
ON EXACT POISSON STRUCTURES

YINGFEI YI AND XIANG ZHANG

Abstract. By studying the exactness of multi-linear vectors on an orientable
smooth manifold M, we give some characterizations to exact Poisson struc-
tures defined on M and study general properties of these structures. Following
recent works [12, 13, 15], we will pay particular attention to the classification
of some special classes of exact Poisson structures such as Jacobian and quasi-
homogeneous Poisson structures. A characterization of exact Poisson struc-
tures which are invariant under the flow of a class of completely integrable
systems will also be given.

1. Introduction

Let M be an orientable C∞ smooth manifold of dimension n and let C∞(M) be
the space of C∞ smooth functions defined on M. A Poisson structure Λ on M is
an algebra structure on C∞(M) satisfying the Leibniz identity, i.e.,

Λ = {·, ·} : C∞(M) × C∞(M) → C∞(M),

is a bilinear map such that for arbitrary f, g, h ∈ C∞(M) the following holds:

(a) (Skew-symmetry) {f, g} = −{g, f},
(b) (Leibniz rule) {f, gh} = {f, g}h + g{f, h},
(c) (Jacobi identity) {{f, g}, h} = {f, {g, h}}+ {{f, h}, g}.

With a Poisson structure {, }, the algebra (C∞(M), {, }) becomes a Lie algebra (see
e.g., [16, 17]). The pair (M, {, }) is called a Poisson Manifold. In what follows,
smooth manifolds always mean orientable C∞ smooth manifolds.

With respect to a local coordinate system {xi} on M, such a structure can be
explicitly defined so that for arbitrary f, g ∈ C∞(M)

(1.1) Λ(df, dg) = {f, g} =

n∑

i,j=1

wij

∂f

∂xi

∂g

∂xj

,

where wij ∈ C∞(M), i, j = 1, . . . , n, satisfy the identities

wij + wji = 0,
n∑

l=1

∑

σ∈A3

wlσ(i)

∂wσ(j)σ(k)

∂xl

= 0,

here A3 is the group of cyclic permutations acting on (i, j, k). The matrix J = (wij)
is called a structure matrix associated to Λ. Since an everywhere non-degenerate
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Poisson structure is necessarily symplectic, Poisson structures are natural exten-
sions to the standard symplectic ones on a smooth manifold.

Let X k(M) be the space of smooth k-linear vectors on M and Ωk(M) the space
of differential k−forms. For a given volume element ω on M in standard local
expression, we consider its induced isomorphism Φ : X k(M) → Ωn−k(M): u →
iuω, where iuω is the inner product of u and ω. For instance, if u = f(x)∂i1 ∧ ∂i2 ∧
. . . ∧ ∂ik

with 1 ≤ i1 < i2 < . . . < ik ≤ n, and ω = dx1 ∧ dx2 ∧ . . . ∧ dxn under the

local coordinate {xi}, then iuω = (−1)i1−1(−1)i2−2 . . . (−1)ik−kf(x)dx1 ∧ d̂xi1 ∧

. . . ∧ d̂xi2 ∧ . . . ∧ d̂xik
∧ . . . ∧ dxn, hereafter x̂ stands for the omission of x. Let

D ≡ Φ−1 ◦ d ◦ Φ : X k(M) → X k−1(M)

be the pull-back operator under the isomorphism Φ, where d is the exterior deriv-
ative of differential forms. A k-linear vector Xk is said to be exact if D(Xk) = 0.
Specifically, a Poisson structure Λ satisfying D(Λ) = 0 is called an exact Poisson
structure. We note that symplectic structures are always exact. It is therefore
hopeful that an exact Poisson structure resembles a symplectic one to certain ex-
tends.

The present paper is devoted to the study of exact Poisson structures with respect
to their characterizations and general properties.

In [10], the author showed that the operator D has some important applications.
For instance, the operator can be used to compute the Schouten brackets and to
varify the Jacobian identity which a Poisson structure should satisfy. In Section 2,
we will further study properties of D. In particular, we will show that under the
action of D the direct sum ⊕n

k=0X
k(Rn) forms a complex. We will also study the

homology induced by the complex and its topological structure.
These properties of D and the volume preserving property of exact Poisson struc-

tures will be used in Section 3 to study three special classes of Poisson structures:
the Lie-Poisson, Jacobian, and the quasi-homogeneous structures. We will also in-
vestigate the Hamiltonian flows induced by these Poisson structures, with respect
to issues such as normal forms and volume-preservation.

It is known that any Jacobian structure is a Poisson structure ([9, 15]) and any
Jacobian structure with constant Jacobian coefficient is exact ([15]). In Section 3,
we will give a general sufficient condition for an exact Poisson structure to become
Jacobian. We will also study some general properties of the Jacobian structures.
Part of our results in this regard generalizes some of those in [15].

As for the quasi-homogeneous Poisson structures, we will give a necessary and
sufficient condition for a decomposition of a quasi-homogeneous Poisson structure
with respect to exact Poisson structures. This result is an improvement to the
corresponding ones in [12, 15]. Restricting to the classical r-Poisson structures
- a class of special quadratic Poisson structures, we will obtain a necessary and
sufficient condition for a classical r-Poisson structure in R3 to be exact. Using this
result we further prove that any quadratic Jacobian structure is a classical r-Poisson
structure in R3. It is known that any quadratic Poisson structure in R2 is a classical
r-Poisson structure ([12]) but in R3 the Poisson structure Λ = (x2

1 + αx2x3)∂2 ∧ ∂3

for α 6= 0 is not a classical r-Poisson structure ([13]). However, we note that for
α = 0 the structure Λ is a Jacobian structure. This leads to an open problem
to classify all classical r-Poisson structures within the class of quadratic Poisson
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structures. A more concrete question in dimension 3 is that whether a quadratic,
non-Jacobian Poisson structure is necessarily not a classical r-Poisson structure.

In Section 4, we will give a characterization of exact Poisson structures which are
preserved by a Tq-dense, completely integrable flow. We will also show that such
a T

q-dense flow preserving an exact Poisson structure can be non-Hamiltonian, in
contrast to the closed 2-form case in which any Tq-dense flow preserving a sym-
plectic structure is necessary a Hamiltonian ([4]).

2. General properties of exact Poisson structures

2.1. The operator D. We first recall the following properties of the operator D
which will be used later on.

Proposition 2.1. ([10]) The following holds.

(i) For any X ∈ X (M), D(X) = divωX, where divωX denotes the divergence
of the vector field X with respect to the volume element ω.

(ii) For any X,Y ∈ X (M), D(X ∧ Y) = [Y,X] + (divωY)X − (divωX)Y,
where [·, ·] denotes the usual Lie bracket of two vector fields, and ∧ denotes
the wedge product of two vectors.

(iii) For any U ∈ X µ(M) and V ∈ X ν(M),

[U, V ] = (−1)µD(U ∧ V ) − D(U) ∧ V − (−1)µU ∧ D(V ),

where [U, V ] denotes the Schouten bracket of the multi-linear vector fields
U and V , which is defined as the following: if U = u1 ∧ . . . ∧ uµ and
V = v1 ∧ . . . ∧ vν , then

[U, V ] =
∑

s,t

(−1)s+tu1 ∧ . . . ∧ ûs ∧ . . . ∧ uµ ∧ [us, vt] ∧ v1 ∧ . . . ∧ v̂t ∧ . . . ∧ vν .

(iv) Let Λ be a Poisson structure and XΛ = D(Λ) be its curl vector field. Then
the Lie derivative LXΛ

Λ ≡ [XΛ, Λ] = 0.
(v) A skew-symmetric bilinear vector field Λ is an exact Poisson structure if

and only if D(Λ) = 0 and D(Λ ∧ Λ) = 0.

Remark 2.1. 1) Statement (i) of the above proposition implies that a vector field
is exact if and only if it is divergent free. Hence it follows from Gauss’ Theorem
that the volume is invariant under the flow induced by an exact vector field.

2) For a 3-dimensional vector fields v = a∂x + b∂y + c∂z, the curl of v is defined
in the usual way as ∇×v = (cy − bz)∂x + (az − cx)∂y + (bx − ay)∂z. This is in fact
the curl vector field XΛ = D(Λ) with Λ = a∂y ∧ ∂z + b∂z ∧ ∂x + c∂x ∧ ∂y. Thus,
the operator D unifies the computations for the divergence and the curl of a given
vector field.

Let X ∗(Rn) = ⊕n
k=0X

k(Rn) be the algebra formed by the direct sum of the
space of the k-linear vectors. The following result describes certain homological
properties induced by the operator D, which will be used later in the classification
of exact Poisson structures.

Proposition 2.2. The following holds.

(a) D2 = 0.
(b) The D-homology of Rn formed by the vector space

Hk(Rn) =
(
(kernel of D) ∩ X k(Rn)

)
/
(
(image of D) ∩ X k(Rn)

)
,
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has the topological structures

Hk(Rn) =

{
R, k = n,
0, 0 ≤ k < n.

Proof. It follows from the definition of D, the de Rham cohomology and Poincaré’s
Lemma (e.g. [2]) in Rn. �

Remark 2.2. Proposition 2.2 implies that X ∗(Rn) is a complex induced by D and
the sequence of vector spaces

0 −→ Xn(Rn)
D
−→ Xn−1(Rn)

D
−→ . . .

D
−→ X 0(Rn) −→ 0

is exact.

2.2. Characterization of exactness. The following lemma will be used in the
general characterization of exact Poisson structures to be given in this section.

Lemma 2.1 ([8]). Let Λ be a smooth Poisson structure in Rn defined by (1.1).
Then Λ is exact if and only if

(2.1)

n∑

j=1

∂wij

∂xj

= 0, i = 1, . . . , n.

Proof. It follows from the fact that

(2.2) D(Λ) = 2
n∑

i=1




n∑

j=1,j 6=i

∂wij

∂xj


 ∂

∂xi

.

�

Recall that a smooth function H defined on a smooth manifold M is a first
integral of a smooth vector field X if X(H) ≡ 0 on M.

Our next result gives a characterization of exact Hamiltonian vector fields.

Theorem 2.1. Let Λ be a Poisson structure on a smooth Riemanian manifold M.
Then a Hamiltonian vector field XH associated to Λ and the Hamilton H is exact
if and only if the curl vector field XΛ = D(Λ) and the gradient vector field ∇H are
everywhere orthogonal on M, i.e., D(Λ) belongs to the tangent spaces of the level
surfaces of H; or equivalently, H is a first integral of the curl vector field D(Λ).

Proof. On any orientable manifold there is a volume form that locally takes the
standard one in Rn, so without loss of generality, we can prove the theorem under
a local coordinate system {xi}

n
i=1 on M by taking the standard volume element

ω = dx1 ∧ . . . ∧ dxn, where n = dim M .
Let J = (wij ) be the structure matrix of Λ and XH = J∇H be the associated

Hamiltonian vector field. Making use of the skew-symmetry of J , calculations yield
that

(2.3) D(XH) = −

n∑

i=1




n∑

j=1

∂wij

∂xj


 ∂H

∂xi

.
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By (2.2), we further have

(2.4) D(XH) = −
1

2
D(Λ) · ∇H,

from which the theorem easily follows. �

Remark 2.3. 1) From (2.4) and the fact that

D(XH ) = Φ−1 ◦ d ◦ Φ(XH) = Φ−1 ◦ d ◦ iXH
ω = Φ−1(LXH

ω),

it follows easily that Λ is exact if and only if any corresponding Hamiltonian vector
field is exact, or equivalently, the volume element ω is invariant under any Hamil-
tonian flow associated to Λ. This result is also a consequence of the theorem given
in [18].

2) By the Birkhoff Ergodic Theorem, for any Hamiltonian flow φt on an ori-
entable manifold M induced by an exact Poisson structure,

P (f)(x) = lim
T→∞

1

T

∫ T

0

f ◦ φt(x)dt,

is a well defined L1 function for any f ∈ L1(M).

There are two issues involved in checking whether a skew symmetric, bilinear
vector field Λ is an exact Poisson structure, i.e., Λ needs to be exact and satisfy
the Jacobian identity. For n ≥ 3, it is known that Λ is exact if and only if the
(n − 2)-form

Ωn−2 =
∑

1≤i<j≤n

(−1)i+j−1wijdx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

is closed, i.e., dΩn−2 = 0 (see for instance [12] or [8]). Moreover, if Λ is exact,
then there exists an (n − 3)-form Ωn−3 such that dΩn−3 = Ωn−2, or equivalently,
there exists a 3-linear vector X3 such that DX3 = Λ. The following proposition
establishes certain connections between exactness and the Jacobian identity. In
particular, for an exact Poisson structure, the Jacobian identity can be written in
a symmetric form.

Proposition 2.3. Let Λ be a skew symmetric bilinear vector field in Rn with the
structure matrix J = {wij}. Then Λ is an exact Poisson structure if and only if

n∑

j=1

∂wij

∂xj

= 0, i = 1, . . . , n,(2.5)

n∑

s=1,s6=i,j,k

(
As

ijk ·
∂Bs

ijk

∂xs

+ Bs
ijk ·

∂As
ijk

∂xs

)
= 0, 1 ≤ i < j < k ≤ n,(2.6)

where As
ijk = (wsi, wsj , wsk), Bs

ijk = (wjk , wki, wij).

Proof. We only prove the necessity, as the sufficiency follows from a similar ar-
gument. The condition (2.5) clearly follows from Lemma 2.1. Now for arbitrary
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integers 1 ≤ i < j < k ≤ n we have by (2.5) that
n∑

s=1

∑

σ∈A3

wsσ(i)

∂wσ(j)σ(k)

∂xs

=

n∑

s=1,s6=i,j,k

∑

σ∈A3

wsσ(i)

∂wσ(j)σ(k)

∂xs

+wjk

(
∂wij

∂xj

+
∂wik

∂xk

)
+ wki

(
∂wji

∂xi

+
∂wjk

∂xk

)
+ wij

(
∂wki

∂xi

+
∂wkj

∂xj

)

=

n∑

s=1,s6=i,j,k

∑

σ∈A3

wsσ(i)

∂wσ(j)σ(k)

∂xs

+
∑

σ∈A3

wσ(j)σ(k)

n∑

s=1,s6=i,j,k

∂wsσ(i)

∂xs

=

n∑

s=1,s6=i,j,k

∑

σ∈A3

(
wsσ(i)

∂wσ(j)σ(k)

∂xs

+ wσ(j)σ(k)

∂wsσ(i)

∂xs

)
.

This proves the condition (2.6). �

We note that the condition (2.6) cannot be simplified further under the exactness
condition. In dimension 3, the condition (2.6) is trivially satisfied. This means that
exactness condition implies the Jacobian identity in dimension 3.

3. Lie-Poisson, Jacobian, and Quasi-homogeneous structures

In this section, we will apply the general characterization of exactness from
the previous section to obtain more precise information for three special Poisson
structures: Lie-Poisson, Jacobian, and Quasi-homogeneous Poisson structures.

3.1. Lie-Poisson structures. A Lie-Poisson structure in Rn or Cn is defined by

(3.1) L =
n∑

i,j,k=1

ck
ijxk∂i ∧ ∂j ,

with ck
ij

′
s being the structure constants of an n-dimensional Lie algebra.

It is well known that a Lie-Poisson structure is necessary a Poisson structure
([14]). We have the following characterization.

Theorem 3.1. Let L be the Lie-Poisson structure defined in (3.1). The following
holds.

(a) L is exact if and only if
n∑

j=1

cj
ij = 0, i = 1, . . . , n.

(b) An associated Hamiltonian vector field XH = L(·, dH) is exact if and only
if the Hamiltonian H is a first integral of the completely integrable vector

fields
n∑

i=1

(
n∑

j=1

cj
ij

)
∂i.

(c) If the Lie algebra g formed by homogeneous polynomials of degree 1 under
the action of the Lie bracket induced by (3.1) is nilpotent, then the structure
(3.1) is affine equivalent to a structure of the type (3.1) with ck

ij = 0 for
k ≥ min{i, j}, and consequently, the resulting structure is exact.

Proof. Statements (a) and (b) follow directly from Theorem 2.1. Using Theorem
3.5.4 of [16] and statement (a) above we obtain the statement (c). �
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Lie-Poisson structures play important roles in studying normal forms for a class
of Poisson structures. Let Λ be an analytic Poisson structure in a neighborhood of
the origin in Rn or Cn defined by

(3.2) Λ =
n∑

i,j,k=1

(ck
ijxk + Rij(x))∂i ∧ ∂j ,

where Rij = O(|x|2), i, j = 1, · · · , n. Using Theorem 2.1, Theorem 4.1 of [5],
Theorem 2.1 of [17], and the generalized Darboux Theorem, one easily has the
following.

Proposition 3.1. Let Λ be an analytic Poisson structure of rank 2m in a neigh-
borhood of the origin in Rn or Cn. If the Lie algebra g with the structure constants
formed by the coefficients {ck

ij} of the linear truncation for the singular part of Λ
is semi-simple, then Λ is analytically equivalent to

P =
m∑

i=1

∂

∂pi

∧
∂

∂qi

+
∑

1≤i<j≤n−2m

(
n−2m∑

k=1

ck
ijyk

)
∂

∂yi

∧
∂

∂yj

.

If, in addition,
n−2m∑
j=1

cj
ij = 0 for i = 1, . . . , n − 2m, i.e., P is exact, then any

Hamiltonian flow associated to Λ is analytically equivalent to a volume-preserving
one.

Remark 3.1. The analyticity in Proposition 3.1 can be replaced by smoothness if
the Lie algebra g is of compact type. The existence of smooth equivalency in the
smooth case can be shown by using Theorem 4.1 of [6].

3.2. Jacobian structures. Let n ≥ 3 be an integer. Following [9], a Jacobian
bracket in Rn is a bilinear map {·, ·} : C∞(M) × C∞(M) → C∞(M), satisfying

{f, g} = u det(J(f, g, P1, . . . , Pn−2)),

where u, Pi ∈ C∞(Rn), i = 1, . . . , n − 2, J denotes the usual Jacobian matrix
of f, g, P1, . . ., Pn−2 with respect to the variables x1, . . . , xn, and ‘ det′ stands for
the determinant of a matrix. With the above setting, the Jacobian bracket is
said to be generated by P1, . . . , Pn−2 with a Jacobian coefficient u. It is easy to
see that if P1, · · · , Pn−2 are functionally dependent, then the Jacobian bracket is
trivial. In what follows, we always assume that the generators P1, . . . , Pn−2 of a
Jacobian bracket are functionally independent. It was shown in [9] that a Jacobian
structure, i.e., an algebra structure defined by a Jacobian bracket, is necessary a
Poisson structure and in [15] that a Jacobian structure with a constant Jacobian
coefficient is always exact.

We now give some conditions under which a Poisson structure becomes Jacobian.

Theorem 3.2. For Poisson structures in Rn, the following holds.

(a) For n = 2, a smooth Poisson structure is exact if and only if it is a constant
Poisson structure.

(b) For n = 3, a smooth Poisson structure is exact if and only if it is a Jacobian
structure with a constant Jacobian coefficient.

(c) For n > 3, a smooth Poisson structure is Jacobian with a non-zero constant
Jacobian coefficient if and only if it is exact and has rank ≤ 2, and the
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Lebesgue measure of the set of points at which the structure has rank 0 is
zero.

Proof. (a) A Poisson structure has the form Λ = ω(x, y)∂x ∧ ∂y. By part (b) of
Proposition 2.2, H2(R

2) = R. It follows that if Λ is exact, then it is a constant
Poisson structure. The converse is obvious.

(b) Assume that Λ is an exact Poisson structure, i.e., D(Λ) = 0. By part (b) of
Proposition 2.2, we have that H2(R

3) = 0, i.e., the kernel of D is equal to the image
of D. Hence, there exists a 3-linear vector X3 = P (x, y, z)∂x ∧ ∂y ∧ ∂z ∈ X 3(R3)
such that D(X3) = Λ. Since D(X3) = Px∂y ∧ ∂z + Py∂z ∧ ∂x + Pz∂x ∧ ∂y, we see
that Λ is the Jacobian structure generated by P . The sufficient part follows from
[15].

(c) The necessary part of (c) is obvious. To prove the sufficient part, we let
Λ be an exact Poisson structure of rank ≤ 2. Let {(Ui, φi, gi)} be a partition
of unity on Rn, where {Ui} is a locally finite open cover of Rn, each φi is an
isomorphism from Ui to U ′

i = φi(Ui) ⊂ Rn under which the Poisson structure Λ is

transformed into Λφi
= w

(i)
12 ∂u1

∧ ∂u2
, each gi ≥ 0 has support in Ui, and moreover

g(x) =
∑

i gi(x) = 1 in Rn, summing over a finite number of i’s. The existence of
such triples follows from pages 21-22 of [2] and Theorem 2.5.3 of [1].

Since Λ is exact, the structure Λφi
is exact. By statement (a) Λφi

is a constant

Poisson structure corresponding to the variables u1 and u2. Hence w
(i)
12 is a function

which is independent of the variables u1 and u2. Let

p1i(u3, . . . , un) =

∫ u3

u30

w
(i)
12 (s, u4, . . . , un)ds, pji = uj+2, for j = 2, . . . , n − 2.

Then Λφi
is a Jacobian structure generated by p1i, . . . , pn−2,i on U ′

i . Define

Pi(x) =
∑

j

Pij(x), x ∈ R
n,

i = 1, . . . , n − 2, where

Pij(x) =

{
gj(x)(φ−1

j )∗pij(x), if x ∈ Uj ,

0, if x 6∈ Uj .

In the above, the subscript ‘∗’ denotes the change of function pij under the coor-

dinate transformation φ−1
j . At each point x ∈ Rn, since {(Ui, φi, gi)} is a parti-

tion of unity on Rn, there exists a j ∈ N such that Pi(x) =
(
φ−1

j

)
∗
pij(x). The

fact Λ =
(
φ−1

j

)
∗

(
Λφj

)
in Uj implies that Λ is a Jacobian structure generated by

P1, P2, · · · , Pn−2 in some subregion containing x of Uj . Consequently, Λ is a Poisson
structure generated by P1, . . . , Pn−2. This proves (c). �

Remark 3.2. 1) Part (b) of the above theorem was stated in [12] for quadratic poly-
nomial Poisson structures without a proof, and stated in [15] for general polynomial
Poisson structures with a proof given for the quadratic case.

2) In dimension 2, a skew-symmetric, bilinear vector always satisfies the Jacobian
identity. If it is exact, then it is either symplectic or trivial. In dimension 3, by
part (b) of the above theorem, any Hamiltonian vector field associated to an exact
Poisson structure is completely integrable.

3) In dimension 2, the set of Poisson structures forms a vector space, which
is isomorphic to C∞(R2). The set of exact Poisson structures is a 1-dimensional
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subspace isomorphic to R, which is therefore closed. In higher dimension, the set
of Poisson structures cannot form a vector space. But the set of exact Poisson
structures in R3 forms a vector space, which is isomorphic to the quotient space
C∞(R3)/R.

4) Using Proposition 2.3, an alternative proof of statement (b) of Theorem 3.2
can be given as follows. Let Ω1 = w23dx1 + w31dx2 + w12dx3. Then dΩ1 = 0,
i.e., Ω1 is closed, hence exact. It follows that there exists a 0-form, i.e., a smooth
function P such that dP = Ω1. This shows that the Poisson structure is Jacobian.

Following [15], we now give another characterization of Jacobian structures de-
pending on their Casimirs. For a Poisson structure Λ on M, a function h ∈ C∞(M)
is called a Casimir of Λ if Λ(df, dh) = {f, h} = 0 for arbitrary f ∈ C∞(M), or equiv-
alently, the Hamiltonian vector field Xh = LhΛ = Λ(·, dh) is trivial. In other words,
a Casimir of a Poisson structure Λ is a first integral of any Hamiltonian vector field
LHΛ = Λ(·, dH). The set of Casimirs of Λ is called the center of Λ.

The necessary part of the first statement in the following theorem was stated in
[15] with a proof given for the case n = 4. We note that the proof for the case
n = 4 in [15] does not extend to the general case.

Theorem 3.3. A Poisson structure Λ in Rn has n − 2 functionally independent
Casimirs if and only if it is a Jacobian structure. Consequently, if Λ has exactly
n − 2 functionally independent Casimirs, then, excluding a set of zero Lebesgue
measure, the common level manifold of the Casimirs is symplectic of dimension 2.

Proof. The sufficient part of the first statement is obvious, because for a Jacobian
structure in Rn its n − 2 generators are already Casimirs.

We now prove the necessary part of the first statement. Let {xi} be a coordinate
system in Rn. Then the Poisson structure Λ has the representation

Λ(df, dg) ≡ {f, g} =
n∑

i,j=1

wij

∂f

∂xi

∂g

∂xj

, for f, g ∈ C∞(Rn),

where wij ∈ C∞(Rn). Let P1, . . . , Pn−2 be a set of functionally independent
Casimirs. By definition,

(3.3) Λ(dxi, dPl) =
n∑

j=1

wij

∂Pl

∂xj

= 0, i = 1, . . . , n; l = 1, . . . , n − 2.

For any n − 2 distinct elements i1, . . . , in−2 of 1, . . . , n, we denote by
J (xi1 , . . . , xin−2

) the Jacobian matrix of P1, . . . , Pn−2 with respect to xi1 , . . . , xin−2
,

i.e.,

J (xi1 , . . . , xin−2
) =




∂P1

∂xi1

. . . ∂P1

∂xin−2

∂P2

∂xi1

. . . ∂P2

∂xin−2

...
. . .

...
∂Pn−2

∂xi1

. . . ∂Pn−2

∂xin−2




.

Since P1, . . . , Pn−2 are functionally independent, we can assume without loss of
generality that det(J (x1, . . . , xn−2)) 6= 0.
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Note that equation (3.3) with i = n is equivalent to

(3.4) J (x1, . . . , xn−2)




wn1

...
wn,n−2


 = −wn,n−1




∂P1

∂xn−1

...
∂Pn−2

∂xn−1


 .

Since wn,n−1 can be arbitrary, if we choose

(3.5) wn,n−1 = −u(x1, . . . , xn) det(J (x1, . . . , xn−2)),

where u ∈ C∞(Rn) is an arbitrary function, then

(3.6) wnj = u det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−2)), j = 1, . . . , n − 2.

Similarly, working with equation (3.3) for i = n − 1 we have

(3.7) wn−1,j = −u det(J (x1, . . . , xj−1, xn, xj+1, . . . , xn−2)), j = 1, . . . , n − 2.

Since equation (3.3) with i = n − 2 is equivalent to

J (x1, . . . , xn−2)




wn−2,1

...
wn−2,n−2


 = −u det(J (x1, . . . , xn−3, xn))J (xn−1)

+u det(J (x1, . . . , xn−3, xn−1))J (xn),

we have

wn−2,j = −u

(
det(J (x1, . . . , xn−3, xn)) det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−2))

det(J (x1, . . . , xn−2))

−
det(J (x1, . . . , xn−3, xn−1)) det(J (x1, . . . , xj−1, xn, xj+1, . . . , xn−2))

det(J (x1, . . . , xn−2))

)
,(3.8)

for j = 1, . . . , n − 3.
We claim that, for any j = 1, · · · , n − 2,

det(J (x1, . . . , xn−3, xn)) det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−2))

− det(J (x1, . . . , xn−3, xn−1)) det(J (x1, . . . , xj−1, xn, xj+1, . . . , xn−2))(3.9)

= det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−3, xn)) det(J (x1, . . . , xn−2)).

Indeed, let

M = det

(
∂(P1,··· ,Pn−2)
∂(x1,··· ,xn−3)

∂P
∂xn−2

O ∂P
∂xn−1

O ∂P
∂xn

O ∂P
∂xn−2

∂(P1,··· ,Pn−2)
∂(x1,··· ,xj−1)

∂P
∂xn−1

∂(P1,··· ,Pn−2)
∂(xj+1,··· ,xn−3)

∂P
∂xn

)
,

where

∂(P1, · · · , Pl)

∂(x1, · · · , xk)
=




∂P1

∂x1
· · · ∂P1

∂xk

...
. . .

...
∂Pl

∂x1
· · · ∂Pl

∂xk


 ,

∂P

∂xk

=




∂P1

∂xk

...
∂Pn−2

∂xk


 ,

l, k = 1, · · · , n, and O denotes a zero matrix with appropriate dimension.
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By expanding M according to the first n − 2 rows, we have

M = det(J (x1, . . . , xn−3, xn−2)) det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−3, xn))

+ det(J (x1, . . . , xn−3, xn−1)) det(J (x1, . . . , xj−1, xn, xj+1, . . . , xn−2))

− det(J (x1, . . . , xn−3, xn)) det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−2)).

Since M = 0, the claim follows.
From (3.8) and (3.9), we have

(3.10) wn−2,j = −u det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xn−3, xn)),

j = 1, . . . , n − 3. Now, equation (3.3) with 1 < k < n − 2 reads

J (x1, . . . , xn−2)




wk,1

...
wk,n−2


 =

−u det(J (x1, . . . , xk−1, xn, xk+1, . . . , xn−2))J (xn−1)

+u det(J (x1, . . . , xk−1, xn−1, xk+1, . . . , xn−2))J (xn).

Similar to the proof for the case n − 2 by using a slight modification of (3.9), we
have

(3.11) wkj = −u det(J (x1, . . . , xj−1, xn−1, xj+1, . . . , xk−1, xn, xk+1, . . . , xn−2)),

for j = 1, . . . , k − 1.
Combining the formulas (3.5), (3.6), (3.7), (3.10) and (3.11), direct calculation

yields that

Λ(df, dg) =

n∑

i,j=1

wij

∂f

∂xi

∂g

∂xj

= u det(J(f, g, P1, . . . , Pn−2)).

This proves the first statement.
To prove the second statement, we denote by M the common level manifold of

the Casimirs of Λ. Then dimM = 2 except perhaps at a subset of zero Lebesgue
measure.

From the proof of the first statement, it follows that the n − 2 functionally
independent Casimirs are the generators of the Jacobian structure Λ. In terms
of suitable local coordinates {xi}, it is easily seen that Λ has the canonical form
∂xn−1

∧∂xn
−∂xn

∧∂xn−1
in a neighborhood of each point of the manifold M except

perhaps a subset of zero Lebesgue measure. This means that the structure matrix
of Λ has rank 2 in Rn except perhaps a subset of zero Lebesgue measure, which is
equal to the dimension of the manifold. Thus, the second statement follows. �

Part (a) of the following theorem was stated in [15] with a proof given for the
case n = 4.

Theorem 3.4. Let Λ be a Jacobian structure in Rn generated by P1, . . . , Pn−2

∈ C∞(Rn). The following holds.

(a) If P1, . . . , Pn−2 are functionally independent, then the center of Λ is a sub-
algebra of C∞(Rn), generated by P1, . . . , Pn−2.

(b) For any H ∈ C∞(Rn), the Hamiltonian vector field XH = Λ(·, dH) has the
canonical form {

İ = 0,

φ̇ = ω(I),
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where I = (I1, . . . , In−1)
> and ω(I) = 0 if H is functionally dependent on

P1, . . . , Pn−2.

Proof. (a) Since there are n functionally independent functions in the algebra
C∞(Rn), we can choose two functions f, g ∈ C∞(Rn) such that f, g, P1, . . . , Pn−2

are functionally independent. Assume that Λ is the Jacobian structure generated
by P1, . . . , Pn−2. For any h ∈ C∞(Rn), denote by Xh as the vector field Λ(·, dh).
Then f, P1, . . . , Pn are functionally independent first integrals of the vector field
Xf , and g, P1, . . . , Pn are functionally independent first integrals of the vector field
Xg. Since a vector field in dimension n has at most n− 1 functionally independent
first integrals, if it has the maximal number of first integrals, then any other first
integral is a function of these n − 1 functionally independent first integrals.

Suppose that H ∈ C∞(Rn) is a Casimir of the Jacobian structure Λ. Then for
any h ∈ C∞(Rn), we have Λ(dh, dH) = 0. Consequently, Xf (H) = Λ(dH, df) = 0
and Xg(H) = Λ(dH, dg) = 0. This means that H is a first integral of both vector
fields Xf and Xg . Hence, H is a smooth function of f, P1, . . . , Pn−2, and also a
smooth function of g, P1, . . . , Pn−2. It follows from the functional independency of f
and g that H should be a smooth function of P1, . . . , Pn−2. Hence, the center of the
Jacobian Poisson structure is a sub-algebra of C∞(Rn), generated by P1, . . . , Pn−2.

(b) If H is functionally dependent on P1, . . . , Pn−2, then the vector field XH is
trivial. Hence, it has the canonical form with ω(I) ≡ 0.

If H is functionally independent of P1, . . . , Pn−2, then the vector field XH

is completely integrable with the n − 1 functionally independent first integrals
H, P1, . . . , Pn−2. Hence, the vector field XH has the desired normal form. �

Combining Theorem 3.3 and statement (a) of Theorem 3.4, we easily have the
following.

Corollary 3.1. (a) The center of a Poisson structure in Rn having functionally
independent Casimirs P1, . . . , Pn−2 is a sub-algebra generated by the n − 2 given
Casimirs.

(b) In R
3, a Poisson structure has a Casimir if and only if it is a Jacobian

structure. And a Poisson structure is exact if and only if it is a Jacobian structure
with a constant Jacobian coefficient.

Our next result characterizes Poisson structures in R3 with a Casimir whose level
surface is a quadric surface.

Theorem 3.5. For a Poisson structure Λ in R3, the following holds.

(a) Λ has no Casimir which defines a torus.
(b) Λ has a Casimir which defines a quadric surface if and only if it is affine

equivalent to one of the following module a Jacobian coefficient u:
– Λ1 = −z∂x∧∂y +y∂x∧∂z−x∂y∧∂z, with the Casimir C = x2+y2+z2;
– Λ2 = z∂x∧∂y +y∂x∧∂z −x∂y∧∂z, with the Casimir C = x2 +y2−z2;
– Λ3 = ∂x∧∂y +2y∂x∧∂z −2x∂y∧∂z, with the Casimir C = x2 +y2−z;
– Λ4 = ∂x∧∂y −2y∂x∧∂z −2x∂y∧∂z, with the Casimir C = x2−y2−z;
– Λ5 = 2∂x ∧ ∂z + x∂y ∧ ∂z, with the Casimir C = x2 − 4y;
– Λ6 = y∂x ∧ ∂z − x∂y ∧ ∂z, with the Casimir C = x2 + y2;
– Λ7 = y∂x ∧ ∂z + x∂y ∧ ∂z, with the Casimir C = x2 − y2.

Proof. It follows from direct calculations. �
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Remark 3.3. 1) In R3, the restriction of a Poisson structure to each submanifold
defined by a level surface of its Casimir becomes symplectic except at singular points.

2) In R3, normal forms can be obtained for exact Poisson structures around each
singular point ([7]).

3) Theorem 3.5 can be used to construct completely integrable Hamiltonian sys-
tems. In [3], a method of constructing completely integrable Hamiltonian systems
starting from a Poisson coalgebra formed by Lie algebra was developed. As an ex-
ample, using the Casimir associated to Λ2 above and its deformation, the authors
obtained a large class of completely integrable Hamiltonian systems with an arbitrary
number of degrees of freedom. In [11], another method of constructing completely
integrable Hamiltonian systems was developed, based on the fact that the symplectic
manifold defined by the Casimirs of a Poisson structure cannot form a Lie algebra.
Applying this method to the Poisson structure Λ3 above and its associated Casimir,
the author also obtained a class of completely integral Hamiltonian systems having
arbitrary number of degrees of freedom, including the Calogero system.

3.3. Quasi-homogeneous Poisson structures. A Poisson structure

L =

n∑

i,j=1

wij∂i ∧ ∂j

in Rn is called quasi-homogeneous of weight degree m with respect to a weight
w = (w1, . . . , wn) if every wij is a quasi-homogeneous polynomial of weight degree
m − 2 + wi + wj with the same weight w, where m and wi are positive inte-
gers, and w1, . . . , wn do not have common factors. We recall that a polynomial is
quasi-homogeneous of weight degree m with respect to the weight w if each of its
monomials, xk1

1 . . . xkn
n , satisfies k1w1 + . . . + knwn = m. If w1 = . . . = wn = 1, a

quasi-homogeneous polynomial becomes homogeneous.
The following is an improvement to the results given in Theorem 3.1 of [12] and

Theorem 7 of [15].

Theorem 3.6. Assume that Λ is a quasi-homogeneous Poisson structure of degree
m with respect to a weight w = (w1, . . . , wn). The following holds.

(a) The Poisson structure Λ can be decomposed into the form Λ = Λ0 + cXΛ ∧
XE if and only if the Poisson structure Λ is homogeneous and c = 1/(m +
n − 1), where Λ0 is an exact Poisson structure, XΛ = D(Λ) and XE =∑n

i=1 wixi∂i.
(b) The Poisson structure Λ can be decomposed as

Λ = π +
1

m − 2 +
∑

wi

(XΛ ∧XE − Λ(XE)) ,

where π is an exact bilinear vector field, and XΛ,XE are as in (a).

Proof. (a) Let Λ0 = Λ − cXΛ ∧ XE . Using statement (ii) of Lemma 2.1, we have

D(Λ − cXΛ ∧ XE) = XΛ − c([XE , XΛ] + (divωXE)XΛ − (divωXΛ)XE).

For XΛ = D(Λ), combining (2.2) and statement (i) of Lemma 2.1 we have that

divωXΛ = 0. Moreover, divωXE =
n∑

i=1

wi. Direct calculations using the identities
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XE(wij) = (m − 2 + wi + wj)wij and XE

(
∂wij

∂xj

)
= ∂

∂xj
(XEwij) yield

XΛ(XE) = 2

n∑

i=1

wi




n∑

j=1

∂wij

∂xj


 ∂i,

XE(XΛ) = 2

n∑

i=1




n∑

j=1

∂

∂xj

(XEwij)


 ∂i = 2

n∑

i=1




n∑

j=1

(m − 2 + wi + wj)
∂wij

∂xj


 ∂i

= (m − 2)XΛ + 2

n∑

i=1

wi




n∑

j=1

∂wij

∂xj


 ∂i + 2

n∑

i=1




n∑

j=1

wj

∂wij

∂xj


∂i.

Therefore,

[XE , XΛ] = XE(XΛ) −XΛ(XE)

= (m − 2)XΛ + 2
n∑

i=1




n∑

j=1

wj

∂wij

∂xj


 ∂i.(3.12)

Moreover,

D(Λ − cXΛ ∧ XE) =

(
1 − c

(
m − 2 +

n∑

i=1

wi

))
XΛ − 2c

n∑

i=1




n∑

j=1

wj

∂wij

∂xj


 ∂i

= 2

n∑

i=1




n∑

j=1

(
1 − c

(
m − 2 +

n∑

l=1

wl + wj

))
∂wij

∂xj


∂i.

In order for D(Λ−cXΛ∧XE) ≡ 0 to hold, we should have 1−c(m−2+
n∑

l=1

wl +wj)

= 0, j = 1, . . . , n. This is equivalent to w1 = . . . = wn = 1, because w1, . . . , wn are
relatively prime. It follows that c = 1/(m − 1 + n), and the Poisson structure Λ is
homogeneous of degree m.

Now we have by (3.12) that [XE , XΛ] = (m− 1)XΛ. Therefore, by definition of
the Schouten bracket (see (iii) of Lemma 2.1) it is easy to see that

[XΛ ∧ XE , XΛ ∧ XE ] = −XE ∧ [XΛ,XE ] ∧ XΛ −XΛ ∧ [XE ,XΛ] ∧ XE = 0.

This means that XΛ ∧ XE satisfies the Jacobi identity. Consequently, Λ0 = Λ −
(1/(m− 1 + n))XΛ ∧XE is an exact Poisson structure. This proves statement (a).

(b) We let π = Λ − (1/(m− 2 +
∑

wi)) (XΛ ∧ XE − Λ(XE)). Since Λ(XE) =∑n
i,j=1 wjwij∂i ∧ ∂j , the statement follows from formula (2.2) and the proof of

statement (a). �

We remark that in [15], a decomposition of a homogeneous Poisson structure
similar to that in the statement (a) of the above theorem was already obtained but
the coefficient c was not correctly computed.

For homogeneous Poisson structures, an important example is related to the
quantization of quadratic Poisson structures. It is known that on a real vector
space V , one can define a homogeneous, quadratic Poisson structure on V using
classical r-matrix on the Lie algebra of linear operators. The converse is true in
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dimension 2 (see e.g., [12]) but not in general. In [13], the authors gave a counter-
example showing that there exists a homogeneous quadratic Poisson structure in
dimension 3 which cannot be realized by any classical r-matrix. We recall that a
classical r-matrix on a Lie algebra g is an element r of g∧ g for which the Schouten
bracket [r, r] = 0. Let P : Mn → X (Rn) be a real linear isomorphism from the set
of n × n real matrices to the set of vector fields, defined by

P(Eij) = xi∂j ,

where Eij is the matrix with entries all vanishing except one equals 1 on the ith
row and the jth column. Then for any classical r-matrix M1 ∧M2 ∈ g∧ g, P(r) =
P(M1)∧P(M2) is a quadratic Poisson structure. A classical r-Poisson structure is
by definition a quadratic Poisson structure which is the image of a r-matrix under
P .

The following results provide a partial answer to the problem we posted toward
the end of Section 1.

Theorem 3.7. Let g be the 9-dimensional Lie algebra of linear operators in R3.
Assume that r = A ∧ B ∈ g ∧ g, where A = (aij) and B = (bij) are real 3 × 3
matrices. The following holds.

(a) P(r) is a classical r-Poisson structure and is exact if and only if

(3.13) AB + tr(A)B = BA + tr(B)A,

where tr(A) denotes the trace of the matrix A.
(b) Any quadratic Jacobian structure in dimension 3 is a classical r-Poisson

structure.

Proof. (a) By definition we have

P(r) = w12∂1 ∧ ∂2 + w23∂2 ∧ ∂3 + w31∂3 ∧ ∂1,

where

w12 = (a11x1 + a21x2 + a31x3)(b12x1 + b22x2 + b32x3)

−(a12x1 + a22x2 + a32x3)(b11x1 + b21x2 + b31x3),

w23 = (a12x1 + a22x2 + a32x3)(b13x1 + b23x2 + b33x3)

−(a13x1 + a23x2 + a33x3)(b12x1 + b22x2 + b32x3),(3.14)

w31 = (a13x1 + a23x2 + a33x3)(b11x1 + b21x2 + b31x3)

−(a11x1 + a21x2 + a31x3)(b13x1 + b23x2 + b33x3).

Again it follows from definition that r is a classical r-matrix if and only if P(r) is
a Poisson structure, i.e.,

(3.15)

3∑

l=1

(
wl1

∂w23

∂xl

+ wl3
∂w12

∂xl

+ wl2
∂w31

∂xl

)
= 0.

For the Poisson structure P(r) to be exact, we should have

(3.16)
∂w12

∂x2
=

∂w31

∂x3
,

∂w23

∂x3
=

∂w12

∂x1
,

∂w31

∂x1
=

∂w23

∂x2
.

Since (3.16) implies (3.15), P(r) is an exact classical r-Poisson structure if and only
if the condition (3.16) holds.
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By comparing coefficients of xi in (3.16) for i = 1, 2, 3, we obtain the condition
(3.13).

(b) From the proof of statement (a) and Theorem 3.2, it follows that P(r) is an
exact classical r-Poisson structure if and only if it is a Jacobian structure generated
by

Pr =
1

3
(a12b13 − a13b12)x

3 + (a13b11 − a11b13)x
2y

+
1

2
(a13b21 + a23b11 − a11b23 − a21b13)xy2 +

1

3
(a23b21 − a21b23)y

3

+(a11b12 − a12b11)x
2z + (a11b22 + a21b12 − a12b21 − a22b11)xyz

+(a21b22 − a22b21)y
2z +

1

2
(a11b32 + a31b12 − a12b31 − a32b11)xz2

+
1

2
(a21b32 + a31b22 − a22b31 − a32b21)yz2 +

1

3
(a31b32 − a32b31)z

3,

where (aij) and (bij) satisfy the condition (3.13).
Now for any quadratic Jacobian structure generated by P = Ax3 + Bx2y +

Cxy2 + Dy3 + Ex2z + Fxyz + Gy2z + Hxz2 + Iyz2 + Jz3 to be a classical r-
Poisson structure, it is sufficient to find a r = (aij) ∧ (bij) ∈ g ∧ g for which the
condition (3.13) is satisfied and Pr = P . By direct computations, these conditions
are equivalent to
(3.17)

3Jb33 + Ib32 + Hb31 = 0,
3Ab23b33M0M3 − 2Bb23b33M2M3 + Cb11b33M2M3 − 3Db2

33M1M2

+2Eb23b33M1M3 + 2Gb23b33M1M2 − Hb13b23M1M3 = Ib2
23M1M2,

3Ab22b23(b33M0M4 − b23M2M3) + 2Bb23M2(b13b22M3

+b23b33(b12b21 − b11b22)) + C(b12b23b33M4 − b2
13b22M3)M2

+3Db33(b12b23 + b13b22)M1M2 + 2Eb22b23b33M1M4

+Fb2
23(b22 + b33)M1M2 − 2Gb13b22b23M1M2 − Hb13b22b23M1M4 = 0,

3AM2
0 − 2BM0M2 + CM2

2 + 2EM0M1 − FM1M2 + HM2
1 = 0,

a21 = 0, and,
(3.18)

b21b22b23M1a11 = −3Ab2
21b22b23 + 2Bb12b

2
21b23 − Cb21(b12b13b21 − b11M1)r

+3D(b12b21 + b11b22)M1 + Fb21b23M1,
b21b23M1a12 = −3Ab21b22b23 + 2Bb12b21b23 − Cb12b13b21 + 3Db12M1,
b21b23M1a13 = −3Ab21b

2
23 + 2Bb13b21b23 − Cb2

13b21 + 3Db13M1,
b21b23a22 = Cb21 + 3Db22,

b21a23 = 3D,
b21b

2
23M1M2a31 = −3Ab2

21b23b33M0 + 2Bb2
21b23b33M2 − Cb13b

2
21b33M2

+3D(b23b31 + b21b33)M1M2 − 2Eb2
21b23b33M1

−2Gb21b23M1M2 + Hb13b
2
21b23M1,

b21b23M1M2a32 = −3Ab21b23b32M0 + 2Bb21b23b32M2 − Cb13b21b32M2

+3Db32M1M2 − 2Eb21b23b32M1 + Hb12b21b23M1,
b21b23M1M2a33 = −3Ab21b23b33M0 + 2Bb21b23b33M2 − Cb13b21b33M2

+3Db33M1M2 − 2Eb21b23b33M1 + Hb13b21b23M1,

where M0 = b22b33 − b23b32, M1 = b12b23 − b13b22, M2 = b12b33 − b13b32, M3 =
b21b33 − b23b31, and M4 = b11b23 − b13b21.
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For any given real numbers A, B, . . . , J , system (3.17) has solutions bij , 1 ≤ i, j ≤
3 for which system (3.18) also has solutions aij , 1 ≤ i, j ≤ 3. Corresponding to
these {bij} and {aij}, P(r) with r = (aij)∧(bij) is the Jacobian structure generated
by the prescribed homogeneous polynomial P . �

4. Invariant exact Poisson structures under a completely

integrable flow

According to [4], a smooth vector field in an n-dimensional smooth manifold
Mn is said to be integrable in the broad sense if it has p functionally independent
first integrals with 0 ≤ p < n, and an abelian (n − p)-dimensional Lie algebra
of symmetries which preserve the p first integrals and are linear independent on
the manifold except perhaps at a set of zero Lebesgue measure. This notion of
integrability generalizes the classical notion of integrability in the Liouville sense
for standard Hamiltonian systems.

For a smooth dynamical system on an n-dimensional smooth manifold which is
integrable in the broad sense, we let M

q
l , q = n − p, be connected components of

the general invariant submanifolds formed by the common level surfaces of the p
first integrals, parametrized by l ∈ Rn. The followings were shown in [4].

• If M
q
l is compact, then it is a torus Tq .

• If M
q
l is non-compact, then it is a toroidal cylinder Tq−m × Rm.

• In a toroidal neighborhood Bp×Tq−m ×Rm of the toroidal cylinder, where
Bp is a p-dimensional ball, there exist local coordinates I = (I1, . . . , Ip) ∈
Bp, φ = (φ1, . . . , φq−m) ∈ T

q−m, and ρ = (ρ1, . . . , ρm) ∈ R
m, such that the

dynamical system is equivalent to

(4.1)





İ = 0,

φ̇ = ω(I),
ρ̇ = Q(I),

where ω(I) = (ω1(I), · · · , ωq−m(I))> and Q(I) = (q1(I), · · · , qm(I))> are
smooth functions. Moreover, in the case that all M

q
l are compact, then

m = 0 and the last equation of (4.1) does not appear.

Consequently, if a smooth dynamical system is integrable in the broad sense,
then it is completely integrable in the conventional sense.

We now consider the case that all M
q
l are compact, i.e., the system (4.1) reduces

to

(4.2)

{
İ = 0,

φ̇ = ω(I),

where (I, φ) lies in a toroidal domain Bp × T
q ⊂ Mn. We denote by X the vector

field corresponding to (4.2). The dynamical system (4.2) is said to be Tq-dense at
a point I0 ∈ Bp if for any φ0 ∈ Tq , the orbit {φ0 + ω(I0)t} is dense on the torus
Tq . Let Ωp ⊂ Bp be the set of points I ∈ Bp at which the trajectories of system
(4.2) are Tq-dense. The dynamical system (4.2) or its induced flow is said to be
Tq-dense in the toroidal domain if the set Ωp is everywhere dense in Bp. Clearly, the
dynamical system (4.2) is Tq-dense if and only if the frequencies {ω1(I), · · · , ωq(I)}
are rationally independent (i.e., ω(I) is non-resonant) for almost all I ∈ Bp and if
and only if any first integral is a function of I .
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Closed 2-forms which are invariant under the Tq-dense dynamical system (4.2)
were characterized in [4]. It was also shown that the system (4.2) preserving a sym-
plectic 2-form must be Hamiltonian. However, if a 2-form is not symplectic, then
in general it has no corresponding Poisson structure. We now consider the charac-
terization of the invariant exact Poisson structures under the T

q-dense dynamical
system (4.2).

Theorem 4.1. A Poisson structure Λ defined in a toroidal domain Bp ×Tq ⊂ Mn

is exact and invariant under the Tq-dense dynamical system (4.2) if and only if

(4.3) Λ = aij(I)
∂

∂Ii

∧
∂

∂Ij

+ bkl(I)
∂

∂Ik

∧
∂

∂φl

+ crs(I)
∂

∂φr

∧
∂

∂φs

,

with the coefficients satisfying

ai · ∇ωk = 0, bl · ∇ωk − bk · ∇ωl = 0,(4.4)

div ai = 0, divbl = 0,(4.5)

where ai = (ai1, . . . , aip), i = 1, · · · , p, and bk = (b1k, . . . , bpk), k, l = 1, · · · , q.

Proof. Assume that in the toroidal domain, the Poisson structure is of the form

(4.6) Λ = aij(I, φ)
∂

∂Ii

∧
∂

∂Ij

+ bkl(I, φ)
∂

∂Ik

∧
∂

∂φl

+ crs(I, φ)
∂

∂φr

∧
∂

∂φs

.

The Lie derivative of Λ with respect to X =
q∑

k=1

ωk(I) ∂
∂φk

reads

LXΛ =
∑

1≤i<j≤p

X(aij)
∂

∂Ii

∧
∂

∂Ij

+
∑

1≤i≤p,1≤k≤q


X(bik) +

p∑

r=1,r 6=i

ari

∂ωk

∂Ir


 ∂

∂Ii

∧
∂

∂φk

+
∑

1≤k<l≤q

(
X(ckl) −

p∑

r=1

brl

∂ωk

∂Ir

+

p∑

r=1

brk

∂ωk

∂Ir

)
∂

∂φk

∧
∂

∂φl

.

In order for Λ to be invariant under the Tq-dense dynamical system (4.2), the
above Lie derivative must vanish, i.e.,

ȧij = X(aij) = 0,

ḃik = X(bik) = −

p∑

r=1

ari

∂ωk

∂Ir

,

ċkl = X(ckl) =

p∑

r=1

brl

∂ωk

∂Ir

−

p∑

r=1

brk

∂ωl

∂Ir

,

i, j = 1, · · · , p; k, l = 1, · · · , q. The first equation in the above means that each
aij is a first integral of the Tq-dense dynamical system (4.2), hence each aij is a
function which is independent of φ. Since the coefficients of Λ are all bounded on
any compact set, it follows from the last two equations in the above that

p∑

r=1

ari

∂ωk

∂Ir

= 0,

p∑

r=1

brl

∂ωk

∂Ir

−

p∑

r=1

brk

∂ωl

∂Ir

= 0,
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r, i = 1, · · · , p; k, l = 1, · · · , q. This is the condition (4.4). Consequently, the
Poisson structure Λ has the form (4.3).

By Lemma 2.1, the Poisson structure (4.3) is exact if and only if the condition
(4.5) holds. This proves the necessary part.

The sufficient part follows easily from the proof for the necessary part. �

Remark 4.1. Using (4.5), the condition (4.4) can be written as

∇(aiωk) = 0, ∇(blωk − bkωl) = 0,

i = 1, · · · , p; k, l = 1, · · · , q.

Remark 4.2. A Tq-dense dynamical system (4.2) which preserves an exact Poisson
structure (4.3) can be non-Hamiltonian. We note that if X is a Hamiltonian vector
field associated to a Poisson structure Λ, then X = Λ(·, dH) for some Hamiltonian
function H, which is equivalent to div (B1H) = ω1 with the compatible conditions

div (AiH) = 0, div ((B1ωk − Bkω1)H) = 0,

where Ai = (ai1, . . . , aip, bi1, . . . , biq) and Bk = (−b1k, . . . ,−bpk, ck1, . . . , ckq), i =
1, · · · , p, k = 2, · · · , q.

We now consider the Tq-dense dynamical system (4.2) in dimension 3.
1) Let p = 1 and q = 2. The Poisson structure (4.3) reads

Λ = b11(I)
∂

∂I
∧

∂

∂φ1
+ b12(I)

∂

∂I
∧

∂

∂φ2
+ c12(I)

∂

∂φ1
∧

∂

∂φ2
.

The conditions (4.4) and (4.5) are reduced to

(4.7) b11
∂ω2

∂I
= b12

∂ω1

∂I
,

and b11, b12=constants, respectively.
The system (4.2) is a Hamiltonian if and only if there exists a Hamiltonian

function H(I, φ1, φ2) such that

(4.8) b11
∂H

∂φ1
+b12

∂H

∂φ2
= 0, −b11

∂H

∂I
+c12

∂H

∂φ2
= ω1, −b12

∂H

∂I
−c12

∂H

∂φ1
= ω2.

So, we must have

(4.9) b12ω1 = b11ω2.

But the condition (4.7) is not sufficient to assure (4.9) in general.
However, if b12ω1(0) = b11ω2(0), then the system (4.8) always has a solution

provided that (4.7) holds, consequently the system (4.2) is Hamiltonian.
2) Let p = 2 and q = 1. We claim that the Tq-dense dynamical system (4.2) is

always Hamiltonian. Indeed, the Poisson structure (4.3) has the form

Λ = a12(I)
∂

∂I1
∧

∂

∂I2
+ b11(I)

∂

∂I1
∧

∂

∂φ
+ b21(I)

∂

∂I2
∧

∂

∂φ
.

The conditions (4.4) and (4.5) are reduced to a12
∂ω

∂Ii

= 0, i = 1, 2, a12 is a constant,

and

(4.10)
∂b11

∂I1
+

∂b21

∂I2
= 0.
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Note that the system (4.2) is Hamiltonian, i.e., X = Λ(·, dH(I)) for some Hamil-
tonian function H, if and only if a12 = 0, and

(4.11) b11(I)
∂H

∂I1
+ b21(I)

∂H

∂I2
= −ω(I).

Since the condition (4.10) guarantees that the characteristic equation of (4.11) has a
smooth solution, we can choose suitable b11, b12 for which (4.11) has a global smooth
solution H(I). This means that we can choose a Poisson structure Λ such that the
dynamical system (4.2) is Hamiltonian induced by Λ.

It is an open problem to characterize exact Poisson structures invariant under a
Tq-dense dynamical system such that the dynamical system is Hamiltonian induced
by the Poisson structures.
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