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ON EXACT POISSON STRUCTURES

YINGFEI YI AND XIANG ZHANG

ABSTRACT. By studying the exactness of multi-linear vectors on an orientable
smooth manifold M, we give some characterizations to exact Poisson struc-
tures defined on M and study general properties of these structures. Following
recent works [12, 13, 15], we will pay particular attention to the classification
of some special classes of exact Poisson structures such as Jacobian and quasi-
homogeneous Poisson structures. A characterization of exact Poisson struc-
tures which are invariant under the flow of a class of completely integrable
systems will also be given.

1. INTRODUCTION

Let M be an orientable C*° smooth manifold of dimension n and let C*°(M) be
the space of C*° smooth functions defined on M. A Poisson structure A on M is
an algebra structure on C'°° (M) satisfying the Leibniz identity, i.e.,

A={,}: C*M) x C*(M) — C*(M),
is a bilinear map such that for arbitrary f, g, h € C°°(M) the following holds:

(a) (Skew-symmetry) {f, g} = —{g, f},
(b) (Leibniz rule) {f,gh} = {f,g}h +g{f,h},
(¢) (Jacobi identity) {{f, g}, h} = {f,{g,h}} + {{f, h}, g}.
With a Poisson structure {, }, the algebra (C*°(M), {, }) becomes a Lie algebra (see
, [16, 17]). The pair (M, {, }) is called a Poisson Manifold. In what follows,
smooth manifolds always mean orientable C*° smooth manifolds.
With respect to a local coordinate system {z;} on M, such a structure can be
explicitly defined so that for arbitrary f,g € C°°(M)

(1.1) Adfodg) = {fgy = > wy OL 99

’L] a
z; Ox;
i,j=1 L

where w;; € C*°(M), i,j = 1,...,n, satisfy the identities

wij + wjs =0, Z 3 g 27

X
=1 0€As 9 !

here As is the group of cyclic permutations acting on (7, 7, k). The matrix J = (w;;)
is called a structure matriz associated to A. Since an everywhere non-degenerate
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Poisson structure is necessarily symplectic, Poisson structures are natural exten-
sions to the standard symplectic ones on a smooth manifold.

Let X*¥(M) be the space of smooth k-linear vectors on M and QF(M) the space
of differential k—forms. For a given volume element w on M in standard local
expression, we consider its induced isomorphism ® : X*(M) — Q" k(M): u —
i,w, where i,w is the inner product of v and w. For instance, if u = f(x)0;; A0, A
N0, with 1 <45 <ig <...<ip <n,and w=dzr; Adza A... Adz, under the
local coordinate {z;}, then iy,w = (—1)1=1(=1)i2=2 _ (=1)*~*f(x)dx1 A dx;, A
A doc/l\2 A A cgcl\,c A ... Adzy, hereafter T stands for the omission of z. Let

D=d"'odod: X*M) — xF1(M)

be the pull-back operator under the isomorphism ®, where d is the exterior deriv-
ative of differential forms. A k-linear vector Xy, is said to be ezact if D(X}) = 0.
Specifically, a Poisson structure A satisfying D(A) = 0 is called an ezact Poisson
structure. We note that symplectic structures are always exact. It is therefore
hopeful that an exact Poisson structure resembles a symplectic one to certain ex-
tends.

The present paper is devoted to the study of exact Poisson structures with respect
to their characterizations and general properties.

In [10], the author showed that the operator D has some important applications.
For instance, the operator can be used to compute the Schouten brackets and to
varify the Jacobian identity which a Poisson structure should satisfy. In Section 2,
we will further study properties of D. In particular, we will show that under the
action of D the direct sum ®}_,X (R™) forms a complex. We will also study the
homology induced by the complex and its topological structure.

These properties of D and the volume preserving property of exact Poisson struc-
tures will be used in Section 3 to study three special classes of Poisson structures:
the Lie-Poisson, Jacobian, and the quasi-homogeneous structures. We will also in-
vestigate the Hamiltonian flows induced by these Poisson structures, with respect
to issues such as normal forms and volume-preservation.

It is known that any Jacobian structure is a Poisson structure ([9, 15]) and any
Jacobian structure with constant Jacobian coefficient is exact ([15]). In Section 3,
we will give a general sufficient condition for an exact Poisson structure to become
Jacobian. We will also study some general properties of the Jacobian structures.
Part of our results in this regard generalizes some of those in [15].

As for the quasi-homogeneous Poisson structures, we will give a necessary and
sufficient condition for a decomposition of a quasi-homogeneous Poisson structure
with respect to exact Poisson structures. This result is an improvement to the
corresponding ones in [12, 15]. Restricting to the classical r-Poisson structures
- a class of special quadratic Poisson structures, we will obtain a necessary and
sufficient condition for a classical r-Poisson structure in R? to be exact. Using this
result we further prove that any quadratic Jacobian structure is a classical r-Poisson
structure in R3. Tt is known that any quadratic Poisson structure in R? is a classical
r-Poisson structure ([12]) but in R? the Poisson structure A = (22 + axa73)02 A O3
for o # 0 is not a classical r-Poisson structure ([13]). However, we note that for
a = 0 the structure A is a Jacobian structure. This leads to an open problem
to classify all classical r-Poisson structures within the class of quadratic Poisson
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structures. A more concrete question in dimension 3 is that whether a quadratic,
non-Jacobian Poisson structure is necessarily not a classical r-Poisson structure.

In Section 4, we will give a characterization of exact Poisson structures which are
preserved by a T?-dense, completely integrable flow. We will also show that such
a T9-dense flow preserving an exact Poisson structure can be non-Hamiltonian, in
contrast to the closed 2-form case in which any T9-dense flow preserving a sym-
plectic structure is necessary a Hamiltonian ([4]).

2. GENERAL PROPERTIES OF EXACT POISSON STRUCTURES

2.1. The operator D. We first recall the following properties of the operator D
which will be used later on.

Proposition 2.1. ([10]) The following holds.
(i) For any X € X(M), D(X) = div,X, where div,X denotes the divergence

of the vector field X with respect to the volume element w.
(ii) For any X, Y € X(M), D(XAY) = [Y,X] + (div, Y)X — (div,X)Y,
where [, -] denotes the usual Lie bracket of two vector fields, and N denotes

the wedge product of two vectors.
(iii) For any U € X*(M) and V € X*(M),

[U, V] = (~1)“D(U AV) = D{U) AV — (=1)*U A D(V),

where [U,V] denotes the Schouten bracket of the multi-linear vector fields
U and V, which is defined as the following: if U = ui A ... ANu, and
V=viA...ANv,, then

[U,V] = Z(—1)5+tu1/\.../\ﬁs/\.../\uu/\ [Us, V)] AVI Ao ATEA L. Ay,
s,t
(iv) Let A be a Poisson structure and X = D(A) be its curl vector field. Then
the Lie derivative Lx , A = [Xa,A] = 0.
(v) A skew-symmetric bilinear vector field A is an exact Poisson structure if
and only if D(A) =0 and D(AAA) =0.

Remark 2.1. 1) Statement (i) of the above proposition implies that a vector field
is exact if and only if it is divergent free. Hence it follows from Gauss’ Theorem
that the volume is invariant under the flow induced by an exact vector field.

2) For a 3-dimensional vector fields v = a0y + b0y + 0, the curl of v is defined
in the usual way as V X v = (cy — b;)0z + (a, — ¢z)0y + (by — ay)0.. This is in fact
the curl vector field Xo = D(A) with A = ady A0, + b0, N\ Oy + cOy N Oy. Thus,
the operator D unifies the computations for the divergence and the curl of a given
vector field.

Let X*(R") = @7_,X*(R") be the algebra formed by the direct sum of the
space of the k-linear vectors. The following result describes certain homological
properties induced by the operator D, which will be used later in the classification
of exact Poisson structures.

Proposition 2.2. The following holds.
(a) D? =0.
(b) The D-homology of R™ formed by the vector space

H,(R") = ((kernel of D) N X*(R™)) / ((image of D) N X*(R™)),
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has the topological structures

ny _ Rv k= n,
H’“(R)_{o, 0<k<n.
Proof. 1t follows from the definition of D, the de Rham cohomology and Poincaré’s
Lemma (e.g. [2]) in R™. O

Remark 2.2. Proposition 2.2 implies that X*(R™) is a complex induced by D and
the sequence of vector spaces

D D D
0 — A"(R") — A" 'R") — ... — X°(R") — 0

s exact.

2.2. Characterization of exactness. The following lemma will be used in the
general characterization of exact Poisson structures to be given in this section.

Lemma 2.1 ([8]). Let A be a smooth Poisson structure in R™ defined by (1.1).
Then A is exact if and only if

ow;
(2.1) i o, i=1,....n.
Z oz,

Proof. Tt follows from the fact that

n

(2.2) by =23 Y ‘?;;j 81.

i=1 \j=lj#i

O

Recall that a smooth function H defined on a smooth manifold M is a first
integral of a smooth vector field X if X(H) =0 on M.
Our next result gives a characterization of exact Hamiltonian vector fields.

Theorem 2.1. Let A be a Poisson structure on a smooth Riemanian manifold M.
Then a Hamiltonian vector field Xy associated to A and the Hamilton H is exact
if and only if the curl vector field Xn = D(A) and the gradient vector field VH are
everywhere orthogonal on M, i.e., D(A) belongs to the tangent spaces of the level
surfaces of H; or equivalently, H is a first integral of the curl vector field D(A).

Proof. On any orientable manifold there is a volume form that locally takes the
standard one in R™, so without loss of generality, we can prove the theorem under
a local coordinate system {z;}?, on M by taking the standard volume element
w=dx1 A...Ndx,, where n = dim M.

Let J = (wij) be the structure matrix of A and Xpy = JVH be the associated
Hamiltonian vector field. Making use of the skew-symmetry of .J, calculations yield
that

(2.3) DXu) = -3 Z 8(;; o

=1
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By (2.2), we further have
1
(2.4) D(Xpy) = —§D(A) -VH,
from which the theorem easily follows. O

Remark 2.3. 1) From (2.4) and the fact that
DXy)=®lododXy)=0'odoix,w=(Lx,w),

it follows easily that A is exact if and only if any corresponding Hamiltonian vector
field is exact, or equivalently, the volume element w is invariant under any Hamil-
tonian flow associated to A. This result is also a consequence of the theorem given
in [18].

2) By the Birkhoff Ergodic Theorem, for any Hamiltonian flow ¢+ on an ori-
entable manifold M induced by an exact Poisson structure,

is a well defined L' function for any f € L'(M).

There are two issues involved in checking whether a skew symmetric, bilinear
vector field A is an exact Poisson structure, i.e., A needs to be exact and satisfy
the Jacobian identity. For n > 3, it is known that A is exact if and only if the
(n — 2)-form

Qo= Y, (=1 wyidey AL Adxg AL Adxg AL A day,
1<i<j<n

is closed, i.e., d2,_o = 0 (see for instance [12] or [8]). Moreover, if A is exact,
then there exists an (n — 3)-form ,,_3 such that dQ,,_5 = Q,_2, or equivalently,
there exists a 3-linear vector X3 such that DX3 = A. The following proposition
establishes certain connections between exactness and the Jacobian identity. In
particular, for an exact Poisson structure, the Jacobian identity can be written in
a symmetric form.

Proposition 2.3. Let A be a skew symmetric bilinear vector field in R™ with the
structure matriz J = {w;;}. Then A is an exact Poisson structure if and only if

(2.5) 8“” -0, i=1,...n,
=1 Ot
n aB:, DA,
(2.6) Z (fjk-aT”’“Jrijk- a;k) = 0, 1<i<j<k<n,

s=1,571,5,k
where Afjk = (Wsi, Wsj, Wsk)s By = (Wik, Wk, Wij)-

Proof. We only prove the necessity, as the sufficiency follows from a similar ar-
gument. The condition (2.5) clearly follows from Lemma 2.1. Now for arbitrary
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integers 1 < i < j < k <n we have by (2.5) that

5wo<g)a<k)
wSO’ 'L

0 o(j)o
- Z Z Wio (i) wa(;)s -

s=1,s#£1,j,k 0€ A3

+wjk (8’LUZJ + 8Uhk) + Wy <8’LUJZ T 8’wjk> +wij <8wki n 8wkj)

O0x; oxy, ox; oxy, ox; Ox;

S awa g)a - 811}50(1-)
= X X e D Wty DL g
s=1 s;éi j.k o€As g€A; s=1,s%i,j,k s

OWs (j)o (k) Owsa (i)
- Z > (wsm v, Wolath) g >

s=1,s#1,j,k o€ A3
This proves the condition (2.6). O

We note that the condition (2.6) cannot be simplified further under the exactness
condition. In dimension 3, the condition (2.6) is trivially satisfied. This means that
exactness condition implies the Jacobian identity in dimension 3.

3. LIE-POISSON, JACOBIAN, AND QUASI-HOMOGENEOUS STRUCTURES

In this section, we will apply the general characterization of exactness from
the previous section to obtain more precise information for three special Poisson
structures: Lie-Poisson, Jacobian, and Quasi-homogeneous Poisson structures.

3.1. Lie-Poisson structures. A Lie-Poisson structure in R™ or C" is defined by

(3.1) L= Z ijxkai A 5j,
05, k=1

with cfj/s being the structure constants of an n-dimensional Lie algebra.
It is well known that a Lie-Poisson structure is necessary a Poisson structure
([14]). We have the following characterization.

Theorem 3.1. Let L be the Lie-Poisson structure defined in (3.1). The following
holds.
(a) L is exact if and only if Z:lcfj =0,i=1,...,n
J:
(b) An associated Hamiltonian vector field Xy = L(-,dH) is exact if and only
if the Hamiltonian H is a first integral of the completely integrable vector

fields Zn: <§n: cfj> 0
i=1 \j=1

(¢) If the Lie algebra g formed by homogeneous polynomials of degree 1 under
the action of the Lie bracket induced by (3.1) is nilpotent, then the structure
(3.1) is affine equivalent to a structure of the type (3.1) with ci—“j =0 for
k > min{i, j}, and consequently, the resulting structure is exact.

Proof. Statements (a) and (b) follow directly from Theorem 2.1. Using Theorem
3.5.4 of [16] and statement (a) above we obtain the statement (c). O
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Lie-Poisson structures play important roles in studying normal forms for a class
of Poisson structures. Let A be an analytic Poisson structure in a neighborhood of
the origin in R™ or C™ defined by

n

(3.2) A=Y (i + Rij(x)0; A,

i,j.k=1
where R;; = O(|z]?), i,j = 1,---,n. Using Theorem 2.1, Theorem 4.1 of [5],
Theorem 2.1 of [17], and the generalized Darboux Theorem, one easily has the
following.

Proposition 3.1. Let A be an analytic Poisson structure of rank 2m in a neigh-
borhood of the origin in R™ or C™. If the Lie algebra g with the structure constants
formed by the coefficients {cfj} of the linear truncation for the singular part of A
is semi-simple, then A is analytically equivalent to

m 9 9 n—2m 9 9
P:;Z?_pi/\aqi+ > (Z cijk>8_%A_

1<i<j<n—2m \ k=1 9y,
n—32m .
If, in addition, > cfj =0 fori=1,....,n —2m, i.e, P is exact, then any
j=1

Hamiltonian flow associated to A is analytically equivalent to a volume-preserving
one.

Remark 3.1. The analyticity in Proposition 3.1 can be replaced by smoothness if
the Lie algebra g is of compact type. The existence of smooth equivalency in the
smooth case can be shown by using Theorem 4.1 of [6].

3.2. Jacobian structures. Let n > 3 be an integer. Following [9], a Jacobian
bracket in R™ is a bilinear map {-,-} : C°(M) x C°(M) — C>° (M), satisfying

{f7g} :Udet(‘](f7g7p17"'aPn*Q))v

where u, P, € C*°(R"), i = 1,...,n — 2, J denotes the usual Jacobian matrix
of f,q,P1,..., P,_s with respect to the variables x1,...,z,, and ‘det’ stands for
the determinant of a matrix. With the above setting, the Jacobian bracket is
said to be generated by Pi,...,P,_o with a Jacobian coefficient u. It is easy to
see that if Pj,---, P,_o are functionally dependent, then the Jacobian bracket is
trivial. In what follows, we always assume that the generators Pi,...,P,_2 of a
Jacobian bracket are functionally independent. It was shown in [9] that a Jacobian
structure, i.e., an algebra structure defined by a Jacobian bracket, is necessary a
Poisson structure and in [15] that a Jacobian structure with a constant Jacobian
coefficient is always exact.

We now give some conditions under which a Poisson structure becomes Jacobian.

Theorem 3.2. For Poisson structures in R™, the following holds.

(a) Form =2, a smooth Poisson structure is exact if and only if it is a constant
Poisson structure.

(b) Forn = 3, a smooth Poisson structure is exact if and only if it is a Jacobian
structure with a constant Jacobian coefficient.

(¢) Forn > 3, a smooth Poisson structure is Jacobian with a non-zero constant
Jacobian coefficient if and only if it is exact and has rank < 2, and the
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Lebesque measure of the set of points at which the structure has rank 0 is
zero.

Proof. (a) A Poisson structure has the form A = w(z,y)0; A 0y. By part (b) of
Proposition 2.2, Hy(R?) = R. It follows that if A is exact, then it is a constant
Poisson structure. The converse is obvious.

(b) Assume that A is an exact Poisson structure, i.e., D(A) = 0. By part (b) of
Proposition 2.2, we have that Ho(R?) = 0, i.e., the kernel of D is equal to the image
of D. Hence, there exists a 3-linear vector X3 = P(x,y,2)0; A Oy A 0, € X3(R3?)
such that D(X3) = A. Since D(X3) = P,0y A0, + Py0, N\ 0y + P,0y A 9y, we see
that A is the Jacobian structure generated by P. The sufficient part follows from
[15].

(c¢) The necessary part of (c) is obvious. To prove the sufficient part, we let
A be an exact Poisson structure of rank < 2. Let {(U;, ¢i,9:)} be a partition
of unity on R™, where {U;} is a locally finite open cover of R™, each ¢; is an
isomorphism from U; to U] = ¢;(U;) C R™ under which the Poisson structure A is
transformed into Ay, = wgam A Oy, , each g; > 0 has support in U;, and moreover
g(z) =, 9i(x) =1 in R™, summing over a finite number of i’s. The existence of
such triples follows from pages 21-22 of [2] and Theorem 2.5.3 of [1].

Since A is exact, the structure Ay, is exact. By statement (a) Ay, is a constant
Poisson structure corresponding to the variables u; and us. Hence w%) is a function
which is independent of the variables u; and us. Let

us .
pri(ug, ..., uy) :/ w§2(57u4,...,un)d8, Dji = Ujqo, for j=2,...,n—2.
u

30

Then Ay, is a Jacobian structure generated by pi;, ..., pn—2,: on U]. Define
Pi(z) = ZPij(x)7 x € R™,
J

i=1,...,n— 2, where

i\T ‘_1*1":17, if [J'7
py) = { Ol

In the above, the subscript ‘.” denotes the change of function p;; under the coor-
dinate transformation ¢;1. At each point x € R™, since {(U;, ¢:,9:)} is a parti-
tion of unity on R™, there exists a j € N such that P;(z) = (qﬁ;l)*pij(:v). The
fact A = (¢j_1)* (A¢j) in U; implies that A is a Jacobian structure generated by
Py, P, -, P,_5in some subregion containing = of U;. Consequently, A is a Poisson
structure generated by Py, ..., P,_2. This proves (c). |

Remark 3.2. 1) Part (b) of the above theorem was stated in [12] for quadratic poly-
nomial Poisson structures without a proof, and stated in [15] for general polynomial
Poisson structures with a proof given for the quadratic case.

2) In dimension 2, a skew-symmetric, bilinear vector always satisfies the Jacobian
identity. If it is exact, then it is either symplectic or trivial. In dimension 3, by
part (b) of the above theorem, any Hamiltonian vector field associated to an exact
Poisson structure is completely integrable.

3) In dimension 2, the set of Poisson structures forms a vector space, which
is isomorphic to C*°(R?). The set of eract Poisson structures is a 1-dimensional
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subspace isomorphic to R, which s therefore closed. In higher dimension, the set
of Poisson structures cannot form a vector space. But the set of exact Poisson
structures in R forms a vector space, which is isomorphic to the quotient space
C>(R3)/R.

4) Using Proposition 2.3, an alternative proof of statement (b) of Theorem 3.2
can be given as follows. Let 1 = wasdry + wsidrs + wiedxs. Then d€)y = 0,
i.e., Q1 is closed, hence exact. It follows that there exists a 0-form, i.e., a smooth
function P such that dP = Q4. This shows that the Poisson structure is Jacobian.

Following [15], we now give another characterization of Jacobian structures de-
pending on their Casimirs. For a Poisson structure A on M, a function h € C*°(M)
is called a Casimir of A if A(df,dh) = {f, h} = 0 for arbitrary f € C°°(M), or equiv-
alently, the Hamiltonian vector field X;, = LA = A(-, dh) is trivial. In other words,
a Casimir of a Poisson structure A is a first integral of any Hamiltonian vector field
LA =A(-,dH). The set of Casimirs of A is called the center of A.

The necessary part of the first statement in the following theorem was stated in
[15] with a proof given for the case n = 4. We note that the proof for the case
n =4 in [15] does not extend to the general case.

Theorem 3.3. A Poisson structure A in R™ has n — 2 functionally independent
Casimirs if and only if it is a Jacobian structure. Consequently, if A has exactly
n — 2 functionally independent Casimirs, then, excluding a set of zero Lebesque
measure, the common level manifold of the Casimirs is symplectic of dimension 2.

Proof. The sufficient part of the first statement is obvious, because for a Jacobian
structure in R™ its n — 2 generators are already Casimirs.

We now prove the necessary part of the first statement. Let {z;} be a coordinate
system in R™. Then the Poisson structure A has the representation

- of o
A dg) = (f,0) = S wi ot 29 for f.g e O (RY),
? J

i,j=1

where w;; € C®(R"). Let Pi,...,P,—2 be a set of functionally independent
Casimirs. By definition,

N 0P
1 .
j=1 J
For any n — 2 distinct elements 41,...,i,_2 of 1,...,n, we denote by
J(Ziyy ..., 2, _,) the Jacobian matrix of Py, ..., P,_o with respect to x;,, ..., 2, _,,
ie.,
Py oP,
Bzil e 8:&;7@72
oP; _OPy
Bzil Tt 8:&;7@72
j('ri17 s 7'rin—2) =
OP,_» 0Py 2
611'1 e 6117172
Since Py, ..., P,_o are functionally independent, we can assume without loss of

generality that det(J(z1,...,2n—2)) # 0.
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Note that equation (3.3) with ¢ = n is equivalent to

oPy
Wn1 0Tr—1
(3.4) J(x1,. .. Tp_2) = —Wnpn—1 :
Wn,n—2 %

Since wy,,n,—1 can be arbitrary, if we choose

(3.5) Wpn—1 = —u(z1,...,2,)det(T(z1,...,Tn_2)),

where u € C°°(R™) is an arbitrary function, then

(3.6)  wp; =udet(T (21, Tjm1, Tpn1,Tjt1s-- -, Tn—2)), J=1,...,n—2.
Similarly, working with equation (3.3) for ¢ = n — 1 we have

(3.7) wp_1,; = —udet(T(z1,. .., Tj-1, Tns Tjt1s-- -, Tn—2)), J=1,...,n—2.
Since equation (3.3) with ¢ = n — 2 is equivalent to

Wn—2,1
J(x1,. ..y Tp_2) = —udet(T(z1,...,Tn-3,22))T (Xn_1)
Wn—-2,n—2

+udet(T (21, ..., Tn_3,Tn-1))T (xn),

we have
Wnay = —u <det(](z1,...,xn3,xn)) det(JT(z1,. ., Tjm1, Tne1,Tjg1s- -, Tn_2))
’ det(J(x1,...,Tn-2))
(3.8) Cdet(T (@1, -+, Tn—3,Tn—1)) det(T (&1, - - -, Tj—1, Tpy Tji1s - - - (En_g))) 7
det(J(x1,...,Tn-2))

forj=1,...,n—3.
We claim that, for any j =1,--- ,n — 2,
det(j(:cl, ceey Infg,xn)) det(j(xl, ey L1, Tn—1, L1y vy In,Q))
(3.9) —det(J(x1,. .., Tn—3,Tn-1))det(T(Z1, ..., Tje1,Tns Tj+1s -+, Tn—2))
= det(T(z1,. -, Tjm1, Tne1,Tjt1,s-- - Tn_3,Zn)) det(T(z1,..., Tpn-2)).

Indeed, let

O(P1,+,Pr—2) apP 0O apP 0O oP
M = det O(xy, -, xn—3) OTp_2 Oxpn—1 Oxnp,
O oP 6(P17”'7P7172) oP 6(P17”'7P7172) oP ’
0Ty _2 O(x1, - ,xj—1) 0xn_1  O(xjt1, ,n_3) Oz,
where
opr, ... 0P
8LE1 Bmk
8(P17"'7B)_ . . .
- . T . 9
O(z1, -+ ) oP, oP,
R
Py
ox
oP o
- - : ,
(9£Ck P, _»
8£Ek

l,k=1,---,n, and O denotes a zero matrix with appropriate dimension.

)
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By expanding M according to the first n — 2 rows, we have
M = det(J(x1,...,2n—3,Tn—2))det(T (21, .., Tjm1,Tn-1,Tj41s .-, Tn—3,Tn))
+det(T(z1,..., Tn-3,Tn-1))det(T (@1, ..., Tj—1,Zn, Tj41,-- -, Tn-2))
—det(J(x1,...,Tn-3,%n)) det(T(z1, ..., Tjm1, Tn-1,Tj41, .-, Tn—2))-

Since M = 0, the claim follows.
From (3.8) and (3.9), we have

(310) Wp—2,5 = —U det(](ml, sy L1, Tn—1, L4155 Tn—3, In)),

j=1,...,n—3. Now, equation (3.3) with 1 < k < n — 2 reads

Wi, 1
J(x1, . Tp—2) =
Wi n—2
—udet(J(z1, ..y Tho1, Tn, Thtls- - s Tn—2))T (Tn_1)

Fudet(T (1, oy X1y Tty Tty -« - s Tn—2)) T ()
Similar to the proof for the case n — 2 by using a slight modification of (3.9), we
have
(3.11) Wgj = —u det(J (w1, . .. yLj—1y Tn—15Tj41y- 3y Lh—1,Tn, Th+1y- - - , Tn—2)),

forj=1,...,k—1.
Combining the formulas (3.5), (3.6), (3.7), (3.10) and (3.11), direct calculation
yields that

"L 9f 0
A(df,dg) = 3 wija—ja% = wdet(J(f,g, Py, ..., Pas)).
i,5=1 Lt/

This proves the first statement.

To prove the second statement, we denote by M the common level manifold of
the Casimirs of A. Then dim M = 2 except perhaps at a subset of zero Lebesgue
measure.

From the proof of the first statement, it follows that the n — 2 functionally
independent Casimirs are the generators of the Jacobian structure A. In terms
of suitable local coordinates {z;}, it is easily seen that A has the canonical form
Oz, _; NOg, — Oz, N0y, , in a neighborhood of each point of the manifold M except
perhaps a subset of zero Lebesgue measure. This means that the structure matrix
of A has rank 2 in R™ except perhaps a subset of zero Lebesgue measure, which is
equal to the dimension of the manifold. Thus, the second statement follows. O

Part (a) of the following theorem was stated in [15] with a proof given for the
case n = 4.

Theorem 3.4. Let A be a Jacobian structure in R™ generated by Pi, ..., Pyh_2
€ C®(R™). The following holds.

(a) If Py,..., Ph_2 are functionally independent, then the center of A is a sub-
algebra of C°(R™), generated by Py,..., Py_a.
(b) For any H € C*(R™), the Hamiltonian vector field Xy = A(-,dH) has the

canonical form .
{ I=0,
o =w(),
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where I = (Iy,...,I,—1)" and w(I) = 0 if H is functionally dependent on
Pi,... Pys.

Proof. (a) Since there are n functionally independent functions in the algebra
C>(R™), we can choose two functions f,g € C°°(R™) such that f,g, Pi,..., Ph_2
are functionally independent. Assume that A is the Jacobian structure generated
by Pi,...,P,_2. For any h € C*°(R"), denote by X}, as the vector field A(-,dh).
Then f, P1,..., P, are functionally independent first integrals of the vector field
Xy, and g, P, ..., P, are functionally independent first integrals of the vector field
X,. Since a vector field in dimension n has at most n — 1 functionally independent
first integrals, if it has the maximal number of first integrals, then any other first
integral is a function of these n — 1 functionally independent first integrals.

Suppose that H € C*°(R"™) is a Casimir of the Jacobian structure A. Then for
any h € C°°(R"™), we have A(dh,dH) = 0. Consequently, X ;(H) = A(dH,df) =0
and X,(H) = A(dH,dg) = 0. This means that H is a first integral of both vector
fields X¢ and X,. Hence, H is a smooth function of f, Pi,..., P,_2, and also a
smooth function of g, Py, ..., P,_2. It follows from the functional independency of f
and g that H should be a smooth function of Py, ..., P,_2. Hence, the center of the
Jacobian Poisson structure is a sub-algebra of C>°(R™), generated by Pi, ..., Pp_a.

(b) If H is functionally dependent on Py,..., P,_o, then the vector field Xy is
trivial. Hence, it has the canonical form with w(I) = 0.

If H is functionally independent of Pi,...,P,_2, then the vector field Xg
is completely integrable with the n — 1 functionally independent first integrals
H, P,...,P,_5. Hence, the vector field Xz has the desired normal form. |

Combining Theorem 3.3 and statement (a) of Theorem 3.4, we easily have the
following.

Corollary 3.1. (a) The center of a Poisson structure in R™ having functionally
independent Casimirs Py, ..., P,_o2 is a sub-algebra generated by the n — 2 given
Casimirs.

(b) In R3, a Poisson structure has a Casimir if and only if it is a Jacobian
structure. And a Poisson structure is exact if and only if it is a Jacobian structure
with a constant Jacobian coefficient.

Our next result characterizes Poisson structures in R3 with a Casimir whose level
surface is a quadric surface.

Theorem 3.5. For a Poisson structure A in R3, the following holds.

(a) A has no Casimir which defines a torus.
(b) A has a Casimir which defines a quadric surface if and only if it is affine
equivalent to one of the following module a Jacobian coefficient w:

— A1 = =20, N0y +yOy, N0, — 10y \NO,,, with the Casimir C = x?+y*+2%;
— Ao = 20, NOy+ Y0y ND, — 20y ND, with the Casimir C = x? +y* — 2%;
— A3 = 0, NOy +2y0, NO, — 220, N0, with the Casimir C = 22 +y?—z;
— Ay = 0, NOy —2y0; NO, — 220, N0, with the Casimir C = 22 —y?—z;
— A5 =20, N0, + 20y N O, with the Casimir C = % — 4y;
— A = Y0y N D, — 20y N D, with the Casimir C = z? + y?;
— A7 = y0y AN O, + 20y N D, with the Casimir C = z* — y?.

Proof. Tt follows from direct calculations. O
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Remark 3.3. 1) In R3, the restriction of a Poisson structure to each submanifold
defined by a level surface of its Casimir becomes symplectic except at singular points.

2) In R3, normal forms can be obtained for exact Poisson structures around each
singular point ([7]).

3) Theorem 3.5 can be used to construct completely integrable Hamiltonian sys-
tems. In [3], a method of constructing completely integrable Hamiltonian systems
starting from a Poisson coalgebra formed by Lie algebra was developed. As an ex-
ample, using the Casimir associated to Ao above and its deformation, the authors
obtained a large class of completely integrable Hamiltonian systems with an arbitrary
number of degrees of freedom. In [11], another method of constructing completely
integrable Hamiltonian systems was developed, based on the fact that the symplectic
manifold defined by the Casimirs of a Poisson structure cannot form a Lie algebra.
Applying this method to the Poisson structure A3 above and its associated Casimir,
the author also obtained a class of completely integral Hamiltonian systems having
arbitrary number of degrees of freedom, including the Calogero system.

3.3. Quasi-homogeneous Poisson structures. A Poisson structure

L= i wij[)i/\aj

ij=1

in R” is called quasi-homogeneous of weight degree m with respect to a weight
w = (wi,...,w,) if every w;; is a quasi-homogeneous polynomial of weight degree
m — 2 + w; + w; with the same weight w, where m and w; are positive inte-
gers, and wy, ..., w, do not have common factors. We recall that a polynomial is
quasi-homogeneous of weight degree m with respect to the weight w if each of its
monomials, 24" ... zkn | satisfies kywy + ...+ kpw, =m. fwy = ... =w, =1, a
quasi-homogeneous polynomial becomes homogeneous.

The following is an improvement to the results given in Theorem 3.1 of [12] and

Theorem 7 of [15].
Theorem 3.6. Assume that A is a quasi-homogeneous Poisson structure of degree
m with respect to a weight w = (w1, ..., wy). The following holds.

(a) The Poisson structure A can be decomposed into the form A = Ag+cXp A
X g if and only if the Poisson structure A is homogeneous and ¢ = 1/(m +
n — 1), where Ao is an exact Poisson structure, Xy = D(A) and Xg =

Z?:l wixi@-.
(b) The Poisson structure A can be decomposed as

1
A_W+7m—2+2wi (XA AXEe - AXE)),

where 7 is an exact bilinear vector field, and X, X g are as in (a).
Proof. (a) Let Ag = A — ¢X A Xpg. Using statement (ii) of Lemma 2.1, we have
D(A — XA ANXE) = XA — ¢([XE, Xa] + (diveXg)Xa — (diveXa)XE).
For X5 = D(A), combining (2.2) and statement (i) of Lemma 2.1 we have that

div,X, = 0. Moreover, div,Xg = > w;. Direct calculations using the identities
i=1
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XE(’U}U) = (m -2+ w; + ’ll}j)’wl‘j and XE (%l;;]) = %(XE’U}”) yleld

XA(XE) = 2iwl Z 811}1]
i=1

Xp(Xp) = 2; ;T%(XEU’U) (’“)1—2; ;(m—2+wl+wj) 7z, 0;
- " dw; 6w
= —2)XA +2 i ) 0; +2 ") 0;.
Therefore,
XEg, Xa] = Xp(Xa)—Xa(XEg)
n n 8w”
(3.12) = (m—2)Xp+2) Zw ;.
i=1 \j=1
Moreover,
n n n 8wlj
DA —cXaANXg) = <1—c<m—2+;wi>>x,\—2c; gwj oz, 0;

= 22": i(l—c(m—2+iwl+wj>> %I;Zj 0;.

i=1 \j=1 =1

In order for D(A—cX A AXEg) = 0 to hold, we should have 1 —c¢(m—2+ > w;+w;)
=1

=0, j=1,...,n. This is equivalent to w; = ... = w, =1, because wy, ..., w, are
relatively prime. It follows that ¢ = 1/(m — 1 4 n), and the Poisson structure A is
homogeneous of degree m.

Now we have by (3.12) that [Xg, Xa] = (m — 1)X . Therefore, by definition of
the Schouten bracket (see (iii) of Lemma 2.1) it is easy to see that

[XA/\XE,XA/\XE] = —XE/\[XA,XE]/\XA—XA/\[XE,XA]/\XEZO.

This means that X, A Xp satisfies the Jacobi identity. Consequently, Ag = A —
(1/(m—14n))Xa AXg is an exact Poisson structure. This proves statement (a).

(b)y Welet m=A—(1/(m—2+4+> w;))(Xa AXg — A(XEg)). Since A(Xg) =
ZZJ':1 w;w;;0; A 0j, the statement follows from formula (2.2) and the proof of
statement (a). O

We remark that in [15], a decomposition of a homogeneous Poisson structure
similar to that in the statement (a) of the above theorem was already obtained but
the coefficient ¢ was not correctly computed.

For homogeneous Poisson structures, an important example is related to the
quantization of quadratic Poisson structures. It is known that on a real vector
space V', one can define a homogeneous, quadratic Poisson structure on V using
classical r-matrix on the Lie algebra of linear operators. The converse is true in
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dimension 2 (see e.g., [12]) but not in general. In [13], the authors gave a counter-
example showing that there exists a homogeneous quadratic Poisson structure in
dimension 3 which cannot be realized by any classical r-matrix. We recall that a
classical r-matriz on a Lie algebra g is an element r of g A g for which the Schouten
bracket [r,7] = 0. Let P : M,, — X(R") be a real linear isomorphism from the set
of n x n real matrices to the set of vector fields, defined by

where E;; is the matrix with entries all vanishing except one equals 1 on the ith
row and the jth column. Then for any classical r-matrix M1 A My € gA g, P(r) =
P (M) ANP(Mz) is a quadratic Poisson structure. A classical r-Poisson structure is
by definition a quadratic Poisson structure which is the image of a r-matrix under
P.

The following results provide a partial answer to the problem we posted toward
the end of Section 1.

Theorem 3.7. Let g be the 9-dimensional Lie algebra of linear operators in R3.
Assume that r = AANB € g A g, where A = (a;;) and B = (b;;) are real 3 x 3
matrices. The following holds.

(a) P(r) is a classical r-Poisson structure and is exact if and only if
(3.13) AB + tr(A)B = BA + tr(B)A,

where tr(A) denotes the trace of the matriz A.
(b) Any quadratic Jacobian structure in dimension 3 is a classical r-Poisson
structure.

Proof. (a) By definition we have
P(T) = wi201 A O + wo302 A O3 + w3103 A 01,

where
wiz = (a1 + a2anxe + azi123)(biax1 + baaxs + baax3)
—(a1221 + ag2x2 + azpx3)(b1121 + ba1x2 + b3123),
woz = (@1271 + a22%2 + azax3)(b13x1 + bazxo + b3zxs)
(3.14) —(a1321 + ag3w2 + azzxs)(biaw1 + basxs + bzoxs),
w31 = (@1321 + a2sxe + asszs)(biix1 + barxa + ba123)

—(a1171 + ag122 + az1x3)(b1371 + bazze + b3zws).
Again it follows from definition that r is a classical r-matrix if and only if P(r) is
a Poisson structure, i.e.,

3

(3.15) Z (w“@wzg 4w Jwia o 81031) —0.

3 2
=1 (9&61 al'l al'l

For the Poisson structure P(r) to be exact, we should have

(3 16) Owia - 31031 31023 . Owia 31031 . 31023
' 6&62 - (91‘3 ’ (91‘3 - 6%1 ’ (91‘1 - 6&62 '

Since (3.16) implies (3.15), P(r) is an exact classical r-Poisson structure if and only

if the condition (3.16) holds.
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By comparing coefficients of x; in (3.16) for ¢ = 1,2, 3, we obtain the condition
(3.13).

(b) From the proof of statement (a) and Theorem 3.2, it follows that P(r) is an
exact classical r-Poisson structure if and only if it is a Jacobian structure generated
by

P = (a12b13 - (1131712)333 + (alsbll - a11b13):172y

1

3
1

+§(013b21 + ag3bi1 — a11b23 — a21b13)33y2 + g(ﬁl23b21 — a21b23)y3

ai1bi2 — 1112511)5622 + (@11b22 + a21b12 — a12b21 — ag2b11)zyz

+(
1
+(az1baz — azabar)y?z + §(a11b32 + az1bia — a12bz1 — azabiy)zz?
1

2

where (a;;) and (b;;) satisfy the condition (3.13).

Now for any quadratic Jacobian structure generated by P = Az3 + Ba?y +
Czy? + Dy? + Ex?z + Fayz + Gy?z + Hxz? + Tyz? + J23 to be a classical r-
Poisson structure, it is sufficient to find a r = (a;;) A (b;;) € g A g for which the
condition (3.13) is satisfied and P, = P. By direct computations, these conditions
are equivalent to
(3.17)

3Jbas + Ibss + Hbs = 0,

3A623b33MOM3 — 2Bbggb33M2M3 + ObllbggMQMg — 3Db§3M1M2

+2E623b33M1M3 + 2Gb23b33M1M2 — Hb13b23M1M3 = Ib%ngMQ,
3Abaobas (b33 MoMy — bas Mo Ms) + 2Bbog Mo (b13baa M3

+bo3bss (b12b21 — b11b22)) + C(b12bagbsz My — b3gbao M3) Mo

+3Db33(b12b23 + b13baz) M1 My + 2Ebagbazbss My My

+Fb35(baa + bssz) M1 My — 2Gb13basbag My Mo — Hbizbasbas My My = 0,
3AM2 — 2BMyMy + CM2 + 2EMoM; — F My My + HM? = 0,

1
(a21b32 + az1bas — azabs1 — azaber)yz® + = (az1bsz — azabsr)z?,

* 3

as1 = 0, and,

(3.18)
bo1baobosMiar; = —3Ab3;basbag + 2Bb1ab3;baz — Cbay(biabizbar — biy My)r
+3D(b12b21 + b11ba2) My + Fba1bas My,
barbasMiaias = —3Aba1basbas + 2Bbioba1baz — Cbi2bigbar + 3Dbio My,
b21b23M1a13 = —3Ab21b§3 + 2Bb13b21b23 — Ob%3b21 + 3Db13M1,
ba1bazaze = Cbar + 3Dbaa,
borazz = 3D,
bglbgngMgagl = —3Ab%1b23b33M0 + 23b%1b23b33M2 - Cb13b31b33M2
43D (basbs1 + ba1bsz) M1 Ma — 202, bosbas M,
—2Gba1bag My My + Hbi3b3,bas My,
borbasMiMaazas = —3Aba1basbzaMy + 2Bbaibasbsa Mo — Chisbaibza Mo
+3Db3o M1 My — 2Ebo1bazbza My + Hb12ba1baz My,
borbasM1Maaszs = —3Aba1basbzs My + 2Bbaibasbss Mo — Chi3baibss Mo

+3Dbz3 My My — 2Eba1bagbsz My + Hbi3ba1bag My,

where My = baobss — bazbaz, My = bi2bag — bi3baz, Mo = bi2bsz — bi3b3a, M3 =
ba1b33 — basbsy, and My = bi1b2z — bigbos.
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For any given real numbers A, B, ..., J, system (3.17) has solutions b;;, 1 < i,j <
3 for which system (3.18) also has solutions a;;, 1 < 4,5 < 3. Corresponding to
these {b;;} and {a;;}, P(r) with r = (a;;) A (bs;) is the Jacobian structure generated
by the prescribed homogeneous polynomial P. O

4. INVARIANT EXACT POISSON STRUCTURES UNDER A COMPLETELY
INTEGRABLE FLOW

According to [4], a smooth vector field in an n-dimensional smooth manifold
M™ is said to be integrable in the broad sense if it has p functionally independent
first integrals with 0 < p < n, and an abelian (n — p)-dimensional Lie algebra
of symmetries which preserve the p first integrals and are linear independent on
the manifold except perhaps at a set of zero Lebesgue measure. This notion of
integrability generalizes the classical notion of integrability in the Liouville sense
for standard Hamiltonian systems.

For a smooth dynamical system on an n-dimensional smooth manifold which is
integrable in the broad sense, we let M{, ¢ = n — p, be connected components of
the general invariant submanifolds formed by the common level surfaces of the p
first integrals, parametrized by | € R™. The followings were shown in [4].

e If MJ is compact, then it is a torus T.

e If M] is non-compact, then it is a toroidal cylinder T7~™ x R™.

¢ In a toroidal neighborhood B, x T?~™ x R™ of the toroidal cylinder, where
B, is a p-dimensional ball, there exist local coordinates I = (I1,...,1I,) €
By, & = (¢1,...,Pq—m) € TT"™ and p = (p1,...,pm) € R™, such that the
dynamical system is equivalent to

I=0,
(4.1) ¢ =w(I),

where w(I) = (w1(I), -+ ,wgm(I)) " and Q(I) = (¢1(I),--- ,qm(I)) " are
smooth functions. Moreover, in the case that all M are compact, then
m = 0 and the last equation of (4.1) does not appear.

Consequently, if a smooth dynamical system is integrable in the broad sense,
then it is completely integrable in the conventional sense.

We now consider the case that all M{ are compact, i.e., the system (4.1) reduces
to

I=o0,
(4.2 { b= wll),

where (I, $) lies in a toroidal domain B, x TY C M". We denote by X the vector
field corresponding to (4.2). The dynamical system (4.2) is said to be T?-dense at
a point Iy € B, if for any ¢y € T9, the orbit {¢¢ + w(lp)t} is dense on the torus
T4. Let €, C B, be the set of points I € B, at which the trajectories of system
(4.2) are T?-dense. The dynamical system (4.2) or its induced flow is said to be
T9-dense in the toroidal domain if the set €2, is everywhere dense in B,,. Clearly, the
dynamical system (4.2) is T?-dense if and only if the frequencies {w1(I),- - ,wq(I)}
are rationally independent (i.e., w(I) is non-resonant) for almost all I € B, and if
and only if any first integral is a function of I.
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Closed 2-forms which are invariant under the T?-dense dynamical system (4.2)
were characterized in [4]. It was also shown that the system (4.2) preserving a sym-
plectic 2-form must be Hamiltonian. However, if a 2-form is not symplectic, then
in general it has no corresponding Poisson structure. We now consider the charac-
terization of the invariant exact Poisson structures under the T9-dense dynamical
system (4.2).

Theorem 4.1. A Poisson structure A defined in a toroidal domain B, x T¢ C M"
is exact and invariant under the T?-dense dynamical system (4.2) if and only if

(4.3) A_aij(l)ailiAailj_'—bkl(l)%/\ai@—i_cm(l)%/\%és’
with the coefficients satisfying

(4.4) a;-Vwry = 0, b;-Vw,—bg-Vw =0,

(4.5) diva, = 0, divb; = 0,

where a; = (a;1,...,aip), 1 =1,--- ,p, and by = (b1k, ..., bpx), k,1=1,--- ,q.

Proof. Assume that in the toroidal domain, the Poisson structure is of the form

0 0 0 0 0 0

(46) A = aij (L (b)

q
The Lie derivative of A with respect to X = 3 wk(I)a%sk reads
k=1

0 0
LxA = Z X(aij)— N —
1<i<j<p oL~ 0l
p
Owr \ 0 0
+ . Z X(blk) + Z ‘ama—IT 8[1 AN %
1<i<p,1<k<q r=1,r#i

X £ 0w £ y Owe 0 0
+ Z (Ckl)_z Tla—L‘_FZ rka—IT %Aa—@
r=1 1

1<k<i<q r=

In order for A to be invariant under the T9-dense dynamical system (4.2), the
above Lie derivative must vanish, i.e.,

a; = X(ai) =0,

b X (bir,) ija Ou

ik = ik) = — ri T

= ol
p p
. 8wk (9(4)1
e = X(ew) = brmr— > bk
— o, = oI

i,7=1,---,p; k,l = 1,---  q. The first equation in the above means that each
a;; is a first integral of the T?-dense dynamical system (4.2), hence each a;; is a
function which is independent of ¢. Since the coefficients of A are all bounded on
any compact set, it follows from the last two equations in the above that

S a2 o, 30,2 3y, 0y
TZlam 817« — Y L rl 817« Z Tk(?Ir — Y%
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rd = 1,---,p; k,l = 1,--- ¢q. This is the condition (4.4). Consequently, the
Poisson structure A has the form (4.3).

By Lemma 2.1, the Poisson structure (4.3) is exact if and only if the condition
(4.5) holds. This proves the necessary part.

The sufficient part follows easily from the proof for the necessary part. O

Remark 4.1. Using (4.5), the condition (4.4) can be written as
V(aiwk) = O7 V(blwk - bkwl) = O7
= 17 y D5 kul: 17 yd

Remark 4.2. A T?-dense dynamical system (4.2) which preserves an exact Poisson
structure (4.3) can be non-Hamiltonian. We note that if X is a Hamiltonian vector
field associated to a Poisson structure A, then X = A(-,dH) for some Hamiltonian
function H, which is equivalent to div(B1H) = wy with the compatible conditions

div (A;H) =0, div ((Bywr — Brw1)H) =0,

where A; = (@it .., Gipy bity -, big) and By, = (=bigy ..., —bpk, Ck1, -, Chq), & =
L, ,p, k=2, .q

We now consider the T-dense dynamical system (4.2) in dimension 3.

1) Let p=1 and ¢ = 2. The Poisson structure (4.3) reads

0 0 0 0 0 0
A= N g, e War N ag, T a2 Wag N agy
The conditions (4.4) and (4.5) are reduced to
8 80}1
(4.7) b11—— 5] =bia— 5

and b1y, bio=constants, respectively.
The system (4.2) is a Hamiltonian if and only if there exists a Hamiltonian
function H(I,$1,¢2) such that

(4.8) b aH—i—b oH =0, -— a—H—i-c 6—H—w —b a—H—c a—H—w
. 118¢) 128¢2 ) a7 128¢2_ 1s 12757 128¢1_ 2.

So, we must have

(4.9) biow1 = biyws.

But the condition (4.7) is not sufficient to assure (4.9) in general.

However, if biaw1(0) = b1iw2(0), then the system (4.8) always has a solution
provided that (4.7) holds, consequently the system (4.2) is Hamiltonian.

2) Let p =2 and ¢ = 1. We claim that the T9-dense dynamical system (4.2) is
always Hamiltonian. Indeed, the Poisson structure (4.3) has the form

0 0 0 0 0 0
A= I bii (1 ba1 (1 —.
w25 M an, T A g T WGE M ag
The conditions (4.4) and (4.5) are reduced to alg% =0,i=1,2, a12 is a constant,
and '
(4.10) O o _

05 0l
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Note that the system (4.2) is Hamiltonian, i.e., X = A(-,dH(I)) for some Hamil-
tonian function H, if and only if a12 = 0, and

oH OH
(4.11) bll(I)———-+-b21(I)gﬁr'::
2

T, —w(I).

Since the condition (4.10) guarantees that the characteristic equation of (4.11) has a
smooth solution, we can choose suitable b1y, b1a for which (4.11) has a global smooth
solution H(I). This means that we can choose a Poisson structure A such that the
dynamical system (4.2) is Hamiltonian induced by A.

It is an open problem to characterize exact Poisson structures invariant under a
T9-dense dynamical system such that the dynamical system is Hamiltonian induced
by the Poisson structures.
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