
Practical use of variational principles for modeling water

waves

Didier Clamond, Denys Dutykh

To cite this version:

Didier Clamond, Denys Dutykh. Practical use of variational principles for modeling
water waves. Physica D: Nonlinear Phenomena, Elsevier, 2012, 241 (1), pp.25-36.
<10.1016/j.physd.2011.09.015>. <hal-00456891v6>

HAL Id: hal-00456891

https://hal.archives-ouvertes.fr/hal-00456891v6

Submitted on 8 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. This paper describes a method for deriving approximate equations for irro-

tational water waves. The method is based on a ‘relaxed’ variational principle, i.e., on

a Lagrangian involving as many variables as possible. This formulation is particularly

suitable for the construction of approximate water wave models, since it allows more free-

dom while preserving a variational structure. The advantages of this relaxed formulation

are illustrated with various examples in shallow and deep waters, as well as arbitrary

depths. Using subordinate constraints (e.g., irrotationality or free surface impermeabil-

ity) in various combinations, several model equations are derived, some being well-known,

other being new. The models obtained are studied analytically and exact traveling wave

solutions are constructed when possible.
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1. Introduction

The water wave problem in fluid mechanics has been known since more than two hun-
dreds years [13]. The classical mathematical formulation of surface gravity waves involves
five equations: the irrotationality of the fluid flow, the fluid incompressibility, the bottom
and the surface impermeabilities, and the surface isobarity [40]. This system of equations
cannot generally be solved exactly and, historically, the water wave theory has been de-
veloped by constructing various approximations. In shallow water, we have the equations
of Korteweg and de Vries [30], Boussinesq [7], Benjamin et al. [4], Serre [49],
Green and Naghdi [23], Camassa and Holm [9], Degasperis and Procesi [14], and
many other model equations. On finite depth and deep water, there is the celebrated non-
linear Schrödinger equation [40] and the equations of Dysthe [17], Trulsen et al. [55],
Kraenkel et al. [31], among others. These equations are most often derived via some
perturbation techniques and are thus valid for waves of small amplitude. Moreover, these
equations are generally valid for a very limited range of the ratio wavelength/water depth
and for narrow-banded spectra. However, for many applications it is necessary to use
models uniformly valid for all depths and which are accurate for large amplitudes. It is
well-known in theoretical physics that variational formulations are tools of choice to derive
such approximations when small parameter expansions are inefficient.

There are mainly two variational formulations for irrotational surface waves that are
commonly used, namely the Lagrangian of Luke [36] and the Hamiltonian of Petrov–
Zakharov [46, 60]. Details on the variational formulations for surface waves can be
found in review papers, e.g., [47, 48, 61]. The water wave problem is also known to have
the multi-symplectic structure [8]. These variational principles have been exploited, in
different variants, to build analytical and numerical approximations, e.g., [3, 28] just to
mention a few references.

Luke’s Lagrangian assumes that the flow is exactly irrotational, i.e., the Lagrangian
involves a velocity potential but not explicitly the velocity components. If in addition
the fluid incompressibility and the bottom impermeability are satisfied identically, the
equations at the surface can be derived from Zakharov’s Hamiltonian [60]. Thus, both
principles naturally assume that the flow is exactly irrotational, as it is the case of the
water wave problem formulation, but Zakharov’s Hamiltonian is more constrained than
Luke’s Lagrangian. Luke’s and Zakharov’s variational formulations require that part or all
of the equations in the bulk of the fluid and at the bottom are satisfied identically, while
the remaining relations must be approximated [12]. It is because the irrotationality and
incompressibility are mathematically easy to fulfill, that they are chosen to be satisfied
identically. Beside simplicity, there are generally no reasons to fulfill irrotationality and/or
incompressibility instead of the impermeability or the isobarity of the free surface, for
example. In this paper, we illustrate the benefit of releasing the constraints of exact
irrotationality and incompressibility, since approximations of these relations are sufficient
in most practical cases.
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Variational formulations involving as few dependent variables as possible are often re-
garded as simpler [59]. It is understandably tempting to solve exactly (i.e., analytically)
as many equations as possible in order to ‘improve’ the solution accuracy. This is not
always a good idea, however. Indeed, numerical analysis and scientific computing know
many examples when efficient and most used algorithms do exactly the opposite. These
so-called relaxation methods — e.g., pseudo-compressibility for incompressible fluid flows
[26] — have proven to be very efficient for stiff problems. When solving numerically a
system of equations, the exact resolution of a few equations does not necessarily ensure
that the overall error is reduced: what really matters is that the global error is minimized.
A similar idea of relaxation may also apply to analytical approximations.

In this study we would like to elucidate the benefit of using relaxed variational methods
for the water wave problem. In other words, we illustrate the advantage of using a varia-
tional principle involving as many dependent variables as possible. We emphasize that our
primary purpose here is to provide a generalized framework for deriving model equations
for water waves. This methodology is explained on various examples, some of them being
new to our knowledge. However, the potential of the present approach is far from being
fully exploited.

The paper is organized as follows. In Section 2, Luke’s Lagrangian is relaxed to incorpo-
rate explicitly more degrees of freedom. This modification yields the Hamilton principle in
its most general form. The advantage of this formulation is subsequently illustrated with
examples over a fixed horizontal bottom, for the sake of simplicity. We begin in Section 3
with shallow water models, where some well-known and a few novel models are derived
from the same Lagrangian, but with different subordinate constraints. In Section 4, simi-
lar model equations are derived in the deep water limit. In particular, a generalization of
the Klein–Gordon equation and a remarkably simple accurate approximation for traveling
waves are derived. A generalized ansatz, including the shallow and deep waters as limiting
particular cases is presented in Section 5. Further generalizations are discussed in Section 6
and their advantage is illustrated with a variant of Serre’s equations. Finally, conclusions
and perspectives for future studies are outlined in Section 7.

2. Generalized variational formulation

Water wave problem possesses several variational structures [36, 57, 60]. In the present
study we will extensively exploit the Lagrangian variational formalism. Surface gravity
wave equations, for a potential flow with an impermeable bottom and an impermeable
free surface where the pressure is constant (taken to be zero), can be derived from the
“stationary point” (point where the variation is zero) of the following functional [36]:

L = ∫ t2

t1
∫
Ω

L ρ d2
xdt, L = −∫ η

−d
[ gy + φt + 1

2
(∇φ)2 + 1

2
φ2

y ]dy, (2.1)

with x = (x1, x2) the horizontal Cartesian coordinates, y the upward vertical coordinate, t
the time, ∇ the horizontal gradient, Ω the horizontal domain, φ the velocity potential and



D. Clamond & D. Dutykh 6 / 29

g > 0 the acceleration due to gravity; y = η(x, t), y = 0 and y = −d(x, t) being, respectively,
the equations of the free surface, of the still water level and of the bottom. For the sake of
simplicity, the surface tension effect is neglected and the fluid density ρ is constant (and
can thus be set to unity without any loss of generality), but this is not a limitation for the
purpose of this paper.

Integrating by parts, then neglecting the terms at the horizontal and temporal boundaries
because they do not contribute to the functional variations (this will be done repeatedly
below without explicit mention), Luke’s variational formulation (2.1) can be rewritten with
the following Lagrangian density:

L = ϕ̃ ηt + φ̌ dt − 1

2
gη2 + 1

2
gd2 − ∫ η

−d
[ 1
2
(∇φ)2 + 1

2
φ2

y ]dy, (2.2)

where the over ‘tildes’ and ‘wedges’ denote, respectively, the quantities written at the free
surface y = η and at the bottom y = −d. We shall also denote with ‘bars’ the quantities
averaged over the water depth, e.g.

ū(x, t) ≡ 1

η(x, t) + d(x, t) ∫
η(x,t)

−d(x,t)
u(x, y, t)dy.

The variational formulations (2.1) and (2.2) impose that any approximation is exactly
irrotational, i.e., the choice of an ansatz for φ necessarily implies an irrotational motion.
Note that the term 1

2
gd2 in (2.2) can be omitted because, d being prescribed, it does not

contribute to the variation process. Note also that Luke’s Lagrangian (2.1) can be extended
to the case where the bottom function d(x, t) is unknown if a condition at y = −d is added
to the problem [54].

To give us more freedom while keeping an exact formulation, the variational principle is
modified (relaxed) by introducing explicitly the horizontal velocity u = ∇φ and the vertical
one v = φy. The variational formulation can thus be reformulated with the Lagrangian
density

L = ϕ̃ηt + φ̌dt − 1

2
gη2 −∫ η

−d
[1
2
(u2 + v2) +µ ⋅ (∇φ −u) + ν(φy − v)]dy, (2.3)

where the Lagrange multipliers µ and ν have to be determined. By variations with respect
of u and v, one finds at once the definition of the Lagrange multipliers:

µ = u, ν = v.

Using these definitions, (2.3) becomes

L = ϕ̃ ηt + φ̌ dt − 1

2
g η2 + ∫ η

−d
[ 1
2
u

2 + 1

2
v2 − u ⋅ ∇φ − v φy ]dy. (2.4)

However, it is advantageous to keep the most general form of the Lagrangian (2.3), because
it allows to choose ansatz for Lagrange multipliers µ and ν that are different from the veloc-
ity field u and v. Indeed, the Lagrangian density (2.3) involves six variables {η,φ,u, v,µ, ν},
while the simplified Lagrangian (2.4) involves only four variables {η,φ,u, v} and the origi-
nal Lagrangian (2.2) only two (η and φ). These additional variables introduce additional
freedom in the construction of approximations, thus allowing more subordinate relations
to be fulfilled. The Lagrangian density (2.4) was used by Kim et al. [28] to derive the
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‘irrotational’ Green–Naghdi equations for long waves in shallow water. The more general
Lagrangian density (2.3) provides more flexibility to derive model equations, as illustrated
below.

The connection of (2.3) with the variational formulation of the classical mechanics can
be seen applying Green’s theorem to (2.3) that yields another equivalent variational for-
mulation involving the Lagrangian density

L = (ηt + µ̃ ⋅ ∇η − ν̃) ϕ̃ + (dt + µ̌ ⋅ ∇d + ν̌) φ̌ − 1

2
g η2

+ ∫ η

−d
[µ ⋅u − 1

2
u

2 + νv − 1

2
v2 + (∇ ⋅µ + νy)φ ]dy, (2.5)

which in deep water limit (d→∞) becomes (if φ decays faster than y−1 as y → −∞)

L = (ηt + µ̃ ⋅ ∇η − ν̃) ϕ̃ − 1

2
g η2

+ ∫ η

−∞
[µ ⋅u − 1

2
u

2 + νv − 1

2
v2 + (∇ ⋅µ + νy)φ ]dy.

Thus, in the special case µ = u and ν = v, the Hamilton principle of classical mechanics
is recovered in Eulerian description of motion, i.e., the variational principle involves the
kinetic energy minus the potential energy plus some constraints for the fluid incompressibil-
ity, for the flow irrotationality and for the bottom and surface impermeabilities, as already
pointed out by Miles [41]. In other words, the Lagrangian density (2.5) is the Hamilton
principle in its most general form for irrotational surface gravity waves.

Note that, via the integration by parts, the term ηtϕ̃, for example, can be replaced by−ηϕ̃t in all the Lagrangian densities given above, without loss (nor gain) of generality. Note
also that the relaxed variational formulations involving (2.3) and (2.5) being strictly equiva-
lent, one should use the more convenient one depending on the problem under consideration.
Note finally that extensions of (2.3) and (2.5) including, e.g., obstacles, surface tensions
and stratifications in several homogeneous layers are straightforward generalizations. For

instance, to include the surface tension it is sufficient to add the term −σ(√1 + (∇η)2 − 1)
into the definition of the Lagrangian density (2.5), σ being the surface tension coefficient.

The goal in this paper is to illustrate the power of the relaxed variational principle via
some simple examples. We shall thus consider, for simplicity, a fixed horizontal bottom and
we shall derive various approximate equations for shallow and deep waters. Possibilities
for arbitrary depths and some other generalizations will also be discussed.

3. Examples in shallow water

Let consider first the shallow water case, with constant depth for the clarity of exposition.
We introduce a realistic ansatz for these waves and then apply several constraints to derive
various approximations, some of them being well-known, others being new.
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3.1. Choice of a simple ansatz

For a long wave in shallow water, in potential motion on a horizontal impermeable sea
bed at y = −d, it has long been noticed that the velocity field can be well approximated
truncating the following expansion due to Lagrange [33]:

u = ǔ − 1

2
(y + d)2∇2

ǔ + 1

24
(y + d)4∇4

ǔ + ⋯. (3.1)

All Lagrange’s followers (e.g., Airy, Boussinesq, Rayleigh and many others) used this
type of expansions to derive their respective approximations [13]. Reviews on shallow water
approximations can be found in Bona et al. [5, 6], Kirby [29], Madsen and Schäffer

[39], Wu [58], Dougalis & Mitsotakis [16], among others.
We consider here a simple ansatz of polynomial type, that is a zeroth-order polynomial

in y for φ and for u, and a first-order one for v, i.e., we approximate flows that are nearly
uniform along the vertical direction. Our ansatz thus reads

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ (y + d) (η + d)−1 ṽ(x, t). (3.2)

Such ansatz are the basis of most shallow water approximations. We have also to introduce
suitable ansatz for the Lagrange multiplier µ and ν. Since µ = u and ν = v for the exact
solution, a natural ansatz for the multipliers is

µ ≈ µ̄(x, t), ν ≈ (y + d) (η + d)−1 ν̃(x, t). (3.3)

With the ansatz (3.2) and (3.3), the Lagrangian density (2.5) becomes

L = (ηt + µ̄ ⋅ ∇η) φ̄ − 1

2
g η2

+ (η + d) [ µ̄ ⋅ ū − 1

2
ū2 + 1

3
ν̃ ṽ − 1

6
ṽ2 + φ̄∇ ⋅ µ̄ ] . (3.4)

Using the Green formula, the variational problem can also be written such that the La-
grangian density is in the following simpler form

L = φ̄ ηt − 1

2
gη2 + (η + d) [ µ̄ ⋅ ū − 1

2
ū2 + 1

3
ν̃ṽ − 1

6
ṽ2 − µ̄ ⋅ ∇φ̄ ] . (3.5)

The two Lagrangian densities (3.4) and (3.5) differing by a divergence term, they yield
exactly the same equations. Thus, depending on the constraints, we use the Lagrangian
density leading to the simpler expression. We now investigate equations led by this shallow
water model under various subordinate relations.
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3.2. Unconstrained approximation

Without further constraints, the Euler–Lagrange of (3.5) yield

δ ū ∶ 0 = µ̄ − ū, (3.6)

δ ṽ ∶ 0 = ν̃ − ṽ, (3.7)

δ µ̄ ∶ 0 = ū − ∇φ̄, (3.8)

δ ν̃ ∶ 0 = ṽ, (3.9)

δ φ̄ ∶ 0 = ηt + ∇ ⋅ [ (η + d) µ̄ ] , (3.10)

δ η ∶ 0 = µ̄ ⋅ ū − 1

2
ū2 + 1

3
ν̃ ṽ − 1

6
ṽ2 − µ̄ ⋅ ∇φ̄ − φ̄t − g η. (3.11)

The relations (3.6)–(3.9) imply that the motion is exactly irrotational, but the fluid incom-
pressibility is not satisfied identically. With these four relations, the last two equations can
be rewritten in the form:

ht + ∇ ⋅ [h ū ] = 0, (3.12)

ūt + 1

2
∇ ū2 + g∇h = 0, (3.13)

where h = η + d is the total water depth. Equations (3.12)–(3.13) are the very well-
known nonlinear shallow water equations, also known as Airy or Saint-Venant equations
(Wehausen & Laitone [56], §28). They are sometimes called non-dispersive fully-
nonlinear approximation because their classical derivation assumes long waves without
the extra hypothesis of small amplitudes. These equations have a canonical Hamiltonian
structure for the conjugate variables η and φ̄ with the Hamiltonian

∫
Ω

{ 1

2
g η2 + 1

2
(η + d) (∇φ̄)2 } d2

x.

The Saint-Venant equations do not admit smooth progressive wave solutions. They
are nevertheless widely used because they can be solved analytically by the method of
characteristics [50]. Moreover, numerous efficient finite volumes type schemes have been
proposed [62]. These equations have also been validated by comparisons with experimental
data even for the wave runup case [52]. Below we present several more elaborated models.

3.3. Constraining with free surface impermeability

We now constrain the ansatz (3.2) imposing that the impermeability of the free surface
is satisfied identically. Since the surface impermeability is expressed through the velocity(µ, ν) in (2.5), we substitute

ν̃ = ηt + µ̄ ⋅ ∇η, (3.14)
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into the Lagrangian density (3.4), and the subsequent Euler–Lagrange equations are

δ ū ∶ 0 = µ̄ − ū, (3.15)

δ ṽ ∶ 0 = ηt + µ̄ ⋅ ∇η − ṽ, (3.16)

δ µ̄ ∶ 0 = ū + 1

3
ṽ∇η − ∇φ̄, (3.17)

δ φ̄ ∶ 0 = ηt + ∇ ⋅ [ (η + d) µ̄ ] , (3.18)

δ η ∶ 0 = µ̄ ⋅ ū − 1

2
ū2 − 1

6
ṽ2 − µ̄ ⋅ ∇φ̄ − φ̄t − g η

− 1

3
(η + d) [ ṽt + µ̄ ⋅ ∇ṽ + ṽ∇ ⋅ µ̄ ] . (3.19)

The relations (3.15) and (3.17) link the velocity potential and the horizontal velocity as
∇φ̄ ≠ ū = µ̄ and, therefore, equations (3.15)–(3.19) cannot be derived from Luke’s varia-
tional principle. Relations (3.15) and (3.18) provide the mass conservation and hence, with
(3.14), the approximation (3.15)–(3.19) implies that the fluid incompressibility is fulfilled
identically.

Eliminating φ̄, µ̄ and ṽ from the horizontal gradient of (3.19), the system (3.15)–(3.19)
becomes

ht +∇ ⋅ [hū] = 0, (3.20)

ūt + 1

2
∇ū2 + g∇h + 1

3
h−1∇[h2γ̃] = 1

3
(ū ⋅ ∇h)∇(h∇ ⋅ ū) − 1

3
[ū ⋅ ∇(h∇ ⋅ ū)]∇h, (3.21)

with h = η + d and where

γ̃ = ṽt + ū ⋅ ∇ṽ = h { (∇ ⋅ ū)2 − ∇ ⋅ ūt − ū ⋅ ∇ [∇ ⋅ ū ] } , (3.22)

is the fluid vertical acceleration at the free surface.
In the two-dimensional case (one horizontal dimension) the right-hand side of (3.21)

vanishes and the system (3.20), (3.21) reduces to the equations first derived by Serre [49],
independently rediscovered by Su and Gardner [51] and again by Green, Laws and
Naghdi [22]. It is sometimes called weakly-dispersive fully-nonlinear approximation [58].
These equations admit a traveling solitary wave solution

η = a sech2 1

2
κ(x1 − ct), c2 = g (d + a), (κd)2 = 3a (d + a)−1,

which is linearly stable [35]. Note that this solution does not impose any limitation on the
wave amplitude, meaning that Serre’s equations are physically inconsistent for the highest
waves. Note also that the Serre equations have a non-canonical Hamiltonian structure [35].

In three dimensions, equations (3.20)–(3.21) were called by Kim et al. [28] ‘irrotational’
Green–Naghdi equations. If the right-hand side of (3.21) is neglected, we recover the
classical Green–Naghdi equations [23].

Craig and Grooves [11], and many others, also derived various shallow water models
starting from a variational principle. The main difference with our approach is that we do
not introduce any small parameter but we make assumptions on the vertical structure of
the flow.
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3.4. Constraining with incompressibility and partial potential flow I

Here, we restrict the freedom imposing that the velocity potential is related to the
horizontal velocity as u = ∇φ, and that the fluid incompressibility ∇ ⋅u + vy = 0 is fulfilled,
together with the relations µ = u and ν = v, i.e., we take the subordinate conditions

µ̄ = ū, ν̃ = ṽ, ū = ∇φ̄, ṽ = −(η + d)∇2φ̄.

These constraints do not impose exact irrotationality because v ≠ φy. Obviously, we shall
derive an approximation which lies “between” the Saint-Venant and Serre equations.

Thus, the Lagrangian density (3.5) becomes

L = φ̄ ηt − 1

2
g η2 − 1

2
(η + d) (∇φ̄)2 + 1

6
(η + d)3 (∇2φ̄)2 , (3.23)

and its Euler–Lagrange equations yield

δ φ̄ ∶ 0 = ηt + ∇ ⋅ [ (η + d)∇φ̄ ] + 1

3
∇

2 [ (η + d)3 (∇2φ̄) ] ,
δ η ∶ 0 = φ̄t + g η + 1

2
(∇φ̄)2 − 1

2
(η + d)2 (∇2φ̄)2 .

It seems that these equations have never appeared before in the literature. They are
a generalization of the so-called Kaup–Boussinesq (or canonical Boussinesq) equations
[27, 32] and are thus referred to as the gKB equations. This can be seen noticing that the
gKB equations can be derived from the canonical Hamiltonian

∫
Ω

{ 1

2
g η2 + 1

2
(η + d) (∇φ̄)2 − 1

6
(η + d)3 (∇2φ̄)2 } d2

x, (3.24)

while the classical Kaup–Boussinesq (cKB) equations are obtained replacing (η +d)3 by d3

in (3.24) and restricting the resulting Hamiltonian to one horizontal dimension. Note that
the Lagrangian (3.23) is cubic in η, meaning that it has (at most) one local minimum in η

and not a global one.
The linearized gKB and cKB systems admit the special traveling wave solution

η = a cos k(x1 − ct), c2 = gd (1 − 1

3
k2d2), (3.25)

implying that these equations are linearly ill-conditioned (c2 < 0 for kd >
√
3). However,

if, like the cKB, the gKB equations are integrable, they may be a somewhat interesting
model for gravity waves in shallow water.

3.5. Constraining with incompressibility and partial potential flow II

So far, all the approximations derived turned out to be such that µ = u and ν = v. We
propose here a novel approximation that does not satisfies one of these identities and that
is an interesting variant of the previous model.

We impose a partially potential flow such that µ = ∇φ and ν = φy, together with the
incompressibility condition ∇ ⋅u + vy = 0 and the condition u = µ. Thus, substituting the
constraints

µ̄ = ū = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇2φ̄,
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into the Lagrangian density (3.5) yields

L = φ̄ ηt − 1

2
g η2 − 1

2
(η + d) (∇φ̄)2 − 1

6
(η + d)3 (∇2φ̄)2 ,

and the corresponding Euler–Lagrange equations are

δ φ̄ ∶ 0 = ηt + ∇ ⋅ [ (η + d)∇φ̄ ] − 1

3
∇

2 [ (η + d)3 (∇2φ̄) ] , (3.26)

δ η ∶ 0 = φ̄t + g η + 1

2
(∇φ̄)2 + 1

2
(η + d)2 (∇2φ̄)2 . (3.27)

These equations can be derived from the canonical Hamiltonian

∫
Ω

{ 1

2
g η2 + 1

2
(η + d) (∇φ̄)2 + 1

6
(η + d)3 (∇2φ̄)2 } d2

x,

which is always positive (an interesting feature for modeling water waves). To the linear
approximation, equations (3.26), (3.27) have the progressive wave solution

η = a cos k(x1 − ct), c2 = gd (1 + 1

3
k2d2), (3.28)

which is well-behaved (i.e., c2 is never negative). Comparisons with the gKB equations
suggest to refer to equations (3.26)–(3.27) as regularized general Kaup-Boussinesq (rgKB).
However, the linear dispersion relation (3.28) approximates the dispersion relation of linear
waves — i.e., c2 = g tanh(kd)/k — only to the order O(k2), while (3.25) is O(k4). Therefore,
the rgKB equations are not very interesting for modeling water waves, but these equations
may be of interest to model other physical processes.

3.6. Other constraints and generalizations

We briefly discuss now some other possible generalizations.

3.6.1 Constraining with incompressibility and potential flow I

In the previous example, we have constructed an approximation such that µ = u but
ν ≠ v. Now, we release the constraint µ = u and keep the other constraints. Thus, we
impose

µ̄ = ∇φ̄, ν̃ = 0, ṽ = −(η + d)∇ ⋅ ū,
so that the pseudo velocity field (µ, ν) is irrotational while the velocity field (u, v) is
incompressible. After same elementary algebra, the Lagrangian density becomes

L = φ̄ ht − 1

2
g η2 + h ū ⋅ ∇φ̄ − 1

2
h ū2 − 1

6
h3 (∇ ⋅ ū)2 − h (∇φ̄)2 ,

where h = η + d. The Euler–Lagrange equations give

δ ū ∶ 0 = h∇φ̄ − h ū + 1

3
∇ [h3

∇ ⋅ ū ] ,
δ φ̄ ∶ 0 = ht − ∇ ⋅ [h ū ] + 2∇ ⋅ [h∇φ̄ ] ,
δ η ∶ 0 = φ̄t + g η + 1

2
ū2 + (∇φ̄)2 − ū ⋅ ∇φ̄ + 1

2
h2 (∇ ⋅ ū)2 .
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The linearization of this system of equations have a (2π/k)-periodic sinusoidal traveling
wave solution with the dispersion relation

c2 = gd (1 + 2

3
k2d2) (1 + 1

3
k2d2)−1 = gd (1 + 1

3
k2d2) + O(k4),

which, like the previous example, is not satisfactory for water waves. However, these
equations may be of interest in other contexts than water waves.

3.6.2 Constraining with incompressibility and potential flow II

We now assume that the pseudo velocity field (µ, ν) is divergence free, while the velocity
field (u, v) is irrotational, i.e., we impose the constraints

ū = ∇φ̄, ṽ = 0, ν̃ = −(η + d)∇ ⋅ µ̄.
The Lagrangian density becomes

L = φ̄ ηt − 1

2
g η2 − 1

2
(η + d) (∇φ̄)2 ,

which yields the Saint-Venant equations. Thus, these constraints do not bring anything
new. It should be emphasized that this is the case for the special shallow water ansatz we
are considering here, but this is not necessarily the case for other ansatz.

3.6.3 Further possibilities

The constraints of Sections 3.4 to 3.6.2 can be unified into a single formalism considering
combinations. Indeed, the velocity field (u, v) being not more (nor less) physical than the
pseudo-velocity field (µ, ν) and the potential velocity field (∇φ,φy), the constraints can
be imposed by combinations of these three fields. For instance, we could impose the
irrotationality for the field

( c1u + c2µ + (1 − c1 − c2)∇φ , c1v + c2ν + (1 − c1 − c2)φy ),
the fluid incompressibility for the field

( c3u + c4µ + (1 − c3 − c4)∇φ , c3v + c4ν + (1 − c3 − c4)φy ),
and so on for any constraint we may think of. The cn are parameters at our disposal. We can
choose them in a convenient way based on some mathematical and physical considerations.
For example, imposing that the approximate equations derived must be linearly well-posed
and/or have better dispersion relation properties.

In the examples above, only some kinematic constraints (irrotationality, incompressibil-
ity, impermeability) were used. We could have also considered dynamical constraints based
on, e.g., the Bernoulli equation, or other relevant dynamical equations.

The relaxed variational principle provided a common platform for deriving several shal-
low water equations from the same ansatz in changing only the constraints. Beside the
ansatz, no further approximation were made and the derivations required only some el-
ementary algebra. Using more general ansatz — i.e., involving more free functions and
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parameters — one can introduce more constraints, if desired, and derives more accurate
approximations. A simple example is given in Section 6 below.

4. Examples in deep water

We illustrate here the advantages of the relaxed variational principle in the opposite
limiting case of deep water.

4.1. Choice of an ansatz

For progressive waves in deep water, the Stokes expansion shows that the velocity field
varies nearly exponentially along the vertical (Appendix A). Even for very large unsteady
waves (including breaking waves), accurate numerical simulations and experiments have
shown that the vertical variation of the velocity field is indeed very close to an exponential
[24, 25]. Thus, this property is exploited here to derive simple approximations for waves
in deep water.

Let κ > 0 be a characteristic wavenumber corresponding, for example, to the carrier wave
of a modulated wave group or to the peak frequency of a JONSWAP spectrum. Following
the discussion above, it is natural to seek approximations in the form

{φ ; u ; v ; µ ; ν } ≈ { ϕ̃ ; ũ ; ṽ ; µ̃ ; ν̃ } eκ(y−η), (4.1)

where ϕ̃, ũ, ṽ, µ̃ and ν̃ are functions of x and t that will be determined using the varia-
tional principle. The ansatz (4.1) is certainly the simplest possible that is consistent with
experimental evidences. This ansatz has already been used by Kraenkel et al. [31] for
building their approximation. Possible generalizations are discussed in Section 6.

For the sake of simplicity, we introduce the constraints µ̃ = ũ and ν̃ = ṽ. Thus, the
ansatz (4.1) substituted into the Lagrangian density (2.4) yields

2κL = 2κ ϕ̃ ηt − gκη2 + 1

2
ũ

2 + 1

2
ṽ2 − ũ ⋅ (∇ϕ̃ − κϕ̃∇η) − κ ṽ ϕ̃. (4.2)

With (or without) subordinate relations, this Lagrangian gives various equations. We
investigate two cases here.

4.2. Unconstrained approximation

Without further constraints, the Euler–Lagrange equations yield

δ ũ ∶ 0 = ũ − ∇ϕ̃ + κ ϕ̃∇η,

δ ṽ ∶ 0 = ṽ − κ ϕ̃,

δ ϕ̃ ∶ 0 = 2κηt + ∇ ⋅ ũ − κ ṽ + κ ũ ⋅ ∇η,

δ η ∶ 0 = 2gκη + 2κ ϕ̃t + κ∇ ⋅ ( ϕ̃ ũ ).
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The two first relations imply that this approximation is exactly irrotational and their use
in the last two equations gives

ηt + 1

2
κ−1∇2ϕ̃ − 1

2
κϕ̃ = 1

2
ϕ̃ [∇2η + κ (∇η)2 ] , (4.3)

ϕ̃t + g η = −1

2
∇ ⋅ [ ϕ̃∇ϕ̃ − κ ϕ̃2∇η ] . (4.4)

Since equations (4.3)–(4.4) derive from an irrotational motion, they can also be obtained
from Luke’s Lagrangian (2.2) under ansatz (4.1). Equations (4.3)–(4.4) are a deep water
counterpart of Saint-Venant equations for shallow water waves; this claim will appear
clearer in Section 5. They can also be derived from the canonical Hamiltonian

∫
Ω

{ 1

2
g η2 + 1

4
κ−1 [∇ϕ̃ − κ ϕ̃∇η ]2 + 1

4
κ ϕ̃2 } d2

x. (4.5)

This ‘simple’ Hamiltonian is quartic in nonlinearities and involves only first-order deriva-
tives. It has to be compared with Zakharov’s quartic Hamiltonian (B.2) which involves
second-order derivatives and pseudo-differential operators. However, Zakharov’s quartic
Hamiltonian is valid for broad spectra. Note that the Hamiltonian (4.5) cannot be derived
from the exact one (B.1), since the latter assumes that irrotationality and incompressibil-
ity are both satisfied identically in the bulk, while the incompressibility is not fulfilled by
equations (4.3)–(4.4).

To the linear approximation, after elimination of ϕ̃, equations (4.3)–(4.4) yield

ηtt − 1

2
(g/κ)∇2η + 1

2
g κη = 0, (4.6)

that is a Klein–Gordon equation. For this reason, equations (4.3)–(4.4) will be referred
here as generalized Klein–Gordon (gKG). The Klein–Gordon equation is prominent in
mathematical physics and appears, e.g., as a relativistic generalization of the Schrödinger
equation. The Klein–Gordon equation (4.6) admits a special (2π/k)-periodic traveling wave
solution

η = a cos k(x1 − ct), c2 = 1

2
g (k2 + κ2) (κk2)−1.

Therefore, if k = κ the exact dispersion relation of linear waves (i.e., c2 = g/k) is recovered,
as it should be. This means, in particular, that the gKG model is valid for spectra narrow-
banded around the wavenumber κ.

We focus now on (2π/κ)-periodic progressive waves solution of the gKG equations, i.e.,
we seek for solutions depending only on the variable θ = κ(x1−ct). We were not able to
find an exact analytic solution but a Stokes-like expansion gives some interesting insights.
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To the seventh-order, we have

κη = α cos θ + 1

2
α2(1+ 25

12
α2+ 1675

192
α4) cos 2θ

+ 3

8
α3(1+ 99

16
α2+ 11807

320
α4) cos 3θ + 1

3
α4(1+ 64

5
α2) cos 4θ

+ 125

384
α5(1+ 6797

300
α2) cos 5θ + 27

80
α6 cos 6θ + 16807

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 ϕ̃ = α (1− 1

4
α2− 59

96
α4− 4741

1536
α6) sin θ + 1

2
α2(1+ 11

12
α2+ 547

192
α4) sin 2θ

+ 3

8
α3(1+ 163

48
α2+ 221

15
α4) sin 3θ + 1

3
α4(1+ 149

20
α2) sin 4θ

+ 125

384
α5(1+ 5057

375
α2) sin 5θ + 27

80
α6 sin 6θ + 16807

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c = 1 + 1

2
α2 + 1

2
α4 + 899

384
α6 +O(α8).

The expansions of η and ϕ̃ match the exact Stokes wave (cf. Appendix A) up to the third-
order (non-matching coefficients are displayed bold). This is not surprising since the gKG
equations are cubic in nonlinearities. A bit more surprising is that the phase velocity c is
correct up to the fifth-order. But the most interesting is that, to the leading order, the
n-th Fourier coefficient is (for all n up to infinity)

nn−2 αn

2n−1 (n−1)! , (4.7)

which is also the case for the exact Stokes wave (Appendix A).
In comparison, for the cubic Zakharov equations (B.3)–(B.4), the phase velocity is cor-

rect only up to the third-order and the Fourier coefficients do not verify the asymptotic
behavior (4.7) (see Appendix B). Truncating Zakharov’s Hamiltonian at the order N +1 in
nonlinearities, the corresponding Stokes double series is correct up to the order N in the
expansion parameter. But none of these higher approximations have the exact asymptotic
behavior (4.7) for their Fourier coefficients because they involve expansions around η = 0,
while the gKG does not. Zakharov’s equations are valid for broad spectra, however, unlike
the gKG equations.

4.3. Constraining with the free surface impermeability

In order to satisfy the free surface impermeability identically, we take

ṽ = ηt + ũ ⋅ ∇η,

and the Lagrangian density (4.2) becomes

2κL = ϕ̃ (κηt +∇ ⋅ ũ) − gκη2 + 1

2
ũ

2 + 1

2
(ηt + ũ ⋅ ∇η)2, (4.8)

while the Euler–Lagrange equations yield the relations

δ ũ ∶ 0 = ũ + (ηt + ũ ⋅ ∇η)∇η −∇ϕ̃, (4.9)

δ ϕ̃ ∶ 0 = κηt +∇ ⋅ ũ, (4.10)

δ η ∶ 0 = 2gκη + κϕ̃t + ηtt + (ũ ⋅ ∇η)t +∇ ⋅ (ũηt) +∇ ⋅ [(ũ ⋅ ∇η)ũ]. (4.11)
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The relation (4.10) implying that ∇ ⋅u + vy = 0, the solution satisfies the incompressibility
identically. On the other hand, the irrotationality being not verified identically, equations
(4.9)–(4.11) cannot be derived from Luke’s variational formulation. Note that (4.9) yields
∇ϕ̃ = ũ + ṽ∇η that is exact for potential flows [12, 20].

As for the shallow water case, the potential ϕ̃ can be eliminated from equations (4.9),
thus yielding a deep water analog of Serre’s and the Green–Naghdi equations.

To the linear approximation, relations (4.9)–(4.11) can be combined into a single equation
for the elevation of the free surface:

(∇2 − κ2)ηtt + 2 g κ∇2η = 0,

which admits the special (2π/k)-periodic solution

η = a cosk(x1 − ct), c2 = 2 g κ (k2 + κ2)−1.
Therefore, if k = κ the exact linear approximation is recovered, as it should be. Again, this
means that this model is valid for narrow-banded spectra. How narrow will be investigated
now.

4.3.1 Two-dimensional progressive waves

We seek now exact solutions depending only on ξ ≡ x1 − ct (two-dimensional progressive
waves). Equations (4.9)–(4.10) yield respectively

ϕ̃ξ = ũ + (ũ − c)η 2

ξ , ũ = cκη + cK1,

where K1 is an integration constant. Substituting these relations into (4.11) and multiply-
ing the result by ηξ, after one integration and some algebra, we obtain

(dη
dξ
)2 = K 2

0
− (κη − K1 ε̂

−2 )2
ε̂−2 (κη + K1 − 1 )2 , (4.12)

where
ε̂2 ≡ 2 g κ−1 c−2 − 1,

and where K0 is another integration constant. Assuming that ηξ = 0 at the wave crest
where η = a and at the trough where η = −b (hence a + b is the total wave height), we find

K0 =
1

2
κ (a + b), K1 =

1

2
κ (a − b) ε̂2.

Solving equation (4.12), together with the condition of zero mean free surface elevation,
we obtain an exact (2π/k)-periodic solution in the parametric form [21]:

k ξ(τ) = τ − ε ε̂−1 sin τ, k η(τ) = 1

2
ε2 ε̂−1 + ε cos τ, (4.13)

with

ε = 1

2
k (a + b), k κ−1 = ε̂ + 1

2
( ε̂−1 + ε̂ )ε2,

ε being a wave steepness and τ being a parametric variable such that a crest is at τ = 0

and the closest troughs at τ = ±π. This remarkably simple solution describes surface waves
as trochoids. Smooth surface profiles are obtained for 0 ⩽ ε < ε̂, ε ≪ ε̂ corresponding to
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quasi-sinusoidal solutions (infinitesimal waves). For the limiting case ε = ε̂, in the vicinity

of the crest k(a−η) ∼ 1

2
ε(6kξ) 23 so the solution involves a sharp angle forming a 0○ inner

angle (i.e., a cusp), while the exact angle should be 120○ for irrotational traveling waves.
So far, κ is a free parameter at our disposal. We shall now investigate various choices.

4.3.2 Simple approximation

A ‘natural’ choice is to take κ = k, yielding the steepness ε̂ ≈ 0.596 for the limiting wave.
With this peculiar choice of κ, a Stokes-like expansion of the solution of (4.13) is

k η = α coskξ + 1

2
α2(1+ 13

12
α2+ 395

192
α4) cos 2kξ

+ 3

8
α3(1+ 35

16
α2+ 1727

320
α4) cos 3kξ + 1

3
α4(1+ 33

10
α2) cos 4kξ

+ 125

384
α5(1+ 53

12
α2) cos 5kξ + 27

80
α6 cos 6kξ + 16807

46080
α7 cos 7kξ + O(α8),√

k/g c = 1 + 1

2
α2 + 1

2
α4 + 611

384
α6 +O(α8).

As for the gKB approximation, the Fourier coefficients of this Stokes-like expansion sat-
isfy the asymptotic expression (4.7) and the expansion of c is exact up to the fifth-order.
Therefore, taking κ = k leads to a quite accurate approximation. However, another value
of κ may lead to an even more interesting approximation.

4.3.3 Improved parameter

With the trochoidal solution and the relation between the parameters obtained above,
the Lagrangian density (4.8) integrated over one wavelength yields the Lagrangian

L = π g ε4

4k3
=

π g

k3

⎡⎢⎢⎢⎢⎣ − 1 +
κc2

2 g
+
√

k2 c2

2 g κ
− k2 c4

4 g2

⎤⎥⎥⎥⎥⎦
2

. (4.14)

Thus, the Lagrangian is minimum when the steepness is minimum or, equivalently, the
wavelength is maximum if the wave height is kept constant. The variational principle
being defined with fixed horizontal and temporal boundaries, an improved parameter κ

can be obtained minimizing L keeping k and c constant. Thus, after some algebra, the
equation dL/dκ = 0 gives two possible solutions for κ:

κ± =
√
2k [1 + 2ε2 ± √1 − 4ε2 ]− 1

2

, (4.15)

provided that ε ⩽ 1/2. Both solutions correspond to an extremum of L. However, a solution
is stable only if κ is a minimum of L, i.e., if

d2L
dκ2
∣
κ=κ±

> 0,

which, after some algebra, yields the condition√
3 ε κ± < k. (4.16)
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Figure 1. Deep water phase velocity as a function of the fluid speed at crest for

the improved solution derived in §4.3.3. Solid line: κ+ solution; Dashed line: κ−

solution.

The first solution

κ+ /k = √2 [1 + 2ε2 + √1 − 4ε2 ]− 1

2

= 1 + 1

2
ε4 + O(ε6) ,

is very close to the wavenumber k when the steepness ε is small. When the steepness
increases form 0 to 1/2, the dimensionless parameters κ/k, kc2/g, k3L/g and

√
3εκ/k in-

crease monotonically. The highest wave is obtained for ε = 1/2, where κ/k = 2/√3 ≈ 1.15,
kc2/g = 3

√
3/4 ≈ 1.3 and

√
3εκ/k = 1. All these waves are smooth and should be stable

because the condition (4.16) is fulfilled.
The second solution

κ− /k = √2 [1 + 2ε2 − √1 − 4ε2 ]− 1

2

,

is admissible (i.e., real) if 1/2 ⩾ ε ⩾√√5 − 2 ≈ 0.486. As the steepness decays from 1/2 to√√
5 − 2, the crest sharpens, the limiting value ε = ε̂ =

√√
5 − 2 corresponding to a cusp

at the crest. Thus the sharp-crested wave is not the highest one. All these waves should
be unstable because the condition (4.16) is violated, i.e., the solution κ− is a maximum of
the Lagrangian and not a minimum.

Note that the relations linking the parameters can be conveniently rewritten

k c2

g
=

2 ε̂

1 + ε̂2 +
ε2

ε̂
, ε̂ =

(k/κ±) + √(k/κ±)2 − 2ε2 − ε4
2 + ε2 ,

which, together with (4.15), allow to express kc2/g as function of ε only. Another parameter
of physical interest is the fluid velocity at crest ũ(0) divided by the phase velocity c, i.e.,

ũ(0)
c
=

ε (ε + 2ε̂ + εε̂2)κ±
2 ε̂ k

.

The variations of c2 with respect to this parameter are displayed on Figure 1.
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4.3.4 Remarks

Taking the improved parameter κ has increased somewhat the accuracy of the approx-
imation; the main gain is qualitative, however. Indeed, we found that waves should be
unstable before a sharp crest is formed. Such behavior is not predicted by low-order per-
turbation expansions. This simple example is a remarkable illustration of the power of the
variational method. The trochoidal wave described here is probably the approximation
with the highest ratio accuracy/ complexity ever derived for a traveling wave in deep water.
This approximation has first been derived by Geniet [21] via a different approach.

5. Arbitrary depth

A general ansatz, for waves in finite constant depth and satisfying identically the bottom
impermeability, is suggested by the linear theory of water waves:

φ ≈
coshκY

coshκh
ϕ̃(x, t), u ≈

coshκY

coshκh
ũ(x, t), v ≈

sinhκY

sinhκh
ṽ(x, t),

µ ≈
coshκY

coshκh
µ̃(x, t), ν ≈

sinhκY

sinhκh
ν̃(x, t), (5.1)

where Y = y + d and h = η + d. The parameter κ is a characteristic wave number to be
made precise a posteriori . This ansatz is uniformly valid for all depths because it yields
the shallow water one (3.2) as κ → 0, and the deep water one (4.1) as d →∞. Obviously,
the ansatz (5.1) is valid for wave fields with wavenumber spectra that are narrow-banded
around κ. Substituting the ansatz (5.1) into the relaxed variational principle (2.5), we
obtain

L = [ηt + µ̃ ⋅ ∇η ] ϕ̃ − 1

2
g η2 + [ ν̃ ṽ − 1

2
ṽ2 ] sinh(2κh) − 2κh

2κ cosh(2κh) − 2κ
+ [µ̃ ⋅ ũ − 1

2
ũ

2 + ϕ̃∇ ⋅ µ̃ − κ tanh(κh)ϕ̃ µ̃ ⋅ ∇η] sinh(2κh) + 2κh
2κ cosh(2κh) + 2κ

+ 1

2
ϕ̃ ν̃ [ 2κh

sinh(2κh) − 1 ] . (5.2)

Applying various constraints, one obtains generalized equations including the ones de-
rived in Sections 3 and 4 as limiting cases. In particular, we can derive arbitrary depth
generalizations of the Saint-Venant and ‘irrotational’ Green–Naghdi equations. Thus, the
relaxed variational principle leads simple derivations of model equations for finite amplitude
waves in arbitrary depth, which is not the case with the classical perturbations techniques.
These developments are left to future investigations. We note also some similarity between
the ansatz (5.1) and the coupled-mode theory for small-amplitude water waves [2].
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6. Generalizations

The ansatz (5.1) can be generalized in many relevant ways, depending on the problem
under consideration. Natural generalizations can be based on the velocity vertical varia-
tions given by, e.g., higher-order deep and shallow water theories, or obtained fitting some
experimental data. In this section we propose a possible generalization based on an ansatz
of the form

φ ≈ [coshκY
coshκh

]λ ϕ̃(x, t), u ≈ [coshκY
coshκh

]λ ũ(x, t), v ≈ [sinhκY
sinhκh

]λ ṽ(x, t), (6.1)

where λ is a parameter at our disposal. If λ = 1, the ansatz (5.1) is recovered, but the
case λ ≠ 1 does not correspond to the vertical profile predicted by any theory based on
perturbation expansions. Still, this type of ansatz is of some interest, as we shall see below.

Note first that in the deep water limit d→∞, the ansatz (6.1) becomes

φ ≈ eλκ(y−η)ϕ̃(x, t), u ≈ eλκ(y−η) ũ(x, t), v ≈ eλκ(y−η) ṽ(x, t),
and thus, via the change of parameter λκ ↦ κ, the ansatz (4.1) is recovered. This means
that (6.1) is not more general than (5.1) in deep water. On the contrary, these two ansatz
are very different in finite depth. We illustrate this claim in the simple case of shallow
water (κd→ 0) when (6.1) becomes

φ ≈ φ̄(x, t), u ≈ ū(x, t), v ≈ [ y + d
η + d ]

λ

ṽ(x, t),
where we have replaced ϕ̃ and ũ by φ̄ and ū, respectively, since they are equal in this
limiting case.

6.1. Modified Serre’s equations

For the sake of simplicity, we consider here only one horizontal dimension, say x1, and
we set x1 = x and u1 = u, for brevity. We also consider the special case µ = u and
ν = v together with the constraint ṽ = ηt + ũηx (free surface’s impermeability). Thus, the
Lagrangian density (2.5) yields

L = (ηt + [(η + d)ū]x) ϕ̃ − 1

2
gη2 + 1

2
(η + d)ū2 + 1

2
β2(η + d) [ηt + ūηx]2 , (6.2)

where β2 = (2λ + 1)−1. After some algebra, the Euler–Lagrange equations leads to the
following equations

ht + [h ū ]x = 0, (6.3)

ūt + ū ūx + g hx + β2 h−1 [h2 γ̃ ]x = 0, (6.4)

where γ̃ is defined in (3.22). If β = 1/√3 the classical Serre equations are recovered.
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Equations (6.3)–(6.4) admit a (2π/k)-periodic cnoidal traveling wave solution:

ū =
c η

d + η , η = a
dn2(1

2
κξ∣m) −E/K
1 −E/K = a − H sn2(1

2
κξ∣m) , (6.5)

with ξ = c−ct, dn and sn being elliptic functions of Jacobi of parameter m (0 ⩽m ⩽ 1), and
where K = K(m) and E = E(m) are the complete ellipic integrals of the first and second
kinds, respectively (Abramowitz & Stegun 1965, #17.3, [1]). The parameter κ is a
sort of wavenumber, a is the wave amplitude (mean level to crest elevation), H is the total
wave height (trough to crest elevation) and c is the wave phase velocity observed in the
frame of reference without mean flow. The wave parameters are related via the relations

k =
π κ

2K
, H =

maK

K −E , (κd)2 = gH

mβ2 c2
, (6.6)

m =
gH (d + a) (d + a −H)

g (d + a)2 (d + a −H) − d2 c2
. (6.7)

In the limiting case m → 1, we have K → ∞, E/K → 0, k → 0, H → a and hence, the
classical solitary wave solution is recovered

η = a sech2 1

2
κ(x − ct), c2 = g (d + a), a

d
=

(βκd)2
1 − (βκd)2 .

At this stage, β is still a free parameter. An suitable expression for this parameter may
be obtained substituting the solution (6.5) into the Lagrangian density (6.2), integrating
L over one wavelength, then solving dL/dβ = 0 keeping k and c constant (as well as g

and d), the other parameters varying according to relations (6.6-6.7). Thus, after some
cumbersome algebra, we found β = 0 for this parameter, which is not very interesting
for practical applications. A possible alternative here is to choose β such that the exact
relation c2 = g tan(κd)/κ is satisfied identically or up to some asymptotic order.

7. Discussion

In this study, we have illustrated the advantage of using a variational principle with
as many variables as possible. We call it the relaxed variational principle, since the La-
grangian density (2.5) involves more degrees of freedom (i.e., the variables η, φ, u, v, µ and
ν) compared to the two degrees of freedom (η and φ) in the classical case. In particular,
these extra variables can be used to impose various constraints such as incompressibility,
irrotationality, impermeability, etc. The practical use of the relaxed formulation was illus-
trated on numerous examples in shallow, deep and intermediate waters. Thus, we obtained
several approximations, some well-known, some new to our knowledge.

In the shallow water regime, we have first obtained the classical nonlinear shallow water
(or Saint-Venant) equations (3.12)–(3.13). Then, with the same ansatz (3.2) but imposing
the constraint of the free surface impermeability, we have derived the irrotational Green–
Naghdi equations (3.20)–(3.21). Applying the incompressibility constraint and choosing
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differently the pseudo-velocity field, we have obtained two kinds of generalized Kaup–
Boussinesq equations. Several ways of further generalizations were also outlined.

In deep water, two models were considered. Namely, we derived deep water counterparts
of the celebrated Saint-Venant and Serre equations. The former has a canonical Hamilton-
ian formulation and degenerates to the Klein–Gordon equation in the linear approximation;
we thus called the new system (4.3)–(4.4) generalized Klein–Gordon equations. The latter
could be solved analytically for a two-dimensional traveling wave. This solution is a striking
illustration of the power of the variational formulation compared to asymptotic expansion
methods, especially for large amplitudes when the expansion parameter is no longer small.
In addition, both equations were shown to possess excellent asymptotic properties with
respect to Stokes-like expansions.

The case of arbitrary depth has also been briefly considered. In particular, it has been
shown how easily one can introduce an ansatz valid for all depths. Indeed, the vertical
variation of the velocity field suggested by the linear theory provides at once such a general
ansatz which degenerates to previous cases when the water is shallow (κd → 0) or deep
(d → ∞). This simplicity and flexibility of the variational principle is quite remarkable
compared to perturbation methods.

Finally, we considered a generalized ansatz and we illustrated its consequence in the
limiting case of shallow water. In this way, we derived the modified Serre equations and
subsequently obtained exact cnoidal and solitary wave solutions. The main purpose of this
example was to illustrate the fact that one can introduce an ansatz which is not inspired
by any asymptotic expansion and nevertheless lead to reasonable approximations.

In the present paper, some further possibilities for generalizations are also mentioned.
However, we have to emphasize that not all ansatz and constraints will necessarily lead
to physically relevant and tractable approximations; the same is true for models derived
from asymptotic expansions, however. Nonetheless, the relaxed variational formulation
is sufficiently versatile to allow easy derivations of physically sound models. We have
illustrated this claim, in particular, by showing how it is simple to obtain approximate
equations valid for all depths.

Sometimes, the choice of the constraints may seem to be rather ad hoc, but that should
not be surprising. Indeed, the water wave theory already knows several ad hoc ‘tricks’
intended to improve the approximation quality. For instance, it was proposed in [38] to
replace the polynomial shallow water expansion (3.1) by a (m,n)-Padé approximation, the
orders m and n being chosen to improve the linear dispersion relation of progressive waves.
Another example is the use of the velocity potential defined at some depth y0 [43] and, as
before, the free parameter y0 is chosen to improve linear dispersion characteristics. The
approach proposed here is not more ad hoc that any example mentioned above. Moreover,
the variational principle allows for greater flexibility in the choice of ansatz. Thus, the
approximations derived via the relaxed variational procedure must be studied a posteri-
ori in order to verify their mathematical consistence and their physical relevance. This
is also the case for approximations derived via perturbation techniques, and many such
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approximations commonly used have not yet been justified on a rigorous mathematical
basis.

In the several examples presented here, the ansatz involve free parameters that we have
chosen constant for simplicity. One may also consider these parameters as functions and
find their values from the stationary point of the Lagragian. Doing so will lead to more
complicated equations, but this is not a major issue if these equations are intended to be
treated numerically.

In order to derive approximate models, variational formulations are attractive alterna-
tive to asymptotic expansions. However, both approaches can be also combined. Indeed,
once the variational principle has been applied to an ansatz, asymptotic expansions can be
further applied to obtain simpler models. For instance, one could consider ‘unidirectional-
ized’ approximations [44, 45] to derive variants of Korteweg and de Vries [30], Dysthe

[17], Camassa and Holm [9], Degasperis and Procesi [14], Kraenkel et al. [31], and
other equations. This possibility will be investigated in future works.

For the sake of simplicity, we have considered only gravity waves propagating at the
surface of a single layer of a homogeneous fluid with a horizontal bottom. It is trivial to
introduce a relaxed variational formulation including, e.g., surface tension, stratifications in
several homogeneous layers and obstacles. Such general variational formulations, together
with relevant ansatz and well chosen constraints, will easily lead to interesting models.
For perfect fluids, variational formulations can also be obtained for rotational motions
[10, 18, 34, 36, 42, 48]. A relaxed version of such variational principles will facilitate the
derivation of approximate models.

The numerical models for simulating water waves are undergoing constant improvements.
The state of the art can be found in recent reviews (e.g., [15, 19, 37]). Certainly, the vari-
ational principle is the tool of choice to derive efficient approximations. By efficient, we
mean models that capture most of the relevant physics and which, in the same time, can
be easily and rapidly solved numerically. One interesting direction for future researches
is the development of numerical schemes preserving hamiltonian structure at the discrete
level. Another interesting application is the derivation of new improved models with un-
even bathymetry for coastal hydrodynamics and tsunami wave modeling (Synolakis &
Bernard 2006, [53]).

The use of a variational principle for modeling surface waves is by no mean new. However,
its power has not yet been fully exploited. The present paper is a further contribution in this
direction. Obviously, advantages of relaxed variational principles may as well be exploited
in physical contexts other than water waves, such as plasma physics, nonlinear optics, etc.
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A. Exact Stokes wave

In deep water, a seventh-order Stokes expansion (for the exact equations) is

κη = α cos θ + 1

2
α2(1+ 17

12
α2+ 233

64
α4) cos 2θ

+ 3

8
α3(1+ 51

16
α2+ 3463

320
α4) cos 3θ + 1

3
α4(1+ 307

60
α2) cos 4θ

+ 125

384
α5(1+ 10697

1500
α2) cos 5θ + 27

80
α6 cos 6θ + 16807

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 ϕ̃ = α (1− 1

4
α2− 43

96
α4− 2261

1536
α6) sin θ + 1

2
α2(1+ 7

12
α2+ 81

64
α4) sin 2θ

+ 3

8
α3(1+ 281

144
α2+ 5813

1080
α4) sin 3θ + 1

3
α4(1+ 431

120
α2) sin 4θ

+ 125

384
α5(1+ 3369

625
α2) sin 5θ + 27

80
α6 sin 6θ + 16807

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c = 1 + 1

2
α2 + 1

2
α4 + 707

384
α6 +O(α8),

where θ = κ(x − ct). Note that, to the leading order, the n-th Fourier coefficient is
21−nnn−2αn/(n−1)! (this is also true for all n > 7). In the bulk of the fluid, the veloc-
ity potential is

g−
1

2κ
3

2 φ = α (1− 1

8
α2− 7

12
α4− 14761

9216
α6) eκy sin θ + 1

2
α4(1+ 11

6
α2) e2κy sin 2θ

+ 1

12
α5(1+ 191

24
α2) e3κy sin 3θ + 1

72
α6 e4κy sin 4θ

+ 1

480
α7 e5κy sin 5θ + O(α8),

meaning that harmonics appear at the fourth-order only, thus justifying the ansatz (4.1).
Note that, to the leading order, the n-th Fourier coefficient is αn+2/n!(n−1) for all n > 1.

B. Cubic Zakharov’s equations

Satisfying exactly the Laplace equation and the bottom impermeability, the gravity
waves variational formulation [36] yields the Hamiltonian [60]:

H =
1

2 ∫ { g η2 + ϕ̃ V } d2
x, V = [φy −∇η ⋅ ∇φ ]y=η . (B.1)

Introducing a Dirichlet–Neumann operator G, such that V = G(η)ϕ̃ (Craig & Sulem 1993,
[12]), expanding G around η = 0 and neglecting the terms beyond the quartic nonlinearities,
the Hamiltonian (B.1) becomes

H =
1

2 ∫ {gη2 + ϕ̃ [ dϕ̃ − d(ηdϕ̃) −∇ ⋅ (η∇ϕ̃)
+ 1

2
d(η2∇2ϕ̃) + d(η d(η dϕ̃)) + 1

2
∇

2(η2 dϕ̃) ]} d2
x, (B.2)
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with the pseudo-differential operator d = (−∇2) 12 tanh[(−∇2) 12d ]. (For one horizontal di-
mension in infinite depth df = −H(fx), H the Hilbert transform.) Thus, the cubic Za-
kharov’s equations (CZE) are

ηt − dϕ̃ = −∇ ⋅ (η∇ϕ̃) − d(ηdϕ̃) + 1

2
∇

2(η2dϕ̃) + d(ηd(ηdϕ̃)) + 1

2
d(η2∇2ϕ̃), (B.3)

ϕ̃t + gη = 1

2
(dϕ̃)2 − 1

2
(∇ϕ̃)2 − (ηdϕ̃)∇2ϕ̃ − (dϕ̃)d(ηdϕ̃). (B.4)

For progressive (2π/κ)-periodic solutions in infinite depth, a seventh-order Stokes expan-
sion is

κη = α cos θ + 1

2
α2(1+ 3

2
α2+ 445

96
α4) cos 2θ

+ 3

8
α3(1+ 41

12
α2+ 5213

384
α4) cos 3θ + 7

24
α4(1+ 263

42
α2) cos 4θ

+ 67

384
α5(1+ 2569

201
α2) cos 5θ 9

320
α6 cos 6θ 16751

46080
α7 cos 7θ + O(α8),

g−
1

2κ
3

2 ϕ̃ = α (1− 1

4
α2− 31

64
α4− 465

256
α6) sin θ + 1

2
α2(1+ 3

4
α2+ 123

64
α4) sin 2θ

+ 3

8
α3(1+ 89

36
α2+ 27271

3456
α4) sin 3θ + 7

24
α4(1+ 1795

336
α2) sin 4θ

+ 67

384
α5(1+ 24769

2010
α2) sin 5θ 9

320
α6 sin 6θ 16751

46080
α7 sin 7θ + O(α8),

g−
1

2κ
1

2 c = 1 + 1

2
α2 + 41

64
α4 + 913

384
α6 +O(α8),

where the incorrect (compared to the exact expansion) coefficients and signs are displayed
in bold face. Thus, the CZE match the exact Stokes wave up to the third-order only.
Truncating the Hamiltonian at the order N + 1 in nonlinearities, the corresponding Stokes
double series is correct up to the order N in the expansion parameter. None of these
approximations have the exact asymptotic behavior (4.7) for their Fourier coefficients.
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