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Abstract

We analyze the role of the spatial distribution of the initial condition in reaction-diffusion models

of biological invasion. Our study shows that in the presence of an Allee effect, the precise shape

of the initial (or founding) population is of critical importance for successful invasion. Results are

provided for one-dimensional and two-dimensional models. In the one-dimensional case, we consider

initial conditions supported by two disjoint intervals of length L/2 and separated by a distance α.

Analytical as well as numerical results indicate that the critical size L∗(α) of the population, where the

invasion is successful if and only if L > L∗(α), is a continuous function of α and tends to increase with

α, at least when α is not too small. This result emphasizes the detrimental effect of fragmentation.

In the two-dimensional case, we consider more general, stochastically generated initial conditions u0,

and we provide a new and rigorous definition of the rate of fragmentation of u0. We then conduct a

statistical analysis of the probability of successful invasion depending on the size of the support of u0

and the fragmentation rate of u0. Our results show that the outcome of an invasion is almost completely

determined by these two parameters. Moreover, we observe that the minimum abundance required for

successful invasion tends to increase in a nonlinear fashion with the fragmentation rate. This effect of

fragmentation is enhanced as the strength of the Allee effect is increased.

Keywords: Reaction-diffusion; Allee effect; Biological invasions; Fragmentation; Initial condition.
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1 Introduction

Over the last decades, the number of biological invasions by alien organisms has increased exponentially
(DAISIE, 2009), in large part because of human activities such as trade and travel. These biological inva-
sions are characterized by a rapid expansion of the invasive organism’s range. They are usually associated
with biodiversity losses (IUCN, 2000, 2002; Kenis et al., 2009) and often cause significant harm to ecosys-
tem functioning (Richardson et al., 2000; Vilà et al., 2009), socio-economic values (Kenis, 2006) and human
health (Roques et al., 2009; Vilà et al., 2009) in the invaded regions.

The typical sequential stages of a successful invasion process begin with the introduction of a small
founding population (that is, arrival), followed by the establishment and spread stages (Dobson and May,
1986; Walther et al., 2009). During the establishment stage, the individuals in the founding population
reproduce and increase in number to form a colony that is self-perpetuating. The spread corresponds to
the expansion of the species range into its new habitat.

Successful establishment often requires multiple introductions (Richardson et al., 2000; Walther et al.,
2009). The success of the establishment phase indeed depends on the size of the founding population as well
as on several endogenous and exogenous factors. Understanding the intertwined roles of these factors is of
critical importance to slow down the rate at which biological invasions occur. In this paper, we investigate
the interactions between founding population characteristics (namely, size and spatial distribution) and
the profile of the growth function associated with the population.

Environmental factors such as resource availability, spatial heterogeneity (Berestycki et al., 2005;
Cantrell and Cosner, 2003; Fahrig, 2003; Roques and Hamel, 2007; Roques and Stoica, 2007) and cli-
mate conditions (Roques et al., 2008; Walther et al., 2009) can play an important role in the persistence of
the newly introduced population. Additionally, because of the typically small size of the founding popula-
tion, it is widely accepted that the Allee effect plays a critical role in the success of establishment (Drake,
2004; Leung et al., 2004; Yamanaka and Liebhold, 2009). The Allee effect can be seen in many species
(Allee, 1938; Dennis, 1989; Kramer et al., 2009; Veit and Lewis, 1996); it indicates that the per capita
growth rate of individuals decreases at low densities. This effect may result from several processes that
can co-occur (Berec et al., 2007), such as diminished chances of finding mates at low densities (Mccarthy,
1997), demographic stochasticity (Lande, 1998) or fitness decreases due to consanguinity.

In the present work, we analyze the effect of the spatial distribution of the founding population – that is,
the repartition of the initial population into subgroups – on the success rate of an invasion. The relationships
between successful establishment, the size of the founding population and the Allee effect have already been
investigated in empirical (references above) and theoretical studies (Aronson and Weinberger, 1978; Du
and Matano, 2010; Lewis and Kareiva, 1993; Murray, 2002; Turchin, 1998; Zlatoš, 2006). The influence of
the corrugation of the edge of the founding population on the invasion speed has also been studied by Lewis
and Kareiva (1993). However, the effect of the spatial distribution of the founding population has received
less attention. Considering a closely related problem based on a stochastic reaction-diffusion equation with
successive random immigration events, Drury et al. (2007) have shown the important role of the spatial
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distribution of the immigration events on the invasion risks. This suggests that the spatial distribution of
the founding population, and in particular its rate of fragmentation, also plays an important role.

Because they draw on well-developed mathematical theory, reaction-diffusion models have been the
main analytical framework to study the persistence and spread of biological organisms since the early work
of Skellam (1951). One of the most frequent reaction-diffusion models is the Fisher-Kolmogorov-Petrovsky-
Piskunov (FKPP) (Fisher, 1937; Kolmogorov et al., 1937) equation, which was first intended to describe
the propagation of advantageous genes inside a population. However, this equation does not take the Allee
effect into account. Thus, in FKPP models, the persistence of the population does not depend at all on the
characteristics of the initial population, even in heterogeneous environments (Berestycki et al., 2008, 2005,
2007). As a consequence, most studies that use FKPP-like models focus on the effects of environmental
characteristics on persistence and spread (Berestycki et al., 2005; Cantrell and Cosner, 2003; Shigesada
and Kawasaki, 1997) rather than on the effect of the initial condition. In contrast, we assume in this work
that the underlying environment is homogeneous to isolate the effects of the characteristics of the initial
population.

In the differential equations framework, the spatially homogeneous equation N ′ = f(N), with f(N) ≤ 0
for N below some threshold ρ, is a very simple example of a model involving an Allee effect. In this case,
the dependence on the initial condition is obvious. In reaction-diffusion models, the Allee effect is typically
modeled through bistable nonlinear terms (Fife, 1979; Turchin, 1998). The dependence of the behavior of
such models on initial conditions was first investigated by Aronson and Weinberger (1978) and Fife and
McLeod (1977), and then by Zlatoš (2006) and Du and Matano (2010) for one-dimensional models. In
particular, for one-parameter families of initial conditions u0(L) that are strictly monotone with respect
to the parameter L, it is shown in (Du and Matano, 2010) that there is a unique critical threshold L = L∗

between extinction and propagation (see Section 3 for more details).
In this paper, the effect of the spatial structure of the founding population u0 (i.e., the initial condition in

the model) is investigated for one-dimensional (1D) and two-dimensional (2D) models presented in Section
2.1. In both 1D and 2D cases, the initial conditions that we consider are binary functions which can only
take the values 0 (absence of the species) and 1 (presence of the species). Because of their simple nature,
these initial conditions are completely determined by their support, i.e., the regions where the species is
present at t = 0. This allows us to focus on the effect of the geometrical properties of the support, namely
its size and its fragmentation rate, on the outcome of the invasion. In the 1D case, to derive analytical
computations, we consider a simple class of initial conditions which include the initial conditions which
have been considered by Zlatoš (2006). Their support is made of two intervals of the same length L/2,

separated by a distance α, as described in Section 2.2.1. This distance is understood as a measure of
the rate of fragmentation of u0. In the 2D case, we consider more general, stochastically generated initial
conditions, and we give a new rigorous definition of the rate of fragmentation in Section 2.2.2. Results are
provided in Section 3. In the 1D case, the effects of fragmentation on the success of establishment and
spread are investigated through analytical and numerical computations. In the 2D case, we carry out a
statistical analysis of the probability of successful establishment, depending on the size of the support and
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the fragmentation rate of the initial condition.

2 Materials and methods

2.1 The reaction-diffusion model

Throughout this paper, we assume that the population density u(t, x) is driven by the following reaction-
diffusion equation: {

ut = D ∆ u + f(u), for t > 0 and x ∈ Rn,

u(0, x) = u0(x), for x ∈ Rn,
(2.1)

with n = 1 or n = 2 and D > 0.

The non-linear growth term f(u) in (2.1) is assumed to satisfy:

f ∈ C1(R), f ′ is Lipschitz-continuous, f(0) = f(1) = 0 and
∫ 1

0

f(s)ds > 0. (2.2)

In addition, we assume that the function f takes a strong Allee effect into account:

There exists ρ ∈ (0, 1) such that f < 0 in (0, ρ) and f > 0 in (ρ, 1). (2.3)

This hypothesis means that the growth rate f(u) is negative at low densities, which corresponds to a strong
Allee effect. The parameter ρ corresponds to the so-called “Allee threshold”, below which the growth rate
becomes negative. It therefore measures the strength of the Allee effect. Under these assumptions, the
solution to (2.1) may have several behaviors, depending on f and the initial density at t = 0. To provide
a biological interpretation of these possible behaviors, we make the following definitions:

Definition 1 (Founding population). The founding population corresponds to the initial population at
t = 0 : u0(x) = u(0, x) ∈ [0, 1] for x ∈ Rn, which is assumed to be compactly supported.

Definition 2 (Successful establishment). We say that the establishment is successful if u(t, x) converges
to a positive stationary state as t →∞.

Definition 3 (Successful invasion). We say that the invasion is successful if u(t, x) converges to the
stationary state 1 as t →∞.

Definition 4 (Establishment failure). We say that the establishment phase has failed if u(t, x) converges
to the stationary state 0 uniformly in x as t →∞.

Remark 1. Note that successful establishment without successful invasion is possible but rare (see Sec-
tion 3.1). In the 1D case, when the invasion is successful in the sense of Def. 3, then





min
|x|≤ct

u(t, x) → 1 as t →∞ for each 0 ≤ c < c0,

max
|x|≥c′t

u(t, x) → 0 as t →∞ for each c′ > c0.
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Note that c0 > 0 is the unique speed of the traveling front φ(x − c0t) connecting 0 to 1 at +∞ and −∞
respectively (Aronson and Weinberger, 1978).

For real populations, successful establishment without invasion can occur (several examples are given
in DAISIE, 2009, 2010). This corresponds to steady state populations with finite range. The existence
of such steady states can be a consequence of environmental heterogeneity (e.g. the location of the species
bioclimatic envelop, see Section 3.2 in Hamel et al., 2010). In such heterogeneous environments, even when
the population can adapt to its local conditions, gene flow can cause maladaptation of the peripheral groups
and lead to finite range populations (Kirkpatrick and Barton, 1997).

2.2 Initial conditions

Depending on the founding population u0, establishment failure or establishment success can occur. To
study this dependence, we consider particular types of initial binary conditions, namely u0 = 1 or 0 almost
everywhere. Note that support may vary in size and shape; we focus in particular on the fragmentation of
this support.

2.2.1 One-dimensional case

To derive analytical computations in the case n = 1, we consider a simple case of fragmentation.

u0(x) = χ[−(α/2+L/2),−α/2] (x) + χ[α/2,α/2+L/2] (x) for x ∈ R. (2.4)

Note that for any set J ⊂ R, χJ is the characteristic function of J , that is, χJ(x) = 1 if x ∈ J and
χJ(x) = 0 otherwise.

α/2 α/2

α/2 α/2+L/2−α/2−(α/2+L/2)

L/2 L/2

x

1

Figure 1: An initial condition u0 as defined by (2.4).

This corresponds to an initial population density, whose support is split into two equal parts of length
L/2 > 0 separated by a distance α (see Fig. 1). Problem (2.1) with “aggregated” initial conditions (i.e.,
with u0 = χ[−L/2,L/2], that is, α = 0) has been investigated by several authors (Kanel, 1964; Zlatoš, 2006).
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Remark 2. The problem (2.1), with n = 1 and initial condition (2.4), is equivalent to the Neumann
problem. 




ut = D uxx + f(u) for t > 0 and x ≥ 0,

ux(t, 0) = 0 for t > 0,

u(0, x) = χ(α/2,α/2+L/2] (x) for x ≥ 0.

(2.5)

Indeed, if u solves (2.1), (2.4), then u(t,−x) also solves (2.1), (2.4). By uniqueness, we obtain that
u(t, x) = u(t,−x) for all t > 0 and x ∈ R. Thus, u also satisfies (2.5). Conversely, by uniqueness of the
solution of (2.5) and by extending it by symmetry on (−∞, 0], we obtain equivalence between (2.1), (2.4)
and (2.5).

2.2.2 The two-dimensional case, the notion of abundance and the measure of fragmentation

The effect of the spatial distribution of the founding population can also be assessed in the two-dimensional
case n = 2 through the numerical investigation of the behavior of the model solution (2.1) over a large
number of stochastically generated initial conditions.

As in the 1D case, we assume the initial conditions u0 to be binary functions, where

at each point (x, y) in R2, u0(x, y) either takes the value 0 or 1. (2.6)

We furthermore assume that the support of u0 is included in a closed square C :

for all (x, y) ∈ R2, u(x, y) = 0 if (x, y) 6∈ C. (2.7)

To build samples of functions u0 with various spatial distributions, we used a model developed by
Roques and Stoica (2007) and inspired by statistical physics. In this model, the square C is divided into
nC closed equi-measurable subsquares Ci, with interiors being pairwise disjoint. The obtained functions
u0 satisfy:

for all i = 1, . . . , nC , u0 is constant over the interior of Ci. (2.8)

As key properties, this stochastic model allows exact control over the population abundance level

p(u0) =
1
|C|

∫

C

u0(x, y) dxdy,

and leads to configurations with different levels of fragmentation. The notion of fragmentation is defined
as follows.

The lattice made of cells Ci is equipped with a four-neighborhood system V (Ci) (Fig. 2). For each
function u0, constant on the subsquares Ci, we define

s(u0) =
1
2

∑

Ci⊂C

∑

Cj∈V (Ci)

1{u0(Cj) = u0(Ci) = 1},
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C
i

C
i

Figure 2: The four-neighborhood system: an element Ci of C and its four neighbors.

the number of pairs of neighbors (Ci, Cj) such that u0 takes the value 1 on Ci and Cj . Then 1{·} denotes
the indicator function, namely, 1{P} = 1 if property P is satisfied and 0, otherwise. As already observed
in the literature (Roques and Chekroun, 2007, 2010; Roques and Stoica, 2007), the value s(u0) is directly
linked to fragmentation. Assuming abundance p(u0) is fixed, the higher s(u0) is, the more aggregated the
region {u0 = 1} is.

We define pattern fragmentation by comparing the value of s(u0) with the maximum possible value
of the index s among functions with a given abundance p. This maximum value B[p] can be computed
explicitly as an immediate consequence of the results of Harary and Harborth (1976) on polyominoes.

Lemma 1 (Harary and Harborth (1976)). Choose p ∈ [0, 1] such that p× nC ∈ N and

U0 := {u0 satisfying (2.6)-(2.8), and p(u0) = p}.

We have
B[p] := max

u0∈U0
s(u0) = 2n+ −

⌈
2
√

n+

⌉
,

where n+ = p× nC and
⌈
2
√

n+

⌉
is the smallest integer that is greater than or equal to 2√n+.

Then, we set

fr(u0) = 1− s(u0)
B[p(u0)]

. (2.9)

The index fr belongs to [0, 1]. Whatever the abundance p is, the most aggregated configurations (in the
sense s(u0) = B[p]) verify fr(u0) = 0, whereas the most fragmented configurations (in the sense s(u0) = 0)
verify fr(u0) = 1. In the sequel, fr(u0) is referred to as the fragmentation rate of u0. Samples of functions
u0 obtained with the model from (Roques and Stoica, 2007) with various values of fr(u0) and p(u0) are
shown in Fig. 3.

Remark 3. There exist several ways of generating binary patterns. The most common are neutral models,
originally introduced by Gardner et al. (1987). They can include parameters that regulate fragmenta-
tion (Keitt, 2000). The model that we use here is also a neutral model in the sense that it is a stochastic
model of pattern generation. The abundance p and the number of pairs s are controlled during the process
of pattern generation; this allows for good sampling over the parameter space (fr, p) ∈ [0, 1] × [0, 1] (see
Fig. 5).
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−30 0 30

0

30

(a) p = 0.1, fr = 0.05

−30 0 30

0

30

(b) p = 0.1, fr = 0.4

−30 0 30

0

30

(c) p = 0.1, fr = 0.9

−30 0 30

0

30

(d) p = 0.4, fr = 0.05

−30 0 30

0

30

(e) p = 0.4, fr = 0.4

−30 0 30

0

30

(f) p = 0.4, fr = 0.9

Figure 3: Initial conditions u0 in the two-dimensional case: examples of patterns with different abundance
and fragmentation rates. Note that C = [−30, 30]× [−30, 30] and nC = 3600.
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3 Results

In this section, we present analytical and numerical results on the effect of the spatial distribution of the
founding population u0 on the outcome of the invasion modeled by equation (2.4).

3.1 Analytical result in the one-dimensional case

We first mention some results in (Du and Matano, 2010) that prove the existence of a threshold value for
the size of the support of u0 such that establishment fails (i.e., u(t, x) → 0 as t →∞) if and only if the size
of the support is below this threshold, and invasion is successful (i.e., u(t, x) → 1 as t → ∞) if and only
if the size of the support is above this threshold. The symmetry of the problem (2.1), (2.4) together with
the uniqueness of its solution imply that the solution is symmetrical with respect to {x = 0} for all t ≥ 0.

Theorem 1 (case α = 0: Zlatoš (2006), case α ≥ 0 : Du and Matano (2010)). Let α ≥ 0. Assume that f

satisfies (2.2-2.3). Then, there exists L∗(α) > 0 such that:

i For any L < L∗(α), the solution to (2.1), (2.4) converges to 0 as t →∞, uniformly in R.

ii For any L > L∗(α), the solution to (2.1), (2.4) converges to 1 as t →∞, uniformly on compacts.

iii If L = L∗(α), the solution to (2.1), (2.4) converges to a positive stationary solution ũ uniformly in R

as t → +∞, where ũ verifies −Dũ′′ = f(ũ), ũ(0) = ρ1 := sup

{
ρ′ ∈ (0, 1) such that

∫ ρ′

0

f(s)ds ≤ 0

}

and ũ′(0) = 0. Moreover, ũ is symmetrically decreasing, i.e., ũ(x) = ũ(−x) and ũ′(x) < 0 for all
x > 0.

The next result analyzes the effect of fragmentation by studying the dependence of the threshold value
L∗(α) with respect to the size (α) of the gap between the two components of the support of u0.

Theorem 2. Let α ≥ 0 and L∗(α) be defined by Theorem 1. Then the function α 7→ L∗(α) is continuous
on [0, +∞). Furthermore, L∗(α) < 2 L∗(0) for all α ≥ 0 and

L∗(α) → 2L∗(0) as α →∞. (3.10)

This result highlights the global detrimental effect of fragmentation on the success of establishment
and invasion. Indeed, when the gap α between the two components of the support of u0 is large, the
minimal viable size L∗(α) of support of the founding population tends to become twice as large as if the
individuals were gathered in a single group. However, the strict sign in the inequality L∗(α) < 2 L∗(0)
shows that, whatever the distance α separating the two groups, there is at least some cooperation between
them. Moreover, the result of Theorem 2 implies that the amplitude of variation of the threshold L∗(α) is
at least equal to L∗(0). Thus, the spatial structure of the support of the founding population u0 plays an
important role on invasion success. The proof of Theorem 2 is presented in Appendix A.

In the next section, we use numerical computations to study whether there is an increasing relationship
between L∗(α) and the distance α.
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3.2 Numerical results

We carried out numerical computations in one- and two-dimensional space. We refer to Appendix B
for some details on the numerical method that was used for solving equation (2.1). In these numerical
computations, the function f in (2.1) was assumed to be of the following cubical form:

f(s) = rs
(
1− s

K

) (
s− ρ

K

)
,

with ρ ∈ (0,K/2). Such a growth function is a typical example of a reaction term involving an Allee effect
(Keitt et al., 2001; Lewis and Kareiva, 1993; Roques et al., 2008). Without loss of generality, with the
substitutions v(t, x) = u(t, x)/K and w(t, x) = v(t/r, x

√
D/r) into equation (2.1), we can assume that

K = r = D = 1 and ρ ∈ (0, 1/2). Thus,

f(s) = s(1− s)(s− ρ). (3.11)

Since ρ ∈ (0, 1/2), the quantity
∫ 1

0

f(s)ds is positive. The function f defined by (3.11) therefore fulfils the

assumptions (2.2-2.3).

3.2.1 The one-dimensional case

The aim of this section is (i) to study the relationship between the minimum viable population size L∗(α)
and the distance α and (ii) to study the effect of the Allee threshold ρ on the above relationship. The value
of L∗(α), as defined in Theorem 1, has been computed for α ∈ [0, 16] and several values of the parameter
ρ.

The results of these computations are depicted in Fig. 4. As expected from Theorem 2, L∗(α) → 2 L∗(0)
for large values of α : for each value of ρ, L∗(α) is very close to 2 L∗(0) when α = 16. This justifies the
choice of the study interval α ∈ [0, 16]. Moreover, Fig. 4 shows an increasing trend between the threshold
L∗(α) and α, at least when α is not too small. This increasing relationship means that the more fragmented
the founding population is, the larger it needs to be for the invasion to be successful. Additionally, the
dependence between L∗(α) and α is nonlinear; the curves corresponding to L∗(α) have a steeper slope for
intermediate values of α.

However, we observe that for small values of α, L∗(α) slightly decreases with α. This phenomenon can
be clearly seen on Fig. 4 for ρ ≥ 0.4; the numerical simulations indicate that it is also true for smaller
values of ρ. In particular, L∗(α) can reach values smaller than L∗(0). Roughly speaking, this means that
when α is very small, the gap between −α/2 and α/2 is filled by diffusion at a time (of the order α2) which
is much smaller than the time it takes for the interfaces at the positions −(α/2 + L/2) and (α/2 + L/2) to
move.

Regarding the effect of ρ, we observe that L∗(α) tends to increase with ρ. This is an obvious consequence
of the parabolic maximum principle; for any α ≥ 0, L > 0 and ρ ∈ (0, 1/2), let us denote the solution to
(2.1), (2.4) by uL,α

ρ (t, x), where f is defined by (3.11). We thus have the following lemma:
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ρ = 0.1

ρ = 0.15

ρ = 0.2

ρ = 0.3
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Figure 4: Value of the critical threshold L∗(α) in terms of the distance α and the Allee threshold ρ. For
each value of ρ, the dotted line corresponds to the associated value of 2 L∗(0).

Lemma 2. Let 0 < ρ1 ≤ ρ2 < 1/2. For all α ≥ 0 and L > 0,

uL,α
ρ1

(t, x) ≥ uL,α
ρ2

(t, x) for all t ≥ 0, x ∈ R.

The proof of this lemma is given in Appendix A. According to the definition of L∗(α), L∗(α) is an
increasing function of ρ. In particular, L∗(0) is an increasing function of ρ. Thus, the result of Theorem 2
together with the monotonic trend between α and L∗(α) imply that the amplitude of the variation of the
critical size L∗(α) (that is, the quantity supα L∗(α)− infα L∗(α)) tends to increase as ρ increases. In other
words, the effect of fragmentation tends to increase with the strength of the Allee effect.

3.2.2 The two-dimensional case

The aim of this section is to study the effect of spatial fragmentation of the founding population’s support
in more realistic scenarios than those studied in the 1D case.

The model (2.1), with the function f defined by (3.11), was solved using stochastically generated initial
conditions u0 that satisfy the conditions (2.6)-(2.8), as described in Section 2.2.2. Those conditions u0

are characterized by two indices, namely, an abundance index p(u0) ∈ [0, 1] and a fragmentation rate
fr(u0) ∈ [0, 1]. For our computations, we assumed that the support of the initial conditions was included
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in the set C = [−30, 30] × [−30, 30], which was divided into nC = 60 × 60 subsquares Ci, on which the
functions u0 are constant.

Using the stochastic model described in Section 2.2.2, we derived 1.5·104 functions u0,k, k = 1 . . . 1.5·104,
with various abundance indices and fragmentation rates. Then, (2.1) was solved with each u0 as initial
condition. The computations were carried out with several values of the Allee threshold, including ρ =
0.1, 0.3 and 0.45. Some details on the numerical method which was used to solve this equation are given
in Appendix B.

The results of these computations are presented in Fig. 5. Each point in the figure is attached to a
certain behavior of the model, namely, successful establishment or establishment failure. It appears that
for each value of ρ, there are two distinct regions in the parameter space (fr, p), one corresponding to
successful establishment and the other one to establishment failure. These regions are separated by a
narrow interface in which the two behaviors are possible. In this narrow interface, and in the surrounding
regions of the parameter space, the proportion of successful establishment cannot be directly inferred from
Fig. 5. This proportion corresponds to the probability of successful establishment.

Remark 4. In the region of the parameter space (fr, p) where p > 0.5, establishment was always successful.
Thus, this region is not represented in Fig. 5.
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Figure 5: Establishment success for the initial conditions u0,k, k = 1 . . . 1.5 ·104, in terms of the fragmenta-
tion rate fr(u0,k) and abundance p(u0,k), for three values of the Allee threshold ρ. Red crosses correspond
to successful establishment and blue crosses correspond to establishment failure.

To study the probability of successful establishment in terms of the values of fr and p, we defined
a function Y such that Y (u0,k) = 1 if the initial condition u0,k leads to successful establishment and
Y (u0,k) = 0, otherwise. We then applied a smoothing regression to the data (fr(u0,k), p(u0,k), Y (u0,k)).
More precisely, the data were fitted with an algorithm to replace each point with the average of the closest
points surrounding it (i.e., in a rectangular neighborhood of size 0.1× 0.05). That is, Y was fitted by the
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estimator Ŷ , which is defined over [0, 1]× [0, 1]:

Ŷ (fr, p) =

∑

‖(fr(u0,k),p(u0,k))−(fr,p)‖<ε

k=1...1.5·104

Y (fr(u0,k), p(u0,k))

∑

‖(fr(u0,k),p(u0,k))−(fr,p)‖<ε

k=1...1.5·104

1
. (3.12)

Thus, to each point (fr, p) in [0, 1] × [0, 1] is attached a value of Ŷ (fr, p) which measures the probability
of successful establishment. This function Ŷ (fr, p) is depicted in Fig. 6, for ρ = 0.1, 0.3, and 0.45.

An analysis of Fig. 6 reveals that for each fixed value of p, the probability of successful establishment
decreases with the fragmentation rate fr. Moreover, the interface in which the probability Ŷ (fr, p) is
neither close to 0 nor to 1 is narrow in the parameter space (that is, the region where Ŷ (fr, p) ∈ (0.1, 0.9)
occupies approximately 1/40, 1/16, 1/12 of the parameter space [0, 1] × [0, 1] for ρ = 0.1, 0.3 and 0.45,

respectively). Thus, the behavior of the solution of (2.1) with an initial condition u0 satisfying (2.6)-(2.8)
is almost completely determined by fr and p.

For each fr ∈ [0, 1], let us define P1/2(fr) as the minimum abundance such that establishment is
successful with probability 1/2. The yellow curves in Fig. 6 correspond to a probability 1/2 of successful
establishment). We observe that for each value of the Allee threshold ρ, P1/2(1) is much larger than
P1/2(0). Thus, the minimum required abundance for the establishment to be successful is much larger for
fragmented founding populations as compared to aggregated ones. Furthermore, the relationship fr 7→
P1/2(fr) is comparable to the dependence α 7→ L∗(α), which was observed in the 1D case (Section 3.2.1).
This dependence is highly nonlinear. On the one hand, for aggregated initial conditions (i.e., with small
values of fr(u0)) as well as very fragmented initial conditions (i.e., with values of fr(u0) close to 1),
this dependence is almost flat. On the other hand, for intermediate values of the fragmentation rate,
we observe a sudden increase in P1/2(fr), especially when ρ = 0.3 and ρ = 0.45. For ρ = 0.3, we have
P1/2(0.6) − P1/2(0.52) = 0.15, and for ρ = 0.45, we have P1/2(0.5) − P1/2(0.36) = 0.23. Note that the
probability of successful establishment decreases with ρ, especially for a fragmented initial condition. This
property is the counterpart in the two-dimensional case of the monotonicity of L∗(α) with respect to ρ

mentioned in Section 3.2.1 (see Lemma 2).

Remark 5. • We note in Fig. 6 that the minimum abundance P1(fr) such that establishment probabil-
ity
Ŷ (fr, P1(fr)) is equal to 1 converges to a value close to ρ in the three cases considered here as
fr → 1. This is the case for ρ = 0.1 : P1(1) = 0.11, for ρ = 0.3 : P1(1) = 0.31 and for ρ = 0.45 :
P1(1) = 0.47. An explanation of this fact is as follows. Let ũ be the solution of the following problem.





ũt = ∆ũ + f(ũ) for t > 0, x ∈ C,

ũ satisfies Neumann conditions on the boundary of C for t > 0,

u(0, x) = u0(x) for x ∈ C,

(3.13)
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Figure 6: Probability of successful establishment measured through Ŷ , in terms of the fragmentation rate
fr and the abundance p of the founding population.

with f satisfying (2.2) and (2.3) and u0 satisfying (2.6), (2.8) and fr(u0) = 1. We conjecture that
as the number nC of subsquares Ci converges to +∞, the behavior of ũ (i.e., convergence to 0 or to 1
as t →∞) becomes similar to the behavior of a homogenized problem in which u0 is replaced with the

constant initial condition u0 =
1
|C|

∫

C

u0(s)ds = p(u0), which in turn is equivalent to the ordinary

differential equation N ′ = f(N) with initial condition N(0) = p(u0). Thus, in this asymptotic regime,
we would obtain ũ(t, x) → 1 in C if and only if p(u0) > ρ. The comparison principle implies that if
the problems (2.1) and (3.13) are solved with the same initial condition u0, we have u ≤ ũ for t > 0
and x ∈ C. As a consequence, we finally obtain the inequality P1(1) ≥ ρ, for adequately large nC .

• Using a formula by Lewis and Kareiva (1993) we can compute the minimum abundance for successful
establishment when the initial condition is ball-shaped:

pB =
π

2|C|
1

(1/2− ρ)2
.

For ρ = 0.1, we get pB = 3 10−3, for ρ = 0.3, we have pB = 0.01 and for ρ = 0.45, we obtain
pB = 0.17. We can observe in Fig. 6 that these values of pB are not too far from the values of the
minimum abundances P1(fr) for small values of fr. This is not surprising when fr is close to 0 since
the initial condition consists in a single aggregated group (Harary and Harborth, 1976).

4 Discussion

We have analyzed the role of the spatial distribution of the initial condition in reaction-diffusion models of
biological invasions. These models incorporate reaction terms that take the Allee effect into account.
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In many simplified models, the Allee effect is not taken into account. The initial conditions therefore
do not play an important role. This is probably why a number of recent studies have focused on the effect
of environmental heterogeneities rather than on the role of initial conditions. However, the Allee effect
is known to occur in many invasive species. In such cases, the precise shape of the initial (or founding)
population is of crucial importance when predicting successful invasion, as emphasized in our study.

Our first result is an analytical result. In the 1D case, we considered schematic examples of founding
populations that were made of two identical groups separated by a distance α.

We have shown that the minimum size L∗(α) of the support of the founding population for successful
establishment and invasion is a continuous function of the distance α. Moreover, when this distance becomes
large, L∗(α) becomes twice as large as if the individuals were assembled in a single group. This result shows
that the spatial structure of the founding population indeed has an effect on the success of an invasion.
Moreover, it is a first indication of the adverse effect of fragmentation. This adverse effect is confirmed by
our numerical simulations. As illustrated in Fig. 4, the minimum viable size L∗(α) tends to increase with
the distance α that separates the two subgroups, at least for not too small values of α. The amplitude
of variation of the minimum viable size with respect to α (that is, the quantity supα L∗(α) − infα L∗(α))
also tends to increase with the strength of the Allee effect as measured by the Allee threshold ρ. It should
nevertheless be noted that for small values of α, the minimum viable size decreases slightly with α. Thus,
the breaking apart of the founding population into two subgroups may have a beneficial effect on the success
of the invasion when these subgroups are very close to each other. From a mathematical standpoint, the
proof of the non-monotonicity of the function α 7→ L∗(α) is a challenging open problem.

In the 2D case, we considered much more realistic examples of founding populations. Using a stochastic
model of pattern generation, we constructed a large number of initial conditions with various abundances
(measured by the index p ∈ [0, 1]) and fragmentation rates. Using a new, rigorous definition of the
fragmentation rate (measured by the index fr ∈ [0, 1]; see eq. (2.9)), we were able to describe the
outcome of an invasion in terms of two attributes of the founding population u0, namely, p(u0) and fr(u0).
Interestingly, the outcome of the invasion is indeed almost completely determined by the values of p(u0)
and fr(u0); for each value of the Allee threshold ρ, we obtained two distinct regions in the parameter space
(fr, p). One region corresponds to successful establishment, and the other one corresponds to establishment
failure. The interface between these regions corresponds to a narrow region in the parameter space (Figs.
5 and 6). In our computations, we also observed that the set of initial conditions leading to successful
establishment without successful invasion was very small (see also Remark 1 and Theorem 1 in the 1D
case).

The results of Section 3.2.2 also show that the minimum abundance p required for successful establish-
ment tends to increase with the fragmentation rate fr. As in the 1D case, the effect of fragmentation is
enhanced as the Allee threshold ρ is increased. In addition, the relationship between the minimum abun-
dance and the fragmentation rate is highly nonlinear and steep, threshold-like. Indeed, there is threshold
value, say fr∗, where the minimum abundance for successful establishment dramatically increases. On
both sides of this threshold, establishment success is almost independent on fr. On the one hand, if the
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rate of fragmentation is higher than fr∗, then the behavior of the model is close to the behavior of a
homogenized problem (see first point in Remark 5). On the other hand, if the rate of fragmentation is
lower than fr∗, the model almost behaves as if the initial condition was replaced by a single ball-shaped
group (see second point in Remark 5). The existence of such a threshold fr∗ implies that small changes
in the fragmentation rate can therefore drastically modify the outcome of an invasion if fr is close to fr∗.

Finally, we have shown that the fragmentation of the support of a founding population u0 tends to
have a negative effect on invasion success in a homogeneous environment. We might wonder what would
happen in heterogeneous environments. That is, instead of (2.1), consider the following model

{
ut = D ∆ u + f(u) + ν(x)u, for t > 0 and x ∈ Rn,

u(0, x) = u0(x), for x ∈ Rn.

Note that ν(x) corresponds to the effect of the environment on the species local growth rate; this model has
been investigated for n = 1 in (Hamel et al., 2010). In this case, the negative effect of the fragmentation
of u0 may be compensated by the fact that fragmented supports may have more chances to intersect with
favorable regions. Thus, we could expect nontrivial intertwined effects between the level of environmental
heterogeneity and the fragmentation of the initial condition. Other reaction-diffusion based models enable
evolution and adaption (Kirkpatrick and Barton, 1997; Pease et al., 1989). In a recent study, Kanarek and
Webb (2010) have shown that, for species which can adaptively respond to overcome Allee effects, even
small invading populations can survive. In such cases, fragmentation may also have a different effect.

A Proofs of Theorem 2 and Lemma 2

Proof of Theorem 2. For all α ≥ 0 and L > 0, we denote the solution of (2.1) with the initial condition
(2.4) by uL,α(t, x).

1. We first show that L∗(α) ≤ 2 L∗(0) for all α ≥ 0 and that L∗(α) → 2L∗(0) as α →∞.

Fix α ≥ 0. Let ε ∈ (0, 2 L∗(0)), and set Lε = L∗(0) − ε/2. Let v(t, x) = uLε,0(t, x − Lε/2 − α/2) for
all t ≥ 0 and x ∈ R. From Theorem 1(i), uLε,0(t, x) → 0 uniformly in R as t → ∞. Thus, we obtain the
existence of some t∗ > 0 such that

0 ≤ v(t, x) = uLε,0(t, x− Lε/2− α/2) < ρ/4 for all t ≥ t∗ and x ∈ R. (A.14)

Now, let w := u2 Lε,α − v. Then w(0, ·) = χ[−(α/2+Lε),−α/2]. Since 0 ≤ u(0, ·), v(0, ·), w(0, ·) ≤ 1 and
f(0) = f(1) = 0, it follows from the parabolic maximum principle (Ch. 2 in Friedman (1964) and Ch. 3 in
Protter and Weinberger (1967)) that u, v, w ∈ [0, 1]. Moreover, w satisfies:

wt = D wxx + f(u2 Lε,α)− f(v) ≤ D wxx + K w, (A.15)

with K = ‖f ′‖L∞(0,1).
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Let φ be the solution to the linear equation φt = D φxx+K φ with the initial condition φ(0, x) = w(0, x).
Then φ(t∗, 0) → 0 as α →∞. Thus, for adequately large α, φ(t∗, 0) < ρ/4. Since x 7→ φ(t∗, x) is decreasing
in [0,∞), we obtain:

φ(t∗, x) < ρ/4 for all x ≥ 0 and α large enough. (A.16)

Moreover, the maximum principle implies that w ≤ φ in [0,∞) × R. Then u2 Lε,α = v + w ≤ φ + v in
[0,∞)× R, and finally, using (A.14) and (A.16), we obtain

u2 Lε,α(t∗, x) < ρ/2 for all x ≥ 0 and α > 0 large enough.

Therefore, the evenness of u2 Lε,α implies that u2 Lε,α(t∗, x) < ρ/2 for all x ∈ R and α > 0 large enough.
Comparing with the solution of the ODE N ′ = f(N) with N(t∗) = ρ/2, for α large enough, we obtain
that u2 Lε,α(t, x) → 0 uniformly in x ∈ R as t →∞. According to the definition of L∗(α), this implies that
L∗(α) > 2 Lε, i.e.,

2 L∗(0)− ε < L∗(α) for α > 0 large enough.

Since ε > 0 can be arbitrarily small, we conclude that

lim inf
α→+∞

L∗(α) ≥ 2 L∗(0). (A.17)

Let us now check that for all α ≥ 0, L∗(α) < 2 L∗(0). Let α ≥ 0 be fixed. For all L > 0, we have
uL,α(0, ·) ≥ uL/2,0(0, · − α/2− L/4). Thus, the parabolic maximum principle leads to

uL,α(t, ·) ≥ uL/2,0(t, · − α/2− L/4) for all t ≥ 0. (A.18)

Take L = 2 L∗(0). Theorem 1 (iii) shows that uL∗(0),0(t, · − α/2 − L∗(0)/2) converges uniformly in R as
t → +∞ to the stationary solution ũ(· − α/2 − L∗(0)/2) of (2.1), where ũ verifies ũ(0) = ρ1 > ρ > 0,

ũ′(0) = 0 and ũ is symmetrically decreasing. Thus, using (A.18), we get

u2 L∗(0),α 6→ 0 as t → +∞.

Theorem 1 (i) thus implies that L∗(α) ≤ 2 L∗(0). Assume that L∗(α) = 2 L∗(0). Then, from Theorem 1
(iii), we know that u2 L∗(0),α converges to ũ, uniformly in R as t → +∞. Using inequality (A.18), we obtain

ũ(x) ≥ ũ(x− α/2− L∗(0)/2) for all x ∈ R.

In particular, we get ũ(α/2 + L∗(0)/2) ≥ ũ(0) which is impossible since ũ is symmetrically decreasing.
Thus, we finally obtain

L∗(α) < 2 L∗(0), (A.19)

and together with (A.17), this shows that L∗(α) → 2L∗(0) as α → +∞.
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2. We prove that the function α 7→ L∗(α) is continuous on [0,∞). For any 0 ≤ α ≤ β, we have
uL∗(α)−(β−α),β(0, ·) ≤ uL∗(α),α(0, ·) if L∗(α) − (β − α) > 0. Therefore, the parabolic maximum principle
together with Theorem 1 imply that

L∗(β) ≥ L∗(α)− (β − α), for all 0 ≤ α ≤ β, (A.20)

whenever L∗(α)− (β−α) is positive or not. In other words, the function α 7→ L∗(α)+α is non-decreasing,
which implies that the function α 7→ L∗(α) is right lower and left upper semicontinuous. In order to
complete the proof of Theorem 2, one is left to prove that the function α 7→ L∗(α) is right upper and left
lower semicontinuous.

Step (i). We first show that the function α 7→ L∗(α) is right upper semicontinuous on [0, +∞). Let
α ≥ 0, and set L+ = lim supβ→α+ L∗(β). We deduce from (A.19) and (A.20) that L+ ∈ [L∗(α), 2 L∗(0)].
Assume now that L+ > L∗(α) and set

L̃ =
L+ + L∗(α)

2
.

From the definition of L+ we know that there exists a decreasing sequence (αn)n≥0 such that αn ∈ (α, α+L̃)
for all n ≥ 0, αn → α and L∗(αn) → L+ as n → ∞. Since L+ > L̃, there exists N ≥ 0 such that for all
n ≥ N, L∗(αn) > L̃. Then, from Theorem 1 Part (i), for all n ≥ N, we have

uL̃,αn(t, ·) → 0 uniformly in R as t →∞, (A.21)

which in turn implies that

uL̃−(αn−α),αn(t, ·) → 0 uniformly in R as t →∞ (A.22)

since 0 < L̃− (αn − α) < L̃. Then, define the family (φλ)λ≥0 as follows

φλ(·) =

{
uλ,L̃+α−λ(0, ·), for λ ∈ [0, L̃),
uλ,α(0, ·), for λ ≥ L̃.

This is a monotone increasing family in the sense of Theorem 1.3 in (Du and Matano, 2010). Since L̃ >

L∗(α), it follows from Theorem 1 Part (ii) that the solution uL̃,α of (2.1) with initial condition φL̃ verifies
uL̃,α → 1 uniformly on compacts as t →∞. Besides, we know from (A.22) that the solution uL̃−(αN−α),αN

of (2.1) with initial condition φL̃−(αN−α) converges to 0 uniformly in R as t →∞. Since L̃− (αN −α) < L̃,

it follows then from Theorem 1.3 in (Du and Matano, 2010) that there exists λ̃ ∈ (L̃−(αN−α), L̃) such that
for all λ > λ̃, the solution of (2.1) with initial condition φλ converges to 1 uniformly on compacts as t →∞.

Thus, for any N1 > N such that L̃− (αN1 −α) > λ̃, the solution of (2.1) with initial condition φL̃−(αN1−α)

converges to 1 uniformly on compacts as t → ∞. This means that uL̃−(αN1−α),αN1 → 1 uniformly on
compacts as t →∞ and contradicts (A.22). Thus, we have shown that L+ = L∗(α). This means that the
function α 7→ L∗(α) is right upper semicontinuous on [0, +∞). As it is already known to be right lower
semicontinuous, it is then right-continuous.
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Step (ii). We show that the function α 7→ L∗(α) is left lower semicontinuous in (0, +∞). Let α > 0, and
set L− = lim infβ→α− L∗(β). The inequality (A.20) implies that L− ∈ [0, L∗(α)]. Assume by contradiction
that L− < L∗(α) and set

L̂ =
L− + L∗(α)

2
.

Let (αn)n≥0 be a positive and increasing sequence such that αn → α and L∗(αn) → L− as n →∞. Since
L− < L̂, there exists N ≥ 0 such that for all n ≥ N, L∗(αn) < L̂ and therefore, from Theorem 1 Part (ii),
uL̂,αn(t, ·) → 1 uniformly on compacts as t →∞. As a consequence, we also have, for all n ≥ N ,

uL̂+α−αn,αn(t, ·) → 1 uniformly on compacts as t →∞, (A.23)

since 0 < L̂ < L̂ + α− αn. Let us define the family (ψλ)λ≥0 by

ψλ(·) =

{
uλ,L̂+α−λ(0, ·), for λ ∈ [0, L̂ + α),
uλ,0(0, ·), for λ ≥ L̂ + α.

The family (ψλ)λ≥0 is monotone increasing. Furthermore, since L̂ < L∗(α), the solution uL̂,α of (2.1) with
initial condition ψL̂ converges to 0 uniformly in R as t → ∞. Conversely, we know (see eq. (A.23)) that
the solution uL̂+α−αN ,αN of (2.1) with initial condition ψL̂+α−αN

converges to 1 uniformly on compacts as
t →∞. Thus, using again the result of Theorem 1.3 in (Du and Matano, 2010), we obtain the existence of
λ̂ ∈ (L̂, L̂ + α− αN ) such that, for all λ < λ̂, the solution of (2.1) with initial condition ψλ converges to 0
as t →∞. Let N1 ≥ N be such that L̂ + α− αN1 < λ̂. The above result implies that the solution of (2.1)
with initial condition ψL̂+α−αN1

converges to 0 as t →∞. This contradicts (A.23). Thus, we have proved
that L− = L∗(α). This means that the function α 7→ L∗(α) is left lower semicontinuous on (0,+∞). As it
is already known to be left upper semicontinuous, it is then left-continuous.

Finally, we have shown that the function α 7→ L∗(α) is continuous on [0,+∞) and the proof of Theorem 2
is thereby complete. ¤

Proof of Lemma 2. For any α ≥ 0, L > 0 and ρ ∈ (0, 1/2), we denote the solution of (2.1), (2.4) by
uL,α

ρ (t, x), where f is defined by (3.11). Since f(0) = f(1) = 0 and uL,α
ρ (0, x) ∈ [0, 1], it follows from the

parabolic maximum principle that uL,α
ρ (t, x) ∈ [0, 1] for all t ≥ 0 and x ∈ R.

Let 0 < ρ1 ≤ ρ2 < 1/2. Then, for all s ∈ [0, 1], s(1−s)(s−ρ1) ≥ s(1−s)(s−ρ2). Since uL,α
ρ2

(t, x) ∈ [0, 1]
for all t ≥ 0 and x ∈ R, uL,α

ρ2
is a subsolution of the equation satisfied by uL,α

ρ1
. It follows from the parabolic

maximum principle that uL,α
ρ1

≥ uL,α
ρ2

. ¤

B Numerical solution of (2.1)

The equation (with n = 1 and n = 2) was solved using Comsol Multiphysicsr time-dependent solver,
using second order finite element method (FEM). This solver uses a so-called lines approach method
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incorporating variable-order variable-stepsize backward differentiation formulas. Nonlinearity are treated
using a Newton’s method.

In the 1D case, for the numerical computation of L∗(α), we used a so-called “large” time (t = 50).
The solution of (2.1) was estimated by solving the problem on the bounded interval Ω = (−100, 100) with
Dirichlet boundary conditions. In the 2D case, we estimated the solution of (2.1) by solving the problem
on a bounded domain Ω = (−100, 100)× (−100, 100) with Dirichlet boundary conditions.

In both 1D and 2D cases, the outcome of the invasion was measured at t = 50 : the establishment stage
was considered to be successful if and only if min

x∈Ω
u(50, x) > ρ, where ρ is the Allee threshold defined in

(2.3). Note that this definition can lead to overestimate the success rate of the establishment stage if the
time required for the population density to be uniformly below ρ is larger than 50. However, in most cases
except when ρ was very close to 1/2, we observed that the outcome of the establishment stage was already
clear at t = 50.
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M. Moora, W. Nentwig, J. Ott, V. E. Panov, B. Reineking, C. Robinet, V. Semenchenko, W. Solarz,
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