVEM (green), and
SMICA (blue) data at ` = 230–240 (which is the multipole range
with the most significant deviation) when searching over a range
of multipoles up to `max, for the RS determined from the QML
analysis. Much like the equivalent curve for dipole modulation,
the PTE appears to grow approximately logarithmically with
`max.

riaga & Seljak 1997). Such quantities are not rotationally
invariant, thus for the stacking analysis it is convenient to
consider a local rotation of the Stokes parameters, result-
ing in quantities denoted by Qr and Ur, as described in
Sect. 7.1. Additionally, several other related quantities can
be defined.

The polarization amplitude P ≡
√
Q2 + U2 and po-

larization angle Ψ ≡ 1
2 arctan(U/Q), are commonly used

quantities in, for example, Galactic astrophysics. However,
unbiased estimators of these quantities in the presence
of anisotropic and/or correlated noise are hard to define
(Plaszczynski et al. 2014). Of course, a direct comparison
of the observed (noise-biased) quantity to simulations anal-
ysed in the same manner is possible, but we elect here to
defer the study of this representation of the polarization
signal, using maps of the polarization amplitude only to
define peaks around which stacking can be applied.

The rotationally invariant quantities referred to as E
and B modes are commonly used for the global analysis of
CMB data. Although the E-mode maps are not analysed in
detail here, they are considered qualitatively, so that it is
appropriate to recall their construction. Since the quantities
Q±iU , defined relative to the direction vectors n̂, transform
as spin-2 variables under rotations around the n̂ axis, they
can be expanded as

(Q± iU)(n̂) =
∞∑
`=2

∑̀
m=−`

a
(±2)
`m ±2Y`m(n̂), (57)

where ±2Y`m(n̂) are the spin-weighted spherical harmonics
and a(±2)

`m are the corresponding harmonic coefficients. If we
define

aE`m = 1
2

(
a

(2)
`m + a

(−2)
`m

)
,

aB`m = −i
2

(
a

(2)
`m − a

(−2)
`m

)
, (58)

then the invariant quantities are given by

E(n̂) =
∞∑
`=2

∑̀
m=−`

aE`mY`m(n̂) ,

B(n̂) =
∞∑
`=2

∑̀
m=−`

aB`mY`m(n̂) . (59)

7.1. Stacking around temperature hot and cold spots

The stacking of CMB anisotropies around peaks (hot and
cold spots) on the sky yields characteristic temperature
and polarization patterns that contain valuable information
about the physics of recombination (Komatsu et al. 2011).
Statistical analysis of stacked images differs from the other
tests in this paper in several respects. First, peak-related
new physics may be revealed that is difficult to find in a
global analysis, for example, the non-Gaussian CMB cold
spots predicted by a modulated preheating model (Bond
et al. 2009). Secondly, stacking is a local operation, which
naturally avoids mask-induced complications. Thus stack-
ing can be used as a transparent and intuitive method to
test the robustness of anomalies found with other methods.
Alternatively, it can be applied as a quality indicator of the
data at the map level.

Our stacking procedure is as follows. Hot (or cold) peaks
are selected in the temperature map as local extrema with
negative (or positive) second derivatives, and classified rel-
ative to a given threshold ν (in rms units of the temper-
ature map). Since the spinorial components Q and U are
expressed in a local coordinate system, we employ a config-
uration in which the Stokes parameters around a peak at
the direction n̂0 can be superposed (Kamionkowski et al.
1997). In particular, we use a locally defined rotation of the
Stokes parameters that is written as:

Qr (n̂; n̂0) = −Q (n̂) cos (2φ)− U (n̂) sin (2φ) ,
Ur (n̂; n̂0) = Q (n̂) sin (2φ)− U (n̂) cos (2φ) , (60)

where φ is the angle between the axis aligned along a merid-
ian (pointing to the south by convention) in the local coor-
dinate system centred on a peak at n̂0 and the great circle
connecting this peak to a position n̂. This definition de-
composes the linear polarization into radial (Qr > 0) and
tangential (Qr < 0) contributions around the peaks. This
definition of Qr is equivalent to the “tangential shear” used
in weak lensing studies.

For visualization purposes, a flat patch around each
peak is then extracted, and the average stacked image com-
puted from the subset. A position on the sky at an angular
distance θ from the central peak is labelled with the flat-sky
coordinates

x = $ cosφ , y = $ sinφ . (61)

Here $ = 2 sin(θ/2) ≈ θ is the effective flat-sky radius. For
the angular scales of a few degrees considered in the stack-
ing analyses the difference between $ and θ is negligible.
We use $ for analyses in the flat-sky approximation, and θ
for analyses directly on the sphere.

The stacking process tends to provide an image with
azimuthal symmetry about its centre, due to the almost
uncorrelated orientations of the temperature peaks. The
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stacked images of temperature patches around hot spots se-
lected above the null threshold for both the Commander data
and a corresponding simulation are shown in the top row of
Fig. 40. The observed patterns are in excellent agreement.
Stacking around cold spots yields similar patterns but with
flipped sign. Given the symmetry, it is often useful to con-
sider the radial profile obtained by averaging the stacked
image over the azimuthal angle φ. Fig. 41 shows such a
profile determined from the stacked temperature image.

At this point, it is useful to consider the underlying
physics represented by the various patterns in the stacked
images. During recombination, the sound horizon extends
an angle θs = rs/DA ≈ 0.011 (0.61◦), where rs ≈ 0.15 Gpc
is the size of the sound horizon at recombination and
DA ≈ 14 Gpc is the angular-diameter distance to the last
scattering surface. To understand the ring patterns in the
stacking image, projection effects must be taken into ac-
count. Firstly, all 3D modes with wavenumber k ≥ `/DA
contribute to a 2D `-mode. More modes contribute to,
and therefore enhance the power at lower `. For the first
acoustic peak, the net effect is a π/4 phase shift towards
lower `, such that `s ≈ (π − π/4)/θs ≈ 220. The pro-
jected acoustic scale on the temperature map is of order
θ2D

s = π/`s = 0.014 (0.81◦). Secondly, the stacked 2D
modes around peaks interfere with each other. The first
dark ring appears at 1.22θ2D

s ≈ 0.017 (1.0◦). The factor
1.22 is the ratio of the first minimum of the projection ker-
nel, the Bessel function J0, to the first minimum of the
unprojected cosine wave.

The dark ring can also be regarded as a consequence
of the correlation between T and −∇2T . At the tempera-
ture maxima −∇2T is positive, with an amplitude of or-
der Tpeak/(θ2D

s )2. Thus, the quadratic terms in the local
expansion of the temperature field have a negative contri-
bution that grows as −Tpeak($/θ2D

s )2. At $ & θ2D
s the

quadratic terms dominate and the T -(−∇2T ) correlation
becomes negative. Meanwhile, the T -(−∇2T ) correlation
tends to zero on the scale $ & θ2D

s , where the temperature
autocorrelation becomes weak and the local quadratic ex-
pansion starts to fail. As shown in Fig. 41, the dark ring
appears at the critical point where the T -(−∇2T ) correla-
tion reaches its minimum and turns back toward zero.

We have discussed the projection effects that make the
projected radial acoustic scale on a stacked T image larger
than θs. For Qr, the most striking patterns in the image
have more intuitive simple explanations, since the stacking
is essentially the real-space equivalent of the temperature
polarization correlation. The projection function contains
an extra `2 factor, which enhances the high-` power and
reduces the projected radial acoustic scale, coincidentally,
back to ≈ θs. The quadrupole responsible for the polariza-
tion around peaks is induced by gravity on angular scales
larger than twice the size of the horizon at decoupling. In
the case of an overdensity, this causes a flow of photons
towards the gravitational well on these scales, inducing a
quadrupolar pattern (see, e.g. Coulson et al. 1994). The
spherical symmetry of the gravitational interaction causes
a rotation of the quadrupole in the vicinity of the well, re-
sulting in a radial configuration in polarization. This radial
polarization pattern implies Qr > 0 and an overdensity im-
plies T < 0 by the Sachs-Wolfe formulae, which leads to
anticorrelation on these scales. Similarily, an underdensity
leads to an outward flow and induces a tangential polariza-
tion pattern, once again leading to anticorrelation on these
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Fig. 40. From top to bottom, T , Q, U , Qr, and Ur stacked
images (in µK units) extracted around temperature hot spots
selected above the null threshold (ν = 0) in the Commander sky
map for data (left column) and an equivalent simulation (right
column). The horizontal and vertical axes of the flat-sky projec-
tion are labelled in degrees.
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Fig. 41. Radial profile µT ($) derived from the stacked temper-
ature image (see Fig. 40 or 44). The denominators σ0 and σ2 are
the theoretical rms values of CMB T and ∇2T , respectively. The
theoretical 〈µT ($)〉 is a linear combination of 〈T ($)(T (0)/σ0)〉
(green dash-dotted line) and 〈T ($)(−∇2T (0))/σ2)〉 (blue dot-
ted line). For all four component-separated maps, the deviation
of µT from the ensemble mean 〈µT 〉 of the fiducial model (here
the Planck 2015 ΛCDM best fit) is consistent with cosmic vari-
ance, and can be related to the low-` power deficit. The example
power-deficit 〈µT 〉 (purple dashed line) is the theoretical predic-
tion of 〈µT 〉 if the fiducial model C`s are reduced by 10% in the
range 2 ≤ ` ≤ 50.

scales. At smaller scales, the polarized contribution is domi-
nated by the dynamics of the photon fluid. The acoustic os-
cillations modulate the polarization pattern, leading to the
different rings in the stacked images. The most noticeable
rings in the stacked Qr image are approximately at θs and
2θs. Thanks to the `2 enhancement, multiple acoustic peaks
in the TE power spectrum may be captured and projected
into ring patterns in the stacked polarization images. As
photons flow towards the overdensity, they are compressed
and the temperature increases, slowing the fluid descent
into the well. Eventually, the radiation pressure becomes
large enough to reverse the photon flow. This expansion
cools the photons until they fall back towards the well. Note
that the resulting inner ring was not observed in theWMAP
analysis (Komatsu et al. 2011), since the resolution was too
low.

Figure 40 clearly reveals all of the features described
above. The two bright rings at θs ≈ 0.011 (0.6◦) and
2θs ≈ 0.021 (1.2◦) are the predicted patterns associated
with the first CTE` acoustic peak at ` ≈ 310, while the
two faint rings are a striking illustration of the detection
of multiple acoustic peaks in the TE power spectrum. The
large-scale anticorrelation is suppressed due to the scale-
dependent bias which results from the fact that peaks are
defined by the second derivatives of the temperature field
(e.g., Desjacques 2008).

We are now in a position to discuss the consistency of
the Planck results with the predictions of a ΛCDM cosmol-
ogy. For simplicity, further analysis is focused on the angu-
lar profiles, and specifically the mean, µ(θ), estimated as the
average of the angular profiles around all hot (cold) peaks
above (below) a certain threshold ν. This analysis is per-

formed directly on the sphere to avoid any repixelization er-
ror. Note that the expected value of the mean temperature
angular profile is proportional to

∫
`d`CTT` J0(`θ), whilst

the expected values of the Qr and Ur mean angular pro-
files are approximately proportional to

∫
−`d`CTE` J2(`θ)

and
∫
−`d`CTB` J2(`θ), respectively. Since T has even par-

ity and B has odd parity, the expectation value for CTB` is
zero, and the Ur mean angular profile is therefore expected
to vanish.

A χ2 estimator is used to quantify the differences be-
tween the profiles obtained from the data and the expected
values estimated with simulations:

χ2 = [µ(θ)− µ̄(θ)] C−1 [µ(θ)− µ̄(θ)]T , (62)

with the covariance matrix defined as

C(i, j) = 1
N − 1

N∑
k=1

[µk(θi)− µ̄(θi)] [µk(θj)− µ̄(θj)], (63)

where the sum is over the N simulations used to estimate
this matrix and µ̄(θ) is the ensemble average. Note that
although the profiles in Fig. 40 are derived from data at a
resolution Nside = 1024, faster convergence of the χ2 statis-
tic is achieved using maps at a lower resolution. We have
verified that the results remain unchanged when adopting
data with Nside = 512.

Figure 42 presents a comparison between the profiles ob-
tained from the component-separated data and the mean
value estimated from simulations processed through the
SEVEM pipeline. Note that the error bars for the temper-
ature profiles are asymmetric due to a bias in the selection
of the peaks above a given threshold. Results for hot and
cold spots are shown for two different thresholds, ν = 0
and ν = 3. There is generally excellent agreement between
the different component-separation methods. A systematic
deviation between the data and the simulations for the hot
peaks in temperature (ν = 0) is seen at a level greater than
1σ. This discrepancy increases at higher thresholds, reach-
ing values of about 2σ for the ν = 3 case. Similar behaviour
is seen for the cold spots. For the Qr angular profiles, the
most striking differences appear around θ = 2◦ in the ν = 3
case for hot peaks, and around θ = 1◦.5 for the cold peaks.
For the Ur angular profiles, where a null signal is expected
(i.e., only noise is expected to be present), deviations at
similar levels are seen.

Table 27 presents the corresponding p-values for this
comparison. A theoretical χ2 distribution is used to deter-
mine the probability that a sky drawn from the ΛCDM
cosmology has a value larger than that derived from the
data. We have verified this approach by comparing the em-
pirical χ2 distribution estimated from 100 simulations (in
which the mean value and the covariance matrix are com-
puted from a further 900 simulations) with the theoretical
distribution with the corresponding degrees of freedom (see
Fig. 43). The χ2 value of the data is then estimated using
the mean value and the covariance matrix determined from
simulations. Although some differences are found among
the component-separation methods, a general consistency
between model and data is found.

Although the χ2 test has the advantage of being sen-
sitive to different types of deviations between model and
data, does not assume prior knowledge about possible de-
partures from the model, and can account for correlations
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Fig. 42. Mean radial profiles of T , Qr, and Ur in µK obtained for Commander (red), NILC (orange), SEVEM (green), and SMICA (blue).
Each individual panel contains (top) the mean radial profiles and (bottom) the differences (denoted “Diff”) between the mean
profiles of the data and those computed from the ensemble mean of the simulations. Results based on stacks around temperature
hot and cold spots are shown in the left and right columns, respectively. Upper plots present results for peaks selected above the
null threshold, while lower plots show the equivalent results for peak amplitudes above (hot spots) or below (cold spots) 3 times
the dispersion of the temperature map. The black dots (connected by dashed lines) depict the mean profiles and the shaded regions
correspond to the 1σ (68 %) and 2σ (95 %) error bars. The mean profiles and error bars are determined from SEVEM simulations.
Note that the Diff curves for each component-separation method are computed using the corresponding ensemble average, although
only the ensemble average from SEVEM is shown here.

between the various tests from which it is constructed, it
can nevertheless be suboptimal under certain conditions.
This appears to be the case when considering the system-
atic shift between data and simulations seen in the temper-
ature profiles µT — the χ2 statistic is not particularly sensi-
tive to systematic deviations of constant sign. We therefore
consider an alternative quantity, the integrated profile de-
viation, defined as

∆µT (W ) =
∫ R

0
[µT (θ)− µ̄T (θ)]W (θ) dθ , (64)

where R, the size of stacking patches, is taken to be 3◦.5
in this case. The weighting function is chosen to be pro-
portional to the expected profile, but the results are robust
for other choices, e.g., W = 1. The p-values obtained in
this case are given in Table 28. These are consistent with
what might be expected from visual inspection of the plots,
i.e., the deviations are typically close to 2σ. These devia-
tions are likely to be connected to the deficit in the ob-
served power spectrum at low multipoles, as may be seen
in Fig. 41. Here, the purple dashed line indicates the reduc-
tion in µ̄T if the theoretical C` values are reduced by 10%
over the range 2 ≤ ` ≤ 50.

7.2. Generalized stacking

In this section, a much wider class of stacking methods is
introduced, with particular emphasis on oriented stacking,
a novel approach that has not previoulsy been explored in
the literature. We regard the stacking as oriented if the ori-
entation of the local coordinate frame, and in particular the
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Fig. 43. χ2 distributions obtained from the T (left column), Qr
(middle column), and Ur (right column) mean radial profiles cen-
tred on temperature hot spots selected above the null threshold
(upper row) and three times the dispersion of the map (bottom
row). The black lines correspond to the theoretical χ2 distribu-
tion with 12 degrees of freedom, whilst the histograms show
the distributions determined from 100 simulations computed
through the Commander (red), NILC (orange), SEVEM (green), and
SMICA (blue) pipelines. The vertical lines represent the χ2 values
obtained from the data.

φ = 0 axis, is correlated with the map that is being stacked.
Thus, the stacking methodology in Sect. 7.1 is considered
unoriented, because the orientation is defined relative to the
local meridian pointing towards the Galactic south, rather
than any property of the data themselves. Alternative ap-
proaches to unoriented stacking can also be considered. In
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Table 27. p-values of the T , Qr, and Ur angular profiles com-
puted from the stacking of hot and cold spots selected above the
ν = 0 and ν = 3 thresholds.

Probability [%]

Comm. NILC SEVEM SMICA
ν = 0 (hot spots)

T . . . . . . . . . . . . 8 3 7 5
Qr . . . . . . . . . . . 4 5 3 3
Ur . . . . . . . . . . . 93 28 75 44

ν = 3 (hot spots)
T . . . . . . . . . . . . 18 16 22 21
Qr . . . . . . . . . . . 34 23 31 19
Ur . . . . . . . . . . . 28 61 21 50

ν = 0 (cold spots)
T . . . . . . . . . . . . 23 38 29 39
Qr . . . . . . . . . . . 86 85 63 78
Ur . . . . . . . . . . . 14 11 39 34

ν = 3 (cold spots)
T . . . . . . . . . . . . 24 21 23 20
Qr . . . . . . . . . . . 21 51 29 52
Ur . . . . . . . . . . . 30 13 30 8

Table 28. p-values of ∆µT computed from the stacking of hot
and cold spots selected above the ν = 0 and ν = 3 thresholds
from the Commander, NILC, SEVEM, and SMICA maps.

Probability [%]

Comm. NILC SEVEM SMICA
Hot spots

T (ν = 0) . . . . . 96.0 95.8 96.2 97.1
T (ν = 3) . . . . . 98.6 98.2 98.3 98.7

Cold spots
T (ν = 0) . . . . . 97.1 96.9 98.1 97.9
T (ν = 3) . . . . . 92.0 90.6 90.6 93.0

this subsection, the orientation of each patch is chosen ran-
domly from a uniform distribution in [0, 2π). The unori-
ented T and Qr images can then be directly compared with
previous sections.

For unoriented stacking, the ensemble average of stacked
fields cannot result in any intrinsic φ-dependence, as this
would be averaged out by the uncorrelated orientation
choices. The φ-dependence due to a specific choice of rep-
resentation can always be removed via a local rotation. For
example, the ensemble averages of Q + iU around unori-
ented temperature peaks are proportional to e2iφ. A local
rotation (Q,U) → (Qr, Ur) (Kamionkowski et al. 1997) re-
moves the e2iφ factor and compresses the information into a
single real map Qr. For oriented stacking, the φ-dependence
can be a mixture of a few Fourier modes (eimφ, for integer
m). Each m mode corresponds to a radial ($-dependent)
function.

In what follows, we use the Nside = 1024 component-
separated maps at a resolution of 10′ FWHM. The use of
this higher resolution as compared to the Nside = 512 data
used in Sect. 7.1 is motivated by the smaller-scale features
that are expected to result from the oriented stacking.

We also introduce the concept of the noise-free ensemble
average (NFEA), which is defined as the ensemble average
of stacked CMB-only maps for a fiducial cosmology. Re-
call that the fiducial model for the simulated sky maps, the
Planck 2013 best-fit ΛCDM model (Planck Collaboration

XVI 2014), differs from the updated Planck 2015 best-fit
ΛCDM model (Planck Collaboration XIII 2015). In previ-
ous sections, this mismatch was partially accommodated
by rescaling the CMB signal by a fixed scale factor. Here,
we instead specifically adopt the 2015 best-fit as a fiducial
model for the data. When comparing the data to the simu-
lations, we subtract the corresponding NFEA to minimize
any bias resulting from cosmology dependence.

In the context of random Gaussian fields, the NFEA
can be computed straightforwardly following Bardeen et al.
(1986):

〈M〉 =
〈
MwT〉〈wwT〉−1〈w〉 , (65)

where M is the map (around the central peak) to be
stacked, and w is the collection of Gaussian variables (on
the central peak) that are related to peak selection and ori-
entation determination. Eq. (65) is only valid for Gaussian
random variables. If the patch is rotated before stacking,
the field value evaluated at a dynamic coordinate is, in gen-
eral, not a random Gaussian variable. However, statistical
isotropy guarantees that the rotation of patches is equiva-
lent to an orientation constraint on the nonzero-spin field.
For example, orienting each patch in the direction where
U = 0 and Q > 0 is equivalent to the unoriented stacking
case where only peaks satisfying the additional constraint
−ε/2 < arg (Q+ iU) < ε/2 (ε→ 0+) are selected.

A further source of statistical bias can arise from noise
mismatch between the simulations and the data. Since the
effect of noise is to introduce random shifts in the peaks and
hence suppress patterns in the stacked images, any noise
mismatch can lead to pattern mismatch between the data
and simulations. For the temperature data, the contribution
due to noise mismatch is estimated to be at the sub-percent
level, lower than the cosmic variance. For stacking on polar-
ization peaks, the impact of the noise mismatch cannot be
safely ignored. Thus, for quantitative comparisons in this
paper, we only consider stacking on temperature peaks.

7.2.1. Oriented temperature stacking

The most straightforward way to orient a patch centred
on a temperature peak is to align the horizontal axis with
the major axis defined by a local quadratic expansion of
the temperature field around the peak. The disadvantage
of doing so is that the orientation is dominated by small-
scale fluctuations that are noise-sensitive. A better choice
is to use the major axis of the inverse Laplacian ∇−2T that
filters out the small-scale power. The inverse Laplacian is
defined as:

∇−2T (n̂) = −
∞∑
`=2

∑̀
m=−`

aT`m
`(`+ 1)Y`m (n̂) , (66)

where aT`m are the harmonic coefficients of the masked tem-
perature map. Spin-2 maps QT , UT are then defined by:

(QT ± iUT ) (n̂) =
∞∑
`=2

∑̀
m=−`

aT`m [±2Y`m(n̂)] . (67)

In the flat-sky limit, QT ≈ (∂2
x − ∂2

y)(∇−2T ) and UT ≈
−2∂x∂y∇−2T . To align the ∇−2T axes of the patches, we
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Fig. 44. Comparison between unoriented stacking (upper pan-
els) and oriented stacking (lower panels) of temperature patches
around temperature hot spots selected above the null threshold
(ν = 0). The left panels are the stacked SMICA maps, and the
right panels their corresponding NFEAs. The image units are
µK.

rotate each patch so that UT vanishes and QT ≥ 0 for the
central peak.

Figure 44 presents the stacked images of SMICA temper-
ature patches centred on temperature hot spots selected
above the threshold ν = 0, in both unoriented and oriented
forms. These are seen to be in excellent agreement with
their accompanying NFEAs, and, in the case of the unori-
ented stacks, with the results shown in Fig. 40, despite the
different stacking methodologies adopted (and component
separation method selected for visualization purposes).

The oriented T image is notably different from the un-
oriented one. The alignment between the major axis (of
∇−2T ) and the horizontal axis results in an ellipse elon-
gated along the horizontal axis, rather than a central disc.
Moreover, the quadratic-term contribution is suppressed
along the horizontal axis where the temperature profile is
smoother, and enhanced along the vertical axis where the
temperature profile is sharper. As a consequence, the dark
ring visible in the upper panel at 1◦ splits into two cold
blobs along the vertical axis.

To proceed with a quantitative analysis, we extract
Fourier modes Tm($) from the stacked map Tstack($,φ)
as follows:

Tm($) = 1
(1 + δm0)π

∫ 2π

0
Tstack ($,φ) cosmφ dφ , (68)

where δm0 is the Kronecker delta function. For odd m, the
NFEA 〈Tm〉 vanishes due to statistical isotropy. For evenm,
a straightforward calculation shows that only T0($), which
is equivalent to µT ($), and T2($) have nonzero NFEAs.

As discussed previously in Sect. 7.1, there are some
shortcomings of the standard χ2 procedure that is generally
used to assess the consistency of the data with simulations.

The problem is simplified by studying the statistics of an
integrated profile deviation:

Tm(W ) =
∫ R

0
[Tm($)− 〈Tm($)〉]W ($) d$ , (69)

where R, the size of the stacking patches, is taken to be
2◦ in our examples. The purpose of removing the NFEA,
〈Tm($)〉, which differs for the data and the simulations,
is to minimize the impact of the cosmology dependence. A
natural choice for the filter is 〈Tm($)〉 itself with a proper
normalization:

W ($) = 〈Tm($)〉∫ R
0 〈Tm($)〉2d$

. (70)

For the filter given by Eq. (70), the integrated profile devia-
tion Tm describes the relative deviation from the NFEA. If
ΛCDM is the correct model, the deviation is due to cosmic
variance and noise. The distribution of Tm is obtained from
simulations.

Table 29 presents a comparison of the Tm values de-
rived from the Planck data and the FFP8 simulations. No
inconsistencies in excess of the 3σ level have been found,
although tensions around 2σ are seen.

The m = 0 projection kernel J0[(` + 1/2)$] peaks at
low `. Thus T0 is cosmic-variance sensitive and the apparent
discrepancy in it could be related to a low-` power deficit.
An example is shown in Fig. 41 for illustration. To test
the robustness of this result, we have tried three additional
filters: a top-hat filter W = 1, a linear filter W = $, and
a Gaussian filter W = exp(−$2/σ2

g) with σg = 1◦. In all
cases, the power deficit remains at about the 2σ level.

Although the T0 deficit is not significant enough to fal-
sify the ΛCDM model, further investigation of its proper-
ties may still be interesting and help us understand the
other anomalies discussed in this paper. We consider two
possibilities. Firstly the amplitude of the T0 deficit is of or-
der 5–10%, which coincides with the level of hemispherical
power asymmetry discussed in Sect. 6.1. To test whether
the T0 deficit is localized on one hemisphere, we define the
“north” direction to be aligned with the power asymmetry
direction at (l, b) = (212◦,−13◦) (Akrami et al. 2014) and
compute T0 on the northern and southern hemispheres sep-
arately. The results are presented in Table 30. Although the
T0 deficit is more significant for the southern hemisphere, it
remains consistent with the ΛCDM prediction. Secondly, it
is of interest to determine whether the T0 deficit is related
to the Cold Spot discussed in Sect. 5.7. We therefore mask
out the Cold Spot using a disc of radius 6◦ and repeat the
calculation. The impact of this region on the T0 deficit is
insignificant.

Tensions at the 2σ level are also seen for T2. However,
due to the additional `2 factor in the projection kernel, the
oriented (m = 2) component T2 is more sensitive to high-`
power where the cosmic variance is small, and an under-
standing of the noise properties of the data is more im-
portant. The former implies that the related uncertainty in
T2 is, in general, smaller than that in T0. However, a mis-
matched cosmology, perhaps arising from a different pri-
mordial power amplitude As, can then lead to significant
tension between the data and the simulations. Indeed, we
find that without application of our cosmology calibration
(i.e., the subtraction of the NFEA in Eq. 69) the T2-tension
between the data and simulations increases by about 0.5σ,
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Table 29. Tm, as defined in Eqs. (69) and (70), for different thresholds ν. The expected values, together with the 1σ (68% CL)
and 2σ (95% CL) ranges determined from simulations are given in brackets.

T0 T2

Method Hot spots Cold spots Hot spots Cold spots
threshold ν = 0

Commander . . . . −0.03( 0.04+0.06+0.15
−0.04−0.07) −0.04( 0.04+0.06+0.16

−0.04−0.07) 0.07(0.04+0.01+0.03
−0.02−0.04) 0.06(0.04+0.01+0.03

−0.02−0.04)
NILC . . . . . . . . . −0.04( 0.04+0.06+0.15

−0.04−0.07) −0.05( 0.04+0.06+0.16
−0.04−0.07) 0.06(0.03+0.01+0.02

−0.02−0.04) 0.05(0.03+0.01+0.03
−0.02−0.04)

SEVEM . . . . . . . . −0.03( 0.04+0.06+0.16
−0.04−0.07) −0.04( 0.04+0.06+0.16

−0.04−0.07) 0.06(0.04+0.01+0.03
−0.02−0.04) 0.06(0.04+0.01+0.03

−0.02−0.04)
SMICA . . . . . . . . −0.03(−0.01+0.03+0.07

−0.02−0.04) −0.05(−0.00+0.03+0.07
−0.02−0.04) 0.06(0.04+0.01+0.03

−0.02−0.04) 0.06(0.04+0.01+0.03
−0.02−0.04)

threshold ν = 1
Commander . . . . −0.06( 0.05+0.09+0.22

−0.05−0.10) −0.06( 0.05+0.09+0.21
−0.06−0.09) 0.06(0.03+0.02+0.03

−0.02−0.04) 0.04(0.03+0.02+0.03
−0.02−0.04)

NILC . . . . . . . . . −0.06( 0.05+0.09+0.22
−0.05−0.10) −0.07( 0.05+0.09+0.21

−0.05−0.09) 0.06(0.02+0.02+0.03
−0.02−0.04) 0.04(0.02+0.02+0.03

−0.02−0.04)
SEVEM . . . . . . . . −0.06( 0.06+0.09+0.22

−0.05−0.10) −0.06( 0.06+0.09+0.22
−0.05−0.10) 0.06(0.03+0.02+0.03

−0.02−0.04) 0.04(0.03+0.02+0.03
−0.02−0.04)

SMICA . . . . . . . . −0.06(−0.01+0.04+0.10
−0.03−0.06) −0.07(−0.01+0.04+0.10

−0.03−0.06) 0.06(0.03+0.02+0.03
−0.02−0.04) 0.04(0.03+0.02+0.03

−0.02−0.04)

Table 30. T0, as defined in Eqs. (69) and (70), for different thresholds ν and hemispheres. The “north” hemisphere is centred on
the Galactic coordinate (l, b) = (212◦,−13◦) and the “south” hemisphere in the opposite direction. The expected values, together
with the 1σ (68% CL) and 2σ (95% CL) ranges determined from simulations are given in brackets.

“North” T0 “South” T0

Method Hot spots Cold spots Hot spots Cold spots
threshold ν = 0

Commander . . . . . −0.02( 0.03+0.07+0.16
−0.04−0.07) −0.03( 0.03+0.07+0.18

−0.04−0.07) −0.05( 0.03+0.07+0.18
−0.05−0.07) −0.06( 0.03+0.07+0.18

−0.04−0.07)
NILC . . . . . . . . . −0.02( 0.02+0.07+0.16

−0.04−0.07) −0.03( 0.02+0.07+0.17
−0.04−0.07) −0.05( 0.02+0.07+0.18

−0.04−0.07) −0.06( 0.02+0.07+0.18
−0.04−0.07)

SEVEM . . . . . . . . −0.02( 0.03+0.07+0.17
−0.04−0.07) −0.03( 0.03+0.07+0.18

−0.04−0.07) −0.05( 0.03+0.07+0.18
−0.05−0.07) −0.06( 0.03+0.07+0.18

−0.04−0.07)
SMICA . . . . . . . . −0.02(−0.01+0.04+0.09

−0.03−0.05) −0.03(−0.01+0.04+0.09
−0.03−0.05) −0.05(−0.01+0.04+0.08

−0.03−0.05) −0.07(−0.01+0.04+0.08
−0.03−0.05)

threshold ν = 1
Commander . . . . −0.04( 0.03+0.09+0.22

−0.06−0.10) −0.05( 0.03+0.09+0.23
−0.06−0.10) −0.08( 0.04+0.09+0.25

−0.06−0.11) −0.08( 0.04+0.09+0.24
−0.06−0.10)

NILC . . . . . . . . . −0.05( 0.03+0.10+0.23
−0.06−0.10) −0.06( 0.02+0.09+0.23

−0.06−0.10) −0.08( 0.03+0.09+0.25
−0.06−0.11) −0.08( 0.03+0.09+0.24

−0.06−0.10)
SEVEM . . . . . . . . −0.04( 0.04+0.10+0.23

−0.06−0.10) −0.05( 0.03+0.10+0.23
−0.06−0.10) −0.08( 0.04+0.09+0.25

−0.07−0.11) −0.08( 0.04+0.09+0.24
−0.06−0.11)

SMICA . . . . . . . . −0.04(−0.02+0.05+0.13
−0.04−0.07) −0.05(−0.02+0.05+0.13

−0.04−0.07) −0.08(−0.02+0.05+0.11
−0.04−0.07) −0.09(−0.02+0.05+0.12

−0.04−0.07)

whereas the variation of the T0-tension is . 0.2σ. The high-
` sensitivity of T2 also requires the use of an accurate noise
model, and it is possible that the 1–2σ tension in T2 may
be alleviated once improved noise simulations are available.

7.2.2. Oriented polarization stacking

The stacked Q and U images can be decomposed into
Fourier modes, Q + iU =

∑∞
m=−∞ Pm($)eimφ. For unori-

ented Q + iU stacking on temperature peaks, only P2($)
has a non-zero NFEA, and it can be linked to the con-
ventional Qr stacking via P2 = −Qr. Figure 45 shows
that the stacked Qr image is in excellent agreement with
its NFEA and the corresponding stacked image (fourth
panel) in Fig. 40, despite the different stacking methodolo-
gies adopted (and component-separation method selected
for visualization purposes). The length and orientation of
the headless vectors represent the polarization amplitude,
Pstack ≡

√
Q2

stack + U2
stack, and direction.

We next consider oriented stacking of the polarization
maps, again using QT , UT to define the orientation of the
patches. The stacked polarization images around temper-
ature peaks have m = 0, 2, 4 Fourier components. We can
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Fig. 45. Stacked Qr image around temperature hot spots se-
lected above the null threshold (ν = 0) in the SMICA sky map.
The left panel corresponds to the observed data and the right
panel shows the NFEA. The image units are µK. The head-
less vectors (black solid lines) are the polarization directions for
stacked Qstack, Ustack. The lengths of the headless vectors are
proportional to the polarization amplitude Pstack.

also choose to stack the polarization maps on PT peaks,
where PT =

√
Q2
T + U2

T . This picks up m = 0, 4 Fourier
modes with no circularly symmetric (Qr, m = 2) mode. In
Fig. 46 we compare the (Q,U) images stacked centred either
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Fig. 46. Oriented stacking of polarization fields (Q, U) on tem-
perature maxima (upper panels) and PT maxima (lower panels).
In both cases the threshold ν = 0 is used and the orientation is
chosen such that UT = 0 and QT ≥ 0 on the central peak. The
image units are µK. The left panels are the stacked SMICA maps,
and the right panels their NFEAs. See Fig. 45 for the meaning
of the headless vectors (black dashed lines).

on T peaks (top panel) or on PT peaks (bottom panel) with
their corresponding NFEAs, and find excellent agreement.

For a quantitative comparison, we only consider stack-
ing on temperature peaks and define the polarization inte-
grated profile deviation

Pm(W ) =
∫ R

0
(Pm($)− 〈Pm($)〉)W ($) d$ , (71)

where by default the filter is

W ($) = 〈Pm($)〉∫ R
0 〈Pm($)〉2d$

. (72)

The comparison of Pm (m = 0, 2, 4) between the data and
the simulations is shown in Table 31, where the results are
seen to be in excellent agreement.

Finally, we note that the peak selection does not have
to be made from the temperature map. In Fig. 47 we show
a few examples of stacking on polarization peaks using the
Nside = 512 maps. The higher-resolution polarization data
are too noisy for peak selection. In the upper panels, we
compare stacked images of the E-mode map centred around
E-mode peaks with the corresponding NFEA. We find that
the noise impact is relatively minor for FWHM = 20′ maps
and the plots are in qualitatively good agreement. Another
possibility, shown in the lower panels, is to stack polar-
ization maps centred on peaks determined from the cor-
responding polarization amplitude map. In this case the
peaks are strongly biased by the quadratic noise contribu-
tion and quite visible deviation from the NFEA is observed
in the stacked image.
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Fig. 47. Top: E-mode maps stacked on the unoriented E-mode
maxima computed above the null threshold ν = 0. Bottom: Q
stacked around oriented polarization amplitude (P ) maxima. In
this case, no threshold is used and the orientation is chosen such
that U = 0 and Q ≥ 0 on the central peak. The left panels are
the stacked SMICA maps, and the right panels their corresponding
NFEAs. See Fig. 45 for the meaning of the headless vectors
(black dashed lines). The image units are µK.

8. Conclusions
In this paper, we have presented a study of the statisti-
cal isotropy and Gaussianity of the CMB using the Planck
2015 data, including the full mission for temperature. We
do not claim that our results support or refute any partic-
ular physical model. Rather, we focus on null-hypothesis
testing: a number of tests are performed, then p-values are
calculated and reported. It is in the very nature of such a
model-independent approach to leave the detailed interpre-
tation to the reader. However, we do address the important
subject of a posteriori correction where possible.

The statistical tests are performed on maps of the CMB
anisotropy that result from the application of the four
component-separation methods described in Planck Col-
laboration IX (2015). All of the results presented here are
robust with respect to the choice of component-separated
CMB map. This is important since it demonstrates the high
quality and equivalence of the Planck component-separated
data products rendered by different methodologies under
varying assumptions.

We find that the CMB is largely consistent with statisti-
cal isotropy, although there are a few indications of anoma-
lies with respect to the expectations of ΛCDM. Some of the
tests we have performed are the same as those in PCIS13, in
which case the results are consistent. Since many of these
anomalies were also observed in the WMAP temperature
data, we re-emphasize explicitly the statement we made in
2013 — that the agreement between the two independent
experiments effectively rules out the possibility that the
origin of these features can be found in residual systematic
artefacts present in either data set. We have also performed
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Table 31. Pm, as defined in Eqs. (71) and (72), for different thresholds ν. The expected values, together with 1σ (68% CL) and
2σ (95% CL) ranges determined from simulations are given in brackets.

Method P0 P2 P4

Hot spots, threshold ν = 0
Commander . . . . 0.06(0.02+0.03+0.05

−0.03−0.06) −0.01( 0.01+0.01+0.02
−0.01−0.02) 0.04(0.01+0.02+0.05

−0.02−0.05)
NILC . . . . . . . . . 0.05(0.02+0.03+0.05

−0.03−0.06) −0.02( 0.00+0.01+0.02
−0.01−0.02) 0.03(0.01+0.02+0.05

−0.02−0.05)
SEVEM . . . . . . . . 0.05(0.02+0.03+0.06

−0.03−0.06) 0.01( 0.01+0.01+0.02
−0.01−0.02) 0.04(0.01+0.02+0.05

−0.02−0.05)
SMICA . . . . . . . . 0.05(0.03+0.03+0.05

−0.03−0.05) −0.02( 0.00+0.01+0.02
−0.01−0.02) 0.03(0.01+0.02+0.05

−0.02−0.05)
Cold spots, threshold ν = 0

Commander . . . . 0.06(0.02+0.03+0.05
−0.03−0.06) −0.01( 0.01+0.01+0.02

−0.01−0.02) 0.03(0.01+0.03+0.05
−0.02−0.05)

NILC . . . . . . . . . 0.06(0.02+0.03+0.05
−0.03−0.06) −0.01( 0.00+0.01+0.02

−0.01−0.02) 0.04(0.01+0.02+0.04
−0.03−0.06)

SEVEM . . . . . . . . 0.06(0.03+0.03+0.05
−0.03−0.06) 0.01( 0.01+0.01+0.02

−0.01−0.02) 0.03(0.01+0.02+0.05
−0.03−0.05)

SMICA . . . . . . . . 0.05(0.03+0.03+0.05
−0.03−0.06) −0.02( 0.00+0.01+0.02

−0.01−0.02) 0.03(0.02+0.02+0.04
−0.02−0.05)

Hot spots, threshold ν = 1
Commander . . . . 0.04(0.02+0.03+0.06

−0.04−0.07) −0.02(−0.00+0.02+0.03
−0.02−0.03) 0.05(0.01+0.03+0.06

−0.03−0.06)
NILC . . . . . . . . . 0.06(0.02+0.03+0.07

−0.04−0.07) −0.02(−0.01+0.01+0.03
−0.02−0.03) 0.05(0.01+0.03+0.06

−0.03−0.06)
SEVEM . . . . . . . . 0.05(0.02+0.04+0.07

−0.04−0.07) −0.01(−0.00+0.02+0.03
−0.01−0.03) 0.05(0.01+0.03+0.06

−0.03−0.06)
SMICA . . . . . . . . 0.04(0.03+0.03+0.07

−0.03−0.07) −0.02( 0.00+0.01+0.02
−0.01−0.03) 0.06(0.01+0.03+0.05

−0.03−0.06)
Cold spots, threshold ν = 1

Commander . . . . 0.07(0.02+0.03+0.06
−0.03−0.07) −0.00(−0.01+0.02+0.03

−0.02−0.03) 0.01(0.01+0.03+0.06
−0.03−0.07)

NILC . . . . . . . . . 0.08(0.02+0.03+0.06
−0.04−0.07) −0.01(−0.01+0.01+0.03

−0.02−0.03) 0.01(0.01+0.03+0.06
−0.03−0.07)

SEVEM . . . . . . . . 0.09(0.02+0.03+0.07
−0.03−0.07) −0.00(−0.00+0.02+0.03

−0.02−0.03) 0.02(0.01+0.03+0.06
−0.03−0.06)

SMICA . . . . . . . . 0.06(0.03+0.03+0.06
−0.03−0.07) −0.01( 0.00+0.01+0.02

−0.01−0.03) 0.02(0.01+0.03+0.06
−0.03−0.06)

a number of new tests, in order to try to narrow down the
nature of the apparent violations of statistical isotropy. In
addition, although the component-separated polarization
maps contained in the Planck 2015 release are high-pass
filtered, we have performed a stacking analysis that tests
some aspects of the polarized sky while mitigating the im-
pacts of noise and systematic effects.

In Sect. 4, we examined aspects of the Gaussianity of
the CMB fluctuations. Tests of skewness, kurtosis, multi-
normality, N -point functions, and Minkowski functionals
yielded no indications of significant departures from Gaus-
sianity, while the variance of the CMB map was found
to be low, in agreement with previous studies (PCIS13).
First-order moments of filtered maps also exhibit the low-
variance anomaly, as well as a kurtosis excess on certain
scales associated with the Cold Spot. A new study of peak
statistics finds results consistent with the expectations for
a Gaussian random field, although the Cold Spot is again
detected.

Section 5 provides an updated study of several previ-
ously known peculiarities. We study in detail the low vari-
ance anomaly, which appears to be associated with the
known low-` deficit in the angular power spectrum. We
confirm the lack of large-scale angular correlations, rela-
tively featureless northern ecliptic hemisphere 3- and 4-
point functions, and indications of violations of point- and
mirror-parity symmetry, although we make little or no at-
tempt to correct these for a posteriori effects. We place
tight constraints on a quadrupolar power modulation. The
Cold Spot is examined further, and, while we find variance,
skewness, and kurtosis angular profiles consistent with the
expectations of statistically isotropic simulations, the mean
temperature profile is anomalous at roughly the 1% level,

apparently due to the surrounding hot ring — the feature
that deviates most from the Gaussian model.

In Sect. 6 we perform a series of tests probing the well-
known large-scale dipolar power asymmetry. We detect the
asymmetry via pixel-to-pixel variance, as well as by mea-
suring power explicitly or indirectly via ` to ` ± 1 mode
coupling. The latter approach lends itself to a posteriori
correction, which reduces the significance of the asymmetry
substantially when no model for the anomaly is assumed.
In addition, we perform two independent but related tests
of directionality. One finds suggestions of anomalous clus-
tering of directions out to relatively small scales while the
other does not, evidently due to being optimized for slightly
different forms of directionality.

Finally, Sect. 7 presents the results of the stacking of
temperature and polarization peaks. We find results that
are largely consistent with statistically isotropic simula-
tions, both for oriented and unoriented stacking. The excep-
tion is a low unoriented temperature profile, which seems
to be yet another reflection of the large-scale power deficit.

With the Planck 2015 release, we are probably near the
limit of our ability to probe the CMB anomalies with tem-
perature fluctuations alone. The use of large-angular-scale
polarization, expected for the final Planck release, should
enable independent tests of these peculiar features. Impor-
tantly, this will reduce or eliminate the subjectivity and am-
biguity in interpreting their statistical significance. It is a
tantalizing possibility that some of the anomalies described
in this paper will take us beyond the standard model of
cosmology.
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Appendix A: Generalized Savitzky-Golay
polynomials

In the construction of optimal linear filters, one needs
to combine information about the (statistically isotropic)
CMB signal, anisotropic instrumental noise, masking to be
applied for the elimination of foreground contributions, and
a model for any non-Gaussian signal for matched filtering.
These can be combined in a general framework of normal-
ized convolutions (Knutsson & Westin 1993), where the fil-
tered field is defined as

U = aB ? wT

aB ?B†w
, (A.1)

where B is the (multiscale) filtering beam function, T is
the temperature, a and w their respective weights, and ?
denotes the usual convolution operation

{aB ? wT }(ξ) =
∑

x

a(x)B(x) · w(ξ − x)T (ξ − x). (A.2)

In the absence of a specific model for the non-Gaussian
signal, the beam functions can be taken to be orthogonal
polynomials on a disc, weighted by some smoothing func-
tion, while the weights applied to the temperature maps
are determined by the CMB and noise covariance.

In a simple approach, the information about the CMB
signal can be utilized by pre-whitening the map by convolv-
ing it with an isotropic beam function w` = C

−1/2
` derived

from the isotropic best-fit CMB power spectrum combined
with a diagonal approximation to the instrumental noise
covariance. After the component-separated CMB maps are
pre-whitened, and the corresponding mask is applied to the
resulting map, the multiscale filtering kernel b` is applied
at various scales.

In this paper, the maps are pre-whitened with the 2013
best-fit cosmological parameter CMB spectrum (Planck
Collaboration XV 2014), co-added to an isotropic noise
power spectrum derived from the half-mission, half-
difference noise maps appropriate for each component-
separation method. No adjustment is made either for the
recalibration of the 2015 data relative to the nominal re-
sults that the cosmological spectrum is derived from, or
for the mismatch in noise level between the half-mission,
half-difference and full-mission maps. This implies that the
filtering is sub-optimal, but the data and simulations are
treated consistently so there should be no significant impact
on the results. The resulting pre-whitening beam function
w` for the SMICA temperature map is shown in Fig. A.1.

The peak detector wavelets are taken to be Savitzky-
Golay polynomials (Savitzky & Golay 1964), generalized to
be defined on a disc with a polynomial smoothing weight
function applied, as shown in Fig. A.1. A generalized spher-
ical Savitzky-Golay kernel of order n and smoothing weight
k (referred to as SSGnk in the text) is defined by a polyno-
mial function of a radial variable x = sin(θ/2)/ sin(θmax/2),

Fn,k(x) =

n/2∑
i=0

aix
2i

 (1− x2)k, (A.3)

which is normalized to have unit mean on a disc and is
orthogonal to all non-constant polynomials up to order n,

1∫
0

xFn,k(x) dx = 1,
1∫

0

xi+1Fn,k(x) dx = 0. (A.4)

These are essentially high-order low-pass filters in harmonic
space, but have compact support on the sphere. A few rep-
resentative Savitzky-Golay polynomials are compared to a
Gaussian kernel in Fig. A.1. Combined with pre-whitening,
the total effect of the filters applied is described by the
composite beam functions shown in Fig. A.1.

One should note a slight `-space bandwidth mismatch
between differently shaped kernels with the same FWHM
value in real space, which is clear from the lower left panel of
Fig. A.1. While not a problem in general, some care should
be exercised when directly comparing results for different
shape kernels. In particular, the ` value at which the filter
kernel coefficient reaches b` = bmax/2 differs by a factor
of 1.58 between the GAUSS and SSG84 kernels of the same
FWHM.

Appendix B: Doppler boosting
The main effect of our relative motion with respect to the
CMB rest frame is a dominant contribution to the CMB
dipole (C1); this is boosting of the monopole and has been
detected previously (Kogut et al. 2003; Fixsen et al. 1996;
Hinshaw et al. 2009). A subtler consequence of our motion is
the boosting of all other multipoles. In fact, there are really
two effects at work. The first is a modulation effect which
increases power by approximately 0.25 % in the direction
of our motion and decreases it by the same amount in the
opposite direction. This can equivalently be thought of as
coupling between the multipoles ` and `± 1. The second is
an aberration effect which changes the apparent direction
in which CMB photons arrive at our detectors toward the
velocity direction.

Planck Collaboration XXVII (2014) reported a detec-
tion of this Doppler boosting, and an associated mea-
surement of its velocity signature of 384 ± 78 (statistical)
± 115 (systematic) km s−1 in the known dipole direction,
(l, b) = (264◦, 48◦). Here, we demonstrate that the Planck
2015 data release remains in agreement with this result, by
considering the angular scales 500 ≤ ` ≤ 2000. However,
since the simulations employed in the analysis contain the
effects of Doppler boosting, we report a consistency check
rather than a detection.

It is useful to perform a harmonic transform on the pe-
culiar velocity vector,

βLM =
∫

dn̂Y ∗LM (n̂)β · n̂, (B.1)

where only the L = 1 modes are non-zero. Following the
convention in Planck Collaboration XXVII (2014), we ro-
tate to an orthonormal basis, labelled β|| (along the ex-
pected velocity direction), β× (parallel to the Galactic
plane), and β⊥ (the remaining vector).

The peculiar velocity is detected using estimators that
pick out the off-diagonal components of the CMB covari-
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Fig. A.1. Generalized Savitzky-Golay polynomials are orthogonal to polynomials up to degree n on a disc, with smoothing weight
applied. Upper left panel shows a few representative polynomial kernels (SSG21 in red, SSG42 in dark green, SSG84 in blue) and
Gaussian (in black) as a function of radius (scaled to the same FWHM of 800′), lower left shows their harmonic space representation.
Right column shows pre-whitening kernel for SMICA temperature map on the top (in light blue), and the corresponding composite
kernels (WHITE*SSG21, etc) on the bottom (in the same colors).

Table B.1. Significance measures for the β estimates for the
143×217 data set. χ2 is formed from the three modes of β using
the covariance matrix measured from Doppler boosted simula-
tions.

Estimator χ2 PTE [%]

β̂‖ . . . . . . . . . . . 3.28 7.01
β̂⊥ . . . . . . . . . . . 0.21 64.39
β̂× . . . . . . . . . . . 0.08 77.53
β̂ . . . . . . . . . . . . 3.38 33.70

ance matrix

〈T`1m1T`2m2〉CMB =
∑
LM

(−1)M
(

`1 `2 L
m1 m2 M

)

×
√

(2`1 + 1)(2`2 + 1)(2L+ 1)
4π W βv

`1`2L
βLM . (B.2)

The weight function W βv is a sum of the modulation
(bvW τ ) and aberration (Wφ) effects. We quote results
based on orthogonalized weight matrices,

W φ̂ = Wφ −W τRφτ/Rττ (B.3)
W τ̂ = W τ −WφRτφ/Rφφ. (B.4)

Due to the clear connection between the velocity estima-
tors and those used for the lensing analysis, we adopt the

same data (143GHz and 217GHz sky maps, with dust fore-
grounds removed using the 857GHz data as a template)
and mask as used in Planck Collaboration XV (2015). The
results are summarized in Table B.1, and show good con-
sistency with previous results.

Appendix C: Generalized modulation estimator
Consider a parameter X that the (primary) CMB power
spectrum is dependent on. LetX have a dipolar dependence
of the form X(n̂) = X0 + ∆Xn̂ · m̂ (this could correspond
to a gradient in X across our observable volume), where X0
is the average value, n̂ is the direction to the last scattering
surface, and m̂ is the gradient direction. To linear order in
∆X/X, the measured spherical harmonics coefficients are
given by

a`m = aiso
`m +

∑
M

∆XM

∑
`′m′

daiso
`′m′

dX
ξM`m`′m′ , (C.1)

where the aiso
`m are the unmodulated statistically isotropic

modes. The ξM`m`′m′ are coupling coefficients given by

ξ0
`m`′m′ = δm′m (δ`′`−1A`−1m + δ`′`+1A`m) , (C.2)
ξ±1
`m`′m′ = δm′m∓1 (δ`′`−1B`−1±m−1 − δ`′`+1B`∓m) , (C.3)
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where

A`m =

√
(`+ 1)2 −m2

(2`+ 1)(2`+ 3) , (C.4)

B`m =

√
(`+m+ 1)(`+m+ 2)

2(2`+ 1)(2`+ 3) . (C.5)

From Eq. (C.1) we can find the covariance matrix to first
order in the components ∆XM :

C`m`′m′ = C`δ``′δmm′ + δC``′

2
∑
M

∆XMξ
M
`m`′m′ , (C.6)

where δC``+1 = dC`/dX + dC`+1/dX. To determine the
best-fit parameters, we proceed by maximizing the CMB
likelihood function

L = 1√
2π|C|

exp(−d†C−1d/2), (C.7)

where d is the CMB temperature data. Equation (C.7) is
maximized for the ∆XM that satisfy

d†C−1 dC
d∆XM

C−1d = Tr
[(
C−1 dC

d∆XM

)]
. (C.8)

From Eq. (C.6) it is clear that the CMB covariance
can be decomposed into an isotropic part (C`) and a
small anisotropic part proportional to ∆XM . By inverting
Eq. (C.6) and using the orthogonality of the ξM`m`′m′ , we
can determine the best-fit parameters

∆X0 =
6
∑
`m

δC``+1
C`C`+1

A`ma
∗
`ma`+1m∑

`

δC2
``+1

C`C`+1
(`+ 1)

, (C.9)

∆X+1 =
6
∑
`m

δC``+1
C`C`+1

B`ma
∗
`ma`+1m+1∑

`

δC2
``+1

C`C`+1
(`+ 1)

, (C.10)

and ∆X−1 = −∆X∗+1, to first order in the anisotropy.
These estimators are the full-sky, no-noise versions of
Eqs. (43) and (44).

Errors can easily be found by expanding the log-
likelihood about the best-fit parameters. The Fisher matrix
is defined as

FMM ′ ≡
1
2Tr

[(
∂C

∂∆XM
C−1 ∂C

∂∆XM ′
C−1

)]
. (C.11)

Upon switching bases, we find

F0,0 = 1
4
∑
`m

δC2
``+1

C`C`+1
A2
`m, (C.12)

F<(∆X+1),<(∆X+1) = 1
2
∑
`m

δC2
``+1

C`C`+1
B2
`m. (C.13)

We can then assign the standard errors, σ =
√
F−1.

Appendix D: Weighted-variance modified shape
function estimator

The BipoSH representation characterizes the off-diagonal
elements in the covariance matrix and is a generalization of
the angular power spectrum, C`,

ALM`1`2
=
∑
m1m2

〈a`1m1a`2m2〉CLM`1m1`2m2
. (D.1)

In general, it is not possible to analyse the full sky even for
component-separated maps, due to the presence of resid-
ual contributions from diffuse Galactic emission and point
sources. However, the application of a mask leads to cou-
pling between the spherical harmonic modes. Hence, the
correlation function is no longer described only by C(θ) or
the power spectrum C`, and other quantities are required
to completely quantify the statistical field.

We obtain an analytic expression for the observed Bi-
poSH coefficients after the application of a mask in terms
of the corresponding coefficients of the unmasked sky, and
those of the mask itself,

ÃLM`1`2
=
∑
`3`4

Π`3`4√
4π

∑
`5`6

Π`5`6√
4π
C`10
`30`50C

`20
`40`60 ×

∑
L1M1JK

{
L `1 `2
L1 `3 `4
J `5 `6

}
ΠL1ΠJA

L1M1
`3`4

W JK
`5`6

CLML1M1JK(D.2)

where Π` =
√

2`+ 1, ÃLM`1`2
are the BipoSH coefficients of

the masked sky map, ALM`1`2
correspond to the BipoSH co-

efficients of the unmasked sky, WLM
`1`2

are the BipoSH coef-
ficient of the mask itself, CLMlml′m′ are the Clebsch-Gordon
coefficients, and the term { } in Eq. (D.2) is the 9j−symbol.
This quantifies the coupling between the BipoSH coeffi-
cients of the CMB sky map and those of the mask itself.

The underlying CMB sky may have deviations from sta-
tistical isotropy, as discussed in Sect. 6.4, due either to a
dipole modulation (L = 1) of unknown origin, or to Doppler
boosting (L = 1) of the temperature field. The BipoSH co-
efficients of such statistical isotropy-violating fields can be
given by
ALM`1`2

= ĀLM`1`2
+ φLMG

L
`1`2

. (D.3)

Here ĀLM`1`2
corresponds to the BipoSH coefficients of the

unknown but statistically isotropic CMB field. This cou-
ples with BipoSH coefficients of the mask to introduce a
mean field linear bias 〈ALM`1`2

〉mask, which is estimated from
simulations and subtracted from the BipoSH coefficients
obtained from the masked sky. The φLM are the spheri-
cal harmonic coefficients of the field that breaks statistical
isotropy, and GL`1`2

is the shape function. Shape functions
for dipole modulation and Doppler boosting are given in
Eqs. (53) and (54), respectively.

Due to symmetries of the mask, which is largely de-
fined by foreground residuals towards the Galactic plane,
the dominant BipoSH modes of the mask correspond to
J = {0, 2},K = 0. Hence, for all practical purposes, sig-
nal is retained in the L = 1 mode itself, although masking
modifies the shape function, now defined as the modified
shape funtion in the rest of the text. A weighted variance
modified shape function is defined as

φ̂LM =
∑
`1`2

wLM`1`2

ÂLM`1`2

KLM
`1 `2

, (D.4)
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where ÂLM`1`2
= ÃLM`1`2

−〈ALM`1`2
〉mask and the weights are cho-

sen such that
∑
`1`2

wLM`1`2
= 1.

Here KLM
`1 `2

is the MSF, which can be evaluated as

KLM
`1 `2

=
∑
`3`4

ΠLG
L
`3`4

Π`3`4√
4π

∑
`5`6

Π`5`6√
4π
C`10
`30`50C

`20
`40`60 ×

∑
JK

{
L `1 `2
L `3 `4
J `5 `6

}
ΠJW

JK
`5`6

CLMLMJK . (D.5)

The weights are then given by

wLM`1`2
= 1∑

M

(
σALM

`1`2
/KLM

`1`2

)2

∑
`′1`
′
2

1∑
M

(
σALM

`′1`′2

/KLM
`′1`
′
2

)2


−1

.

(D.6)
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