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Abstract. In this paper, one-dimensional (1D) nonlinear Schrödinger equation

iut − uxx + mu + |u|4u = 0

with the periodic boundary condition is considered. It is proved that for each given constant
potential m and each prescibed interger N > 1, the equation admits a Whitney smooth family
of small-amplitude, time quasi-periodic solutions with N Diophantine frequencies. The proof is
based on a partial Birkhoff normal form reduction and an improved KAM method.

1. Introduction and Main Result

Consider a nonlinear Schrödinger equation

(1.1) iut + Au +
∂F

∂ū
(u, ū) = 0

with either the homogeneous Dirichlet boundary condition on a domain Ω ⊂ Rd or the periodic
boundary condition on Rd, where

A : −∆ + V

is a self-adjoint operator on X=H1
0 (Ω) or H1(T d) and F consists of higher order and perturbative

terms. The equation defines an infinite dimensional Hamiltonian system

ut = i
∂H̃

∂ū

associated with the Hamiltonian
H̃ = 〈Au, u〉 + F̃ (u, ū),

where

F̃ =

∫

F (u, ū)dx

integrating either over Ω in the case of the Dirichlet boundary condition or over T d in the case of
the periodic boundary condition.

Let µn, φn, n ∈ Zd, denote the eigenvalues, eigenfunctions of A respectively. The problem of
the existence of (time-) quasi-periodic solution for (1.1) is to find, for a given integer N > 1, a
solution of the form

u(t, x) =
∑

n∈Zd

qn(t)φn(x)

such that all qn, n ∈ Zd, are quasi-periodic with the same N -frequencies. With the symplectic
structure

i
∑

n

dqn ∧ dq̄n,
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it is clear that q = (qn)n∈Zd satisfies the Hamiltonian lattice equations

(1.2)

{

q̇n = −i ∂H
∂q̄n

,

˙̄qn = i ∂H
∂qn

, n ∈ Zd,

where

(1.3) H = H(q, q̄) = H̃(
∑

n

qnφn,
∑

n

q̄nφ̄n).

Motivated by the classical KAM (Kolmogorov–Arnold–Moser) theory in finite dimensional
Hamiltonian systems, a natural way to obtain quasi-periodic solutions for (1.2) is to re-formulate
the system into a perturbation of a non-degenerate, partially integrable system, for which param-
eters need to be introduced in order to adjust frequencies to encounter small divisors problem.
More precisely, given an integer N > 1, one finds a parameter space Λ ⊂ RN and (symplectic)
action-angle-normal coordinates I = (I1, · · · , IN ), θ = (θ1, · · · , θN ), z = (zn)n∈Zd such that the
Hamiltonian (1.3) can be transformed into a parametrized Hamiltonian normal form

(1.4) H = 〈ω(ξ), I〉 +
∑

n

Ωn(ξ)znz̄n + P (θ, I, z, z̄, ξ), ξ ∈ Λ,

where ω : Λ → RN is a local diffeomorphism and P is viewed as a perturbation. The existence
problem for quasi-periodic solutions then becomes finding a positive measure subset Λ̃ of Λ such
that each ξ ∈ Λ̃ corrsponds to a quasi-periodic, invariant N -torus of (1.4) which is a small pertur-
bation of the unperturbed, quasi-periodic N -torus Tξ = {0}×{θ0 + ω(ξ)t}× {0} corresponding to
P = 0.

There are several ways of introducing parameters into (1.1) or (1.2). For perturbations of linear
Schrödinger equations, one way is to consider parametrized potentials, i.e.,

V = V (·, ξ),
where ξ is a N -dimensional parameter, for which the unperturbed non-degeneracy is a generic
condition on potentials. In this setting, one deals with a family of nonlinear Schrödinger equations
with generic potentials. Another way is to consider Floquet operator potentials

V = Mσ

where Mσ is a Floquet multiplier defined by

Mσei〈n,x〉 = σnei〈n,x〉, n ∈ Zd,

for a set of real numbers {σn, n ∈ Zd} such that N of them can be treated as parameters. In this
setting, one considers nonlinear Schrödinger equations in operator forms. To deal with a single
nonlinear Schrödinger equation with the potential

V = V (x),

a natural way of introducing parameters, as what have been done in finite dimensions, is to reduce
the lattice Hamiltonian (1.3) to a partial Birkhoff normal form then further to a parametrized
normal form (1.4) having N non-degenerate, integrable directions whose amplitudes become natural
parameters.

With the availability of a parametrized normal form (1.4), both KAM (Kolmogorov–Arnold–
Moser) and CWB (Craig–Wayne–Bourgain) methods have been developed in studying the existence
of quasi-periodic solutions for nonlinear Schrödinger equations as well as for other infinite dimen-
sional Hamiltonian systems like nonlinear wave, KdV, beam equations, and Hamiltonian lattices.

The KAM method concerns the construction of a sequence of symplectic transformations to
(1.4) so that at each KAM step resonant terms in the perturbation are removed, quadratic terms
in the perturbation are averaged and added to the new normal form, and angular-dependent-
terms in the perturbation are pushed into higher order. Based on original works of Melnikov [24],
Eliasson [12], Kuksin [18], and Pöschel [25], the KAM method has been extensively developed
in finite dimensions concerning the persistence of lower dimensional tori in Hamiltonian systems
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(see [2, 3, 16, 23, 29, 31, 32] and references therein). Recently, the KAM method was extended to
infinite dimensions in works of Kuksin [19], Wayne [30], and Pöschel [27] in studying quasi-periodic
solutions for 1D nonlinear Schrödinger and wave equations with the Dirichlet boundary condition
and parametrized potentials.

The CWB method was first introduced by Craig–Wayne [10, 11] in studying periodic solutions
for 1D nonlinear wave equations with the periodic boundary condition and later developed by
Bourgain [4, 5, 6, 7, 8] in studying quasi-periodic solutions for nonlinear Schrödinger and wave
equations with periodic boundary conditions and either parametrized potentials in 1D or Floquet
operator potentials in any space dimension. Unlike 1D Schrödinger and wave equations with
the Dirichlet boundary condition, multiple eigenvalues always occur in cases with the periodic
boundary condition even in one space dimension, which causes additional difficulties in studying
the existence of quasi-periodic solutions. To overcome the difficulties, the CWB method traces back
to the origin of the KAM method by using Newton iteration for solving infinitely many homological
equations and uses Lyapunov-Schmidt decomposition of amplitude-frequency equations together
with techniques of Fröhlich–Spencer [13] concerning analysis of Green’s functions. With respect
to the normal form (1.4), the CWB method differs from the KAM method by only considering
elimination of first order resonant terms in each iteration step.

The KAM method is more restrictive than the CWB one, that is, if the existence of quasi-
periodic solutions in a Hamiltonian system can be shown by the KAM method, then it can be also
shown by the CWB method. However, the KAM method, if applicable, can capture more proper-
ties of quasi-periodic solutions such as their continuous (in fact, Whitney smooth) dependence on
parameters, their Floquet forms and linear stability, while CWB method mainly yields the exis-
tence. Both methods share some common difficulties in infinite dimension, for instance, estimates
on the inverse of an infinite dimensional matrix which has small divisors on the diagonal, measure
estimate involving infinitely many small divisor conditions for a fixed Fourier mode, multiplicity
of eigenvalues under the periodic boundary condition, and non-improvement of regularities (decay
rate of Fourier coefficients) after iterations.

Besides nonlinear Schrödinger and wave equations with parameterized and Floquet operator
potentials, there have been also studies on quasi-periodic solutions of a single nonlinear Schrödinger
or wave equation with a constant potential using either the CWB or the KAM method. By deriving
a partial Birkhoff normal form of order four, Kuksin–Pöschel [21], Pöschel [26] further developed
the KAM method to study the existence of small amplitude quasi-periodic solutions corresponding
to any finite number of Fourier modes for perturbations of the 1D nonlinear Schrödinger and wave
equations

iut − uxx + mu + |u|2u = 0, m ∈ R,(1.5)

utt − uxx + mu + u3 = 0, m > 0,(1.6)

with the Dirichlet boundary condition. Using the CWB method, similar existence results of quasi-
periodic solutions were shown by Bourgain [6, 8] with respect to the periodic boundary condition.
A KAM type of theorem was later given by Chierchia–You [9] for the 1D wave equation (1.6) with
the periodic boundary condition, which, due to a spectral gap condition and a regularity condition
assumed, does not hold for the 1D Schrödinger equation (1.5) with the periodic boundary condi-
tion. Recently, a general KAM type of result is obtained by Geng–You [14] which is particularly
applicable to the 1D Schrödinger equation (1.5) with the periodic boundary condition. We note
that the 1D Schrödinger equation (1.5) with cubic nonlinearities are completely integrable, hence
one can perturb any finite number of Fourier modes to obtain small amplitude quasi-periodic so-
lutions, which is however not the case if the nonlinearities are of higher order. In a recent work,
Liang–You [22] made use of some complicated Birkhoff normal form reductions and KAM tech-
niques to obtain small amplitude quasi-periodic solutions corresponding to any finite number of
admissible Fourier modes for the nonlinear Schrödinger equation

(1.7) iut − uxx + mu + |u|4u = 0, m ∈ R,
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with the Dirichlet boundary condition.
There are also some works on the existence of quasi-periodic solutions in higher dimensional

nonlinear Schrödinger equations and other type of infinite dimensional Hamiltonian systems such
as quasi-linear KdV equations, nonlinear beam equations and Hamiltonian lattices. For instance,
the existence of two-frequency, quasi-periodic solutions was shown by Bourgain [6, 8] for the 2D
nonlinear Schrödinger equation

iut −4u + mu + |u|2u = 0,

by using CWB method and normal form reductions. Geng–You [15] proved a KAM type of theorem
which is applicable to certain Hamiltonian partial differential equations in higher space dimension
including beam equations and Schrödinger equations with nonlocal nonlinearity. Recently, Kuksin
[20], Kappeler–Pöschel [17] showed the existence of quasi-periodic solutions for quasi-linear KdV
equations.

In this paper, we will study the 1D Schrödinger equation (1.7) with the periodic boundary
condition

(1.8) u(t, x) = u(t, x + 2π)

and show the existence of small amplitude quasi-periodic solutions corresponding to any finite
number of admissible Fourier modes. More precisely, let

µn = n2 + m, n ∈ Z,

be the eigenvalues of A = −∂xx + m with the periodic boundary condition (1.8). For any fixed
integer N > 1 and any ordered N -index {n1, n2, · · · , nN}, where 0 < n1 < n2 < · · · < nN , it
is clear that the linear equation associated with (1.7) with the same periodic boundary condition
(1.8) has quasi-periodic solutions

u(t, x) =

N∑

i=1

√

ξie
i(ωit+nix), ωi = n2

i + m, ξi > 0.

An ordered N -index {n1, n2, · · · , nN} is said to be admissible if whenever i, j, k, l, m, n are integers
such that i+j+k = l+m+n, (i, j, k) 6= (l, m, n), and at least four of them lying in {n1, n2, · · · , nN},
then

µi + µj + µk − µl − µm − µn 6= 0.

We let J denote the set of all admissible N -indexes. It is known that for any given N > 1, J is a
infinite set (see the Appendix of [22]). In particular, when N = 2, J is simply the set

J = {{n1, n2} : n1 − n2 is odd}.
Our main result states as follows.

Theorem Consider the 1D nonlinear Schrödinger equation (1.7) with the periodic boundary con-

dition (1.8). For given N > 1, let {n1, · · · , nN} be a fixed admissible N -index. Then there exists

a Cantor subset Õ = Õ(n1, · · · , nN) ⊂ R
N
+ of positive Lebesgue measure, such that each ξ ∈ Õ

corresponds to a real analytic, quasi-periodic solution

u(t, x) =
N∑

i=1

√

ξie
i(ω̃it+nix) + O(|ξ| 52 )

of (1.7), (1.8) with Diophantine frequencies

ω̃i = ωi + O(|ξ|2), 1 ≤ i ≤ N.

Moreover, the quasi-periodic solutions u are linearly stable and depend on ξ Whitney smoothly.

The proof of our result uses the KAM method for which a partial Birkhoff normal form needs
to be derived. By taking advantage of the special form of the nonlinearity, the normal form will
be derived using arguments of Liang–You [22] for eliminating lower-order, non-integrable terms.
It turns out that not only is the normal form in the present situation as simple as the case with
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the Dirichlet boundary condition, but also its perturbation term has a so-called compact form

(see Section 2 for details) which is preserved under the KAM iterations. Such a compact form
significantly simplifies the KAM iteration. In particular, at each KAM step, the small divisor
conditions are similar to those in finite dimensional cases and we do not need to shrink the decay
weight which is usually necessary in infinite dimensional KAM problems in order to put the less
regular terms in the perturbation into the next KAM cycle and to preserve decay properties of the
coefficient matrices of the homological equations. This is also the reason for obtaining Diophantine
tori in the present case, which does not seem to be known in most Hamiltonian PDEs previously
studied.

With similar partial Birkhoff normal form reductions, our method equally applies to the 1D
beam equation

utt + uxxxx + u5 = 0

with the periodic boundary condition to yield the existence of quasi-periodic solutions. But with
respect to finding quasi-periodic solutions it applies neither to the 1D nonlinear Schrödinger equa-
tions of higher order nonlinearities:

(1.9) iut − uxx + mu + |u|2pu = 0, p ≥ 3

with either the Dirichlet or the periodic boundary condition, nor to the completely resonant wave
equation

utt − uxx + u3 = 0(1.10)

with either the Dirichlet or the periodic boundary condition. For (1.9), the failure of our method is
due to the unavailability of similar Birkhoff normal forms (see Section 2 for details). However, our
method works in finding periodic solutions of (1.9) for any p ≥ 1 due to the availability of partial
Birkhoff normal forms in the case of N = 1 and the un-necessity of small divisor conditions for the
existence of periodic conditions. For (1.10), the failure of our method is due to the lack of super-
linear growth of eigenvalues because our method crucially depend on the spectral asymptotics µn ∼
n2. We note that by avoiding Birkhoff normal form reductions, special quasi-periodic solutions
were discovered by Bambusi [1] for wave equations

utt − uxx + mu + u2p−1 = 0, p ≥ 2,

with the Dirichlet boundary condition, for typical m > 0. In general, it is certainly interesting to
know whether quasi-periodic solutions can exist for equations (1.9) with either the Dirichlet or the
periodic boundary condition if p ≥ 3.

The rest of the paper is devoted to the proof of the main result. For simplicity, we only treat the
case N = 2. The general case can be treated similarly. Section 2 is a preliminary section in which
we define the weighted norms and compact forms and study their basic properties. In Section 3,
we derive a partial Birkhoff normal form of order six for the lattice Hamiltonian associated with
(1.7), (1.8) then transform it into a parameterized Hamiltonian normal form. In Sections 4, we
give details for one step of KAM iteration. Proof of the Theorem is completed in Section 5 by
showing an iteration lemma, convergence, and conducting measure estimate.

2. Preliminary

2.1. Weighted norms. For a given ρ > 0, we let `ρ be the Banach space of bi-infinite, complex
valued sequences q = ({qn}), endowed with the weighted norm

‖q‖ρ =
∑

n∈Z

|qn|e|n|ρ.

Similarly, let Lρ be the Banach space of functions u(x) =
∑

n∈Z
qnφn(x) for ({qn}) ∈ `ρ, endowed

with the norm ‖u‖ρ = ‖q‖ρ. Then Lρ and `ρ are isometric, and the product of two functions u(x) =
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∑

n∈Z
pnφn(x), v(x) =

∑

n∈Z
qnφn(x) in Lρ defines the convolution q ∗ p: (q ∗ p)n =

∑

m qn−mpm,
n ∈ Z, in `ρ, under which `ρ becomes a Banach algebra. In particular,

‖q ∗ p‖ρ ≤ ‖q‖ρ‖p‖ρ,

for any p, q ∈ `ρ.
Let | · | denote the sup-norm of complex vectors. For given r, s > 0, we let D(r, s) be the complex

neighborhood
D(r, s) = {(θ, I, z, z̄) : |Imθ| < r, |I | < s2, ‖z‖ρ < s, ‖z̄‖ρ < s}

of T2 × {I = 0} × {z = 0} × {z̄ = 0} in T2 × R2 × `ρ. Also let O be a bounded set in R2
+.

Let F (θ, I, z, z̄) be a real analytic function on D(r, s) which depends on a parameter ξ ∈ O
Whitney smoothly (i.e., C1 in the sense of Whitney). We expand F into the Taylor-Fourier series
with respect to θ, I, z, z̄:

F (θ, I, z, z̄) =
∑

α,β

Fαβzαz̄β,

where, for multi-indices α ≡ (· · · , αn, · · · ), β ≡ (· · · , βn, · · · ), αn, βn ∈ N with finitely many
non-vanishing components,

Fαβ =
∑

k∈Z2,l∈N2

Fklαβ(ξ)I lei〈k,θ〉.

We define the weighted norm of F as

‖F‖D(r,s),O ≡ sup
‖z‖ρ<s

‖z̄‖ρ<s

∑

α,β

‖Fαβ‖ |zα||z̄β|,

where

‖Fαβ‖ ≡
∑

k,l

|Fklαβ |Os2|l|e|k|r, |Fklαβ |O ≡ sup
ξ∈O

(|Fklαβ | + |∂Fklαβ

∂ξ
|).

In the above and for the rest of the paper, derivatives in ξ ∈ O are in the sense of Whitney.
For a vector-valued function G : D(r, s)×O → Cm, m < ∞, we simply define its weighed norm

by

‖G‖D(r,s),O ≡
m∑

i=1

‖Gi‖D(r,s),O.

For the Hamiltonian vector field

XF = (FI ,−Fθ, {iFzn
}, {−iFz̄n

})
associated with a function F on D(r, s) ×O, we define its weighted norm by

‖XF ‖D(r,s),O
≡ ‖FI‖D(r,s),O

+
1

s2
‖Fθ‖D(r,s),O

+
1

s
(
∑

n

‖Fzn
‖

D(r,s),O
e|n|ρ +

∑

n

‖Fz̄n
‖

D(r,s),O
e|n|ρ).

Let F, G be two real analytic functions on D(r, s) which depend on a parameter ξ ∈ O Whitney
smoothly.

Lemma 2.1.
‖FG‖D(r,s),O ≤ ‖F‖D(r,s),O‖G‖D(r,s),O.

Proof. Since (FG)klαβ =
∑

k′,l′,α′,β′ Fk−k′ ,l−l′,α−α′,β−β′Gk′l′α′β′ , we have

‖FG‖D(r,s),O = sup
‖z‖ρ<s

‖z̄‖ρ<s

∑

k,l,α,β

|(FG)klαβ |Os2l|zα||z̄β|e|k|r

≤ sup
‖z‖ρ<s

‖z̄‖ρ<s

∑

k,l,α,β

∑

k′,l′,α′,β′

|Fk−k′ ,l−l′,α−α′,β−β′Gk′l′α′β′ |Os2l|zα||z̄β|e|k|r ≤ ‖F‖D(r,s),O‖G‖D(r,s),O.

�
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Lemma 2.2. (Cauchy inequalities)

‖Fθ‖D(r−σ,s) ≤
1

σ
‖F‖D(r,s),

‖FI‖D(r, 12 s) ≤
4

s2
‖F‖D(r,s),

and

‖Fzn
‖D(r, 12 s) ≤

2

s
‖F‖D(r,s)e

|n|ρ,

‖Fz̄n
‖D(r, 12 s) ≤

2

s
‖F‖D(r,s)e

|n|ρ.

Proof. It follows from the standard Cauchy estimate. �

Consider the Poisson bracket

{F, G} = 〈∂F

∂I
,
∂G

∂θ
〉 − 〈∂F

∂θ
,
∂G

∂I
〉 + i

∑

n

(
∂F

∂zn

∂G

∂z̄n

− ∂F

∂z̄n

∂G

∂zn

).

Lemma 2.3. There exists a constant c > 0 such that if

‖XF ‖D(r,s),O < ε′, ‖XG‖D(r,s),O < ε′′

for some ε′, ε′′ > 0, then

‖X{F,G}‖D(r−σ,ηs),O < cσ−1η−2ε′ε′′,

for any 0 < σ < r and 0 < η � 1. In particular, if η ∼ ε
1
3 , ε′, ε′′ ∼ ε, then ‖X{F,G}‖D(r−σ,ηs),O ∼

ε
4
3 .

Proof. See [14]. �

2.2. Compact form. Given n1, n2 ∈ Z. A real analytic function

F = F (θ, I, z, z̄) =
∑

k,α,β

Fkαβei〈k,θ〉zαz̄β

on D(r, s) is said to admit a compact form with respect to n1, n2 if

Fkαβ = 0, whenever k1n1 + k2n2 +
∑

n

(αn − βn)n 6= 0,

where k = (k1, k2) ∈ Z2, and, α ≡ (· · · , αn, · · · ), β ≡ (· · · , βn, · · · ), αn, βn ∈ N, with finitely many
non-vanishing components. In the case that n1 = n2 = 0, we simply say that F has a compact

form.
Let F has a compact form with respect to n1, n2. We consider the term F k11

n(−n)e
i〈k,θ〉znz̄−n in

the Taylor-Fourier expansion of F . It is clear that F 011
n(−n) = 0, and even when k 6= 0, F k11

n(−n) = 0

if |n| > 1
2 max{|n1|, |n2|}|k| (because k1n1 + k2n2 + 2n 6= 0 in this case). Hence, for each k, there

are only finitely many coupled terms znz̄−n in Fk =
∑

α,β Fkαβzαz̄β. A crucial idea in the proof
of our main Theorem is to show that compact forms will be preserved by KAM iterations. This
property, enabling the consideration of essentially finite small divisors in each KAM step, will play
an important role in the measure estimate later on.

Lemma 2.4. Given n1, n2 ∈ Z and consider two real analytic functions F (θ, I, z, z̄), G(θ, I, z, z̄)
on D(r, s). If both F and G have compact forms with respect to n1, n2, then so does {F, G}.
Proof. Let

F =
∑

A1

Fk1α1β1(I)ei〈k1,θ〉zα1 z̄β1 ,

G =
∑

A2

Gk2α2β2(I)ei〈k2,θ〉zα2 z̄β2 ,
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where

Ai = {(ki, αi, βi) : ki1n1 + ki2n2 +
∑

n

(αin − βin)n = 0},

ki = (ki1, ki2),

αi = ({αin}n∈Z),

βi = ({βin}n∈Z),

for i = 1, 2 respectively. A straightforward calculation yields that

{F, G} =
∑

A1

∑

A2

〈∂Fk1α1β1(I)

∂I
, ik2〉Gk2α2β2(I)ei〈k1,θ〉zα1 z̄β1ei〈k2,θ〉zα2 z̄β2

−
∑

A1

∑

A2

〈ik1,
∂Gk2α2β2(I)

∂I
〉Fk1α1β1(I)ei〈k1,θ〉zα1 z̄β1ei〈k2,θ〉zα2 z̄β2

+ i
∑

m

∑

Ã1∪Ã2

Fk1α1β1(I)Gk2α2β2(I)ei〈k1,θ〉ei〈k2,θ〉zα1−em z̄β1zα2 z̄β2−em

− i
∑

m

∑

Ã1∪Ã2

Fk1α1β1(I)Gk2α2β2(I)ei〈k1,θ〉ei〈k2,θ〉zα1 z̄β1−emzα2−em z̄β2 ,

where for each i = 1, 2, m ∈ Z, em is the multi-index whose mth component is 1 and other
components are all 0,

Ãi = Ãi(m) = {(ki, αi, βi) : ki1n1 + ki2n2 + (αim − βim)m +
∑

n∈Z\{m}

(αin − βin)n = 0},

ki = (ki1, ki2),

αi = ({αin}n∈Z\{m}),

βi = ({βin}n∈Z\{m}).

Since all terms above have compact forms with respect to n1, n2, so does {F, G}. �

All the above notions and properties on weighted norms and compact forms can be similarly
extended to the case (θ, I) ∈ T N × RN for any N ≥ 2. In particular, compact forms can be
similarly defined with respect to any N integers n1, n2, · · · , nN . We treated the case N = 2 only
because our main Theorem will be proved for an admissible 2-index.

3. Normal Form

Using the Hamiltonian formulation, we re-write the equation (1.7) with the periodic boundary
condition (1.8) as the Hamiltonian system

ut = i
∂H

∂ū
,

where

H =

∫ 2π

0

|ux|2 + m|u|2 dx +
1

3

∫ 2π

0

|u|6 dx.

Note that the operator A = −∂xx+m with the periodic boundary condition has an orthonormal

basis {φn(x) =
√

1
2π

einx} and corresponding eigenvalues

µn = n2 + m.

Let
u(x, t) =

∑

n∈Z

qn(t)φn(x).
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Then associated with the symplectic structure i
∑

n dqn ∧ dq̄n, {qn}n∈Z satisfies the Hamiltonian
equations

q̇n = i
∂H

∂q̄n

, n ∈ Z,

where

(3.1) H = Λ + G

with

Λ =
∑

n∈Z

µn|qn|2,

G =
1

3

∫ 2π

0

|
∑

n∈Z

qnφn|6 dx.

Lemma 3.1. The gradient Gq̄ is a real analytic map from a neighborhood of the origin of `ρ into

`ρ, with

‖Gq̄‖ρ = O(‖q‖5
ρ).

Proof. Let Gq̄ = ({ ∂G
∂q̄n

}), where

∂G

∂q̄n

=

∫ 2π

0

|u|4uφ̄n dx

for u =
∑

n∈Z
qnφn, i.e., ∂G

∂q̄n
= (|u|4u)n. Hence,

‖Gq̄‖ρ = ‖|u|4u‖ρ ≤ ‖u‖5
ρ = ‖q‖5

ρ.

The analyticity of Gq̄ follows from the regularity of its components and its local boundedness ([28],
Appendix A). �

Note that

G =
1

3

∑

i,j,k,l,m,n

Gijklmnqiqjqk q̄lq̄mq̄n,

where

Gijklmn =

∫ 2π

0

φiφjφkφ̄lφ̄mφ̄n dx.

We immediately have the following.

Lemma 3.2. G has a compact form, i.e.,

Gijklmn = 0 whenever i + j + k − l − m − n 6= 0.

Moreover,

Gijkijk =
1

4π2
.

To transform the Hamiltonian (3.1) into a partial Birkhoff normal form, we fix {n1, n2} ∈ J ,
i.e., n1−n2 is odd, and consider the index sets ∆∗, ∗ = 0, 1, 2, 3, as follows. For each ∗ = 0, 1, 2, ∆∗

is the set of indices (i, j, k, l, m, n) which have exactly ∗ components in {n1, n2}. ∆3 is the set of
the indices (i, j, k, l, m, n) which have at least three components not in {n1, n2}. We also consider
the resonance sets N = {(i, j, k, i, j, k)} ∩ ∆0, M = {(i, j, k, i, j, k)} ∩ ∆2.

Lemma 3.3. Let (i, j, k, l, m, n) ∈ (∆0 \ N ) ∪ ∆1 ∪ (∆2 \M). If

(3.2) i + j + k − l − m − n = 0,

then

(3.3) µi + µj + µk − µl − µm − µn = i2 + j2 + k2 − l2 − m2 − n2 6= 0.
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Proof. We assume without loss of generality that {i, j, k} ∩ {l, m, n} = ∅.
In the case that (i, j, k, l, m, n) ∈ ∆0 \N , if (3.3) fails, then i = j = k = n1 and l = m = n = n2,

or vice versa. This is a contradiction to (3.2).
In the case that (i, j, k, l, m, n) ∈ ∆1, we have i = j = k = n1, l = m = n2 and n 6= n1, n2, or

vice versa. Without loss of generality, we assume that i = j = k = n1, l = m = n2 and n 6= n1, n2.
Since

i + j + k − l − m − n = 3n1 − 2n2 − n = 0,

we have n = 3n1 − 2n2. Consequently,

µi + µj + µk − µl − µm − µn = 3n2
1 − 2n2

2 − (3n1 − 2n2)
2

= −6n2
1 + 12n1n2 − 6n2

2 = −6(n1 − n2)
2 6= 0.

In the case that (i, j, k, l, m, n) ∈ ∆2 \ M, we either have a) i = j = k = n1, l = n2, and
m, n 6= n1, n2; or b) i = j = n1, l = m = n2, and k, n 6= n1, n2.

In the case a), since

i + j + k − l − m − n = 3n1 − n2 − m − n = 0,

we have n = 3n1 − n2 − m. Consequently,

µi + µj + µk − µl − µm − µn = 3n2
1 − n2

2 − m2 − (3n1 − n2 − m)2

= −6n2
1 − 2n2

2 + 6n1n2 + 6n1m − 2n2m − 2m2

= −2(m− 3n1 − n2

2
)2 − 3

2
(n1 − n2)

2 6= 0.

In the case b), since

i + j + k − l − m − n = 2n1 − 2n2 + k − n = 0,

we have n = 2n1 − 2n2 + k. Consequently,

µi + µj + µk − µl − µm − µn = 2n2
1 − 2n2

2 + k2 − (2n1 − 2n2 + k)2

= −2n2
1 − 6n2

2 − 4n1k + 8n1n2 + 4n2k

= 4k(n2 − n1) − 2(3n2 − n1)(n2 − n1)

= 2(n2 − n1)(2k − (3n2 − n1)) 6= 0,

as 3n2 − n1 is odd. �

Using these index sets, it is clear that G has the following decomposition

G = G0 + G1 + G2 + Ĝ,

where

G∗ =
1

3

∑

i+j+k−l−m−n=0,

(i,j,k,l,m,n)∈∆∗

Gijklmnqiqjqk q̄lq̄mq̄n, ∗ = 0, 1, 2,

and

Ĝ =
1

3

∑

i+j+k−l−m−n=0,

(i,j,k,l,m,n)∈∆3

Gijklmnqiqjqk q̄lq̄mq̄n.

Proposition 3.1. Given {n1, n2} ∈ J , there exists a real analytic, symplectic change of coor-

dinates Γ in a neighborhood of the origin of `ρ which transforms the Hamiltonian (3.1) into the

partial Birkhoff normal form

(3.4) H ◦ Γ = Λ + Ḡ + Ĝ + K
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such that the corresponding Hamiltonian vector fields XḠ, X
Ĝ

and XK are real analytic in a

neighborhood of the origin in `ρ, where

Ḡ =
1

12π2
(|qn1 |6 + |qn2 |6) +

9

12π2
(|qn1 |4|qn2 |2 + |qn2 |4|qn1 |2)

+
9

12π2

∑

n6=n1,n2

(|qn1 |4 + |qn2 |4 + 4|qn1 |2|qn2 |2)|qn|2,

Ĝ =
1

3

∑

i+j+k−l−m−n=0,
(i,j,k,l,m,n)∈∆3

Gijklmnqiqjqk q̄lq̄mq̄n,

|K| = O(‖q‖10
ρ ).

Moreover, K(q, q̄) has a compact form.

Proof. We want to construct the symplectic transformation Γ as the time-1 map of the Hamiltonian
flow Φt

F associated with a Hamiltonian

F =
1

3

∑

i,j,k,l,m,n

Fijklmnqiqjqkq̄lq̄mq̄n

which eliminates all terms in G0, G1, G2 that are not of the form |qi|2|qj |2|qk|2. To do so, let

iFijklmn =







Gijklmn

µi+µj+µk−µl−µm−µn
i + j + k − l − m − n = 0, (i, j, k, l, m, n) ∈ ∆0 \ N ,

Gijklmn

µi+µj+µk−µl−µm−µn
i + j + k − l − m − n = 0, (i, j, k, l, m, n) ∈ ∆1,

Gijklmn

µi+µj+µk−µl−µm−µn
i + j + k − l − m − n = 0, (i, j, k, l, m, n) ∈ ∆2 \M,

0 otherwise.

It follows from Lemma 3.3 that F is well defined.
To show the analyticity of the transformation, we note that there exists a constant c > 0 such

that for each n ∈ Z

| ∂F

∂q̄n

| ≤ c
∑

i+j+k−l−m=n

|qi||qj ||qk||q̄l||q̄m|

= c(|q| ∗ |q| ∗ |q| ∗ |q̄| ∗ |q̄|)n,

where |q| = ({|qj |}).
Hence

‖Fq̄‖ρ
≤ c‖|q| ∗ |q| ∗ |q| ∗ |q̄| ∗ |q̄|‖ρ ≤ c‖q‖5

ρ.

The analyticity of Fq̄ then follows from that of each of its component and its local boundedness
(see [28], Appendix A).

Let Γ = Φ1
F . Then

H ◦ Γ = Λ + Ḡ + Ĝ + K,
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where

Ḡ = (G0 + G1 + G2 + {Λ, F})

=
1

12π2
(|qn1 |6 + |qn2 |6) +

9

12π2
(|qn1 |4|qn2 |2 + |qn2 |4|qn1 |2)

+
9

12π2

∑

n6=n1,n2

(|qn1 |4 + |qn2 |4 + 4|qn1 |2|qn2 |2)|qn|2,

Ĝ =
1

3

∑

i+j+k−l−m−n=0,

(i,j,k,l,m,n)∈∆3

Gijklmnqiqjqk q̄lq̄mq̄n,

K = {G, F}+
1

2!
{{Λ, F}, F}+

1

2!
{{G, F}, F}

+ · · ·+ 1

n!
{· · · {Λ, F} · · · , F

︸ ︷︷ ︸

n

} +
1

n!
{· · · {G, F} · · · , F

︸ ︷︷ ︸

n

} + · · · .

It is clear that |K| = O(‖q‖10
ρ ). To show that K has a compact form, we note that since G has

a compact form, so does F . Hence by Lemma 2.4, {G, F} has a compact form. Note that Λ is
already in a compact form. Repeated applications of Lemma 2.4 show that all terms in K have
compact forms, so does K. �

Remark 3.1. 1) The above partial Birkhoff normal form reduction does not hold if the 7th order

nonlinearity |u|6u is considered, simply because Lemma 3.3 is not valid. To see this, let i = j =
k = n1, m = n = p = n2, l = 2n2 − n1, q = 2n1 − n2. Then i + j + k + l − m − n − p − q = 0
and (i, j, k, l, m, n, p, q) ∈ ∆2 \ M. But we also have i2 + j2 + k2 + l2 − m2 − n2 − p2 − q2 = 0.
Thus when transforming the Hamiltonian associated with the 7th order nonlinearity into a partial

Birkhoff normal form, many non-integrable terms have to be included into the normal form. This

makes the normal form very complicated.

2) If we look for periodic solutions for a nonlinear Schrödinger equation of form (1.9) with a

higher order nonlinearity, then a normal form reduction similar to the above can be carried out

regardless the order of the nonlinearity. Therefore, it seems that there are essential difference

between finding quasi-periodic solutions and periodic ones in problem of this nature.

3) As we will show later, the compact form of K leads to a compact form of the perturbation

at each KAM step, in particular, no term of the form |qn1 |2 · · · |qnd
|2qnq̄−n will be involved in the

perturbation at each KAM step. This property enables us to actually consider a finite small divisor

problem at each KAM step, hence to make the measure estimate work.

Next, we introduce action-angle-normal variables and parameters to the partial Birkhoff normal
form (3.4). Let ξ = (ξ1, ξ2) ∈ R2

+ be a parameter and (I, θ) ∈ R2×T2 be the standard action-angle
variables in the (qn1 , qn2 , q̄n1 , q̄n2)-space around ξ. Then

qni
q̄ni

= Ii + ξi, i = 1, 2.

Also let zn = qn for n 6= n1, n2. Then the partial Birkhoff normal form (3.4) becomes

H̃ = 〈ω̃(ξ), I〉 +
∑

n

Ω̃n(ξ)znz̄n + P̃ (θ, I, z, z̄, ξ),

where ω̃(ξ) = (ω̃1(ξ), ω̃2(ξ)) with

ω̃i(ξ) = n2
i + m +

3

4π2
(ξ1 + ξ2)

2 − 2

4π2
ξ2
i , i = 1, 2,
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and,

Ω̃n(ξ) = n2 + m +
6

4π2
(ξ1 + ξ2)

2 − 3

4π2
ξ2
1 − 3

4π2
ξ2
2 , n 6= n1, n2,

P̃ = K + O(|I |3) + O(|ξ||I |2) + O(|ξ||I |‖z‖2
ρ) + O(|I |2‖z‖2

ρ)

+ O(|ξ| 32 ‖z‖3
ρ) + O(|ξ|‖z‖4

ρ)

with the variables qn1 , qn2 in K expressed in terms of I, θ.

Consider the Taylor-Fourier expansion of P̃ :

P̃ =
∑

k,α,β

P̃kαβ(I)ei〈k,θ〉zαz̄β.

It follows from the compact forms of Ĝ and K that P̃ has a compact form with respect to n1, n2,
i.e.,

P̃kαβ(I) = 0, whenever k1n1 + k2n2 +
∑

n∈Z\{n1,n2}

(αn − βn)n 6= 0.

This particularly implies that P̃ contains no terms of the form znz̄−n. As to be seen below, such
a compact form of the perturbation will be preserved under the KAM iteration.

Now, let ε > 0 be sufficiently small. By considering the re-scalings: ξj → ε2
√

ξj , j = 1, 2,

z → ε2z, and I → ε4I , we obtain the rescaled Hamiltonian

H(I, θ, z, z̄, ξ) = ε−8H̃(ε4I, θ, ε2z, ε2z̄, ε2
√

ξ1, ε
2
√

ξ2)

= 〈ω∗(ξ), I〉 +
∑

n

Ω∗
n(ξ)znz̄n + εP ∗(I, θ, z, z̄, ξ, ε),(3.5)

where ω∗(ξ) = (ω∗
1(ξ), ω∗

2(ξ)) with

ω∗
1(ξ) = ε−4(n2

1 + m) +
3

4π2
(
√

ξ1 +
√

ξ2)
2 − 2

4π2
ξ1,

ω∗
2(ξ) = ε−4(n2

2 + m) +
3

4π2
(
√

ξ1 +
√

ξ2)
2 − 2

4π2
ξ2,

and,

Ω∗
n(ξ) = ε−4(n2 + m) +

6

4π2
(
√

ξ1 +
√

ξ2)
2 − 3

4π2
ξ1 −

3

4π2
ξ2, n 6= n1, n2,

P ∗ = ε−7P̃ (ε4I, θ, ε2z, ε2z̄, ε2
√

ξ1, ε
2
√

ξ2).

Note that the nonlinear Schrödinger equation (1.7) has another conserved quantity
∫ 2π

0 |u|2dx =
∑

n |qn|2 = δ, i.e.,

|qn1 |2 + |qn2 |2 +
∑

n∈Z\{n1,n2}

|qn|2 = δ.

The above re-scalings yields that

ε2I1 +
√

ξ1 + ε2I2 +
√

ξ2 + ε2
∑

n∈Z\{n1,n2}

|zn|2 = δ,

i.e.,
√

ξ1 +
√

ξ2 = δ − ε2(I1 + I2 +
∑

n∈Z\{n1,n2}

|zn|2) = δ + O(ε2).

Let ω(ξ) = (ω1(ξ), ω2(ξ)), Ωn(ξ) = Ωn(ξ), n 6= n1, n2, where

ω1(ξ) = ε−4(n2
1 + m) +

3

4π2
δ2 − 2

4π2
ξ1,

ω2(ξ) = ε−4(n2
2 + m) +

3

4π2
δ2 − 2

4π2
ξ2,

Ωn(ξ) = ε−4(n2 + m) +
6

4π2
δ2 − 3

4π2
ξ1 −

3

4π2
ξ2, n 6= n1, n2.
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We can rewrite (3.5) as

(3.6) H(I, θ, z, z̄, ξ) = 〈ω(ξ), I〉 +
∑

n

Ωn(ξ)znz̄n + P (I, θ, z, z̄, ξ, ε),

where

P = εP ∗ − 3

2π2
ε2δ(I1 + I2 +

∑

n∈Z\{n1,n2}

|zn|2)(I1 + I2 + 2
∑

n∈Z\{n1,n2}

|zn|2)

+
3

4π2
ε4(I1 + I2 +

∑

n∈Z\{n1,n2}

|zn|2)2(I1 + I2 + 2
∑

n∈Z\{n1,n2}

|zn|2).

Let O be a neighborhood of the origin in R2
+, γ = ε

1
8 , and τ > 4 be fixed. We consider the set

O0 consisting of all ξ ∈ O such that

|〈k, ω(ξ)〉| ≥ γ

|k|τ , k 6= 0,

|〈k, ω(ξ)〉 + Ωn(ξ)| ≥ γ

|k|τ , k 6= 0, |n| = |k1n1 + k2n2|,

|〈k, ω(ξ)〉 + Ωn(ξ) + Ωm(ξ)| ≥ γ

|k|τ , k 6= 0, |n + m| = |k1n1 + k2n2|,

|〈k, ω(ξ)〉 + Ωn(ξ) − Ωm(ξ)| ≥ γ

|k|τ , k 6= 0, |n − m| = |k1n1 + k2n2|.

Proposition 3.2. meas(O \ O0) = O(γ).

Proof. We first consider the following non-resonance conditions:

〈k, ω(ξ)〉 6≡ 0, k 6= 0,

〈k, ω(ξ)〉 + Ωn(ξ) 6≡ 0, ∀k ∈ Z,

〈k, ω(ξ)〉 + Ωn(ξ) + Ωm(ξ) 6≡ 0, ∀k ∈ Z,

〈k, ω(ξ)〉 + Ωn(ξ) − Ωm(ξ) 6≡ 0, ∀k ∈ Z, |n| 6= |m|.
Rewrite ω(ξ), Ω(ξ) = ({Ωn(ξ)}n∈Z\{n1,n2}) as

ω(ξ) = α + Aξ,

Ω(ξ) = β + Bξ,

where α = (ε−4µn1 + 3
4π2 δ2, ε−4µn2 + 3

4π2 δ2), β = (ε−4µn + 6
4π2 δ2)n6=n1,n2 ,

A =

(
− 2

4π2 0
0 − 2

4π2

)

,

B =

( − 3
4π2 − 3

4π2

...
...

)

n6=n1,n2

.

Since det(A) = 1
4π4 6= 0, we have that 〈k, ω(ξ)〉 6≡ 0 for k 6= 0.

To show the validity of the remaining three non-resonance conditions, we need to check that
for all k ∈ Z and 1 ≤ |l| ≤ 2, 〈α, k〉 + 〈β, l〉 and Ak + BT l do not vanish simultaneously. Suppose
Ak + BT l = 0 for some k ∈ Z and 1 ≤ |l| ≤ 2. We let d be the sum of at most two non-zero
components of l. Then

− 2

4π2
ki −

3

4π2
d = 0, i = 1, 2,

i.e.,

ki = −3

2
d, i = 1, 2,

which have the following integer solutions:
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(i) d = 0, k1 = k2 = 0;

(ii) d = ±2, k1 = k2 = ∓3.

In the case (i), k = 0, l has one “1” and one “−1”, but then 〈α, k〉 + 〈β, l〉 = ε−4(µn − µm) =
ε−4(n2 − m2) 6= 0. In the case (ii), ∓ 18

4π2 δ2 ± 12
4π2 δ2 6= 0, hence 〈α, k〉 + 〈β, l〉 6= 0. Similarly, if

〈α, k〉 + 〈β, l〉 = 0 for some k ∈ Z and 1 ≤ |l| ≤ 2, then one can show that Ak + BT l 6= 0.
The validity of all these non-resonance conditions implies that these functions are nontrivial

affine functions of ξ ∈ O. The desired measure estimate of meas(O \ O0) then follows from the
same argument as that in Section 5. �

4. KAM Step

In what follows, we will perform KAM iterations to (3.6) which involves infinite many successive
steps, called KAM steps, of iterations, to eliminate lower order θ-dependent terms in P . Each KAM
step will make the perturbation smaller than the previous one at a cost of excluding a small measure
set of parameters. At the end, the KAM iterations will be convergent and the measure of the total
excluding set will remain to be small.

To begin with the KAM iteration, we fix r, s, ρ > 0 and restrict the Hamiltonian (3.6) to the
domain D(r, s) and restrict the parameter to the set O0. Initially, we set e0 = 0, ω0 = ω, Ω0

n = Ωn,
P0 = P , r0 = r, s0 = s, γ0 = γ, and

N0 = e0 + 〈ω0(ξ), I〉 +
∑

n

Ω0
n(ξ)znz̄n,

H0 = N0 + P0.

Hence, H0 is real analytic on D(r0, s0) and also depend on ξ ∈ O0 Whitney smoothly. It is clear
that there is a constant c0 > 0 such that

‖XP0‖D(r0,s0),O0
≤ c0ε ≡ ε0.

We recall that

O0 =







ξ :

|〈k, ω0(ξ)〉| ≥ γ0

|k|τ , k 6= 0

|〈k, ω0(ξ)〉 + Ω0
n(ξ)| ≥ γ0

|k|τ , k 6= 0, |n| = |k1n1 + k2n2|
|〈k, ω0(ξ)〉 + Ω0

n(ξ) + Ω0
m(ξ)| ≥ γ0

|k|τ , k 6= 0, |n + m| = |k1n1 + k2n2|
|〈k, ω0(ξ)〉 + Ω0

n(ξ) − Ω0
m(ξ)| ≥ γ0

|k|τ , k 6= 0, |n − m| = |k1n1 + k2n2|







,

and, P0 =
∑

k,α,β P 0
kαβ(I)ei〈k,θ〉zαz̄β has a compact form with respect to n1, n2, i.e.,

P 0
kαβ = 0, whenever k1n1 + k2n2 +

∑

n∈Z\{n1,n2}

(αn − βn)n 6= 0.

Suppose that after a νth KAM step, we arrive at a Hamiltonian

H = Hν = N + P (θ, I, z, z̄),

N = Nν = e(ξ) + 〈ω(ξ), I〉 +
∑

n

Ωn(ξ)znz̄n,

which is real analytic in (θ, I, z, z̄) ∈ D = Dν = D(r, s) for some r = rν ≤ r0, s = sν ≤ s0, and
depends on ξ ∈ O = Oν ⊂ O0 Whitney smoothly, where

O =







ξ :

|〈k, ω(ξ)〉| ≥ γ
|k|τ , k 6= 0

|〈k, ω(ξ)〉 + Ωn(ξ)| ≥ γ
|k|τ , k 6= 0, |n| = |k1n1 + k2n2|

|〈k, ω(ξ)〉 + Ωn(ξ) + Ωm(ξ)| ≥ γ
|k|τ , k 6= 0, |n + m| = |k1n1 + k2n2|

|〈k, ω(ξ)〉 + Ωn(ξ) − Ωm(ξ)| ≥ γ
|k|τ , k 6= 0, |n − m| = |k1n1 + k2n2|







,

for some γ = γν ≤ γ0. We also assume that

‖XP‖D,O ≤ ε,
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for some 0 < ε = εν ≤ ε0, and that P =
∑

k,α,β Pkαβ(I)ei〈k,θ〉zαz̄β has a compact form with
respect to n1, n2, i.e.,

Pkαβ = 0, whenever k1n1 + k2n2 +
∑

n∈Z\{n1,n2}

(αn − βn)n 6= 0.

We will construct a symplectic transformation Φ = Φν , which, in smaller frequency and phase
domains, carries the above Hamiltonian into the next KAM cycle. Thereafter, quantities (domains,
normal form, perturbation, etc.) in the next KAM cycle will be simply indexed by + (= ν + 1).
Also, all constants c1 − c5 below are positive and independent of the iteration process.

4.1. Truncation. We expand P into the Fourier-Taylor series

P =
∑

k,l,α,β

Pklαβei〈k,θ〉 I lzαz̄β,

where k ∈ Z2, l ∈ N2 and α = (α1, · · · , αn, · · · ), β = (β1, · · · , βn, · · · ), αn, βn ∈ N, are multi-indices
with finitely many non-vanishing components. We denote by 0 the multi-index whose components
are all zeros and by en the multi-index whose nth component is 1 and other components are all
zeros.

Let R be the following truncation of P :

R(θ, I, z, z̄) =
∑

k,|l|≤1

Pkl00e
i〈k,θ〉 I l

+
∑

k,n

(P k10
n zn + P k01

n z̄n)ei〈k,θ〉

+
∑

k,n,m

(P k20
nm znzm + P k11

nm znz̄m + P k02
nm z̄nz̄m)ei〈k,θ〉 ,

where P k10
n = Pklαβ with α = en, β = 0; P k01

n = Pklαβ with α = 0, β = en; P k20
nm = Pklαβ with

α = en + em, β = 0; P k11
nm = Pklαβ with α = en, β = em; P k02

nm = Pklαβ with α = 0, β = en + em.
Since P has a compact form with respect to n1, n2,

Pkl00 = 0, if k1n1 + k2n2 6= 0,

P k10
n = 0, if k1n1 + k2n2 + n 6= 0,

P k01
n = 0, if k1n1 + k2n2 − n 6= 0,

P k20
nm = 0, if k1n1 + k2n2 + n + m 6= 0,

P k11
nm = 0, if k1n1 + k2n2 + n − m 6= 0,

P k02
nm = 0, if k1n1 + k2n2 − n − m 6= 0.

In particular P k11
nm = 0 if |k| = 0 and n 6= m.

By definition of the weighted-norms, we clearly have

‖XR‖D(r,s),O ≤ ‖XP ‖D(r,s),O ≤ ε.

Let η = ε
1
3 . It follows from Cauchy estimate that

‖X(P−R)‖D(r,ηs) ≤ c1ηε.

4.2. The homological equation. Let r+ = r
2 + r0

4 . We now look for a real analytic function F ,

defined in the smaller domain D(r+, s) such that the time-1 map Φ = Φ1
F : D(r+, s) → D of the

Hamiltonian flow Φt
F associated with F transforms H into the Hamiltonian H+ in the next KAM
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cycle. Let F have the form

F (θ, I, z, z̄) = F0 + F1 + F2

≡
∑

k 6=0,|l|≤1

Fkl00e
i〈k,θ〉 I l +

∑

k,n

(F k10
n zn + F k01

n z̄n)ei〈k,θ〉

+
∑

k,n,m

(F k20
nm znzm + F k02

nm z̄nz̄m)ei〈k,θ〉 +
∑

|k|+||n|−|m||6=0

F k11
nm znz̄mei〈k,θ〉

which satisfies
Fkl00 = 0, if k1n1 + k2n2 6= 0,

F k10
n = 0, if k1n1 + k2n2 + n 6= 0,

F k01
n = 0, if k1n1 + k2n2 − n 6= 0,

F k20
nm = 0, if k1n1 + k2n2 + n + m 6= 0,

F k11
nm = 0, if k1n1 + k2n2 + n − m 6= 0,

F k02
nm = 0, if k1n1 + k2n2 − n − m 6= 0,

and the homological equation

(4.1) {N, F} + R − P0000 − 〈ω′, I〉 −
∑

n

P 011
nn znz̄n = 0,

where

ω′ =

∫

T2

∂P

∂I
dθ|z=z̄=0,I=0.

By comparing coefficients, it is easy to see that the homological equation (4.1) is equivalent to

〈k, ω〉Fkl00 = iPkl00, k 6= 0, |l| ≤ 1,

(〈k, ω〉 − Ωn)F k10
n = iP k10

n ,

(〈k, ω〉 + Ωn)F k01
n = iP k01

n ,

(〈k, ω〉 − Ωn − Ωm)F k20
nm = iP k20

nm ,

(〈k, ω〉 − Ωn + Ωm)F k11
nm = iP k11

nm , |k| + ||n| − |m|| 6= 0,

(〈k, ω〉 + Ωn + Ωm)F k02
nm = iP k02

nm .

Hence the homological equation (4.1) is uniquely solvable on O to yield the function F which
is real analytic in (θ, I, z, z̄) and Whitney smooth in ω ∈ O.

The following two lemmas follow from standard arguments using Cauchy estimate. We refer the
readers to [9, 14, 19, 27] for details.

Lemma 4.1. Let Di = D(r+ + i
4 (r − r+), i

4s), 0 < i ≤ 4. Then there is a constant c2 > 0 such

that

‖XF ‖D3,O ≤ c2γ
−2(r − r+)−(2+2τ)ε.

Lemma 4.2. Let Diη = D(r+ + i
4 (r − r+), i

4ηs), 0 < i ≤ 4. If

C1) ε < ( 1
c2

γ2(r − r+)2+2τ )
3
2 ,

then

Φt
F : D2η → D3η, |t| ≤ 1,

and moreover,

‖DΦt
F − I‖D1η

< c3γ
−2(r − r+)−(2+2τ)ε.

Now let Φ = Φ1
F , s+ = 1

8ηs, D+ = D(r+, s+), and

N+ = N + P0000 + 〈ω′, I〉 +
∑

n

P 011
nn znz̄n,

P+ =

∫ 1

0

(1 − t){{N, F}, F} ◦ Φt
F dt +

∫ 1

0

{R, F} ◦ Φt
F dt + (P − R) ◦ Φ1

F .
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Then Φ : D+ ×O → D, and, by the second order Taylor formula,

H+ ≡ H ◦ Φ = (N + R) ◦ Φ1
F + (P − R) ◦ Φ1

F = N + {N, F} + R

+

∫ 1

0

(1 − t){{N, F}, F} ◦ Φt
F dt +

∫ 1

0

{R, F} ◦ Φt
F dt + (P − R) ◦ Φ1

F

= N+ + P+ + {N, F} + R − P0000 − 〈ω′, I〉 −
∑

n

P 011
nn znz̄n

= N+ + P+.

4.3. The new Hamiltonian. Below, we show that the new Hamiltonian H+ enjoys similar prop-
erties as H .

Due to the compact form of P with respect to n1, n2, zn and z−n are not coupled in P for any
n. This leads to the following simple new normal form

N+ = N + P0000 + 〈ω′, I〉 +
∑

n

P 011
nn znz̄n

= e+ + 〈ω+, I〉 +
∑

n

Ω+
n znz̄n,

where
e+ = e + P0000, ω+ = ω + ({P0l00}|l|=1), Ω+

n = Ωn + P 011
nn .

By the assumptions on P , we have that there is a constant c4 > 0 such that

|ω+ − ω|O < c4ε, |Ω+
n − Ωn|O < c4ε.

Let γ+ = γ
2 + γ0

4 and K > 0 be such that

C2) c4εK
τ+1 ≤ γ − γ+.

We have that

|〈k, ω+〉| ≥ |〈k, ω〉| − |〈k, ({P0l00}|l|=1)〉| ≥
γ

|k|τ − c4ε|k| ≥
γ+

|k|τ ,

|〈k, ω+〉 + Ω+
n | ≥ |〈k, ω〉 + Ωn| − |〈k, ({P0l00}|l|=1)〉 + P 011

nn | ≥ γ+

|k|τ , |n| = |k1n1 + k2n2|,

for all 0 < |k| ≤ K. Similarly,

|〈k, ω+〉 + Ω+
n + Ω+

m| ≥ γ+

|k|τ , 0 < |k| ≤ K, |n + m| = |k1n1 + k2n2|

|〈k, ω+〉 + Ω+
n − Ω+

m| ≥ γ+

|k|τ , 0 < |k| ≤ K, |n − m| = |k1n1 + k2n2|.

This means that in the next KAM step, small divisor conditions are automatically satisfied for
|k| ≤ K. Let

O+ =







ξ :

|〈k, ω+(ξ)〉| ≥ γ+

|k|τ , k 6= 0

|〈k, ω+(ξ)〉 + Ω+
n (ξ)| ≥ γ+

|k|τ , k 6= 0, |n| = |k1n1 + k2n2|
|〈k, ω+(ξ)〉 + Ω+

n (ξ) + Ω+
m(ξ)| ≥ γ+

|k|τ , k 6= 0, |n + m| = |k1n1 + k2n2|
|〈k, ω+(ξ)〉 + Ω+

n (ξ) − Ω+
m(ξ)| ≥ γ+

|k|τ , k 6= 0, |n − m| = |k1n1 + k2n2|







.

Then
O+ = O \ (

⋃

|k|>K

R+
k (γ+)),

where,

R+
k (γ+) =







ξ ∈ O :

|〈k, ω+〉| <
γ+

|k|τ , or

|〈k, ω+〉 + Ω+
n | <

γ+

|k|τ , |n| = |k1n1 + k2n2|, or

|〈k, ω+〉 + Ω+
n + Ω+

m| <
γ+

|k|τ , |n + m| = |k1n1 + k2n2|, or

|〈k, ω+〉 + Ω+
n − Ω+

m| <
γ+

|k|τ , |n − m| = |k1n1 + k2n2|







.
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We rewrite P+ as

P+ =

∫ 1

0

{R(t), F} ◦ Φt
F dt + (P − R) ◦ Φ1

F ,

where R(t) = (1 − t)(N+ − N) + tR. Hence

XP+ =

∫ 1

0

(Φt
F )∗X{R(t),F}dt + (Φ1

F )∗X(P−R).

By Lemma 4.2, if

C3) c3γ
−2(r − r+)−(2+2τ)ε ≤ 1,

then
‖DΦt

F ‖D1η
≤ 1 + ‖DΦt

F − Id‖D1η
≤ 2, |t| ≤ 1.

It follows from Lemma 2.3 that

‖X{R(t),F}‖D2η
≤ c5γ

−2(r − r+)−(3+2τ)η−2ε2,

and
‖X(P−R)‖D2η

≤ c1ηε.

Let c0 = max{c1, · · · , c5} and ε+ = 2c0γ
−2(r − r+)−(3+2τ)ε

4
3 . We then have

‖XP+‖D+,O+ ≤ c1ηε + c5γ
−2(r − r+)−(3+2τ)η−2ε2 ≤ ε+.

Lemma 4.3. P+ has a compact form with respect to n1, n2.

Proof. Note that

P+ = P − R + {P, F} +
1

2!
{{N, F}, F}+

1

2!
{{P, F}, F}

+ · · ·+ 1

n!
{· · · {N, F} · · · , F

︸ ︷︷ ︸

n

}+
1

n!
{· · · {P, F} · · · , F

︸ ︷︷ ︸

n

} + · · · .

Since P has a compact form with respect to n1, n2, so do P − R and {N, F} = P0000 + 〈ω′, I〉 +
∑

n P 011
nn znz̄n − R. The lemma then follows from Lemma 2.4. �

This completes one step of KAM iterations.

5. Iteration Lemma and Convergence

For any given s0, r0, ε0, γ0, we define, for all ν ≥ 1, the following sequences

rν = r0(1 −
ν+1∑

i=2

2−i),

εν = 2c0γ
−2
ν−1(rν−1 − rν)−(3+2τ)ε

4
3
ν−1,

γν = γ0(1 −
ν+1∑

i=2

2−i),

ην = ε
1
3
ν ,

sν =
1

8
ην−1sν−1 = 2−3ν(

ν−1∏

i=0

εi)
1
3 s0,

Kν = (c−1
0 ε−1

ν (γν − γν+1))
1

τ+1 ,

Dν = D(rν , sν),

D̃ν = D(rν+1 +
1

4
(rν − rν+1),

1

4
ηνsν),
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Oν =







ξ :

|〈k, ων〉| ≥ γν

|k|τ , k 6= 0

|〈k, ων〉 + Ων
n| ≥ γν

|k|τ , k 6= 0, |n| = |k1n1 + k2n2|
|〈k, ων〉 + Ων

n + Ων
m| ≥ γν

|k|τ , k 6= 0, |n + m| = |k1n1 + k2n2|
|〈k, ων〉 + Ων

n − Ων
m| ≥ γν

|k|τ , k 6= 0, |n − m| = |k1n1 + k2n2|







.

5.1. Iteration lemma. The preceding analysis may be summarized as follows.

Lemma 5.1. The following holds if ε0 is sufficiently small. Suppose for any ν ≥ 0, Hν = Nν +Pν

is given on Dν × Oν which is real analytic in (θ, I, z, z̄) ∈ Dν and Whitney smooth in ξ ∈ Oν ,

where

Nν = eν + 〈ων(ξ), I〉 +
∑

n

Ων
n(ξ)znz̄n,

Pν has a compact form with respect to n1, n2, and

‖XPν
‖D(rν ,sν),Oν

≤ εν .

Then there is a symplectic transformation

Φν : D̃ν ×Oν → Dν ,

which is real analytic in (θ, I, z, z̄) ∈ D̃ν and Whitney smooth in ξ ∈ Oν , such that Hν+1 =
Hν ◦Φν = Nν+1 +Pν+1 is defined on Dν+1 ×Oν+1 and enjoys similar properties as Hν , i.e., Nν+1

has the form

Nν+1 = eν+1 + 〈ων+1, I〉 +
∑

n

Ων+1
n znz̄n

with

|ων+1 − ων |Oν
≤ c0εν , |Ων+1

n − Ων
n|Oν

≤ c0εν ,

Pν+1 has a compact form with respect to n1, n2, and

‖XPν+1‖D(rν+1,sν+1),Oν+1
≤ εν+1.

Moreover,

Oν+1 = Oν \ (
⋃

|k|>Kν

Rν+1
k (γν+1)),

where,

Rν+1
k (γν+1) =







ξ ∈ Oν :

|〈k, ων+1〉| <
γν+1

|k|τ , or

|〈k, ων+1〉 + Ων+1
n | <

γν+1

|k|τ , |n| = |k1n1 + k2n2| or

|〈k, ων+1〉 + Ων+1
n + Ων+1

m | <
γν+1

|k|τ , |n + m| = |k1n1 + k2n2| or

|〈k, ων+1〉 + Ων+1
n + Ων+1

m | <
γν+1

|k|τ , |n − m| = |k1n1 + k2n2|







.

Proof. It is sufficient to verify the conditions C1)–C3) for all ν = 0, 1, · · · . The condition C2) is
automatically satisfied by the choice of Kν . The condition C3) easily follows from the condition
C1). To verify the condition C1), we first choose

ε0 < (
1

c0
)

20
3 (

1

Ψ(r0)
)

8
3 (

r0

4
)4(3+2τ),

where

Ψ(r0) =

∞∏

i=1

[(ri−1 − ri)
−(3+2τ)](

3
4 )i

is easily seen to be well-defined. Then

ε
5
8
0 < (

1

c0
)

3
2 (

r0

4
)

15(2+2τ)
8 ≤ (

1

c2
)

3
2 (

r0

4
)

3(2+2τ)
2 .

Hence

ε0 < ε
3
8
0 (

1

c2
(
r0

4
)2+2τ )

3
2 = (

1

c2
γ2
0(r0 − r1)

2+2τ )
3
2 ,
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i.e., C1) holds for ν = 0. Now, for any ν ≥ 1, we have by induction that

εν = 2c0γ
−2
ν−1(rν−1 − rν)−(3+2τ)ε

4
3
ν−1 ≤ (2c0γ

−2
ν−1Ψ(r0)ε0)

( 4
3 )ν−1

≤ (2c0γ
−2
0 Ψ(r0)ε0)

( 4
3 )ν−1 ≤ (2c0γ

3
0Ψ(r0)ε

3
8
0 )(

4
3 )ν−1

≤ (2c
− 3

2
0 γ3

0(
r0

4
)

3
2 (2+2τ))(

4
3 )ν−1 ≤ (

1

c2
γ2

ν(rν − rν+1)
2+2τ )

3
2 ,

i.e., C1) holds. �

5.2. Convergence. Let Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν−1, ν = 1, 2, · · · . Inductively, we have that

Ψν : D̃ν ×Oν → D̃0 and
H0 ◦ Ψν = Hν = Nν + Pν

for all ν ≥ 1.
Let Õ = ∩∞

ν=0Oν . We apply Lemma 5.1 and standard arguments (e.g. [9, 26]) to conclude that

Hν , eν , Nν , Pν , Ψν , DΨν , ων , Ων
n converge uniformly on D( 1

2r0, 0)×Õ, say to, H∞, e∞, N∞, P∞, Ψ∞,

DΨ∞, ω∞, Ω∞
n respectively. It is clear that

N∞ = e∞ + 〈ω∞, I〉 +
∑

n

Ω∞
n znz̄n.

Since

εν = 2c0γ
−2
ν−1(rν−1 − rν)−(3+2τ)ε

4
3
ν−1 ≤ (2c0γ

−2
0 Ψ(r0)ε0)

( 4
3 )ν−1

,

we have by Lemma 5.1 that
XP∞ |D( 1

2 r0,0)×Õ ≡ 0.

Let φt
H denote the flow of any Hamiltonian vector field XH . Since H0 ◦Ψν = Hν , we have that

φt
H0

◦ Ψν = Ψν ◦ φt
Hν

.

The uniform convergence of Ψν , DΨν , XHν
imply that one can pass the limit in the above to

conclude that
φt

H0
◦ Ψ∞ = Ψ∞ ◦ φt

H∞

on D( 1
2r0, 0) × Õ. It follows that

φt
H0

(Ψ∞(T2 × {ξ})) = Ψ∞φt
N∞

(T2 × {ξ}) = Ψ∞(T2 × {ξ})
for all ξ ∈ Õ. Hence Ψ∞(T2 × {ξ}) is an embedded invariant torus of the original perturbed

Hamiltonian system at ξ ∈ Õ. We remark that the frequencies ω∞(ξ) associated with Ψ∞(T2×{ξ})
are slightly deformed from the unperturbed ones ω(ξ). The normal behaviors of the invariant tori
Ψ∞(T2 × {ξ}) are governed by their respective normal frequencies Ω∞

n (ξ).

5.3. Measure Estimate. For each k ∈ Z \ {0}, denote

Rν+1
k = {ξ ∈ Oν : |〈k, ων+1(ξ)〉| <

γν+1

|k|τ },

Rν+1
kn = {ξ ∈ Oν : |〈k, ων+1(ξ)〉 + Ων+1

n | <
γν+1

|k|τ , |n| = |k1n1 + k2n2|},

Rν+1
knm = {ξ ∈ Oν : |〈k, ων+1(ξ)〉 + Ων+1

n + Ων+1
m | <

γν+1

|k|τ , |n + m| = |k1n1 + k2n2|},

R̃ν+1
knm = {ξ ∈ Oν : |〈k, ων+1(ξ)〉 + Ων+1

n − Ων+1
m | <

γν+1

|k|τ , |n − m| = |k1n1 + k2n2|}.

Then
Rν+1

k (γν+1) = Rν+1
k

⋃ ⋃

n,m

(Rν+1
kn

⋃

Rν+1
knm

⋃

R̃ν+1
knm).

Let
Rν+1 =

⋃

|k|>Kν

Rν+1
k (γν+1).
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Then
O0 \ Õ =

⋃

ν≥0

Rν+1.

Lemma 5.2. There is a constant C1 > 0 such that

meas(Rν+1
k

⋃

Rν+1
kn

⋃

Rν+1
knm) ≤ C1

γν+1

|k|τ+1

for all |k| > Kν , n, and m.

Proof. Let | · | denote the `1-norm. By Lemma 5.1 and the definitions of ω0, {Ω0
n}, we have that

|∂(〈k, ων+1(ξ)〉 + l1Ω
ν+1
n + l2Ω

ν+1
m )

∂ξ
| ≥ 1

2
|k|,

as ε0 � 1, for all |k| > Kν , n, m, and l1, l2 = 0,±1. The lemma then follows from the standard
measure estimate using Fubini’s Theorem (see e.g. [19, 23, 27]). �

Lemma 5.3.
meas(O0 \ Õ) = meas(

⋃

ν≥0

Rν+1) = O(γ0).

Proof. By Lemma 5.2, we immediately have that meas(
⋃

|k|>Kν
Rν+1

k ) ≤ C2

∑

|k|>Kν

γ0

|k|τ for some

constant C2 > 0.
Now, for each l1, l2 = 0,±1, |k| > Kν , n, and m, with |l1|+|l2| 6= 0 and |l1n+l2m| = |k1n1+k2n2|,

we consider
Rl1,l2,ν+1

knm = {ξ ∈ Oν : |〈k, ων+1(ξ)〉 + l1Ω
ν+1
n + l2Ω

ν+1
m | <

γν+1

|k|τ }.

First, consider the cases that |n| 6= |m|. It is easy to see from the definitions of ων+1, Ω
ν+1
n,m, Kν

that there is a constant C3 > 0 such that Rl1,l2,ν+1
knm = ∅ if max{|n|, |m|} > C3|k|. By Lemma 5.2,

there exists a constant C4 > 0 such that

meas(
⋃

|k|>Kν ,|n|6=|m|,l1,l2

Rl1,l2,ν+1
knm )

= meas(
⋃

|k|>Kν
|n|6=|m|;|n|,|m|≤C3|k|

(Rν+1
kn

⋃

Rν+1
knm

⋃

R̃ν+1
knm))

≤ C4

∑

|k|>Kν

γ0

|k|τ−1
.

Next, consider the cases that |n| = |m|. If l1n + l2m = 0, then either a) l1 = l2 = ±1, n = −m;

or b) l1 = −l2 = ±1, n = m. In the case a), there is a constant C5 > 0 such that Rl1,l2,ν+1
knm = ∅ if

|n| = |m| > C5|k|. By Lemma 5.2, there exists a constant C6 > 0 such that

meas(
⋃

|k|>Kν ,n=−m,l1=l2=±1

Rl1,l2,ν+1
knm ) ≤ meas(

⋃

|k|>Kν ,|n|=|m|≤C5|k|

Rν+1
knm) ≤ C6

∑

|k|>Kν

γ0

|k|τ .

In the case b), we have l1Ω
ν+1
n + l2Ω

ν+1
m = 0, hence Rl1,l2,ν+1

knm = Rν+1
k . It follows that

meas(
⋃

|k|>Kν ,n=m,l1=−l2=±1

Rl1,l2,ν+1
knm ) = meas(

⋃

|k|>Kν

Rν+1
k ) = O(

∑

|k|>Kν

γ0

|k|τ ).
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If l1n + l2m 6= 0, then it follows from the identity |l1n + l2m| = |k1n1 + k2n2| that Rl1,l2,ν+1
knm = ∅

if |n| = |m| > max{|n1|, |n2|}|k|. Hence by Lemma 5.2, there exists a constant C7 > 0 such that

meas(
⋃

|k|>Kν ,|n|=|m|
l1n+l2m6=0,l1,l2

Rl1,l2,ν+1
knm )

≤ meas(
⋃

|k|>Kν
|n|=|m|≤max{|n1|,|n2|}|k|

Rν+1
kn

⋃

Rν+1
knm

⋃

R̃ν+1
knm)

≤ C7

∑

|k|>Kν

γ0

|k|τ .

Note that τ > 4 and

Rν+1 = (
⋃

|k|>Kν

Rν+1
k )

⋃

(
⋃

|k|>Kν ,|l1n+l2m|=|k1n1+k2n2|
l1,l2=0,±1,|l1|+|l2|6=0

Rl1,l2,ν+1
knm ).

We have by the above analysis that

meas(O0 \ Õ) = meas(
⋃

ν≥0

Rν+1) = O(
∑

ν≥0

γ0

Kν

) = O(γ0).

�

Finally, since O \ Õ = (O \ O0)
⋃

(O0 \ Õ), we have by Proposition 3.2 and Lemma 5.3 that

meas(O \ Õ) = O(γ0). This completes the measure estimate.
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[17] T. Kappeler and J. Pöschel, KdV & KAM, Springer, 2003.



24 JIANSHENG GENG AND YINGFEI YI

[18] S. B. Kuksin, Hamiltonian perturbations of infinite–dimensional linear systems with an imaginary spectrum,
Funct. Anal. Appl. 21 (1987), 192-205

[19] S. B. Kuksin, Nearly integrable infinite dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556,
Springer, Berlin, 1993

[20] S. B. Kuksin, A KAM–theorem for equations of the Korteweg–de Vries type, Rev. Math. Phys. 10 (1998), 1-64
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[27] J. Pöschel, A KAM Theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa

Cl. Sci. 23 (1996), 119-148
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