SEX AND MAJOR DIFFERENCES IN VOCATIONAL PREFERENCES OF STUDENTS

IN A TECHNICAL INSTITUTION

A THESIS

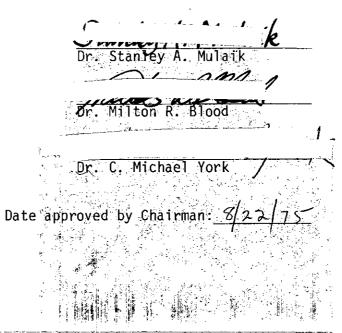
Presented to The Faculty of the Division of Graduate Studies

Ву

Charles M. Slaton

In Partial Fulfillment of the Requirements for the Degree Master of Science in Psychology

Georgia Institute of Technology


August, 1975

. _

SEX AND MAJOR DIFFERENCES IN VOCATIONAL PREFERENCES OF STUDENTS IN A TECHNICAL INSTITUTION

Dedicated to

My wife, Susan

The hundreds of students who cheerfully cooperated in this study

5 -

ACKNOWLEDGMENTS

The author gratefully acknowledges the help of Dr. Stanley A. Mulaik, his thesis committee chairman. Also contributing greatly to this thesis were Dr. C. Michael York and Dr. Milton R. Blood who served on the reading committee. Dr. Elliot M. Cramer of the University of North Carolina at Chapel Hill Psychometric Laboratory, who was consulted concerning details of the data analysis, was vital to the successful completion of the thesis.

TABLE OF CONTENTS

	Paq	Je
ACKNOW	LEDGMENTS	i
LIST O	F TABLES	i
LIST O	F ILLUSTRATIONS	i
SUMMAR	Y	i
СНАРТЕІ	R	
Ι.	INTRODUCTION	1
	Purpose Literature Review Bases of Holland's Theory Examples of Research Generated by Holland's Theory Differences Between Majors in Terms of Vocational Choices Sex Differences in Vocational Interest Specific Hypotheses	
II.	METHODOLOGY	9
III.	RESULTS	I
	Between-Majors-Within-Engineering-College Analysis Between-Majors-Within-General-College Analysis Results of Methods-of-Sampling Analysis Results in Terms of Holland's Four Letter Code Results of Discriminant Function Analysis	

iv

TABLE OF CONTENTS (Continued)

CHAPTE	R	Page
IV.	DISCUSSION	49
	Limitations of This Study Test of Hexagonal Model Between-All-Majors Analysis Between-All-Colleges Analysis Between-Majors-Within-Engineering-College Analysis Between-Majors-Within-General-College Analysis Methods-of-Sampling Analysis Discriminant Analysis Sex Differences in Majors Traditionally Chosen by Men Summary of Hypotheses Accepted and Rejected Conclusion and Recommendation Guidance Uses Culture and Personality Interpretations Relevance to Psychological Theory Suggestions for Future Research	
APPEND	ICES	
Α.	MEAN AND STANDARD DEVIATION OF EACH SEX AND ALL MAJORS ON THE VPI SCALES	58
Β.	RESULTS OF BETWEEN-ALL-MAJORS ANALYSIS	65
С.	RESULTS OF BETWEEN-COLLEGE ANALYSIS	69
D.	RESULTS OF BETWEEN-MAJORS-WITHIN-ENGINEERING- COLLEGE ANALYSIS	73
E.	RESULTS OF BETWEEN-MAJOR-WITHIN-GENERAL- COLLEGE ANALYSIS	77
F.	RESULTS OF METHOD OF SAMPLING ANALYSIS	81
G.	RESULTS OF BETWEEN-COLLEGE-ANALYSIS WITHOUT MAILBOX SAMPLE	85
BIBLIO	GRAPHY	89

...

.

LIST OF TABLES

lable		Page
1.	Enrollment Compared to Sample for this Research by Major	21
2.	Correlation Matrices for Holland's Sample and the Sample Used in this Thesis	37
3.	National Sample vs. This Study's Sample on Relevant Empirical Codes	43
4.	Correlation of Each Variable with Discriminant Functions 1 and 2	48

.

..

LIST OF ILLUSTRATIONS

Figure	Page
 A Hexagonal Model for Interpreting Inter- and Intra-class Relationships 	5
 Results of Holland's Factor Analysis by Sex, Represented in Model Form 	7
3. Average Scores of Males in this Sample on Male Norms	32
 Average Scores of Females in this Sample on Female Norms	33
5. Comparison of Average Scores of Males and Females in this Sample on Neutral Norms	34
6. Sample Used in this Thesis Represented in Holland's Hexagonal Model	35
7. Results of Factor Analysis by Sex Done in this Thesis Represented in Model Form	36
8. Discriminant Scores for Females by Major	46
9. Discriminant Scores for Males by Major	47

SUMMARY

The Holland Vocational Preference Inventory (VPI) was administered to 544 undergraduates at the Georgia Institute of Technology. The purpose was both the evaluation of a theoretical model by Holland of vocational choice and to test the criterion related validity of the VPI. Student choice of area-of-study major curriculum was the criterion used. Investigation of vocational choices of women in previously "masculine" fields of study was a further objective.

Results indicated the VPI was very effective at differentiating between choice of field of study in this sample. Furthermore, the theoretical model of vocational choice was also suitable for the sample used in this thesis.

Another result is that constant differences between the sexes are to be found across the different majors on most of the VPI scales. Interactions of sex with major were found only in two of the four analyses and involved only a few of the VPI scales. This suggests that with few exceptions when constant sex differences are controlled, men and women vary in about the same way in different fields of study.

CHAPTER I

INTRODUCTION

Vocational choices have long been studied by psychologists (Strong, 1943; Holland, 1966; Roe, 1956; Darley, 1938; Super and Crites, 1962; Kuder, 1970). Possibly in no other area has psychology provided so much practical help for the layman (Hobson and Hayes, 1968). Millions have taken the vocational interest inventories that have been developed by these researchers.

Good theories of vocational choice have not developed as extensively as have the inventories of vocational choice. Super and Crites (1962) proposed a theory that interests become more focused as development proceeds. More recently, Roe and Klos (1969) have proposed a theory based on need gratification, involving two types of needs: (1) interpersonal needs -- needs for a certain type or level of interpersonal interaction; (2) level of responsibility needs -- need to have influence over other people. Their expectation is that different occupations will fulfill these needs to varying degrees. Roe's theory has not in general been supported, but Hill (1974) found some evidence for its authenticity.

Over a twenty year period, Holland (1958, 1966) has proposed a theory that vocational preference is a function of one's self-concept. He suggests that people in similar occupations have similar personalities. The Holland theory has generated much research. This is the theory investigated in this thesis.

Purpose

This study is designed to show empirically that the Holland Vocational Preference Inventory (VPI) can differentiate between majors, between sexes, between intracampus colleges, and between majors within colleges having more than one major. It is particularly relevant to the question of whether a population of students at a technical institute is homogeneous in vocational interests. Also to be studied is whether, as measured by the VPI, men differ from women in patterns of vocational interests in fields in which few women have previously enrolled. Contributions by this study include new data supporting the vocational interest-personality theories of Holland as well as possible applications in the guidance of students who are undecided as to choice of major field of study.

Literature Review

Bases of Holland's Theory

Darley (1938) foreshadowed the development of the Vocational Preference Inventory (VPI) when he suggested that measures of personality and vocational interest be studied jointly since both differentiate between members of different occupations. This thinking is expressed in the development of the Holland VPI which is both a personality test and a vocational interest test.

In developing the Vocational Preference Inventory Holland (1958) proposed that a personality test might employ only occupational titles as items. Thus the VPI became a test in which a subject is asked to go through a list of vocations and decide his disposition toward doing the

work in each vocation. The VPI differs from other personality tests which may ask for preferences for non-vocationally related activities or for beliefs or attitudes. Holland (1958) noted the ease of administration of the inventory and the fact that the innocuous stimuli reduce the subjects' anxiety and their need to fake.

Kuder (1970) has been critical of the use of occupational titles in a vocational interest inventory. He thinks this is bad because it hinders use of the inventory with children or young adolescents who may not be able to respond properly due to their lack of sophistication about vocations.

Holland (1966) does not see Kuder's criticism as a major concern. He agrees that vocational stereotypes are involved in the VPI:

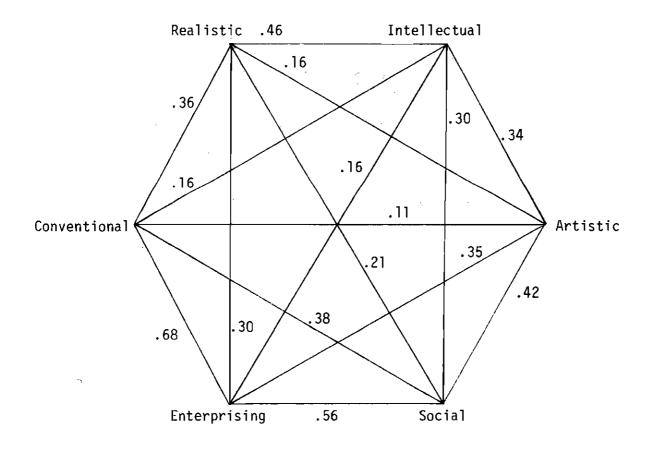
Vocational stereotypes have reliable and important psychological and sociological meanings... Our everyday experience has generated a somewhat inaccurate but apparently useful knowledge of what people in various occupations are like...

This aspect of vocational stereotypes bears on the question, "Would I be like the people in that occupation?" which a subject might ask himself in filling out the VPI.

A subject might also ask himself "What do the people in that occupation do?" All of the occupations described by Holland are comprehended easily by an adult. In this research the subjects were frequently asked if they understood the occupations. Very rarely did any subject report lack of understanding. This directly meets Kuder's objections. High reliability of the items also supports the idea of stability of the stereotypes.

In the development of the inventory, part of Holland's rationale was:

The choice of an occupation is expressive act which reflects a person's motivation, knowledge, personality, and ability... The interaction of the person and his environment creates a limited number of favorite methods for dealing with the environment... Translated into scale terms, peaks (on the VPI scales) reveal accepted methods of adjustment... The choice of an occupational title is a measure of the subject's insight and understanding as well as a sign of his comprehension of the occupation in question." (Holland, 1958, p. 336-337).


In this same article Holland (1958) discussed the early development of the scales. Originally, items were chosen a priori to represent eight scales: physical activity, intellectuality, responsibility, conformity, verbal activity, emotionality, reality orientation, and acquiescence. Subsequent revisions involved internal consistency analyses of the scales and cluster analysis.

The current version is a scale consisting of six occupational choice scales: realistic, intellectual, social, conventional, enterprising, and artistic; and three typical personality scales: selfcontrol, masculinity, and status; and two response style scales: infrequency and acquiescence. Actually, the VPI is now in its Sixth Revision.

Holland's hexagonal model of types (Figure 1) is helpful in understanding the current version of the VPI. This hexagonal model accounts roughly for distance represented by intercorrelations among the six scales. These correlations were empirically derived on a large sample. The hexagonal model was subsequently tested on nine other samples and found adequate (Holland, Whitney, Cole, and Richards, 1969).

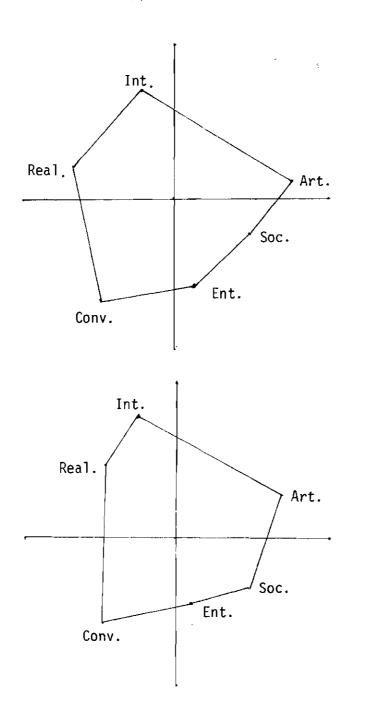
The practical implications of the hexagonal model were shown by Holland and Whitney (1968). They found a student switching majors usually switched to a category adjacent to the category of his original major if

- - - -

Correlations between variables are printed on lines connecting those variables.

(From Holland, Whitney, Cole, and Richards, 1969)

Figure 1. A Hexagonal Model for Interpreting Interand Intra-class Relationships.


he left the original category at all.

Mathematical aspects of Holland's model are rather interesting. A score on each scale is given by counting the number of items marked a certain way. All six scales are positive or zero, and all correlations between scales are positive. Thus, this model is a partitioning of the cosine in the first quadrant.

Figure 2 represents the results of a pair of principal components factor analyses that Holland, Whitney, Cole, and Richards (1969) cite as a mathematical verification of Holland's model. One analysis was for females and one for males. The first three components accounted for 77% and 79% of the trace respectively so these three components were chosen to represent the model in Euclidean space.

Every variable (six scales) loaded high positive on factor 1. This was used as a kind of elevation parameter in a 3-space along the z (vertical) axis. Loadings from the next two factors were used to locate each variable in an x-y plane above the x-y plane found when z = 0. Very similar orderings were found for males and females as is seen in Figure 2. By comparing Figure 1 and Figure 2 exact correspondence of ordering is noted. Holland, et al., mention that this model has been found to roughly fit the data from nine other samples.

A comparison of this model to the circumplex model of Guttman (1954) is fruitful. With regards to the correlations between a set of variables he suggests the possibility of a circular ordering. The basis for this would be the sharing of common elemental units arranged themselves in a circular ordering. The overlap of shared elemental units would account for the correlation between variables being higher, the

Top figure is males and bottom figure is females (Holland, Whitney, Cole, and Richards, 1969)

Figure 2. Results of Holland's factor analysis by sex, represented in model form.

nearer the variables are in the circle. The correlation matrix for such a relationship among variables should show a characteristic pattern with high values along the main diagonal, lower values toward the edges of the matrix and again higher values at the extreme corners. This pattern is approximated in both matrices in Table 2. Of course, the pattern is not perfect which would be expected by Guttman if the variables were not equidistant from their neighbors around the circle. This could be the real theoretical basis of Holland's model. Guttman suggests this may be analyzed by factor analysis.

Essentially, the Holland theory (Holland, 1958) is based on the idea of an individual's self-concept as discussed by Strong and Feder (1961): "Every evaluative statement a person makes concerning himself can be considered a sample of his self-concept," (p. 170). This is relevant because one sort of evaluative statement is a vocational choice as measured by the Holland VPI. This is because a vocational choice involves evaluation of one's abilities, needs and preferences.

Holland (1960) also provided evidence that responses to the VPI are related to a much used personality questionnaire, the 16 PF of Cattell (1957). The scales of the two tests are shown to be substantially correlated. Also, the earlier scales of the 16 PF which are said to account for more of the variance in the personality domain were more frequently intercorrelated significantly with the VPI scales. Thus, the claim of the VPI to measure personality is much substantiated since it measures much the same domain as a commonly used personality test.

If the VPI is to be considered a comprehensive test of vocational interest, can Holland's theory account for the mass of data from

other vocational interest tests? Nafziger and Helms (1974) have shown that Holland's theory accounted well for data from the Strong Vocational Interest Blank (SVIB), The Minnesota Vocational Interest Inventory (MVII), and the Kuder Occupational Interest Survey (OIS). The results supported Holland's theories even though the data were not collected on Holland's instrument. This is important since the six scales based on Holland's theory account for much of the content of the VPI. Nafziger and Helms showed that by cluster analysis Holland's hexagonal model can account for a very broad spectrum of the vocational interest domain. Thus, whatever success the VPI has in prediction has relevance for the construct validity of all major vocational interest tests.

Examples of Research Generated by Holland's Theory

Holland and Nichols (1964) did a study representative of those done on major field of study and showed that choice of major field of study is analogous to vocational choice. It is mentioned here because one contention of this thesis is that choice of major can be studied in the same way as vocational choice. This is because in most cases choice of course of study involves choice of a vocation. It also follows from the general idea that vocational preference follows from self-concept and so does choice of major. Both involve evaluative statements about one's abilities, needs, and preferences.

Elton (1974) found that students who transferred into a field of study became more similar to the people in that field as measured by their interests with the passage of time. This represents an interaction between environment and person in which interests are shaped by the environment. This is important for this study because it suggests

that though a person did not begin in a certain major, his scores should nonetheless be characteristic of students in his new major even after switching. Many of the students in my sample had switched majors since coming to the Georgia Institute of Technology.

Differences Between Majors in Terms of Vocational Choice

Holland, Whitney, Cole, and Richards (1969) proposed a scheme for the classification of occupations. In terms of their empirically derived six classes (realistic, intellectual, artistic, social, enterprising, and conventional) they classify many common occupations. Many of the occupations for which students at the Georgia Institute of Technology are preparing are included. For instance, architect, civil engineer, industrial engineer, mechanical engineer, and engineer are classified as "realistic" occupations. Physicist, biologist, physical scientist, natural science teacher, engineering scientist, and mathematician are classified as "intellectual" occupations. Economist and managers are in the "enterprising" group as are lawyer and salesman. Finance worker and accountant are in the "conventional" class. Advertising man is in the "artistic" class and psychologist in the "social" class. It should be noted that these are gross categories and allow for much much variance within the occupational class. They are derived from the highest scores characteristic of the group on the VPI. A four-letter code is also available which indicates the order from high to low of the highest four scales typical of the occupations. Thus, astronomer is IRAS (intellectual, realistic, artistic, social); chemical engineer is IREA (intellectual, realistic, enterprising, artistic). Many of these codes are available for college majors corresponding to those in the present sample. These codes will be compared to results obtained in this thesis. Of course, many of the majors are not represented by a national sample, particularly for females.

Thus, in summary, a rationale for expecting differences between majors on the VPI scores is that differences are usually found between majors in a broad heterogeneous sample of college students (Abe and Holland, 1965a, b). The question involved is whether a more homogeneous group of majors or between intracampus colleges or even within an oncampus college offering more than one major could be so distinguished. All the vocational choice literature is based on students' having similar occupational choices to those already in a particular field. That is, students studying chemical engineering are expected to have similar vocational choices to those already employed in chemical engineering.

The idea that the VPI could differentiate between majors has been tested at the graduate school level by Frantz and Walsh (1970). They expected differences between six graduate majors (engineering, accounting, chemistry, economics, English, and counseling) to be representative of Holland's six types. Their results, however, were negative in that all majors came out as intellectual. The authors concluded that graduate school pressure forced all the students into an intellectual mode of adaptation. They assumed it was temporary.

Unpublished data (York and Loveland, 1964) reveal differences between majors on the Edwards Personal Preference Survey (EPPS). The senior undergraduates (N = 437) were differentiated by the variables of <u>dominance</u> and <u>aggressiveness</u> in terms of their curricula. These findings suggests that a more appropriate test might differentiate among majors

at the Georgia Institute of Technology.

Examples of work applying the VPI to choice of major are Abe and Holland's (1965a, b) technical reports. Over 12,000 college freshmen were studied in thirty-one institutions comparing their VPI scores to their choice of major field. For example, physical science majors were found high on the <u>masculine</u> scale and low on the <u>social</u> scale. Sex differences were also significant as will be discussed later in this thesis.

Additionally, a study by Elton and Rose (1971) showed that a student who begins college undecided in his vocational choice and then enters a major or who transfers into that major becomes more similar to students who originally began in that major. This is important in making predictions of differences in vocational interest varying systematically with major because many of the students in this sample have changed majors since coming to Georgia Institute of Technology.

As for specialties within a broad vocational area, such as business administration, there is evidence for expecting differences between specialties. Several empirical studies have been done along this line of inquiry. Hill (1974) studied various functional areas of management within a Master of Business Administration program. The eight functional areas were: accounting, system analysis, finance, small business management, engineering, marketing, manufacturing management, and personal management. This study is based on Roe's idea that interpersonal needs are a determinant of major choice. Interpersonal needs were measured by the Fundamental Interpersonal Relations Orientation (FIRO) instrument (Schutz, 1966). Significant differences were found across

the area of the program on dimensions of inclusion, control and affection.

Barnette and McCall (1964) and Silver and Barnette (1970) were able to differentiate between majors of vocational high school students at both ninth and tenth grade levels by means of the Minnesota Vocational Interest Inventory (MVII). Electrical, building trades, and machine shop were very well classified. This is similar to what this study will do at the Georgia Institute of Technology using Holland's VPI.

Four engineering functions (basic research, applied research and development, production and process engineering, sales and technical services engineering) were studied by Dunnette, Wernimont, and Abrahams (1964). They expected that personalities of engineers in each function would be different because of differing demands placed on the incumbents in these four areas. The hypothesis was supported by scores on the SVIB keys for research, development, production, and sales -- each key significantly differentiated the four areas of engineering. The authors point out, however, that the functional areas are not related to areas of study in engineering school. Also, no mention of females was made.

A somewhat analogous study was made by Kreidt (1949) on psychologists. Ninety-two psychologists classified into the areas of experimental, social, guidance, statistical, or industrial psychology filled out the SVIB. The overall psychologist key was found not to embrace all specialties. Subkeys were developed which differentiated the specialties. In some cases the subkeys were radically different. For instance, the guidance psychology key correlated with the experimental psychology key -.82 \pm .03. Thus, experimental psychologists differ from guidance

psychologists in a very different way than psychologists differ from people in general. This is one of the best demonstrations that what seems homogeneous to an outsider may actually be very heterogeneous. Sex Differences in Vocational Interest

"No topic in psychology is of more perennial interest than sex differences. Study after study, book after book, testify to the fact that research workers, writers, and readers consider the subject one of paramount importance," (Tyler, 1965, p. 239). There is also reason to believe that recent changes in sex roles in our society may make some of the earlier studies of questionable applicability.

Vocational interest is an area in which sex differences have been studied, but this study has been incomplete. Holland (1966) states: "Unfortunately most of our empirical knowledge about personality and vocational behavior has been obtained in studies of men. Consequently, it is difficult to construct a theory of personality that applies equally to men and to women," (p. 13).

Particularly lacking has been the study of females in technical fields. Thus, there has been no data base and little interest in this area. However, the Georgia Institute of Technology has a large number of female students in technical, managerial, and scientific fields, comprising an excellent data base. Indications of the current lack of data are in Abe and Holland's studies (1965a, b). Their industrial engineering sample of females was 0. Other female samples were: aeronautical engineering = 9, civil engineering = 6, electrical engineering = 4, mechanical engineering = 1, metallurgical engineering = 0, management = 22; computer specialist was not included. Compare this to a total sample of 6,143 women and the lack of data on women in technical and managerial fields becomes obvious.

On the VPI the score most characteristic of engineers is high on the <u>masculinity</u> scale. No characteristic scores are given for females at all so a girl considering matriculating at an engineering school would have no VPI scores to which she could compare herself.

One might conjecture that females in engineering must have similar interest profiles to the males in engineering. There is some literature on this. Seder (1940) in an early study of this area compared SVIB profiles of males and females in medicine and life insurance sales. The conclusion she reached was that interests of women tended to be the same as men in the same occupation. However, she was much handicapped by the fact that no SVIB existed at the time that could be scored for men and women both; thus, only a portion of the items were in common and could be compared. She noted that efficiency would be increased by comparing both sexes on the same blank as the Sixth Revision of the VPI does. She stated that where sex differences were significant a key should be constructed for each sex. This is similar to what is done in this thesis with the VPI. However, note that: (1) Seder did not study women in technical and managerial fields and (2) interests of women may have changed radically since 1940.

A study by Hornaday and Kuder (1961) noted the similarity of interests of men and women in the same occupations in most of the occupations they studied. Separate norms were, however, implicated for the occupation "librarian." The authors note, "... the fact remains that the empirical approach is the only sure way of determining whether a key

developed for men is applicable for women. To answer this question for other occupations, further empirical studies should be made..." (p. 863).

An example of the differences that can occur between men and women in the same field is provided by Abe and Holland (1965). In regard to the health professions no VPI scales were characteristic of men especially choosing or rejecting that field. However, the women high on choice of the health professions were characterized by VPI profiles high on <u>realistic</u>, <u>aggressive</u>, <u>acquiescence</u>, and <u>masculine</u> versus other women. Women low on choice of health professions were lower on <u>self-control</u> on the VPI than other women. Thus, a comparison with norms for men would have greatly misled a woman considering choice of a health profession.

A study similar to the one in this thesis is by Perry and Cannon (1968). They studied a sample of 293 female computer programmers on the SVIB. They concluded that in general male and female programmers are similar, but the differences that characterize men and women in general, and other differences also, make the male key inadequate for female programmers. Specifically, women had higher scores in scientific occupations and lower scores in technical supervision and technical occupations. Female programmers who were very dissatisfied or who preferred a different field were excluded from the analysis.

Cole (1974) discusses sex differences on several vocational interest surveys. She points out the serious inadequacies of existing female norms for the present situation in which many occupations are becoming available to females for the first time. She suggests that male norms

be used in areas where no female norms are available. She feels the empirical approach (as is used in this thesis) is good but not possible in many areas at this time.

Cole further comments that although pervasive sex differences are found throughout our society, the structure of interests (as in Holland's hexagonal model) is equivalent across sexes.

Actually, as Lunneborg and Lunneborg (1970) found in factor analyzing responses to quite a few commonly used masculinity-feminity scales, interests account for much of the variance in these scales. Their first factor, accounting for much of the variance, was an interest factor. Thus, the understanding by psychologists and laymen alike of masculinity versus feminity is closely intertwined with vocational interests.

Specific Hypotheses

Hypothesis 1: <u>Students in different majors have different profiles on</u> <u>the VPI</u>. Previous research with various interest inventories including the VPI has shown that persons in different professions -- and professional training programs as well -- tend to have relatively homogeneous interest patterns within professions and diverging patterns between professions.

Hypothesis 2: Within colleges that have more than one major students in different majors will show different profiles on the VPI. Students in different majors within colleges should reflect the different patterns of interest in their fields. For example, students in industrial engineering would have a different pattern of interests from those in electrical engineering -- yet both are in the general field of engineering. The VPI should be sensitive to these differences.

Hypothesis 3: Differences between sexes will be found in each analysis (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major) on the VPI. There is some disagreement as to whether sexes differ in preference profiles within the professional or typically "masculine" vocational areas (Seder, 1940; Perry and Cannon, 1968).

Hypothesis 4: <u>Differences will be found between intracampus colleges</u> on the VPI profiles. This analysis is necessary to complete the breakdown of traditional areas of the Georgia Institute of Technology. Differences are expected here because majors within an intracampus college are relatively more homogeneous in content and method than majors across such colleges.

<u>Hypothesis 5</u>: <u>Differences found between sexes will vary across colleges</u>, <u>across all majors</u>, or across majors within a college having more than <u>one major on VPI profiles</u>. Some of the differences found by Perry and Cannon (1967) are typical of men and women in general but some are not. As Hornaday and Kuder (1961) point out only empirical studies can determine whether a constant increment to each scale is adequate to account for sex differences. This would not be true in cases where a complex interaction is found.

CHAPTER II

METHODOLOGY

Subjects

A sample of 554 undergraduate students at the Georgia Institute of Technology participated in this study. Initially subjects were obtained from psychology classes. When it was seen that few females were obtained by this method a larger number of female students was obtained by contacting all undergraduate females on campus through their mailboxes. This method of solicitation was very successful as evidenced by the large number of females in the sample. As a result there were 245 male subjects and 299 female subjects.

The collection of data by the two different methods has been criticized. Note that Perry and Cannon (1968) also used two separate surveys to collect their female sample. Their problem also was that they had too few females in their original sample of programmers. Any sample with an appreciable number of females in these fields could only be obtained by making a special appeal to females. Thus, some sampling bias may be unavoidable in this field of study at this time.

The collection of data by two different methods was investigated by comparing female subjects who volunteered through psychology classes with those who volunteered through the mailbox survey. It was further investigated by an analysis of sex differences in the sample collected from psychology classes. This was done to test the possibility that the vocational interests of those subjects from psychology classes were different from the vocational interests of the mailbox sample.

Characteristics of the sample in terms of college, major, and sex are shown in Table 1. It can be seen that the ratio of males to females in the sample is much smaller than the ratio in the Georgia Institute of Technology population in general. Also, there are two empty cells. There are no male ceramics engineers, and no male engineering science and mechanics majors. These empty cells in the design were filled with dummies (2 each) to allow for a complete factorial design with no empty cells. This is a slight deficiency of this thesis. Of course, the only ideal solution to missing data is not to have any. Although this sample is not perfect and is not representative in a proportionate sense, it is typical of samples reported in the vocational preference literature. Of course, no proof exists that the subjects in this sample are representative of all the students in their majors.

Instruments

The Holland Vocational Preference Inventory (VPI) was administered to each subject in a package which included a request for cooperation and other forms. The VPI is a psychological instrument which has been successively developed by John L. Holland since the 1950's. Its Sixth Revision was used in this study.

The VPI consists of 160 items which are vocational choices. A person is to respond to them as they appeal to him on a corresponding answer sheet by checking Y for yes, N for no, or leaving the item blank for undecided.

			Enrollment	Sample
Engineering College	Male Female	Aerospace Eng.	154 5	6 2
		Architecture	447 59	31 22
		Building Const.	87 5	7 3
		Ceramic Eng.	16 9	0 3
		Chemical Eng.	630 38	24 21
		Electrical Eng.	809 17	30 9
		Eng. Science and Mechanics	61 5	0 2
		Industrial Design	62 15	4 7
		Industrial Eng. + Health Systems	364 51	26 27
		Mechanical Eng.	484 14	12 10
		Nuclear Eng.	113 7	3 3
		Textiles + Textile Eng. + Text Chem.	69 36	4 11

.....

Table 1. Enrollment Compared to Sample for this Research by Major

			Enrollment	Sample
General College	Male Female	Biology	174 53	12 19
		Chemistry	101 19	6 6
,		Information and Computer Science	116 26	16 11
	1	Mathematics	82 37	5 25
		Physics	166 9	8 5
		Psychology	14 18	5 16
Management College		Industrial Management	843 110	37 47

Table 1 (Continued)

N. B. - Each major has two row entries. First row is male and second is female.

The VPI has eleven scales:

- 1. Realistic technical and skilled trades
- 2. Intellectual scientific occupations
- 3. Social teaching and service occupations
- 4. Conventional clerical occupations
- 5. Enterprising supervisory and sales occupations
- 6. Artistic artistic, musical, and literary occupations
- Self-control aversion to occupations involving risk of physical injury, adventure, and danger
- Masculinity-femininity (Mf) occupations usually chosen especially by one sex
- Status prestigeful occupations such as lawyer, doctor, or business executive
- 10. Infrequency infrequently chosen occupations
- 11. Acquiescence number of preferred occupations

These scales were the dependent variables in these analyses. The first six are based on Holland's theory of types of interests and environments. The last five are typical personality or response bias scales. They provide a comprehensive survey of Holland's theory along with some other useful measures.

The factor structure of the Holland VPI has been investigated by DiScipio (1974). This analysis shows some support for the scales.

Statistical Analysis

First, descriptive data were obtained. These were means and standard deviations on all majors for both sexes. These are what is

usually referred to as interest norms or means. These would be used by an individual comparing himself to the scales of any group selected by sex and major.

A principal components factor analysis was performed to replicate an earlier principal components factor analysis by Holland, Whitney, Cole, and Richards (1969). The correlation matrix for this factor analysis was the correlation of the six VPI type scales. A principal components analysis is a factor analysis with 1's placed in the principal diagonal of the correlation matrix and factor extraction by a principal axes method. A principal components analysis produces a set of linearly independent components from which the original variables can be derived. Usually a set of these components smaller in number than the set of original variables is used to summarize the information in the set of variables in a smaller number of orthogonal variables. Of course, no inferences about reliabilities can be made since communalities are not computed. Actually, row sums of squares of the factor pattern matrix of an orthogonal solution were computed as a lower bound estimate of the scale reliabilities, but they were not put in the diagonal of the factor analysis.

No rotation was used since the method was copied from Holland, et al., who felt rotation was irrelevant to the question they were asking. Three components were retained which again served to replicate the factor analysis of Holland, et al.

An analysis was run for each sex to provide for maximum methodological similarity to the Holland, et al., study. Figures were constructed on which the second and third principal loadings were used as abscissa

and ordinate values respectively. This method was also taken from the previous study. In line with Guttman's (1954) ideas concerning arrangement of variables in a circumplex, it was decided that a lack of correspondence between models would be evidenced by a breakdown in the circumplical ordering of the variables.

The principal components analysis was done on the program FAMP written by Dr. Stanley A. Mulaik for the Cyber 74-70 computer at the Rich Electronic Computer Center.

Several multivariate factorial analyses were used to test the substantive hypotheses of this study. Factors used were college (referred to as C), major (referred to as M), and sex (referred to as S). Note that in the model equations to follow each of the terms indicates a <u>vector of parameters</u>. Thus, \underline{Y}_{ij} is an n×l random vector of scores for an observation on n variables in the i,j cell of the design, $\underline{\mu}$ is an n×l vector of constants, \underline{M}_i is an n×l vector of constants for the n dependent variables on the ith level of factor M, \underline{S}_j is an n×l vector of constants for the i,j level combination of n variables, and \underline{e} is an n×l vector of n error random variables (see Timm, 1975, p. 403).

(1) For the all-major analysis the multivariate factorial design was a 2×20 . That means two sexes were crossed with 20 majors. The complete equation was:

$$\underline{Y}_{ij} = \underline{\mu} + \underline{M}_i + \underline{S}_j + \underline{MS}_{ij} + \underline{e}$$

(2) For the majors within General College analysis, the design was 2×6 . That means two sexes were crossed with six majors. The complete

model equation was:

$$\frac{Y}{1,j} = \frac{\mu}{2} + \frac{M}{1} + \frac{S}{2,j} + \frac{MS}{1,j} + \frac{e}{2}$$

(3) For the majors within Engineering College analysis, a 2×13 design was used. That means two sexes were crossed with thirteen majors. The complete model equation was:

$$\frac{\gamma_{ij}}{1} = \frac{\mu}{1} + \frac{M}{1} + \frac{S}{1} + \frac{MS}{1} + \frac{e}{1}$$

(4) For the between colleges analysis the design was 2×3 . That means two sexes were crossed with three colleges. The complete model equation was:

$$\underline{Y}_{ij} = \underline{\mu} + \underline{C}_{i} + \underline{S}_{j} + \underline{CS}_{ij} + \underline{e}$$

The purpose of the multivariate factorial analysis was to determine whether the complete model equation or some modification of it represented the true state of the sample. Each analysis results in an equation depicting the true state of affairs in that sample. For example, in a model with factors of A and B, a state of affairs with significant main effects but a nonsignificant interaction the model is:

$$\underline{Y}_{i,i} = \underline{\mu} + \underline{A}_i + \underline{B}_i + \underline{e}_i$$

Each one of these four MANOVA analyses bears on several hypotheses of the introductory chapter.

The MANOVA factorial, or multivariate factorial design, is a multivariate analysis of variance design (Jones, 1966). This technique involves the derivation of linear combinations of the dependent variables which best differentiate among the independent variables (or in this case levels of the factors of the designs). A number of these linear combinations are derived, and each is tested for significance with tests for each effect.

Then univariate (or single degree of freedom) \underline{F} tests are performed to give an idea of which of the dependent variables contributes to the differences. A significance value is obtained for each of the dependent variables. This approach of an overall multivariate test followed by univariate tests for each dependent variable is recommended by Hummel and Sligo (1974) because it allows for control of the error rate.

It should be noted that the design used here is nonorthogonal and is analyzed by procedures described by Appelbaum and Cramer (1974). The concept of nonorthogonality is that sex and major or sex and_college are not independent, they are correlated. These designs necessitate special analysis as described by Appelbaum and Cramer. Each design is analyzed twice. For example, in a design involving factors A and B the first analysis for factors A and B would test factor A ignoring B and factor B eliminating A (by covariance). The second analysis would test factor B ignoring A and factor A eliminating B (again by covariance). The AB interaction is also tested each time but should be the same in either case. This is because the order in which A and B are removed is irrelevant to the AB term which follows.

All of these analyses are necessary because of the unequal cell frequency problem. However, when the test, for instance, of A eliminating B, is significant then the test of A ignoring B is irrelevant to the interpretation. Only cases of A eliminating B were reported in this thesis

since they were significant in all cases.

In collecting subjects for the sample used in this study an extraneous variable -- method of sampling -- was inadvertently confounded with the independent variable, sex of subject, used in this study. Because the course of introductory psychology is an elective and possibly attracts students interested in psychology as a subject, student volúnteers obtained from psychology courses may have interest patterns different from those who would be selected in other ways. All male subjects were volunteers from introductory psychology classes. Although a relatively small number of female subjects were also obtained as student volunteers from psychology classes, by far the greatest number of female subjects were obtained by soliciting their participation in the study by a letter sent to their campus mail boxes. Thus, in this study differences between male versus females might represent differences in methods of sampling used to obtain males versus females and not true sex effects. To rule out this possible alternative explanation for sex effects, if found in the other analyses, two additional multivariate analyses of variance were performed. The first analysis involved a two-way factorial multivariate analysis of variance with method-of-sampling as one of the factors was performed. The first analysis involved a two-way factorial multivariate analysis of variance with method of sampling as one of the factors and academic college enrolled-in as the other factor in the design. The same dependent variables were studied as in the other analyses already described in this chapter. Only the female subjects were studied in this analysis. If in this analysis a difference between the two female samples were found, this would provide strong support for the existence of a

method-of-sampling effect confounded with the sex effects in the other analysis. Otherwise if no method-of-sampling effect is found, such an effect could be regarded as an unlikely explanation for sex effects found in these other analyses.

The second analysis investigated sex differences within the sample of subjects collected from psychology classes. The model used for this analysis was a two-way multivariate analysis of variance with sex and academic college of subject as independent variables of the design. The same dependent variables as studied in the other multivariate analyses were used. The important analysis here was of the factor of sex with the effect of college of subject eliminated from the estimate of the sex effect. A significant sex effect, if found in this analysis, would support the contention that sex differences, if found in the other analyses, are not due to sampling methods.

Analysis of these factorial designs was by the program MANOVA written by Dr. Elliot M. Cramer of the University of North Carolina Psychometric Laboratory (Cramer, 1973). It does any kind of univariate or multivariate analysis of variance and was thus very appropriate for this thesis. Dr. Cramer was also consulted concerning the technical aspects of the use of MANOVA in this study. The Univac Ull08 at the Rich Electronic Computer Center was used in this analysis.

A discriminant analysis was computed using standard discriminant functions for majors with sex taken out which were obtained by MANOVA. These discriminant functions are linear combinations of the dependent variables which best discriminate among the majors. These discriminant functions are then pre-multiplied by the means of each major for each

variable to obtain discriminant functions scores. These can be plotted on orthogonal axes since the discriminant functions are orthogonal to one another. In this plot distances separating majors are representative of degree of similarity along the dimensions. This technique is explained by Timm (1975, pp. 379-381).

The meaning of each dimension was then investigated by pre-multiplying the discriminant function weights by the within-cells-correlation matrix as described by Timm (1975, pp. 414-415). This technique produces a matrix of correlations of each dependent variable with each discriminant function. A positive correlation means that a high score on that variable contributes to a high score on the dimension. A negative correlation means that a high score on that variable contributes to a low score on that dimension. A near-zero correlation indicates that variable contributes little to the dimension.

This analysis allows for a separation of the majors in a Euclidean space and an interpretation of the meaning of the relevant dimensions.

CHAPTER III

RESULTS

Descriptive Statistics

The first descriptive statistics are the means and standard deviations for each major for both sexes and are included in Appendix A. This descriptive data is known as vocational interest norms. Examples of these norms are in Figures 3, 4, and 5, plotted in profile format. Note the different impressions given by plotting males on male norms, females on female norms, or both sexes on neutral norms.

Test of Hexagonal Model

Analysis of the data gathered for this thesis was done to provide for comparison to the data of Holland, Whitney, Cole, and Richards (1969). First note the comparison of the overall correlation matrices in Table 2. A rough correspondence is immediately obvious. Also, both fit an unequally spaced circumplex model as previously discussed.

The model in Figure 6 is Holland's model with the correlations obtained in this thesis drawn in. Note the correspondence to Holland's model. As previously decided, this correspondence is in terms of an identical circumplicial ordering. This observation was mathematically confirmed by two factor analyses whose results are shown in Figure 7. For each sex the circumplicial ordering is shown to be identical. The model holds up very well, and the basic conception of the variable set as a circumplex (or hexagon) is well confirmed.

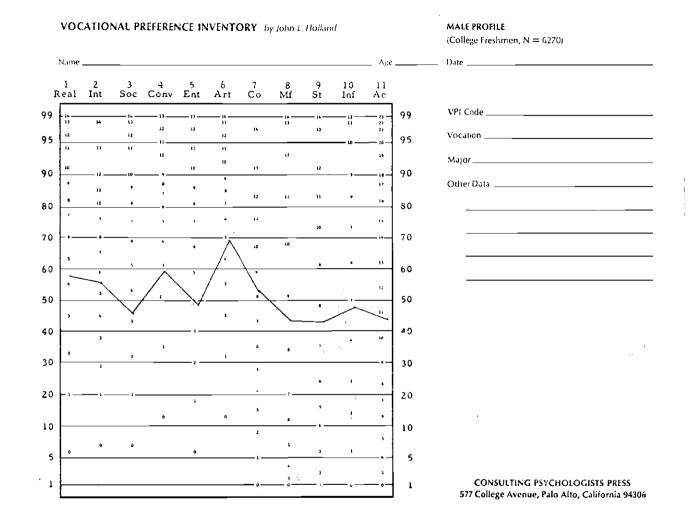
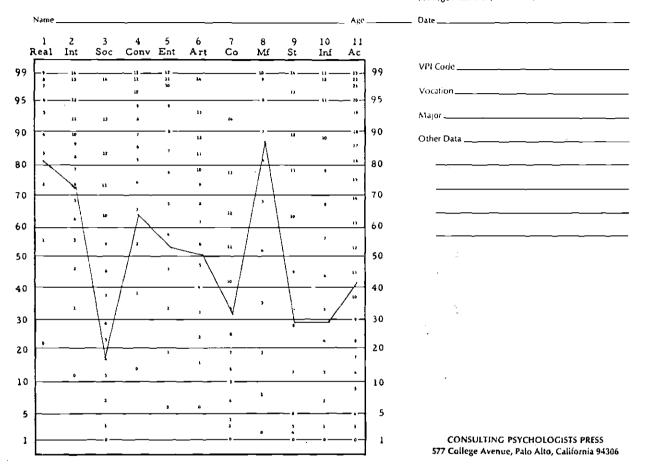
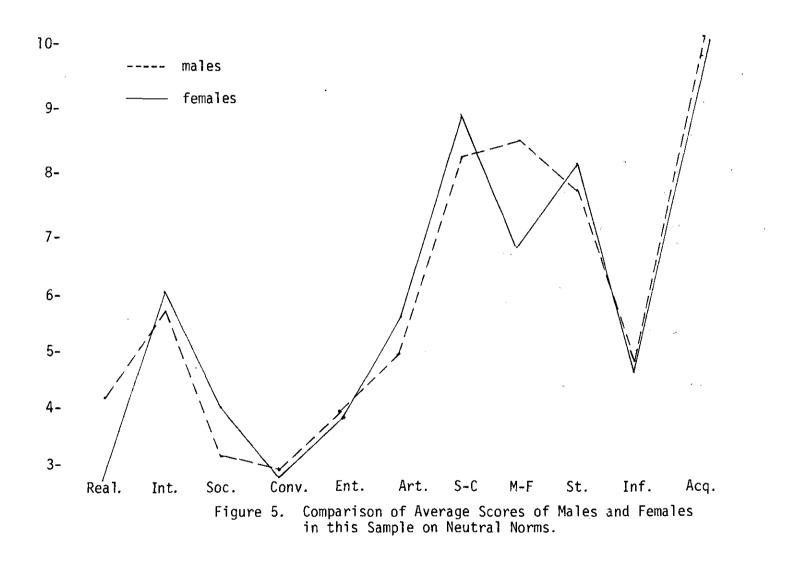
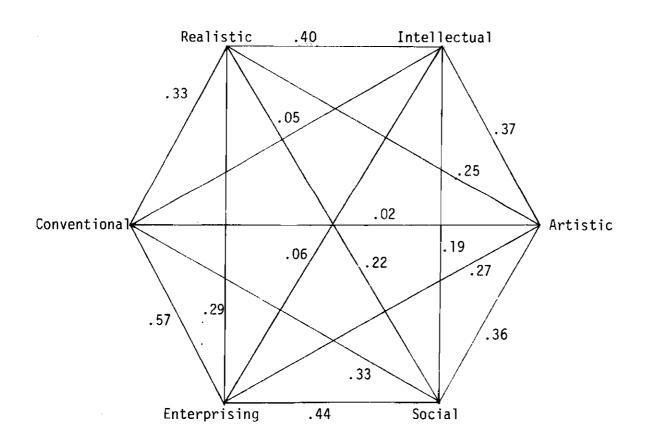


Figure 3. Average Scores of Males in this Sample on Male Norms.

VOCATIONAL PREFERENCE INVENTORY by John L. Holland

FEMALE PROFILE (College Freshmen, N = 6143)

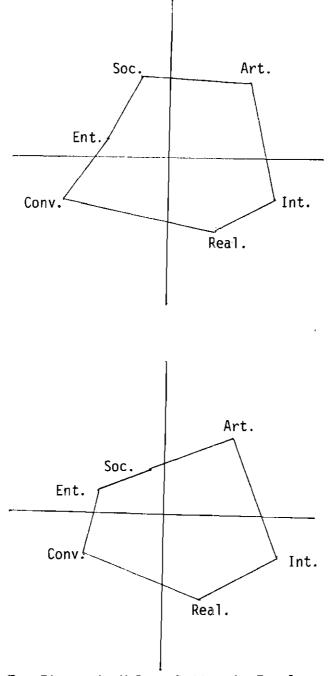

Figure 4. Average Scores of Females in this Sample on Female Norms.

.

 \mathfrak{Z}

Correlations are printed on lines connecting variables

Figure 6. Sample Used in this Thesis Represented in Holland's Hexagonal Mode.


. . . .

3

. .

ł

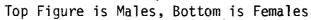


Figure 7. Results of the Factor Analyses by Sex Done in this Thesis Represented in Model Form.

1 2 3 4 5 5 5 16	.30 .16 .16 .34	.38 .56 .42	.68 .11	. 35	
(Taken fr Richards	om Holland, , 1969)	Whitney,	Cole and		
2 .40 3 .22 4 .33 5 .29 5 .25	.19 .05 .06 .37	. 33 . 44 . 36	.57 .02	.27	
(Taken fr	om sample ga	athered i	n this th	esis)	

Table 2. Correlation Matrices for Holland's Sample and the Sample Used in this Thesis

Multivariate Analysis of Variance Results

Between-All-Majors Analysis

The factorial design involving factors of sex (S) and major (M) was performed first with all majors. This analysis is summarized in Appendix B. The sex by major interaction (SXM) was significant at the .001 level with univariate tests significant on the variables of <u>artistic</u> and <u>masculinity</u> (P less than .05). The effect of sex with major eliminated was significant at the .001 level with univariate tests for the scales of <u>realistic</u> and <u>masculinity</u> significant (P less than .001); for <u>self-control</u> (P less than .005); and for <u>social</u>, <u>artistic</u>, and <u>status</u> (P less than .05). The test of major (M) with sex (S) eliminated was significant at the .001 level on the first five of eleven canonical vectors associated with the scales. Univariate tests which were significant were <u>realistic</u>, <u>intellectual</u>, <u>social</u>, <u>conven-</u> <u>tional</u>, <u>enterprising</u>, <u>artistic</u>, <u>masculinity</u>, and <u>status</u> (P less than .001); <u>self-control</u> (P less than .01); and <u>infrequency</u> (P less than .05).

Thus, this test differentiates very well among majors and sexes in the present sample. The significant MXS interaction indicates that there are differences across the majors in the way the sexes differ on the test. Therefore, there is a more complex relationship than is given by the main effects in the sample at large. This interaction is significant only on the variables of artistic and masculinity.

Since all the effects of the model are significant, the true model is found to be:

 $\frac{Y_{i,j}}{2} = \frac{\mu}{2} + \frac{S_{i}}{2} + \frac{M_{i}}{2} + \frac{SM_{i,j}}{2} + \frac{e}{2}$

Thus, the hypotheses relevant here are:

Hypothesis 1. <u>Students in different majors have different profile on</u> the VPI. This hypothesis was accepted in this analysis.

Hypothesis 3. <u>Differences between sexes will be found in each analysis</u> (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major.) This hypothesis was accepted in this analysis.

Hypothesis 5. Differences found between sexes will vary across colleges, across all majors, or across majors within colleges having more than one major on VPI profiles. This hypothesis was accepted in this analysis.

Between-College Analysis

This analysis was a multivariate factorial design with factors of College (C) and Sex (S). The results are reported in Appendix C. The CXS interaction was not significant. However, the main effects were both significant at the .001 level with significant univariate <u>F</u> tests on the scales of <u>realistic</u>, <u>intellectual</u>, <u>social</u>, <u>conventional</u>, <u>enterprising</u>, <u>status</u>, and <u>infrequency</u> (P less than .001); and <u>self-control</u> (P less than .01). The S effect was significant at the .001 level with significant univariate <u>F</u> tests on the scales <u>realistic</u> and <u>masculinity</u> (P less than .001); and social and self-control (P less than .005).

The significance of the main effects indicated differences varying systematically with sex and college. The absence of an interaction indicates that the differences between the sexes are constant across the colleges.

Thus, the true model in this case is found to be:

$$\frac{Y_{ij}}{-ij} = \frac{\mu}{-ij} + \frac{C_{i}}{-ij} + \frac{S_{j}}{-ij} + \frac{e}{-ij}$$

Note the absence of an interaction term. It was excluded because it

lacked significance. The thesis hypotheses relevant here are:

Hypothesis 4. <u>Differences will be found between intracampus colleges</u> on the VPI profiles. This hypothesis was accepted in this analysis.

Hypothesis 3. Differences between sexes will be found in each analysis (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major.) This hypothesis was accepted in this analysis.

Hypothesis 5. Differences found between sexes will vary across colleges, across all majors, or across majors within colleges having more than one major on VPI profiles. This hypothesis was not accepted in this analysis.

Between-Majors-Within-Engineering-College Analysis

The results of the analysis between majors within the Engineering College indicates significant differentiation for sexes and majors. The SXM interaction is significant at the .001 level with univariate significant tests on variables of <u>artistic</u> (P less than .01); and <u>intellectual</u> (P less than .05). The test of S with M eliminated was significant at the .01 level with univariate tests significant on <u>masculinity</u> (P less than .05). The test of M with S eliminated was significant at the .001 level with significant univariate tests on <u>realistic</u>, <u>conventional</u>, <u>artistic</u>, <u>masculinity</u>, and <u>status</u> (P less than .01); and <u>enterprising</u> (P less than .05). See Appendix D. Thus, the true model here was found to be:

$\underline{Y}_{ij} = \underline{\mu} + \underline{M}_{i} + \underline{S}_{j} + \underline{MS}_{ij} + \underline{e}$

The thesis hypotheses relevant here are:

Hypothesis 2. Within colleges that have more than one major students in different majors will show different profiles on the VPI. This hypothesis was accepted in this study.

Hypothesis 3. Differences between sexes will be found in each analysis (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major.) This hypothesis was accepted in this analysis.

.....

Hypothesis 5. <u>Differences found between sexes will vary across colleges</u>, across all majors, or across majors within colleges having more than one major on VPI profiles. This hypothesis was accepted in this analysis.

Between-Majors-Within-General-College Analysis

The between-majors-within-General-College analysis was similar to the other analyses with the exception that the SXM interaction was not significant. The effect of S with M eliminated was significant at the .005 level with univariate significance tests on the scales of <u>masculinity</u> (P less than .001). The M effect with S eliminated was significant at the .001 level with significant univariate tests on the scales <u>conventional</u> (P less than .0010); <u>social</u> (P less than .005); self-control (P less than .05); and intellectual (P less than .05).

The lack of a significant interaction in the case of the majors within the General College is an indication that the differences between sexes are constant across majors within the General College. See Appendix E for results. Thus, the true model here was found to be:

 $\underline{Y}_{ij} = \underline{\mu} + \underline{M}_i + \underline{S}_j + \underline{e}$

Note the absence of an interaction term. The specific thesis hypotheses relevant here are:

Hypothesis 2. Within colleges that have more than one major students in different majors will show different profiles in the VPI. This hypothesis was accepted in this analysis.

Hypothesis 3. Differences between sexes will be found in each analysis (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major). This hypothesis was accepted in this analysis

Hypothesis 5. Differences found between sexes will vary across colleges, across all majors, or across majors within colleges having more than one major on VPI profiles. This hypothesis was not accepted in this analysis.

Results of Methods-of-Sampling Analysis

The multivariate analysis comparing the two methods of data collection for the female sample showed no differences in the two methods. The results of this analysis are in Appendix F. The factor of method with college eliminated was not significant. Because of this result sex differences in the other analyses seems less likely to be attributable to sampling-method differences. This lends support to the other analyses which found sex differences.

The analysis of sex differences within the sample collected from psychology classes showed sex with college taken out was significant at the P less than .001 level. The results of this analysis are in Appendix G. This lends further support to the assertion that sex differences in the other analyses are not attributable to sampling method differences.

Results in Terms of Holland's Four Letter Code

In Table 3 are shown several of Holland's four letter codes (in order of highest scale on VPI) for both a national sample and this sample. Some correspondence is found across the same majors but interpretations should be very guarded because of the small numbers of subjects in many of the cells.

Where disagreements occur between the two samples, the one with the larger N should be considered most representative of the whole group.

Note the deficiency of national female samples in technical and scientific fields. Some national sample sizes are very small and some are non-existent, such as female chemical engineers, electrical engineers,

Holland Nationa (Holland, Whitn	l Sample ley, Cole	and Ric	hards, 1969)	Sample	in this thesis
Title	N	Code		N	Code
	+		MALES		
Architect	83	RIAE		31	AIRS
Civil Eng.	185	RIEC		24	IRAE
Indust. Eng.	37	RIEC		25	IEAC
Mech. Eng.	152	RIEC		12	IRAC
Biologist	55	ISRE		11	IARS
Math. Teacher	138	ISRC		4	AIRS (Math)
Chemist	87	IRAS	·	6	IASR
Physicist	61	IRAS		8	IARS
Chem. Eng.	94	IREA		7	IARS
Elec. Eng.	259	IREA		28	IREA
Aero.Eng.	77	IREC		6	IARE
Math/Stat	80	IRCE		4	AIRS
Indust. Psy.	17	SEAI		5	ISAR
Manager	360	ECSR		37	ECAS (IM)
			FEMALES		
Architect	8	IASE		28	AISR
Physicist	7	IARS		5	IARS
Biologist	40	ISAE		19	IASR

Table 3. National Sample vs. This Study's Sample on Relevant Empirical Codes

Table	3.	(Continued)
-------	----	-------------

Title	N	Code	N	Code
Chemist	25	ISAR	8	IASE
Math./Stat.	54	ISCA	25	ISAC (math.)
Indust. Psy.	8	ASEI	16	ASIR
Civil Eng.	6	ASIC	21	IRAC
Manager	22	SEAC	54	ESAC
Math. Teacher	114	SIAC	25	ISAC (math.)
Aero. Eng.	9	SAIE	2	IRCE

N.B. -- Major was put in parentheses where it was not obvious which major the national norms were being compared to.

and industrial engineers. This thesis thus makes a contribution by increasing the pool of normative information.

Results of Discriminant Function Analysis

The results of the discriminant function analysis for males is shown in Figure 9, the results for females in Figure 8. The proximity between majors on the graph indicates their similarity on the first two discriminant functions which were found to maximally separate the majors. For instance, for females mechanical engineering and aerospace engineering are very close together. For males building construction and mathematics are very far apart. Sex differences on variable means are reflected in differences between positions of the same majors on the two graphs. Naturally, ESM and CER for the males are equal since they are filled with equal "dummies."

In Table 4 are shown the correlations of each dependent variable with the two discriminant functions. These are used to show which variables are most important to discrimination along the two dimensions. For instance, on discriminant function 1 <u>enterprising</u> and <u>status</u> both contribute importantly but in opposite directions. Thus, a person would be high on this function if he were high on <u>status</u> or low on <u>enterprising</u>. The second discriminant function is characterized by a negative correlation with <u>realistic</u> and a positive correlation with <u>intellectual</u> and <u>social</u>.

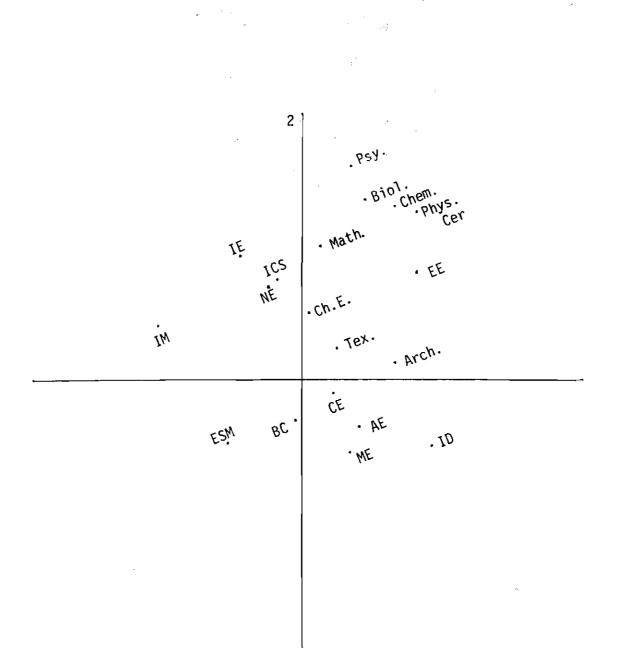


Figure 8. Discriminant Scores for Females by Major.

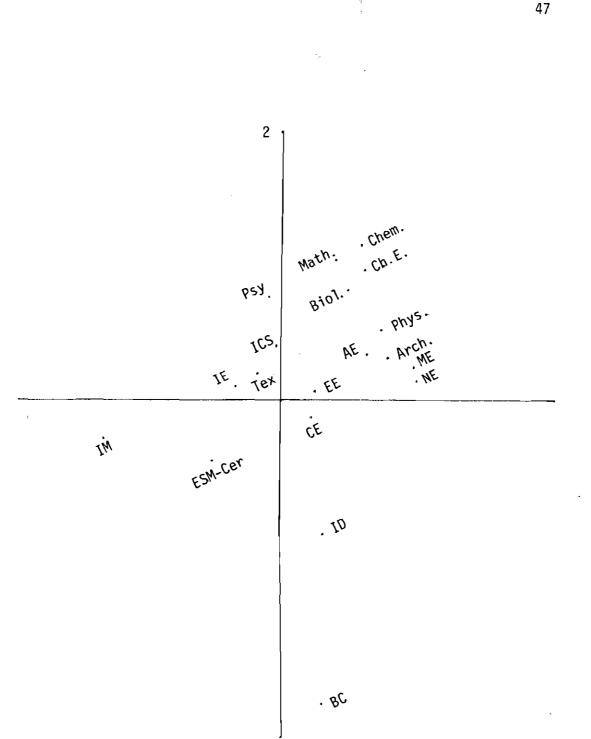


Figure 9. Discriminant Scores for Males by Major.

-

- .

 		1	2	
1.	Realistic	.26	52	
2.	Intellectual	.39	.33	
3.	Social	25	.26	
4.	Conventional	48	22	
5.	Enterprising	59	24	
6.	Artistic	.16	03	
7.	Self-control	14	.04	
8.	Mf	.00	.06	
9.	Status	.50	.30	
10.	Infrequency	.26	.06	

Table 4. Correlation of Each Variable with Discriminant Functions 1 and 2

· ---

CHAPTER IV

DISCUSSION

Limitations of This Study

This thesis makes a contribution to some areas of the vocational interest literature. It is in order, however, to point out that sweeping generalizations should not be drawn from the results. Because of the small sample sizes in many cells it is possible that the samples obtained are not representative of all students in those majors. Also, the lack of demographic diversity of the sample makes regional differences a possibility. One should also not reify such scale names as "intellectual" or "conventional," etc. These are operationally defined as scores on certain sets of items which may not match most people's concept of "intellectuality" or "conventionality," etc.

Test of Hexagonal Model

Holland, Whitney, Cole, and Richards (1969) state the hexagonal model has been tried on ten different samples successfully. They do not specify their criterion of success, but correct ordering of the variables around the hexagon would be the most global and obvious criteria for such a model. Because this criterion has never been disconfirmed in a published study the model must be considered roughly appropriate. The demonstrations of Nafziger and Helms (1974) show that it accounts for much of the vocational interest domain and make it even more important. The results of this thesis also confirm this circumplical ordering for these variables.

.

Between-All-Majors Analysis

The relevant MANOVA results for the all-majors analysis were supportive of the hypotheses of the thesis. The effect of majors (M) definitely reaches a level of significance that indicates diversity in what might be considered a homogeneous population. Not only diversity is suggested, but also that diversity varies systematically with major.

Sex (S) factor differences also reach a high level of significance. These indicate separate norms are needed for females for these fields. In some areas they are not available. The statement of Hornaday and Kuder (1961) that only empirical study can determine whether a key developed for men is applicable for women is brought to mind.

The fact that the SXM interaction is significant is also important since sex differences can be more serious for the establishment of norms if sex differences vary across majors. This means such differences cannot be adjusted for by additive constants, associated with an effect. Now, the number of significant univariate \underline{F} tests is a measure of an effect's importance. In this instance, the univariate tests of interaction were significant only on the variables <u>artistic</u> and <u>masculinity</u>. so interactions are of minor importance with most of the variables only differing by an additive constant if they differ at all.

Between-Colleges Analysis

The between-college analysis differed in an important way from the previous analysis. No interaction effect was found between sex and college. Thus, the differences between cells in this sample can be

attributed to the separate effects of college and sex rather than to nonlinear effects as would be indicated by an interaction.

Between-Majors-Within-Engineering-College Analysis

There are reasons for expecting the engineering college sample to be more homogeneous than the sample at large. Many required courses are shared by all majors in this college and an Ortgeist of engineering methodology is also shared. On the other hand, there are reasons for expecting diversity. One of these reasons is Holland's four letter type classification which is sensitive to differences among different kinds of engineers on some samples (Abe and Holland, 1969). The results of this analysis bear on the question of diversity of vocational preference profiles across engineering majors. Another value of this analysis lies in the fact that the engineering area is one in which so few women have previously enrolled. Thus, both the major and sex effects were of special interest here. The fact that both effects are significant indicates a great deal of diversity which varies systematically with major and sex. The significant sex by major interaction indicates sex differences are different across the majors. However, this is only true for the scales artistic and intellectual. For those two scales a constant increment would not account for sex differences across these majors.

Between-Majors-Within-General-College Analysis

In the General College both sex (S) effect and major (M) effect are significant. The M effect and S effect are of interest as within the Engineering College because of the homogeneity-heterogeneity issue

raised in this thesis. Actually, a great deal of diversity varying systematically with sex and major is indicated.

The SXM interaction does not reach significance, however. This is in contrast to both of the MANOVA analyses with the factor of major. Thus, in this subgroup a constant increment can account for sex differences.

Methods-of-Sampling Analysis

The lack of a significant methods-of-sampling effect in the study of female subjects suggests differences in methods of sampling need not be seriously considered in interpreting sex differences in the other analyses. This was especially important since interests of the type measured by the Holland VPI were a plausible explanation for the subjects in the psychology classes having signed up for psychology as an elective.

The presence of a significant sex effect in the analysis of data collected from psychology classes shows that sex effects found in the other analyses were likely not due to sampling methods.

Discriminant Analysis

The discriminant analysis provided additional results by pointing out similarities between majors in different colleges. Thus, the results showed that for females, nuclear engineering and information and computer science were very close together although they are in different intracampus colleges. These graphical representations also clearly show sex differences. Note that only two of the significant

1.

discriminant functions are plotted, whereas in the all-major analysis several more were available.

Sex Differences in Majors Traditionally Chosen by Men

This thesis sheds light on sex differences in majors usually chosen by men. Seder (1940) concluded from a limited study that in medicine and life insurance sales, sex differences were small. Perry and Cannon (1967) found substantial agreement with male norms for female computer programmers. Some scales showed a difference, however. Cole (1973) found that interests of both sexes within an occupation were similar as compared to a non-occupationally-related reference group, but that sex differences did still exist.

This recapitulation of other's results shows a pattern that may be applied to the interpretation of the present results. This pattern is: substantial agreement across sexes with significant differences on several scales. Men and women in technical, managerial, and scientific fields may be roughly similar as compared to groups not connected with these fields, but within these professional fields there are sex differences. Females would be shortchanged if separate norms were not provided for them.

The importance of reference groups should be noted especially. Usually separate male and female norms are used. Thus, females in this sample are in the eighty-second percentile on female norms on the scale <u>realistic</u> yet the male norm would place them at the forty-second percentile. This type of reference-group analysis shows that differences in the present sample are smaller than in the norm sample N = 6,270 (Abe and Holland, 1965). This is probably due to the fact that the national norms do not contain men and women drawn from equivalent fields. So the question, "Different from which reference group?" must always be considered.

Summary of Hypotheses Accepted and Rejected

In summary, the following hypotheses were accepted or rejected in this thesis:

Hypothesis 1. <u>Students in different majors have different profiles on</u> <u>the VPI</u>. This hypothesis was accepted in this study on the basis of the MANOVA results in the Between-All-Majors analysis.

Hypothesis 2. <u>Within colleges that have more than one major students</u> in different majors will show different profiles on the VPI. This hypothesis was accepted in this study on the basis on the MANOVA results

Hypothesis 3. Differences between sexes will be found in each analysis (entire sample of twenty majors, or between colleges, or majors within colleges that have more than one major.) This hypothesis was accepted in this study on the basis of the MANOVA results in every analysis. In every case the sex differences were significant.

Hypothesis 4. Differences will be found between intracampus colleges on the VPI profiles. This hypothesis was accepted in this study on the basis of the MANOVA results in the Between-Colleges Analysis.

Hypothesis 5. Differences found between sexes will vary across colleges, across all majors, or across majors within colleges having more than one major on VPI profiles. The results in this area were not as clear as with the other hypotheses. This hypothesis would be accepted only if a significant SXM interaction were present in each of the MANOVA analyses. Actually, the interaction was only significant in the Between-All-Majors Analysis, and in the Between-Majors-Within-General College Analysis. Thus, there is some doubt about the existence of non-constant or nonlinear sex differences in this sample.

Conclusion and Recommendation

Guidance Uses

Vocational interest inventories are often used for guidance purposes. They work on the principle that a person should be guided

> a de la companya de l Transforma de la companya de la comp

into groups whose members' interests maximally resemble his own. Since the majors are different on VPI profiles, it is possible that the VPI could be used for guidance in the population. However, a larger sample would be desirable to assure the most accurate possible representation of the reference population. A periodic update is also in order since the population at the Georgia Institute of Technology is changing so rapidly with regard to its sex composition. Future work on this subject should utilize a new Seventh Revision of the VPI in which efforts are being made to minimize sex differences.^{*}

<u>Culture and Personality Interpretations</u>

This thesis does not deal with the genesis of the vocational choice behavior. This question should certainly be systematically investigated, as it may be of great importance to our society.

The interplay of cultural restraints versus individual needs in the genesis of vocational choice is clearly evident in a retrospective look at the Crissy and Daniel (1939) study of women's vocational interest. In this factor analysis the factor accounting for most of the variance was called "Interest in Male Association." It included typical feminine roles like nurse, secretary, and housewife. Their factor naming implies a value judgement that authors today would be less likely to make. For instance, an environmental press theory would call these "Occupations Easily Available to Women." In any event both the samples available and likely interpretations of results have changed since Crissy and Daniel's pioneering work.

 * Refers to personal communication of John L. Holland.

Relevance to Psychological Theory

There are several aspects of psychological theory dealt with here. For one thing criterion-related validity has been demonstrated in making fine discriminations with the Holland VPI. As Kuder (1970) stated, without criterion validity, no vocational interest test is worthwhile. Since Nafziger and Helms (1974) have shown Holland's theory to be generalizable to other vocational interest tests, construct validity for the whole area of vocational interest is also gained.

As Holland (1966) was quoted in the introduction of this thesis, more data for women is needed to allow for a personality theory for women -- perhaps parallel to that usually derived for men. Some of that data has been provided by this thesis.

Finally, Holland's hexagonal model (Holland, Whitney, Cole, and Richards, 1969) has been found roughly to fit yet another set of data. Suggestions for Future Research

There are several directions that future research could take. One direction would be to investigate the effect of acquiescence on VPI responses. Holland, Whitney, Cole, and Richards (1969) attributed the first component of their principal components analysis of the six scales to, "a general tendency to respond." If acquiescence were individually measured and partialled among the scales, perhaps components analysis would yield a more meaningful picture of the model.

Another line of research would be to answer Kuder's (1970) criticism of the use of occupational titles by a study of people of different ages to see how young a person the VPI can be effective with.

A further attempt at the test of the hexagonal model by components analysis might involve an analysis of the error correlation matrix as suggested by Lohnes (1966). This means that to test the structure of the six scales' interrelationships, the effects of irrelevant variables such as sex, age, or level of education would first be removed from the intercorrelation matrix by partial correlation. Relevant variables like choice of major would not be removed.

Because of the large numbers of females in this sample in fields of study not usually chosen by females, the data gathered could be used to extend other research findings like those of Cole (1973).

APPENDIX A

MEAN AND STANDARD DEVIATION OF EACH SEX AND ALL MAJORS ON THE VPI SCALES

MEANS AND STANDARD DEVIATIONS

÷,

FAC1						VARIAU					
5	M	6	085		REALISTIC	INTELLECT	SOCIAL	CONVENTION	ENTERPHISI	ARTISTIC	SELF CONTR
1	1	0	083	м	5,303			1		8.167	
				50	4,719	9+667 2+251	2.667 3.204	3+500 2+881	4,833 3,545	3.710	7.167
	2	- 1	085		71/49	2.5.71	3,204	<+001	34343	24170	4+021
•	•	5-		н	4,323	5.290	3.581	1.645	3.323	5.677	6.806
				So	3.534	3.926	3.594	1.907	3.059	3.591	3.728
1	3	11	085	•0		31700	V1 V74	11707	21 037	2122]	3+120
•		•-		М.,	3,000	7.636	2.909	•727	2.721	4.909	8+182
				Sp	2.828	4.178	1.868	1.009	2.724	3.059	4.143
1	÷.	7	095			444.0	****00	2.007		01039	41740
-	•			м	8,714	3+571	1,714	2.857	3.571	6.000	5,429
				SD	4,309	1.512	2,628	2.473	3.505	4,761	3.047
1	5	6	085								
				м	3,833	8+667	4.500	2+833	2.500	5.167	6.335
				5D	3.371	4+676	4.764	3.764	3.391	4.579	5.125
1	6	24	085						,		
				M	5,125	5+708	2.917	2+792	3.542	4.667	7+583
	_	-	****	SD	3.059	4+389	3,229	2.604	2.530	4.752	3.513
1	7	,	085						2	· · ·	
				_ <u>M</u>	2,571	8.000	1.714	1.286	1.714	5.286	5.857
	•	a 8	OBS	Sp	1,902	4.761	1,360	1.380	2.215	5.64A	3.761
1		20	083		3.693						
				M 50	3.119	5+143 3+135	1.536 1.551	1.750	2.280	2.500	7-857
,	9	16	0B5	50	VII-9	21122	1+421	2.048	2.016	2.939	3.699
•	7	1.0	000	м	1,875	4.875	2,108	3,312	2.375	4.375	9.312
				So	2,107	4.410	2.762	3.321	2.500	4.129	3.269
1	10	4	08\$	-0		41740	E+'02	31321	21009	44154	3.504
-				Ħ	2.750	1.250	1,250	•250	2.750	8,250	8-500
				50	1.500	+957	1,500	+500	2.530	4.573	2.082
1	11	25	085								21002
	-	_		м	4.240	5+360	2.800	3.960	4.640	3.886	8.000
				SO	3.010	4.319	2,630	3.482	3.161	3.940	3,969
1	12	37	OBS						•		
				M	2,919	2+560	3.919	4+811	6.892	4.297	A+10A
			_	SD	3,068	3.693	3,677	3.821	3.400	3.542	4.520
1	13	4	OBS								
				_ <u>M</u>	4,750	6+500	3.000	1+250	1.500	7.750	7.250
	• •		085	Sp	2.363	4+435	1,414	1+893	1.000	4.646	3.775
1	14		083		1,333						
				M SD	1,528	6.333	1.667	•667	•667	•667	11.333
•	15	A	085	50	4+548	4.933	2.082	•577	1.155	1.155	2.082
•	- 5	•	000	м	3,500	7.750	2.125	1.500	1.875	5.375	9.250
				So	2,619	5+312	3.227	1+690	1.642	3.852	1.832
1	16	5	OBS		27017	04075	9+ LZ I	74030	11042	21035	*+07E
•		•		м	2.600	6.000	6.000	.800	2.200	5.000	5.490
				รอื	2.510	5+244	5,339	1+304	2.588	4.528	3.362
1	17	• 5	085	—	-		•				
				м	3,200	4.200	2,200	1.000	1.800	.801	9.800
				50	3.504	2.588	2.588	1+000	1.483	.837	3.768
1	18	12	085								

	-	M	6,083	7.667	1.633	1.917	2.167	3.667	6+083
		SD	3,579	4.119	2,167	2.746	2.980	3.750	4.100
1 19	2 085	-	-						
		м	7.000	7.000	7.000	7.000	7.000	7.000	7.000
		Sp	.000	.000	.000	.000	.000	.000	+000
1 20	2 085								
· •		, M	7.000	7.000	7,000	7.000	7.000	7.000	7.000
		50	.000	.000	.000	•000	•000	.000	•000
2 1	2 085								
		_M	5.500	9.000	1.500	5.500	5.500	3.000	9.000
t t	28 085	50	•707	5.657	2,121	4,950	7.778	1.414	4.243
	20 003				.				
		M	3,357	5.714	3,464	1-214	2.679	B.679	A+179
£ 5.	9 085	Sp	2,231	3.630	3,097	1+873	2.161	3.762	3+175
r ə	57 VD3		0						
		м 50	2,105	8.000	4.000	•737	2,105	5.474	8.263
2 8	3 085	עי	1.049	3.018	2.789	•672	2.233	3.949	3.998
E 7	• • • • • •	м	4.333	2.000	3 3	b	2.333	3	A 467
		SD	2.002		3,333 1,528	2+000		.333	9.667
2 1	8 085	30	F1002	2.000	1+928	1+000	2,309	•577	5+859
		м	2,125	9.000	3.000	1.750	2.250	6.125	8.500
		Sp	,991	2.777	2.507	1+909	2.712	4.016	2.726
2 6	gi 085		••••						20,00
		м	5,143	7.000	2.524	4+000	3,619	5.000	7.952
		\$D	3.732	4.690	3,683	4+626	3.653	4.950	3+653
£ 7	23 085			-					
		M	2.348	5.696	2,870	1.783	3.522	5,130	8+522
		SD	1.968	3.747	2,361	2+066	2.661	3.415	3.175
28	9 085							_	2.2.5
		M	4.556	10,556	3,000	2+778	3.667	7.444	6.333
A A	.1.000	SO	2.603	3,321	2,646	2 • 906	4.416	4.851	3.536
29	11 OBS		7 605						
-		м 50	2.909	6.273	4.455	4.727	3.091	4.364	10-091
2 10	7 085	50	2,468	3.319	4.525	3+580	2.508	3.931	3.048
	1 000	м	3.857	5.000	1.857		0 6-1		
		SD	3.846	3.367	1,057	+857 1+574	2.571 2.070	9.571 2.936	9.571 2.507
2 11	27 OBS	50	010.0	31307	19914	1.0214	2.070	£1736	5.201
	E ,	м	1,815	4.889	5,259	3.222	3,963	4.000	8.630
		Sp	1,981	3,945	3,537	3.130	2+244	4.243	3.410
2 12	54 085	-0		349.3	01-07	21120		****1	71410
	-	M	1.852	3.759	4.852	4.389	5.426	4.611	10+074
		50	2.200	3.325	3,683	3+542	2.826	4.227	3.375
2 13	25 085			,-					
		M	2.520	5.320	4,360	4+080	3.080	4.240	9.160
		50	2.931	3.705	4,172	3+673	2.994	4.003	3.313
2 14	3 085							-	1
		м	5.667	7.667	4.667	3,333	2.667	3.000	B+000
		50	2,389	6+658	3.512	4.933	2.085	5.196	3.000
2 15	5 085								1
		M	2.200	9,400	1,800	1+400	1.600	4.400	10.800
	44 605	Sp	1,789	3.209	1,643	1+140	1.817	2.074	3+114
2 16	16 OBS	1 2	2.437					• • • •	
		м 50	1.999	7.062	7.375	1+187	2.50D 1.789	7.625	7.625
2 17	9 085	20	44779	4.358	3,074	1+471	1+(87	4.843	3.222
C + /	× vus								

		M SD	1.111 1.269	4 • 778 4 • 738	1.444 1.667	1+222 1+563	2.667 2.000	5.667 5.454	9.778 3.563
2 18	10 OBS	M SD	5.000 3.496	5.300	1.900	4+000 3+771	3.300	6.800 5.181	8.500 4.353
2 19	3 OB\$	H SD	4.600 2.000	10.333 1.155	3.667 4.619	1+000 +000	2.000 2.000	5.000 1.000	5.000
2 20	3 085	H SD	5,333 4,933	4.000 2.000	4.667 4.726	2.000 2.646	5.667 2.517	1.667 2.887	2.667 3.055

-

ດ

MEANS AND STANDARD DEVIATIONS

	FAC						VARIAB		
	5 1	м 1	6	085		MASCULINIT	STATUS	INFREQUE	ACQUIESEN
	-	1	v		м	8.833	7.500	4,167	14+000
					sõ	2,639	2.665	3.061	4.733
	1	2	31	085	-• .		210-5		
					M	6.968	7.065	3.742	10,742
				_	50	2.652	2,394	2.294	5.341
	1	3	11	085					
					M	8,909	8.545	3,182	11+455
			-	085	\$D	1.514	2+296	2,442	3+804
	1	4	'	000		9.571			
					M SD		4.000	4.000	10+857
	1	5	6	085	SU	2,149	2.582	3,162	4+018
	•	•	•		м	7,333	6.000	5,000	12+167
					SD	2,005	2.280	3.950	7.223
1.	1	6	24	OBS	-0	-,,	21230	0 0730	/ VEC J
	-	-	-		M	9,107	7.167	4.375	12+167
		_	-		5D	1.857	2.531	2.163	4+669
	1	7		085		6. ** *.			.
					M SD	8,714 1,799	6+571	4.000	9+714
	1	8	28	085	50	11/29	21699	1.915	3+352
	*	0	2.	••••	м	9,107	6.714	4,071	9+321
					รอิ	1.618	1.960	2.124	3.811
	1	9	16	085	-•				
	•				м	7.750	7.312	4.625	8+375
					SD	2,017	2.387	2.778	3+649
	1	10	4	085		-			
					_M	7.750	6.500	5,250	7.750
		11	55	085	SĐ	1,500	1+291	1.258	1+258
	•	-1	5	000	м	9.160	7,760	5.480	11.200
					รอื่	2,097	2.437	3,057	5.000
	1	12	37	085	-0			41431	51000
	-	~	-		м	8.459	9.351	5,892	11.189
					SD	1.643	2.474	2.923	5.773
	1	13	4	085		-			
					_M	7.750	7.500	3,750	11+250
		1	-	-0F	SD	2.872	3.512	2,363	4+349
	1	14	3	085		9.333	7-	e	*
					M Sd	*****	7.333 1,155	5.000	7.000
	1	15	8	085	50		11102	2.646	3+000
	-	-0	-	•••	м	7,875	8.375	4.000	9,875
					Sp	2.167	1+685	2.070	3.834
	1	16	5	085					
	-				м	9,600	7.800	6.400	9+600
		_	_		SD	2.608	1.304	3,130	5+505
	· 1	17	5	085					
					M	9,400	5.800	5.800	8+400
	•	1		ADC	SD	2.074	2:387	3,033	3.782
	1	18	12	085					

- - -- ---

		м	8.333	5.833	4.333	9.167
		50	2,270	2+623	2.348	5.340
1 19	2 08S	-				
		м	7.000	7.000	7.000	7.000
		SD	.000	+000	.000	+000
1 20	2 OB5			-		
		м	7.000	7.000	7.000	7.000
		SD	•000	•000	.000	•000
21	2 085					
		м	10.500	11+000	8.000	14+000
•	AB 005	SD	↓ 7∪7	2.828	8,485	-1+414
22	28 085					
		_ <u>M</u>	5,404	7.321	3,893	10.286
	19 OBS	\$D	2.349	2.342	1,969	3+989
23	14 002		6.474		4 604	
		M 50	1,712	8.263 1.284	4,684 2,709	11+368 2+910
24	3 OBS	50	1.1 / - <u>C</u>	14204	21109	21910
		И	7.000	4.667	5,000	10.000
		50	2.646	3.055	4,583	2.646
25	8 085	-0		31053	4000	21040
		м	7,750	8.000	3.625	10.625
		SD	1,501	2.507	1,506	2.722
26	21 QBS					
		M	8,190	7.524	5,266	10.762
		50	1.940	2,926	3.036	6.503
27	23 085					
		_М	7.870	8+043	4.522	10+391
	B	5p	2.608	2,383	2.428	2+996
26	9 085					
		_M	7.556	7.000	2.333	13.111
29	11 085	So	2,007	3+041	1,936	3.551
2 9	11 005		7.818	0.	*	
		M SD	2,059	8.091	4,455	11+818
2 10	7 085	50	******	1+640	2,252	4+070
		м	5.714	6.857	4,286	9.571
		รอ	,951	2.268	2,498	2.225
2 11	27 085	- 2	••••	E-E-0		
	-	м	6.185	8.000	4,222	10+074
	· · · ·	50	2.481	2.617	2.665	3.452
2 12	54 OBS					
		M	6,519	9.944	5,667	10+130
• -		5D	2.081	2.218	2.828	4.762
2 13	25 085			_	_	
		_M	5,960	8.120	5,000	9.720
	1 405	SD	2.541	2.522	2,799	5.296
2 14	3 085		7.333			
		M		8.667	2,333	10+667
2 15	5 085	Sə	2,517	2.687	,577	4+041
E 49	0 000	м	7.600	7.000	5.800	10.000
		SD	1,140	2.345	2,568	3+391
2 16	16 0BS	~~		2.0.3	~1~00	31371
		H	4,562	8.562	3.937	13+125
		SD	3,054	1.999	2,407	4+241
2 17	9 OBS					

1

1

63

.

_ · ---

		м	7.111	6+556	4.778	7.333
		SD	4.045	2.789	4,024	4.472
: 18	10 085					
		×	6.600	6+900	5,500	10.500
		\$D	2,171	2.132	2,677	4.089
2 19	3 OBS					
		M	6,000	3.667	2.667	9,667
		5D	1.000	4+041	3.786	3+055
2 20	3 085			-		
		M	9.000	5.333	4,333	11+333
		50	2,646	2+517	2.082	3.512

- - -----

, · · ·

.

- 1

APPENDIX B

RESULTS OF BETWEEN-ALL-MAJORS ANALYSIS

TEST OF SM

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRI	TERION AND	CANONICAL CORRI	ELATIONS
TEST OF ROOTS	F	DFHYP	DFERR	P LESS THAN	R
1 THROUGH 11	1,339	209.000	4609.240	.001	.346
2 THROUGH 11	1,198	180.000	4554.889	.039	.329
3 THROUGH 11	1,036	153.000	4491,308	. 365	.278
4 THROUGH II	, 927	128.000	4417.172	.710	.245
5 THRUUGH -1-1	•839	105.000	4330.919	.880	•5 <u>3</u> 1
6 THROUGH 11	•728	84.000	4230.721	•970	.190
7 THROUGH 11	.662	65.000	4114.448	•983	.170
8 THROUGH 11	•600	48,000	3979,637	•9 <u>8</u> 7	.152
9 THROUGH 11	•258	33.000	3823,485	•988	•146
10 THROUGH 11	.344	20.000	3642,858	.997	.095
11 THROUGH 11	<u>+274</u>	9.000	3434,359	•982	.071

	UNIVA	RIATE F TES	TS ·	STANDAR	DIZED DI	SCRIMINANT	FUNCTION (
VARIABLE	F(19+ 489)	MEAN SO	P LESS THAN	1	2		
REALISTIC	1+091	8.338	,356	,317	.512		
INTELLECT	1.293	19+034	.182	.402	-,504		
SOCIAL	•855	8+639	,641	-,185	-,651	a.'	
CONVENTION	1.252	10.349	·,2 ¹ 1	.470	.089	- C	
ENTERPRISI	1.047	8+019	, 404	.085	• 058		
ARTISTIC	1.880	30.687	.014	.873	.057		
SELF, CONTR	• 846	10,985	•6 ⁵ 1	-,236	-,264		
MASCULINIT	1.647	8+319	.042	-,219	•374		
STATUS	•663	3.735	.856	,251	• 444 -		
INFREQUE	1.426	10.044	,109	001	+558		
ACQUIESEN	• 980	20.011	. 483	-1,312	· . 54 <u>1</u> ·		

A 47 7

STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS

TEST	' OF	5
------	------	---

e

,

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORR	ELATIONS	
TEST OF RODTS	F	DFHYP	DFERR	P LESS THAN	R	
1 THROUGH 1	9,641	11.000	479,000	.001	.426	•

	A = VV = V		••••=	•••	
					•
UNIV	ARIATE F TES	TS	STANDARDIZE	D DISCRIMINA	T FUNCTION COEFFICIENTS
	MEAN SO	P LESS THAN	1	• -	2
	91.097	.001	.520		
3.626	53.368	057	-,546		
6.359	64.287	012	-,109		
.413	3.411	.521	-,293		
•578	4+424	448	.104		
5.039	82,263	025	• ,057		
8.779	113.983	003	-,273		
64.839	327.415	.001	•769		
4.737	26.681	,030			
.333	2.346	564	,103		
• 090	1.840	•764	. 128		
	F(1, 489) 11.918 3.626 6.359 .413 .578 5.039 6.779 64.839 4.737 .333	UNIVARIATE F TES F(1, 489) MEAN SQ 11.918 91.097 3.626 53.360 6.359 64.287 .413 3.411 .578 4.424 5.039 62.263 6.779 113.983 64.839 327.415 4.737 26.681 .333 2.346	$\begin{array}{c} \text{UNIVARIATE F TESTS} \\ \textbf{F(1, 489)} & \text{MEAN SO} \textbf{P} \text{ LESS THAN} \\ \textbf{11.918} & 91.097 & .001 \\ \textbf{3.626} & 53.363 & .057 \\ \textbf{6.359} & \textbf{64.287} & .012 \\ .413 & 3.411 & .521 \\ .578 & 4.424 & .448 \\ \textbf{5.039} & \textbf{82.263} & .025 \\ \textbf{8.779} & \textbf{113.983} & .093 \\ \textbf{64.839} & \textbf{327.415} & .001 \\ \textbf{4.737} & \textbf{26.681} & .030 \\ .333 & \textbf{2.346} & .564 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

67

- ´ .

TEST OF M

•

-

T=S	TS OF SIGNIFICANCE	USING ATLKS	LAMBDA CRI	TERION AND	CANONICAL CORR	ELATIONS
- Tu S	ST OF ROOTS	F	DFHYP	DFFRR	P LESS THAN	R
1	THROUSE 11	3.5 <u>1</u> 8	209.000	4609.240	-001	+610
6	Тнарозь 11	2.669	180.000	4554 • A89	•001	+479
	ТНКОУ::Н 11	2.160	153.000	4491+308	+001	•416
4	THROUGH 11	1.822	128.00n	4417.172	•001	•338
5	THROUSH 11	1.639	105.000	4330.919	•001	•317
υ	THROUGH 11	1.421	84.000	4230.721	• 007	.290
/	THROUGH 11	1+166	65.000	4114.448	•172	•269
ប	Тнаризн 11	•B10	48.000	3979.637 -	• 822	•208
Э	THRUUJH 11	• 526	33.000	3823+465	• 988	+138
10	Тнкоизн 11	•461	20.000	3642.858	•992	+102
11	THROUSH 11	• 329	9.000	3434+359	•966	• 078

.

	UNIVA	HIATE F TES	TS	STANDAR	DIZED DI	SCRIMINA	NT FUNCT	ION COEFF	FICIENTS	
VARIABLE REALISTIC	F(19+ 48n)	MEAN 50	P LESS THAN	1	2	3	4	5	6	
1. TELLECT	4•795 4•861	36•647 71•556	.001 .901	•382 •348	-1.029 .682	-•111 •319	-•0°3 -•418	₹•556 •060	•723 •230	
SUCIAL	3.547	35.863	0.01	-+140	.560	-+546	729	+127	111	
CUNVENTION	5.631	46.600	+901	-+331	006	• 395	227	+719	,553	
ENTERPRISI ANTISTIC	6+392	48+946	.011	-•559	327	-•154	213	039	-+643	
SELF CONTR	2+6UC 1+906	42.445 24.743	.001 .012	•293 •230	256 166	455	.431 .303	•373 •506	++117 ++091	
MOSCULINIT	3+229	16.303	.001	014	001	.413	-•01	-1212	622	ı.
STATUS	6+247	35.184	.0c1	353	009	•020	•378	-,537	+794	
LIFREUUE NUQUILSEN	1 • 684 1 • 200	11+361 24+590	.015 .252	-•182 •011	.113 .222	016 .618	•135 •998	-•515 -•467	•07 0 227	

.

APPENDIX C

: 6

RESULTS OF BETWEEN-COLLEGE ANALYSIS

TEST OF CS

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CR	ITERION AND	CANONICAL CORR	ELATIONS
TEST OF ROOTS	F	DEHYP	DÉERR	P LESS THAN	R
1 THROUGH 2	1+195	55+000	1026+000	·243'	.176
2 THROUGH 2	•986	10.000	513.500	• 454	+137

	UNIVA	WIATE F TES	TS	STANDARDIZED	DISCRIMINANT	FUNCTION COEFFICIENTS
VARIABLE	F(2) 523)	MEAN SQ	P LESS THAN	1	-	· · · · · · · · · · · · · · · · · · ·
REALISTIC	• 5 9 0	5.717	.542	+631		
INTELLECT	•433	6.781	•649	.442		
SUCIAL	•773	8+261	.462	.482		
CONVENTION	+60 ⁻	5.503	•546	+.053		
EHTERPRISI	3.097	23+979	.046	708		
ARTISTIC	1+181	20+978	.308	307		
SELF CONTR	1.157	15-206	.315	.480		
MASCULINIT	•142	+791	.868	168		
SIATUS	•011	•063	.949	• 350		
1NFREGUE	•216	1+542	.805	 358		
ACQUIESEN	1.393	2B+658	.249	549		

70

-- -- - --- --- ---

TES	T	0F -	5
-----	---	------	---

.

TESTS OF SIGNIFICANCE	USING WILKS	LAMDDA CRITE	ERION AND	CANONICAL CORRI	ELATIONS
TEST OF ROOTS	F	DFHYP	DFERR	P LESS THAN	R
	10-118	, 11.000	513.000	+001	•422

	•	UNIVA	WIATE F TES	TS	STANDARDIZED	DISCRIMINANT	FUNCTION	COEFFICIENT
VARIABLE		F(1+ 523)	MEAN SO	P LESS THAN	1		,	
REALISTIC		16.562	137+158	.001	•553			
INTELLECT		1.868	29.243	.172	494			
SUCIAL S		-10-154	108+465	.002	146			
ONVENTION		•094	+855	.759	266			
ENTERPRISI		•291	2+254	• 590	•075			
ARTISTIC		5.982	106-232	.015	~. 047			
SELF CONTR		7.857	103-233	.005	-198			
4+SCULINIT		11.439	397-828	.001	•775			
STATUS		6+419	37+305	.012	. •028			
INFREQUE		•048	•341	.827	+008			
LOUIESEN		·007	• 140	.934	•095			

.

	TEST	UF C			
--	------	------	--	--	--

1

		USING WILKS	LAMODA CRI	FERION AND	CANONICAL CORRE	ELATIONS
TEST OF HOO	TS	F	OFHYP	DFFRR	P LESS THAN	R
1 THROUGH	2	12.331	22.000	1026+000	+001	•536
2 THROUGH	2	7.190	10.000	513.500	.001	•350
-					i i	
		LIN TVAO	LATE E TEST	5	STANDARDIZE	

· · ·

į

• .		•						
	UNIVA	STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENT						
VARIABLE	FL 2+1, 523)	MEAN SQ	P LESS THAN	1	2			
REALISTIC	15-082	124+903	.001	•162	.858			
INTELLECT	22.864	358+015	.001	•440	-,449			
SUCIAL	8.720	93 ∙150	.001	• 058	- 484			
CONVENTION	19.546	177.722	.001	-+174	319			
ENTERPRIS1	47.037	364 256	.001	-•677	5 95			
ARTISTIC	1.20A	21.445	.300	•169	.145			
SELF CONTR	4.756	62.881	.019	•154	.076			
MASCULINIT	2.071	11+532	.127	• 055	.129			
STATUS	39.070	227.046	+001	396	193			
INFREQUE	9+203	65.583	.001	171	-,213			
ACQUIESEN	+263	5.403	.769	•047	337			

,

.

- - - - - -

APPENDIX D

RESULTS OF BETWEEN-MAJORS-WITHIN-ENGINEERING-COLLEGE ANALYSIS

TEST OF SM

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CR	TERION AND	CANONICAL COR	RELATIONS
TEST OF ROOTS	F	DFHYP	DFERR	P LESS THAN	q
1 THROUGH 11	1+480	132.000	221 ₈₊₇₁₃	.001	433
2 THROUGH 11	1.231	110.000	2134+654	-056	•388
3 THROUGH 11	•989	90.000	2036.361	+511	334
4 THROUGH 11	•776	72.000	1921+935	•917	• 271
5 THROUGH 11	+61B	56.000	1789-410	•988	•196
ь Тнао ля 11	+568	42.000	1636+904	•989	•185
7 THROUGH 11	476	30.000	1462+834	.993	+162
0 THROUGH 11	•348	20.000	1266+227	. 997	+114
9 THROUGH 11	>280	12.000	1047+081	. 992	1090
10 THROUGH 11	•188	6.000	806+727	•980	• 063
11 THROUGH 11	+019	2.000	548.000	•981	.012
				· · · · · · · · · · · · · · · · · · ·	÷

•	UNITVA	STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS						
VARIABLE	F(12, 279)	MEAN SQ	P LESS THAN	1	2			
REALISTIC	1.129	9+985	.336	.409	.325			
INTELLECT	1.845	27.750	.041	.289	732			
SUCIAL	1.227	10.216	.264	÷••••	740			
CONVENTION	1.707	12.473	.065	•489	025			
EHTERPRISI	1.061	8+368	. 393	+106	017			
ANTISIIC	2+389	38+727	.006	•894	-214			
SELF CONTR	1.015	12.973	.435	177	055			
MASCULINIT	1+049	5.720	.404	050	.234			
SIAIUJ	+654	. 4+068	, 795	+237	.376			
INFREGUE	1+618	10,937	.086	+219	.509			
ALQUIESENC	• 922	17+639	.526	970	1.056			

	TE	ST.	ÛF	S
--	----	-----	----	---

• • •

.

.

,

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORRE	LATIONS
TEST OF HOOTS	F	DFHYP)FERR	PILESS THAN	₽ .
	4+667	11.000	269.000	+001	•400

. . . .

	UNIVARIATE F TES	TS	STANDAR DIZED	DISCRIMINANT FUNCTION COEFFICIENTS
VARIABLE	F(1+ 279) MEAN SQ	P LESS THAN	1	
RCALISTIC	6+310 + 55+811	.013	.513	
INTELLECT	1+247 18+758	.265	++422	
SUCIAL	2+933 - 24+425	.068	-•061	
CUNVENTION	•290 2•119	.591	 364	
ENTERPRISI	•000 • •000	* • 997	•046	
ARTISTIC	7+683 124+546	.006	230	
SELF LONTR	1.613 20.628	,205	-174	
MASCULINIT	34+140 186+072	.001	: •751	
SIATUS	2.057 12.798	.153	•043	
INFREQUE	•762 5•152	.383	•148	
ACQUILSENC	•142 2•714	.707	-207	

.....

<u>ب</u>

_

ډ

TEST OF M

TES	STS OF SI	IGNIFICANCE	USING	WILKS	LAMBDA	CRITERION	AND CANONICAL	CORRELATIONS
TLS	ST OF ROO	015	F	. .	DFH1	17 ° NFF	RR R LESS TH	HAN R
	THROUGH		2.5	63	132+00	00 2214.7	13 +001	• 550
	тикоизи	-,	5.(085	110-00	JÖ 2134.r	54 •001	•459
3	ТНңойын	11	1.	77	90.00	0 2036.3	•61 •001	• 3 • 3
	THROUGH		. 1.	549 .	72.00	0 1921.9	•002	• 350
5	THROUGH	11	1.1.	558 ·	56.00)0 1789.4	10 +054	•315
6	тнкойьн	11	1.()69	42.00	00 1636.9	04 -354	•284
	THKOUGH		•	718	30.00	1462.8	.34 .869	•218
	Тнкоисн		, . (106	20.00	0 1266.2	27 •991	+117
9	THROUGH	11		63	12.00	0 1047.0	•976	•089
	THROUGH		• 3	564	6.00	ĴO 806+7	·902	•072
11	THROUGH	11 .	•:	580-	2.00	0 548+0	•684	+053

	UnitVA	RIATE F TES	TS	STANDAR	DIZED DI	SCRIMINAN	T FUNCT	ION COEFFICIENTS
VARIAULE	F(12, 279)	MEAN 50	P LESS THAN	1	2	3	4	5
REALISTIC	4.057 -	35.085	.001	• • 722	382	-•825	•332	325
INTELLECT	2.249	33.833	+010	⊷ 403	.343	101	1.108	•089
SUCIAL	2.539	21.148	.003	/ 3 42	.804	307	119	•165
CUNVENTION	3+381	24.707	.001	/=+400	234	-131	•048	 •347
EHTERPHISI	2+151 4 -	16+960	• • • • • • • • • • • • • • • • • • • •	-124	.435	 298	374	•146
ARTISTIC	3.405	55+196	.001	•864	.091	•220	113	094
SELF CONTR	1.372 -	17+544	.179	+244	245	•283	068	•150
MASCULINIT	3.787	20+641	.001	202	356	•001	295	•578
STATUS	2 • 766	17.210	··· • •001	217	214	•047	•375	- •772
INFREQUE	1-120	7.569	.343	•016	176	091	149	-+239
ACQUIESENC	1+458	27+903	- a - 140	186	-1.080	•812	776	242

APPENDIX E

RESULTS OF BETWEEN-MAJOR-WITHIN-GENERAL-COLLEGE ANALYSIS

TEST OF SM

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRI	TERION AND	CANONICAL CORR	ELATIONS
TESTO OF ROOTS	F	DFHYP	DEERS	P LESS THAN	R
1 THROUGH 5	1.257	55.000	522.009	.110	.444
2 THROUGH 5	1.053	40.000	432+439	• 387	• 3A5
S THROUGH S	•846	27.000	333+677	•689	.287
4 THROUGH 5	•794	16.000	227.000	•691	•243
5 THROUGH 5	•B06	7.000	114-000	•584	•217

	UNIVA	UNIVARIATE F TESTS					
VARIABLE	F(5, 122)	MEAN SO	P LESS THAN	1			
REALISTIC	1.231	6.712	,299	• 924			
INTELLECT	•251	3.966	.938	- 567			
SUCIAL	•660 -	7+658	+654	-,409			
CONVENTION	1+060	7.060	.386	449			
ENTERPRISI	•466	2.887	. 8n1	082			
ARTISFIC	•874	14.763	.501	• 332			
SELF CONTR	• 320	3.839	.900	•715			
MASCULINIT	3+424	17.459	.006	•197			
STATUS	1.010	4.663	,415	• 393			
INFREQUE	1.740	11+979	.130	816			
ACQUIESENC	1.281	23+565	.277	• 384			
H-AATPICHP	1.50[CO1 000	• 6 ()	+ 304			

STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS

ILST UF S

TESTS OF SIGNIFICANCE	USING -ILKS	LAMBDA CRIT	ERION AND	CANONICAL CORRI	ELATIONS
TEST OF REOTS	F	DEHTP	DFERR	P LESS THAN	R
▲ Тнюз∪ бн 1	2.624	11.000	112.000	•005	•453

	UNIVA	RIATE F TES	TS	TANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
VATAULE	FI 1+ 122)	MEAN SQ	P LESS THAN	1	
HEALISTIC	5-030	11+444	.150	•797	
1416661	-746	11+684	.391	- •659	
SUCIAL	2.166	25-120	144	•034	
CONVERTION.	1+50.0	9.993	.223	391	
ENTERPRISE	• 162	1.000	• GP B	031	
ANTISTIC	+004	•071	949	• 356	
SELF CONTH	3+310	39.726	.071		
MASCULINIT	12.279	62.606	.001	.774	
SIATUS	•924	4+262	.338	-210	
INFREQUE	+139	+958	.710	308	
ALQUIESENC	1+256	23.114	.265	420	

.

1

TEST OF N

.

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRI	TERION AND	OANONICAL CORRI	ELATIONS
TEST OF ROOTS	۶	DFHYP	DFERR	IPILESS THAN	R
1 THROUGH 5	2.118	55.000	522.009	•001	•617
✓ THROUGH 5	1.362	40+000	432.439	.075	+485
3 THROUGH 5	• •806	27.000	333.677	•744	.325
4 THROUGH 5	•540	16.000	227.000	•924	.226
5 THROUGH 5	.364	7.000	114.000	•921	+148
		7			

·•					
UNIV	ARIATE F TES	T\$	STANDARDIZED DIS		
(5, 122)	MEAN SQ	P LESS THAN	1	2	
•414	2.255	.839	031	-,091	
2.962	46.750	.015	•022	,538	
3+935	45+637	.002	•637	778	
7+198	47.958	.001	-+915	-,436	
•360	2.227	.075	-155	.361	
1.230	20.792	.299	+. 090	.020	
2.379	28.557	.043	409	.613	
1.558	7.942	.177	•047	.200	
•775	3.577	.570	.232	246	
-244	1.683	.942	1.261	202	
1+202	22+126 -	.312	•245	.569	
	UNIV 1 5, 122) .414 2.962 3.935 7.198 .360 1.230 2.379 1.558 .775 .244	12> MEAN SQ .414 2.255 2.96> 46.750 3.935 45.637 7.198 47.958 .360 2.227 1.230 20.792 2.379 28.557 1.558 7.942 .775 3.577 .244 1.683	UNIVARIATE F TESTS 4 5, 122) MEAN SQ P LESS THAN 414 2.255 .839 2.962 46.750 .015 3.935 45.637 .002 7.198 47.958 .001 .360 2.227 .075 1.230 20.792 .299 2.379 28.557 .043 1.558 7.942 .177 .775 3.577 .570 .244 1.683 .942	UNIVARIATE F TESTS	

TANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS

•

•

APPENDIX F

RESULTS OF METHOD OF SAMPLING ANALYSIS

SAMPLING ANALYSIS

.*

TEST OF CS

.

TASTS OF SIGNIFICANCE	USING WILKS	LAMBOA CRII	FERION AND	CANONICAL CURRE	LATIONS
TEST OF REOTS	F	DEHYP	DEERR	P LESS THAN	R
1 THROUGH 2	1-268	55.000	566+000	•186	•251
2 THROUGH 2	•902	10.000	283+500	•532	•176

	ULIVA	ATE F TES	TS	STANDARDIZED	DISCRIMINANT	FUNCTION	C
VARIABLE	F(2, 293)	MEAN SO	P LESS THAN	1		<i>.</i> .	
REALISTIC	•231	1.509	.704	084			
IHIELLECT	•242	3.712	.785	822			
SULIAL	2.304	25+940	.102	•225			
CULIVENTION	.057	+564	.945	•026			
ENTERPRIST	• 645	4.662	.525	225			
AN 1511C	1.400	27 176	.246	.127			
SELF CONTR	• 364	4+351	.693	•290			
MAGCULINIT	•705	4+359	.495	.275			
SU:105	•632	3+616	.532	•014			
IHFREGUE	3+624	26.076	.028	672			
AUGULESENC	3+452	62+715	.033	•889			

COEFFICIENTS

TEST OF S

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	ERION AND	CANONICAL CORRE	ELATIONS
TEST OF REOTS	F	DFHYP	DEERR	P LESS THAN	R
1 THROUGH 1	1.525	11.000	283+000	•122	•237

	UNIVA	HATE F TES	TS	STANDARDIZE	D DISCRIMINANT	FUNCTION	COEFFICIENTS
VNAIABLE	F(1+ 29%)	MEAN SO	P LESS THAN	1			
REALISTIC	•432	2 825	-511	016			
INTELLECT	+00%	+931	.942	-214			
SUCIAL	8+989	100+095	.003	-•642			•
CONVENTION	•011	+104	•918	007			
EHFERPRISI	•00.3	•021	.957	•520			
ANTISTIC	1+154	22.261	. 204	•071			
SELF CONTR	•020	+231	.849	•053			
MASCULINIT	3 •36n	20.333	.067	•238			
STATUS	4+43A	25+388	.036	-•582			
INFREGUE	2.199	15.802	.139	• 342			
ACUUTESENC	1.856	34+257	.171	112			

This is a test of sampling method within female sample. N. B.

TEST UP C

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRIT	'⊆RION AND	CANGNICAL CORM	LLATIONS
TEST OF RUOTS	F	OFHYP	DEFRR	P LESS THAN	R
1 THROUGH 2	6.744	22.000	566+000	.001	•513
2 THROUGH 2	4.948	10.000	283+500	•001	+385

	UnitVA	RIATE F TES	15	STANDARI	DIZED DISCRIMINANT FUNCTION COEFFICIENT	'S
VARIABLE	F(2, 293)	MEAN SQ	P LESS THAN	1	2	
REALISTIC	9.217	60+254	.001	+001	.643	
INTELLECT	10.177	155-851	.001	+394	-,384	
SULIAL	5.867	66+061	.003	-+114	-, 393	
CURVENTION	8+375	85+955	.061	116	112	
ENTERPRISI	20.77k	150-083	.001	=+688	.620	
ANTISTIC	1.849	35+667	.159	•157	.409	
SELF CONTR	6+08A	71.949	.0n3	012	.133	
MASCULINIT	1+36)	8.421	.258	•004	.253	
SIATUS	22+667	129.687	.001	483	271	
INFREGUE	5+188	37.284	.0n6	018	378	
ACQUIESENC	•487	8 • 842	.615	•342	543	

APPENDIX G

RESULTS OF BETWEEN-COLLEGE-ANALYSIS WITHOUT MAILBOX SAMPLE

TEST OF US

.

.

TESTS OF SIGNIFICANCE	USING WILKS	LAMBON CRIT	ERION AND	CANONICAL CORR	ELATIONS
TEST OF REOTS	* F	DEHYP	OFFRR	P LESS THAN	R
1 THROUGH 2	1.095	22.000	940+r00	.345	+181
Z THROUGH 2	.821	10.000	476+500	+609	+131

	UNIVARIATE F TESTS			STANDARDIZED	DISCRIMINANT	FUNCTION	COEFFICIENTS
VARIABLE	FL 2+ 480)	MEAN SO	P LESS THAN	1			
REALISTIC	+359	3+043	.699	+635			
INTELLECT	.+326	5+133	.726	•179			
SUCIAL	1.074	10.825	.342	.765			
CUNVENTION	.460	4+251	.626	115			
ENTERPRISI	2.057	16.357	.129	711			
ARTISTIC	1+545	27.202	.214	411			
SELF CONTR	• 72a	9.735	. 484	•546			
MASCULINIA	+153	-840	•B5A	050			
STATUS	+ 0 6 7	+39B	.935	+341			
INFREGUE	+57H	4.130	.561	-+465			
ACUUIESENC	•269	5+609	.764	313			

.

TEST OF S

TESTS OF SIGNIFICANCE	USING WILKS	LAMBDA CRI	ITERION AND	CANONICAL CORREL	LATIONS
TEST OF REDTS	F	DEHYP	DFFRR	P LESS THAN	R
1 Тикоцен 1	8.737	11.000	476+000	+001	.412
				I	
			;		
	UNIVAN	IATE F TEST	1	STANDARDIZED	DISCRIMINANT FUNCTION COEFFICIENTS
VARIABLE FI	1+ 486)	MEAN 50	P LESS THAN	1	
Réalistic	14.727	124.889	.001	•523	
INTELLECT	1.695	27.194	.194	524	
SUCIAL	4+ <u>84</u> 4	49+808	.028	119	
CUNVENTION	•102	·927	.749	241	
ENTERPRIST	•52A	4.198	. 46B	•056	
ARTISTIC	3.624	63+807	.058	• 007	
SELF LONTR	8+243	110.295	.004	216	
MAGCULINIT	61.550	337.667	.001	.802	
STATUS	3+671	21.693	. 11.6	+045	
INFREGUL	+015	+105	.204	-+036	
AVOULSENC	•074	1.535	.786	•088	

78

۰.

TEST OF C

TESTS OF SIGNIFICANCE	USING ATLKS	LAMBDA CRI	TERION AND	CANONICAL CORR	ELATIONS
TEST OF ROOTS	. F	DERTE	0FFRR	P LESS THAN	R
1 THROUGH 2	11-493	22.000	940.n00 -	+001	•537
2 THROUGH 2	6+842	10.000	470.500	•001	•357

	UNIVARIATE F TESTS			STANDARDIZED DISCRIMINANT FUNCTION COEFFICIENTS			N COEFFICIENTS
VARIABLE	F(2+ 485)	MEAN SO	P LESS THAN	1	2		•
REALISTIC	15+565	131+991	.0n1	.212	900		
I+TELLECT	20.737	332.725	.001	•497	.475		
SUCIAL	9+844	99+186	.001	•076	.652		
CONVENTION	18+975	171.968	.001	193	.261		
ENTERPRISI	46+156	367 OB2	.001	-•641	557		
AKTISTIC	•485	7+132	•667	•161	134		
SELF CONTR	3+877	51.880	.021	•096	+.067		
MASCULINIT	1.276	6+999	.280	• 17 4 6	028		
,51,4TU5	37.572	555+028	.001	363	.137		
INFREGUE	5.685	40+629	.004	094	.147		
ACCUTESENC	• 426	8+882	.653	103	.163		

BIBLIOGRAPHY

- Abe, C., and Holland, J. L. <u>A description of college freshmen: Students</u> with different choices of major fields. American College Testing Program Research Report, 1965a, No. 3.
- Abe, C., and Holland, J. L. <u>A description of college freshmen: Students</u> with different vocational choices. American College Testing Program Research Report, 1965b, No. 4.
- Appelbaum, M. I., and Cramer, E. M. Some problems in the nonorthogonal analysis of variance. <u>Psychological Bulletin</u>, 1974, 81, 335-343.
- Barnette, W. L., and McCall, J. N. Validation of the Minnesota Vocational Interest Inventory for vocational high school boys. <u>Journal</u> of Applied Psychology, 1964, <u>48</u>, 378-382.
- Cattell, R. B., Saunders, D. R., and Stice, G. F. <u>The 16 Personality</u> <u>Factor Questionnaire</u>. (Rev. ed.) Champaign, Illinois: Institute of Personality and Ability Testing, 1957.
- Cole, N. S. On measuring the vocational interests of women. <u>Journal</u> of <u>Counseling Psychology</u>, 1973, <u>20</u>, 105-112.
- Cramer, E. M. <u>MANOVA: A computer program for univariate and multivariate</u> <u>analysis of variance</u>. Chapel Hill. L. L. Thurstone Psychometric Laboratory, University of North Carolina, 1973.
- Crissy, W. J. E., and Daniel, W. J. Vocational interest factors in women. Journal of Applied Psychology, 1939, 23, 488-494.
- Darley, J. G. A preliminary study of the relations between attitude, adjustment, and vocational interest tests. <u>Journal of Educational</u> Psychology, 1938, 29, 467-473.
- DiScipio, W. J. A factor analytic validation of Holland's Vocational Preference Inventory. <u>Journal of Vocational Behavior</u>, 1974, <u>4</u>, 389-403.
- Dunnette, M. D., Wernimont, P., and Abrahams, N. Further research on vocational differences among several types of engineers. <u>Per-sonnel and Guidance Journal</u>, 1964, <u>47</u>, 484-494.
- Elton, C. F. Interaction of environment and personality: A test of Holland's theory. Journal of Applied Psychology, 1971, <u>55</u>, 114-118.

- Elton, C. F., and Rose, H. A. A longitudinal study of the vocationally undecided male student. <u>Journal of Vocational Behavior</u>, 1971, <u>1</u>, 85-92.
- Frantz, T. T., and Walsh, E. P. <u>Explorations of Holland's theory of vocational choice in a graduate school environment</u>. Experimental Publication System of the American Psychological Association, 1970.
- Guttman, L. A new approach to factor analysis: The radex. In lazarsfeld, P. F. (Ed.) <u>Mathematical thinking in the behavioral</u> <u>sciences</u>. Glencoe, Illinois: Free Press, 1954.
- Hill, R. E. Interpersonal needs and functional areas of management. Journal of Vocational Behavior, 1974, 4, 15-24.
- Hobson, B., and Hayes, J. <u>The theory and practice of vocational</u> guidance. New York: Pergammon Press, 1968.
- Holland, J. L. A personality inventory employing occupational titles. Journal of Applied Psychology, 1958, <u>42</u>, 336-342.
- Holland, J. L. The relationship of the Vocational Preference Inventory to the Sixteen Personality Factor questionnaire. <u>Journal of</u> <u>Applied Psychology</u>, 1960, <u>44</u>, 291-296.
- Holland, J. L. <u>The psychology of vocational choice: A theory of</u> <u>environmental types and environmental models</u>. Waltham, Mass.: Blaisdell, 1966.
- Holland, J. L., and Whitney, D. R. <u>Changes in the vocational plans</u> of college students: Orderly or random? American College Testing Program Research Report, 1968, No. 25.
- Holland, J. L., and Nichols, R. N. Explorations of a theory of vocational choice: III. A longitudinal study of changes of major field of study. <u>Personnel and Guidance Journal</u>, 1964, <u>43</u>, 235-242.
- Holland, J. L., Whitney, D. R., Cole, N. S., and Richards, J. J., Jr. <u>An empirical occupational classification derived from a theory of</u> <u>personality and intended for practice and research</u>. American College Testing Program Research Report, 1969, No. 29.
- Hornaday, J. A., Kuder, G. F. A study of male occupational interest scales applied to women. <u>Educational and Psychological Measurement</u>, 1961, <u>21</u>, 859-864.
- Hummel, T. J., and Sliggo, J. R. E. Empirical comparison of univariate and multivariate analysis of variance procedures. <u>Psychological</u> <u>Bulletin</u>, 1971, <u>76</u>, 49057.

- - -----

- Jones, L. V. Analysis of variance in its multivariate developments. In Cattell, R. B. (Ed.) <u>Handbook of multivariate experimental</u> psychology. Chicago, Illinois: Rand McNally, 1966.
- Kreidt, P. H. Vocational interests of psychologists. <u>Journal of</u> Applied Psychology, 1949, 33, 482-488.
- Kuder, F. Some principles of interest measurement. <u>Educational and</u> Psychological Measurement, 1970, 30, 205-226.
- Lohnes, Paul R. <u>Measuring adolescent personality: Project Talent</u> <u>five year follow-up study: Interim Report 1</u>. Pittsburgh, Penn.: University of Pittsburgh, 1966.
- Lunneborg, P. W., and Lunneborg, C. E. Factor structure of M-F scales and items. <u>Journal of Clinical Psychology</u>, 1970, <u>26</u>, 360-366.
- Mulaik, S. A. Foundations of factor analysis. New York: McGraw-Hill, 1972.
- Nafziger, D. H., and Helms, S. T. Cluster analysis of interest inventories scales as tests of Holland's occupational classification. Journal of Applied Psychology, 1974, 59, 344-353.
- Perry, D. W., and Cannon, W. M. Vocational interests of female computer programmers. <u>Journal of Applied Psychology</u>, 1968, <u>52</u>, 31-35.
- Roe, A. <u>The psychology of occupations</u>. New York: John Wiley and Sons, 1956.
- Roe, A., and Klos, D. Occupational classification. <u>Counseling</u> <u>Psychologist</u>, 1969, <u>1</u>, 84-88.
- Seder, M. A. The vocational interests of professional women. <u>Journal</u> of <u>Applied Psychology</u>, 1940, 24, 130-143.
- Schutz, W. <u>The interpersonal underworld</u>. Palo Alto, Calif.: Science and Behavior Books, 1966.
- Silver, H. A., and Barnette, W. L., Jr. Predictive and concurrent validity of the Minnesota Vocational Interest Inventory for vocational high school boys. <u>Journal of Applied Psychology</u>, 1970, <u>54</u>, 436-440.
- Strong, D. J., and Feder, D. D. Measurement of the self-concept: A critique of the literature. <u>Journal of Counseling Psychology</u>, 1970, 54, 436-440.

Super, D. E., and Crites, J. G. <u>Appraising vocational fitness</u>. New York: Harper and Row, 1962.

Timm, N. H. <u>Multivariate analysis with applications in education</u> and psychology. Monterey, Calif.: Brooks-Cole, 1975.

Tyler, L. E. <u>The psychology of human differences</u>. (3rd ed.) New York: Appleton-Century-Crofts, 1965.

York, C. M., and Loveland, E. H. <u>A study of technical school majors</u>, Unpublished Research Report, Georgia Institute of Technology, 1964.