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Abstract

We revisit the Taub-NUT solution of the Einstein equations without time periodicity condition,

showing that the Misner string is still fully transparent for geodesics. In this case, analytic continu-

ation can be carried out through both horizons leading to a Hausdorff spacetime without a central

singularity, and thus geodesically complete. Furthermore, we show that, in spite of the presence

of a region containing closed time-like curves, there are no closed causal geodesics. Thus, some

longstanding obstructions to accept the Taub-NUT solution as physically relevant are removed.
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I. INTRODUCTION

The Taub-NUT solution of the vacuum Einstein equations with Lorentzian signature [1–4]

remains one of the most puzzling results of General Relativity. It realizes the idea of gravita-

tional electric-magnetic duality and is often interpreted, by analogy with the Dirac magnetic

monopole, as the field of a gravitational dyon with the usual mass m and a “magnetic” mass

n [5]. Astrophysicists gave tribute to this solution suggesting to explore its signatures in the

microlensing data [6]. At the same time, most theorists consider it as unphysical because

of the presence of a Misner string singularity on the polar axis (the gravitational analogue

of the Dirac string for the magnetic monopole), with still debated features, and regions

containing closed timelike curves (CTCs).

To make the string unobservable, Misner suggested to impose periodicity on the time

coordinate [3] which entails, however, further serious problems. First, the space-time then

contains closed time-like curves everywhere. Second, with this periodicity condition the

analytically extended Taub-NUT spacetime is either geodesically incomplete [3, 4] (extension

can be carried out through only one of the two horizons), or can be maximally extended to

a geodesically complete but non-Hausdorff spacetime [7, 8].

Another option is to preserve causality in the large by abandoning the time periodicity

condition, thereby retaining the Misner string as an unremovable singularity. It was sug-

gested by Bonnor and others [9], that the Misner string should be interpreted as a singular

material source of angular momentum. On the other hand, Miller et al. [10] have shown that

the vacuum Taub-NUT spacetime (without the time periodicity condition) can be maximally

extended à la Kruskal through both horizons. Because the extended spacetime presents a

coordinate singularity on the the polar axis, they considered it to be geodesically incomplete

[10, 11].

In this Letter, we consider motion in the Taub-NUT space without time periodicity in

greater detail and show that the Misner string is fully transparent for geodesics hitting it.

Since with this interpretation the analytical continuation at the horizon is not problematic

and there is no central singularity, the whole extended Taub-NUT space-time turns out to

be geodesically complete, removing the major obstruction to give it physical significance.

The other problem with the Taub-NUT solution consists in the presence of a region

surrounding the Misner string containing CTCs, which are generally considered to violate
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causality [4]. We show that for certain values of the parameter C which was previously used

to fix the location of the Misner string, these CTCs are not causal geodesics, and thus do

not lead to causality violations for a freely falling observer.

II. THE SETUP

We start with the family of Taub-NUT spacetimes

ds2 = −f(dt− 2n(cos θ + C) dϕ)2 + f−1dr2 + ρ2(dθ2 + sin2 θdϕ2) , ρ2 = r2 + n2 (2.1)

with f = (r2 − 2rm − n2)/ρ2 , where m is the ordinary mass, n is the ”magnetic” mass

or NUT parameter and C is an additional parameter related to the “large” coordinate

transformation t→ t+Cϕ. Note that C should be considered as physical rather than pure

gauge parameter, since it changes the asymptotic behavior of the metric. Its introduction

was often used to modify the position of the Misner string: for C = −1 it lies at the southern

hemisphere, for C = 1 — at the northern, for C = 0 at both of them. Note also that the

areal radius (r2 + n2)1/2 is always finite, so the space-time has no central singularity. This

is possible because the maximally analytically extended Taub-NUT spacetime [10] has two

distinct regions at spacelike infinity r → ±∞.

The metric is symmetric [3, 5, 12, 13] under time translations, generated by the Killing

vector Kt = ∂t, and so(3) local rotations associated with K(i), i = x, y, z, which can be

compactly presented as

K(±) = K(x) ± iK(y) = e±iϕ

(

±i∂θ − cot θ ∂ϕ − 2n(1 + C cos θ)

sin θ
∂t

)

,

K(z) = ∂ϕ + 2nC ∂t , (2.2)

The associated four first integrals of geodesic equations K(a)µẋ
µ (ẋµ = dxµ/dτ) read:

E =
(

ṫ− 2n(cos θ + C)ϕ̇
)

f , (2.3)

J± = Jx ± iJy =
(

2nE sin θ − ρ2(iθ̇ − sin θ cos θϕ̇)
)

e±iϕ , (2.4)

Jz = 2nE cos θ + ρ2 sin2 θϕ̇ , (2.5)

with Jx, Jy, Jz forming a Cartesian vector ~J . This can be decomposed into the mutually

orthogonal orbital and “spin” parts [13]

~L+ ~S = ~J , ~L = ρ2 r̂ ∧ ˙̂r , ~S = 2nEr̂ , (2.6)
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where r̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) is a unit vector normal to the two-sphere. It follows

from the orthogonality of ~L and ~S that

~J · r̂ = 2nE . (2.7)

In the magnetic monopole case, such a first integral means that the the trajectory of the

charged particle lies on the surface of a cone with axis ~J originating from the magnetic

monopole source r = 0. However the Taub-NUT gravitational field has no apex for the

“cone”. Rather this means that the geodesic intersects all the two-spheres of radius r on

the same small circle, or parallel, C with polar axis ~J . Squaring (2.6) leads to

~J2 = ~L2 + 4n2E2 , (2.8)

which can be rewritten as

ρ4[θ̇2 + sin2 θ ϕ̇2] = l2 , (2.9)

with l2 = J2 − 4n2E2 (denoting J2 = ~J2). Inserting this into the normalization condition

ẋµẋνgµν = ε (= −1 for timelike and 0 for null geodesics) leads to the effective radial equation

ṙ2 + f(r)

[

l2

ρ2
− ε

]

= E2 , (2.10)

which is identical to the equation for radial motion in the equatorial plane for the metric

(2.1) without the term −2n cos θdϕ.

III. MISNER STRING CROSSING

Passing to the new parameter λ on the geodesic defined by dτ = ρ2dλ, and putting

ξ = cos θ we obtain
(

dξ

dλ

)2

= −J2 ξ2 + 4nEJz ξ + (l2 − J2
z ) . (3.11)

Assuming J2 6= 0 (J2 = 0 implies from (2.8) E = 0 and l = 0), Eq. (3.11) is solved (up

to an additive constant to λ) by [11]

cos θ = J−2 [2nEJz + lJ⊥ cos(Jλ)] = cosψ cos η + sinψ sin η cos(Jλ) , (3.12)

where J2
⊥
= J2 − J2

z , tan η = l/2nE, tanψ = J⊥/Jz. Eq. (3.11) has two turning points θ±

such that

cos θ± = J−2 (2nEJz ± lJ⊥) = cos(ψ ∓ η) . (3.13)
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It follows that the trajectory crosses periodically the Misner string, cos θ± = ±1 only if

Jz = 2nE , or Jz = −2nE . (3.14)

The only geodesics which can cross both components of the Misner string are those with

η = π/2 (E = Jz = 0), leading to ṫ = ϕ̇ = 0 ; according to (2.10), in the stationary sector

(f(r) > 0) these can only be spacelike geodesics. The trajectory can also stay on the Misner

string component θ = 0 or π if (3.14)) is satisfied with 2nE = ±J .
The differential equation (2.5) for ϕ can be rewritten as

dϕ

dλ
=

1

2

[

Jz − 2nE

1− cos θ(λ)
+

Jz + 2nE

1 + cos θ(λ)

]

, (3.15)

with cos θ(λ) given by (3.12). This is solved by [11]

ϕ− ϕ0 = arctan

[

cosψ − cos η

1− cos(ψ − η)
tan

Jλ

2

]

+ arctan

[

cosψ + cos η

1 + cos(ψ − η)
tan

Jλ

2

]

. (3.16)

For trajectories crossing the North Misner string, with Jz = 2nE, this reduces to

ϕ− ϕ1 = arctan

(

cos η tan

(

Jλ

2

))

, (3.17)

with η = arcsin l/J, ϕ1 = ϕ0 − sgn(tan(Jλ/2))π/2. A similar formula applies in the case

of the South Misner string, with η replaced by π − η and Jλ replaced by Jλ − π (note

that according to (3.12) the North Misner string is crossed for λ = 2kπ/J , while the South

Misner string is crossed for λ = (2k+1)π/J , k integer). In the case e.g. of the North Misner

string, this gives on account of (3.12),

cos(ϕ− ϕ1) =
Jz
J⊥

tan

(

θ

2

)

, (3.18)

consistent with (2.7) (the choice ϕ1 = 0 in (3.18) corresponds to the choice ~J = (J⊥, 0, Jz)

in (2.7)). Clearly the Misner string is completely transparent to the geodesic motion!

When the parameter λ varies over a period, e.g. λ ∈ [−π/J, π/J ], the argument of the

first or second arctan in (3.16) varies from −∞ to +∞ for Jz ∓ 2nE > 0, and from +∞ to

−∞ for Jz ∓ 2nE < 0. It is identically zero for Jz ∓ 2nE = 0. Accordingly, the variation of

ϕ over a period is

∆ϕ = π [sgn(Jz − 2nE) + sgn(Jz + 2nE)] . (3.19)

This means that for J2
z > 4n2E2 (|∆ϕ| = 2π) the parallel C circles the North-South polar

axis, i.e. the Misner string. For J2
z < 4n2E2, (|∆ϕ| = 0) C does not circle the Misner string.

And for Jz = ±2nE (|∆ϕ| = π), C goes through the North or South pole, as discussed

above.
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IV. ABSENCE OF CLOSED CAUSAL GEODESICS

The ADM form of the metric (2.1) is

ds2 = −fρ
2 sin2 θ

Σ
dt2 + f−1dr2 + ρ2dθ2 + Σ

(

dϕ+
2nf(cos θ + C)

Σ
dt

)2

, (4.20)

with Σ(r, θ) = ρ2 sin2 θ − 4n2f(cos θ + C)2 . For f(r) < 0, Σ is positive definite, while for

f(r) > 0 (outside the horizon), which which assume further, Σ becomes negative, and closed

timelike curves (CTCs) appear, in a neighborhood of the Misner string given by Σ(r, θ) < 0.

The surface Σ(r, θ) = 0 bounding this CTC neighborhood is a causal singularity of the

spacetime, where the signature of the spacetime changes from (−+++) outside to (+++−)

inside. This singularity is, just as the Misner string itself, completely transparent to geodesic

motion. Nevertheless, the occurrence of CTCs in a spacetime is usually considered to violate

causality [4]. An observer travelling around such a CTC would eventually return to his

original spacetime position after a finite proper time lapse, thus opening the possibility

for time travel. However, unless this observer is freely falling, such a CTC travel would

necessarily involve accelerations generated e.g. by rocket engines. One can argue that the

back-reaction of these matter accelerations on the spacetime geometry would deform it in

such a way that chronology would ultimately be preserved. If this reasoning is correct,

causality violation can only occur in spacetimes with closed timelike geodesics (CTGs), or

possibly closed null geodesics (CNGs). We now show that there are no closed timelike or

null geodesics in the Taub-NUT spacetime with |C| ≤ 1.

Combining the Eqs. (2.3,2.5) and passing to λ-parametrization one is led to split t(λ) =

tr(λ) + tθ(λ) satisfying

dtθ
dλ

= 4n2E + n

[

(C + 1)(Jz − 2nE)

1− cos θ(λ)
+

(C − 1)(Jz + 2nE)

1 + cos θ(λ)

]

, (4.21)

dtr
dλ

= E
ρ2

f(r)
, (4.22)

with cos θ(λ) given by (3.12). The explicit solution to equation (4.21) is [11]

tθ(λ) = 4n2Eλ+ 2n(C + 1) arctan

[

cosψ − cos η

1− cos(ψ − η)
tan

Jλ

2

]

+ 2n(C − 1) arctan

[

cosψ + cos η

1 + cos(ψ − η)
tan

Jλ

2

]

, (4.23)
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in the interval −π/J < λ < π/J . The resulting variation of tθ over a period 2π/J of λ is

∆tθ = 2πn
[

4nE

J
+ (C + 1)sgn(Jz − 2nE) + (C − 1)sgn(Jz + 2nE)

]

. (4.24)

During a period 2π/J of the angular motion,

∆tθ ≥ 4πn
(

2nE

J
− 1

)

(4.25)

for |C| ≤ 1. Also, from (4.22) and (2.10),

dtr
dλ

=
Eρ2

f(r)
≥ E−1[l2 − ερ2] ≥ E−1[l2 − εn2] (4.26)

in the stationary sector f(r) > 0. This leads to

∆tr ≥
2π

EJ

[

l2 − εn2
]

, (4.27)

over the same period. Adding the two together, we obtain

∆t = ∆tr +∆tθ ≥
2π

E

[

J − 2nE − εn2/J
]

. (4.28)

For ε = −1 this is clearly positive definite. For ε = 0, this can vanish only for 2nE = J

(l = 0). But in this case ∆tθ ≥ 0, while dtr/dλ, and thus also ∆tr, is positive definite.

Thus, for |C| ≤ 1 all timelike or null geodesics which stay in the stationary sectors r > rh

are causal (future directed).

The above reasoning fails for |C| > 1, in which case the lower bound (4.25) is replaced

by ∆tθ ≥ 4πn(2nE/J − |C|). One can show [14] that, for any parameter set (m,n), one

can find a value of C such that there are CNGs (and, presumably, CTGs for larger values of

|C|). For instance, for m = 0 and C = −
√
3, the circle t = const., r =

√
3n, θ = arctan

√
2

is a null geodesic.

V. CONCLUSION

We have shown that, contrary to longstanding prejudice (for a recent discussion see [11]),

Taub-NUT space-time without periodic identification of time is geodesically complete. This

is valid for the whole family of metrics with arbitrary C, and presumably can be extended

to other spacetimes with NUT parameter. Moreover, in spite of the presence of a region

where the azimuthal coordinate is timelike and the temporal coordinate spacelike, there are

for |C| ≤ 1 no closed timelike or null geodesics which could violate causality.
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We realize that our results do not remove all objections against physical attribution of

the metric with NUTs to the real world, in particular, we do not consider quantum effects

[5, 12]. Still, we hope that our findings remove some important obstructions to recognition

of these spacetimes as physically relevant and will stimulate further work in this direction.
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