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Abstract

 This study reports precise and accurate data for rare earth elements (REE) measured 

on eight geological reference materials, five enriched in REE (BE-N, BHVO-2, BR, BR-24 

and RGM-1) and three very depleted in REE (BIR-1, UB-N and DTS-2). Data were acquired 

by quadrupole ICP-MS after isolation of the REE using an ion-exchange chromatography 

procedure. All the measured REE abundances are similar within ! 5% (10% for the most 

REE-depleted sample DTS-2) to the high quality measurements previously published in the 

literature. We also show that using an internal Tm spike, the reproducibility  of the data is 

improved to ~1%.

 Applying this technique to the analysis of ultra-depleted rock samples (sub ng.g-1), we 

show that significant improvements are obtained relative to the routine trace element 

measurement method. The chondrite-normalized patterns are smooth instead of displaying 

irregularities. Although the classical method gives excellent results on REE-rich samples, we 

believe that our technique improves the precision and accuracy of measurements for highly 

REE-depleted rocks.

Introduction

 For decades, most geochemical studies use trace element data to identify geological 

processes such as melting of mantle sources or fractional crystallization of magmas 

(Henderson, 1984). In particular, the accurate determination of Rare Earth Element (REE) 

concentrations provides important information for the understanding of geological processes. 

Because of their high charge (trivalent cations except for Ce4+ under oxidizing conditions and 

Eu2+ under reducing conditions) and large radii, REE are incompatible elements during most 

mantle melting processes (White, 2003), and they  are usually more abundant in melt-derived 

rocks than in residual ultramafic rocks. The extreme REE-depletion currently observed in the 

latter type of samples (sub ng.g-1) explains why it is so difficult to measure them accurately 

(e.g. Nakamura and Chang, 2007).

 Quadrupole inductively coupled plasma-mass spectrometer (ICP-MS) is one of the 

most commonly used technique to quickly and precisely determine the REE concentrations, 
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even at sub "g.g-1 concentrations in rock samples. Nevertheless, when the concentrations are 

lower, at the sub ng.g-1 level, measurements using quadrupole ICP-MS become problematic 

due to sensitivity limitation. For samples very depleted in REE, other methods might thus be 

preferred. Isotopic dilution coupled with thermal ionization mass spectrometry  has a well-

established reputation as it provides very  precise data (i.e., Raczek et al., 2001). However, this 

method is time-consuming and only elements with more than one isotope can be measured. 

Other alternatives exist: for example, Willbold and Jochum (2005) use isotope dilution 

coupled to a sector field ICP-MS and Jain et al. (2000) use an ultrasonic desolvating 

nebulisation coupled to ICP-MS. These techniques provide very good data but they either 

require specific instruments or are significantly more time consuming than the usual ICP-MS 

analysis. 

 Nakamura and Chang (2007) reported recently precise REE data on highly depleted 

reference materials (PCC-1, DTS-1, DTS-2 and JP-1) using a quadrupole ICP-MS and 

appropriate mathematical corrections for oxide interferences. Although this method provides 

quite reproducible data (! 5%, 1#), it is also possible to enhance the signal and reduce the 

oxide interferences by isolating the REE from the other elements present in the rock sample 

(Hirata et al. 1988, Barrat et al. 1996). 

 Here, we describe a procedure including chemical separation of the REE and 

measurement by quadrupole ICP-MS. Based on this procedure, we report results for REE 

contents in eight geological reference materials (BE-N, BHVO-2, BR, BR-24, RGM-1, 

BIR-1, UB-N and DTS-2) as well as few ultra-depleted peridotites from New Caledonia. 

Analytical method

Chemical isolation of Rare Earth Elements

 The protocol described in this paper is adapted from the methods published by Strelow 

(1966) and Barrat et al. (1996). All procedures were carried out under cleanroom conditions, 

all acids (HCl, HNO3, HF and HClO4) were double distilled and de-ionized water (resistivity 

of 18.2 M$ cm-1) was used throughout the protocol.

 About 50 mg of sample powder is dissolved in a mixture of concentrated HF and 

HCLO4 (5:1) in Teflon containers maintained in steel jacket  PARR bombs at 140°C for five 

days to achieve complete dissolution. Samples are then transferred in clean Savillex teflon 
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beakers and placed on a hot plate at 150°C until the HF-HCLO4 mixture is completely 

evaporated. The residue is taken up in 3 mL of 6N HCl and a variable quantity  (depending on 

the estimated REE concentration in the sample) of a Tm solution is added to samples in order 

to have a final Tm spike concentration of ~15 ppb (see supplementary  table 1). The sample is 

heated at 100°C for 24 hours and finally evaporated. The dry residues are taken up in 2 mL of 

a mixture of 7N HNO3-6N HCl (3:1), fluxed for 12 hours, ultrasounded for 10 minutes and 

centrifuged for 5 minutes at 5000 rpm to verify the absence of solid residue. If necessary, 

these latter crucial steps are repeated because the presence of a solid residue could entrain a 

loss of REE.

 The 2 mL solution is loaded on a column (Biorad Poly-prep® columns) packed with 2 

mL of 200-400 mesh Biorad® AG50W-X8 cation resin and calibrated to isolate REE from 

most other elements present in rocks. The resin is conditioned with 10 mL of a 7N HNO3 - 6N 

HCl (3:1) mixture. All elements except REE are removed using 8 mL (1+1+6 mL) of HNO3-

HCl and REE are collected with 15 mL of 7N HNO3. A typical elution profile is shown in 

Figure 1 where we report counts for REE and other trace elements as measured in 2 mL acid 

fractions of an elution performed using a UB-N dissolution. Samples are then evaporated to 

dryness and a mixture of 1 mL 14N HNO3 and 0.5 mL 30% H2O2 is added to the residue to 

destroy any resin potentially  present in the beaker and finally dried down. Just before analysis 

on the ICP-MS, samples are taken up in a weighted quantity of 2% HNO3 that is adjusted to 

the required dilution factor (see supplementary table 1). 

Instrumental, acquisition time and wash cycle

 Measurements were carried out using an Agilent 7500ce quadrupole ICP-MS (Agilent 

Technologies). Samples were introduced with a quartz Micromist-type nebulizer with a quartz 

spray chamber cooled at 2°C. The operating conditions are optimized for maximum sensivity 

on 7Li, 89Y and 205Tl (typically 2 Mcps/ppm, 5 Mcps/ppm and 2.5 Mcps/ppm, respectively). 

The complete operating conditions are listed in Table 1. Blank contribution and oxide 

production data are summarized in supplementary table 2 available on the GGR website.

 Comparatively to light REE, heavy REE are generally  less abundant in samples and 

thus counting statistics dictate that a longer acquisition time improves errors on the 

measurements. Therefore, two different acquisition times were chosen: a acquisition time of 

0.60 second per mass for masses ranging from 137 (Ba) to 163 (Dy), and a longer acquisition 
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time of 1.20 second per mass for the heavier REE (165Ho to 175Lu). The total acquisition time 

per sample is estimated at 57.5 seconds. 

 The wash cycle between samples was optimized to ensure complete washout and 

equilibration of the entire system. It includes a 10 seconds wash with de-ionized water 

followed by a 120 seconds wash with 5% HNO3 and a 240 seconds wash with 2% HNO3. 

These washout times were chosen so that the number of counts at the end of the washing 

cycle was similar to those measured during the first  wash cycle, before any  sample was 

measured.

Calibration of the signal

 Calibration is performed using one blank solution and two different dilutions of the 

USGS natural reference material BHVO-2 that followed the same chemical separation as the 

samples. The set of REE concentrations used for BHVO-2 are those published by Eggins et 

al. (1997), but BHVO-2 was also measured as unknown: in this specific case, the signal was 

calibrated using the REE contents of BR published by  Eggins et al. (1997) (see Table 2 for 

results). The choice of BHVO-2 as the best natural standard was dictated by two factors: (a) 

Chauvel et al. (in press) estimated that  for an accurate determination of the trace element 

concentrations of samples as poor as BIR-1 or UB-N, it  was better to calibrate the ICP-MS 

signal with a rock standard not too rich in trace elements; (b) even if the REE concentrations 

in BHVO-2 are not certified, BHVO-2 is one of the most analyzed geological reference 

material and its REE content is well constrained (fourth among the 100 most frequently 

requested reference materials on the GeoReM  website; see GeoReM preferred values by 

Jochum and Nehring, 2006, and Jochum and Nohl, 2008). Finally, the blank and BHVO-2 

solutions were analyzed every five samples during the entire sequence of measurements. 

Interference and analytical drift corrections

 Several studies showed that oxygen reacts with some elements to form oxides during 

analyzes on ICP-MS (e.g. Cheatham et al., 1993; Dulski, 1994; Aries et al., 2000; Newman et 

al., 2009). Oxides of the light REE (LREE) cause interferences on intermediate REE (MREE) 

and for accurate determination of the MREE, a correction is required. As described by Dulski 

(1994), we correct the oxide interferences using a correction factor calibrated daily with 
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single element solutions of Ba and Ce, and a solution of mixed Pr and Nd. The main oxide 

interferences observed during the course of this work are listed in supplementary table 2. 

 When REE analyses are performed on samples simply dissolved but not chemically 

separated, Ba oxide interferences are significant and known to alter the results obtained for Eu 

contents (Dulski 1994, Aries et al. 2000, Nakamura and Chang 2007). In this case, corrections 

can represent up to 70% of the peak measured on mass 151 for highly  depleted samples. In 

our study, this interference is considerably reduced due to the removal, through chemical 

isolation of the REE, of a large proportion of the Ba present in the sample (> 80%) (Figure 1). 

Indeed, during the course of this study, the Ba oxide interference never represented more than 

0.04% of the total counts measured on mass 151 (Eu) (values for the other corrected oxide 

interferences are reported in supplementary table 2). Thus, complex interference corrections 

such as those described by Nakamura and Chang (2007) are not required here. Finally, 

instrumental drift was corrected using the drift on the Tm spike.

Procedural blank and detection limits

 To quantify the exogenous pollution during the analytical procedure, procedural blanks 

were prepared following the same procedure as used for rock samples. The average REE 

contents of 10 blanks performed over 1 year are given in supplementary Table 2. They range 

from 0.6 to 40 pg, values that are negligible relative to samples since the sample/blank ratio is 

at least higher than 100 for the most REE-depleted reference material DTS-2. Detection limits 

for all REE were determined as the concentration equivalent of three times the standard 

deviation of the procedural blank. Values expressed as rock equivalents are plotted in Figure 2 

and are listed in supplementary Table 2. They range from ~1 to 120 pg.g-1 values that  compare 

favorably to values published in the literature (often 10 to 10000 pg.g-1, see for example 

Eggins et al., 1997 and Willbold and Jochum, 2005). Our detection limits are thus sufficiently 

low relative to the REE concentrations of all the reference materials analyzed in this work, 

even for the ultra-depleted sample DTS-2 (Figure 2). 

Results and discussion

 The first analyzes were performed after chemical separation of the REE but without 

Tm spike addition. The REE signal was calibrated using two methods: pure REE solutions 
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and a BHVO-2 solution. There is usually  two different ways to calibrate the ICP-MS signal: 

multiple dilutions of synthetic solutions (e.g. Nakamura and Chang, 2010) and geological 

reference materials (e.g. Eggins et al., 1997). Synthetic solutions present the advantage of 

having certified concentrations, which should make the calculated results more accurate. In 

contrast, no geological reference material has certified values for its trace element contents. 

As a consequence, using as a reference for the signal calibration the element concentrations of 

geological reference materials make the analytical results dependent on the accuracy of the 

published concentrations. Nevertheless, Eggins et  al. (1997) pointed out that using a natural 

reference material to calibrate the signal presents the advantage of sample/standard matrix 

matching. In this case, both calibration standard and samples are prepared the same way and 

they  have similar major element compositions. In addition, all REE are present in natural 

proportions (i.e., higher abundances of the even elements relative to the odd elements), a 

situation that is not matched by the synthetic solutions. 

 In the initial stage of this study, we performed measurements of the geological 

reference material UB-N using these two calibration techniques. Figure 3 shows the deviation 

between our measured values and the values reported by Garbe-Schönberg (1993). Three 

dissolutions of UB-N were calibrated in two different ways: in the first case, we used 

commercial pure REE solutions (certified reference material CMS-1 with REE contents 

certified at 10 "g.g-1, Inorganic Ventures) and in the second case, we used BHVO-2 as 

reference material. Figure 3 shows clearly  that the BHVO-2 based calibration gives results 

similar within ± 5% to the values published by Garbe-Schönberg (1993), while those 

calculated using the REE solutions with different dilutions are always lower and strongly 

deviate from the published values, particularly  so for the MREE. It is unclear what causes the 

large deviation observed when pure REE solutions are used to calibrate the signal. The lack of 

sample/standard matrix matching as highlighted by Eggins et al. (1997) may explain part of 

the discrepancy since the chemical separation performed here reduces the matrix effect but 

does not completely eliminate all non-REE (Figure 1). However, other more complex and not 

well understood effects obviously  also contribute to the observed deviations, in particular 

those of the MREE. 

 Based on the experience shown in Figure 3, we calibrate the ICP-MS signal using the 

geological reference material BHVO-2. However, while calculated data for international rock 

material with very different REE contents were similar to published values for both LREE 
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and HREE, data for the MREE were occasionally lower than the literature values (~ 10%; 

Supplementary  Table 3, Figure 4). We believe that this MREE depletion is due to an 

interference of organic material on the masses used for the measurement of the MREE. 

Indeed, during the REE elution, minute quantities of resin might fall into the beaker in which 

the REE fraction is collected. If the proportion of organic material present in the beaker varies 

between samples and between BHVO-2 and the samples run as unknown, the calculation 

made for the interfered masses is wrong and systematically  biased. Addition of concentrated 

nitric acid and H2O2 to the sample after evaporation solved the problem, probably through 

destruction of organic molecules as visible with the noticed effervescence when H2O2 was 

added.

 The final improvement to the measuring technique consisted in the systematic addition 

of Tm spike to all samples in order to better correct the signal drift during ICP-MS 

measurement. In Table 2, we report REE concentrations obtained with and without Tm spike 

addition for eight  international geological reference materials (BE-N, BHVO-2, BIR-1, BR, 

BR-24, DTS-2, RGM-1 and UB-N). Results are also plotted as chondrite-normalized patterns 

in supplementary figure 1. The second column in Table 2 reports REE contents measured 

without performing a drift correction based on an internal standard while data reported in the 

forth column were obtained after addition of a Tm spike prior to chemical separation. In the 

latter case, the Tm spike was used to correct for drift through time during ICP-MS 

measurements. For each set of data, we calculated the external reproducibility expressed as 

the relative standard deviation in % (RSD) of the multiple independent determinations of each 

reference material (see Table 2). 

 As shown in supplementary figure 1, the REE data for all reference materials exhibit  

smooth patterns, generally consistent with the available literature values. However, the 

logarithmic scale used in this type of figure hides small differences and in Figures 5, 6 and 7, 

we choose to plot the deviations between our measurements and literature values to better 

evaluate the quality  of the REE data obtained in this study. With the exception of the highly 

REE-depleted DTS-2, relative deviations for all REE in all samples are < 5% (Figures 5, 6, 

7), and the RSD values for most REE are usually  smaller than 5%, even without using the Tm 

spike addition technique. Nevertheless, comparison of data obtained with and without spike 

addition shows that measurements performed using Tm spike are more reproducible, with 

lower RSD at about 1% (Table 2).
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 Results obtained for the most REE-depleted samples (BIR-1, UB-N and DTS-2, 

Figure 7) are also remarkably similar to high-quality data previously published. More 

specifically, our measurements of the reference materials BIR-1 and UB-N using the Tm 

spike are within 5% of the previously published data (Garbe-Schönberg, 1993; Willbold and 

Jochum, 2005; Bayon et al., 2009). Eu and Tb values for the spiked UB-N are slightly lower 

than those published by Bayon et al. (2009), but  are nevertheless consistent with the data 

published by Garbe-Schönberg (1993). For DTS-2, the most REE-depleted sample of all 

reference materials, few data have been published. Only Raczek et al. (2001) and Nakamura 

and Chang (2007) reported high-precision measurements for this sample, using ID-TIMS and 

ICP-MS respectively. When compared to these data, our results display differences generally 

smaller than 10% (see Figure 7 and supplementary figure 1). Considering the low REE 

content of this sample and the scarcity  of published data, it  seems that a ~10% difference is 

acceptable. Finally, the RSD values for DTS-2 are < 10% for the MREE and always < 5% for 

the other REE. 

 In summary, we believe that the most accurate and reproducible results are obtained 

(1) when the calibration is done with a geological reference material that follows the same 

chemical separation as the analyzed samples; (2) when concentrated nitric acid and H2O2 are 

added to the sample after chemical separation to destroy organic molecules coming from the 

resin; (3) when samples are spiked before chemical separation because it improves 

significantly the reproducibility of the analyses.

Application to highly REE-depleted samples: Example of the New Caledonia peridotites

 Here we apply the method to the determination of REE contents in New Caledonia 

harzburgites. These rocks are characterized by extremely low REE concentrations, probably 

due to multiple melting events (Ulrich et  al. 2010). Two samples previously analyzed by 

Ulrich et al. (2010) were selected and analyzed using the procedure presented in this study. 

Both are characterized by  a U-shaped REE pattern similar to the reference material DTS-2. 

The REE concentrations are also similar to DTS-2, at  the sub-"g.g-1 to ng.g-1 levels. Figure 8 

show a comparison between results obtained using the classical method (i.e., analysis of all 

trace elements after rock dissolution but without chemical separation, as described by 

Chauvel et al., in press) and those obtained with the method developed in this study  (data are 

available in the supplementary Table 4). Results obtained without chemical separation exhibit 
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irregular chondrite-normalized patterns attributed to the very weak signal during data 

acquisition and to the enhanced effect of interferences on minute peaks. In contrast, the REE 

data measured after chemical separation define smooth patterns, with little to no difference 

between spiked and not spiked samples (Figure 8). This illustrates the improvements brought 

by isolation of the REE for highly REE-depleted rocks. These results demonstrate that an 

improved protocol can provide more reliable data for highly depleted samples and contribute 

to a better interpretation of the REE patterns in terms of geological processes.

Conclusions

 We provide here a method for the accurate and reproducible measurement of REE in 

geological samples, including extremely  REE-depleted rocks. This includes powder sample 

dissolution, REE-separation using ion-exchange columns loaded with cation resin, and 

measurement with a quadrupole ICP-MS. This protocol, applied to eight magmatic reference 

materials (BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, RGM-1 and UB-N) gives good 

external errors (< 5%), even for the most  depleted samples (<10 %). The results are in good 

agreement with high quality data published in literature. We finally  demonstrate that for 

highly  REE-depleted samples (sub ng.g-1), this procedure provides smooth chondrite-

normalized patterns in contrast to the irregular patterns obtained using a classical analysis 

performed on whole rocks.
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Table and Supplementary Table captions

Table 1: Instrumental operating conditions.

Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, 

BR-24, DTS-2, RGM-1 and UB-N. Methods used in the various publications: Baker et al. 

(2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): ICP-MS; Chauvel et 

al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  

Nakamura and Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy 

et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-MS; Willbold and Jochum (2005): ID/SF-

ICP-MS. RSD = Relative Standard Deviation.

Supplementary Table 1: Dilution factor and amount of spike used for the various reference 

materials. 

Supplementary Table 2: Table providing the selected isotope for the analysis of each 

element, the total blanks, the detection limits and the corrected interferences. Values in 

parentheses correspond to the highest contribution of the oxide interference on the total 

counts measured on masses 151 (Eu), 157 (Gd), 159 (Tb) and 163 (Dy).

Supplementary Table 3: Results obtained for BIR 1, BR-24, RGM-1 and BHVO-2 without 

any H2O2 added before analysis on the ICP-MS.

Supplementary Table 4: Comparison between results obtained on two highly REE-depleted 

harzburgites from New Caledonia analyzed using our procedure (with and without spike 

addition) and using the classical trace-element protocol as described by Chauvel et al. (in 

press).

Figure Captions
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Figure 1: Elution curves for the REE as well as few other trace elements as measured on a 

UB-N sample using an ion-exchange column loaded with 2 mL of 200-400 mesh Biorad® 

AG50W-X8 cation resin. The trace element contents were measured in 2 mL fractions all 

along the elution profile.

Figure 2: Detection limits plotted as sample equivalents and compared to the DTS-2 

concentrations published by Nakamura and Chang (2007). 

Figure 3: Deviation between the UB-N values published by Garbe-Schönberg (1993) and 

results obtained on three dissolutions of UB-N. The three measurements were calibrated using 

two different methods: (1) a calibration based on several dilutions of a commercial pure REE 

solution (certified reference material CMS-1 with REE contents at 10 "g.g-1, Inorganic 

Ventures) and (2) a BHVO-2 calibration.

Figure 4: MREE depletion as observed during the analysis of BIR-1, BR-24, RGM-1 and 

BHVO-2 when no H2O2 is added to destroy  organic matter. Data are given in supplementary 

table 3.

Figure 5: Comparison of our measured values for BE-N, BR and BR-24 with values from the 

literature as listed in Table 2, for both spiked and not spiked samples. The grey area 

corresponds to a relative deviation of 5%. The error bars correspond to one standard deviation 

on duplicate analyses but in some cases, the error bar is smaller than the symbol.

Figure 6: Comparison of our measured values for BHVO-2 and RGM-1 with values from the 

literature as listed in Table 2, for both spiked and not spiked samples. The grey area 

corresponds to a relative deviation of 5%. The error bars correspond to one standard deviation 

on duplicate analyses but in some cases, the error bar is smaller than the symbol.

Figure 7: Comparison of our measured values for BIR-1, UB-N and DTS-2 with values from 

the literature as listed in Table 2. The grey  area corresponds to a relative deviation of 5% but 

for DTS-2 the field is extended to 10%. The error bars correspond to one standard deviation 

on duplicate analyses but in some cases, the error bar is smaller than the symbol.
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Figure 8: Comparison of the chondrite-normalized patterns measured on two highly REE-

depleted harzbugites from New Caledonia analyzed using our protocol (with and without 

spike addition) and using the classical trace-element protocol described by Chauvel et al. (in 

press). The chondritic values used for the normalization are from Anders and Grevesse 

(1989).

Supplementary figure 1: Chondrite-normalized patterns for BE-N, BHVO-2, BIR-1, BR, 

BR-24, DTS-2, RGM-1 and UB-N as measured in this study. Data acquired by others and 

listed in Table 2 are plotted for comparison. The chondritic values are from Anders and 

Grevesse (1989).
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Parameter Value

Instrument Agilent 7500ce
Plasma power 1550 W
Reflected power 1-5 W 
Torch Quartz glass torch 2.5mm with injector 
Sampling depth 8-9 mm 
Plasma cool gas flow 15 l.min-1 

Auxiliary gas flow 0.90 l.min-1 

Sample gas flow 1.00 l.min-1 

        Carrier gas flow 0.85 l.min-1 

        Makeup gas flow 0.15 l.min-1 

Nebuliser Quartz Micromist type 1 µL.min-1 - 400 µL.min-1

Spray chamber Quartz spray chamber, cooled at 2 °C
Sample uptake rate 0.12 ml.min-1

Sampling orifice  1.0 mm (made of Ni) 
Skimming orifice  0.4 mm (made of Ni)
Typical sensitivity 2 Mcps for 7Li, 5 Mcps for 89Y and 2.5 Mcps for 205Tl
Oxide ratio (156:140) < 1 % 
Double charge (70:140) < 3 % 
Acquisition mode Spectrum (multi Tune)
Samples per peak 3
Integration time per mass 0.6 s from 137Ba to 163Dy; 1.20 s from 165Ho to 175Lu
Number of scans 100
Calibration External
Internal standard 169Tm

Table 1: Instrumental operating conditions.



Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.
Table 2: Analytical results for geochemical reference materials BE-N, BHVO-2, BIR-1, BR, BR-24, DTS-2, 
RGM-1 and UB-N.

BE-NBE-NBE-NBE-NBE-NBE-NBE-N

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=4)without spike (n=4) with spike (n=4)with spike (n=4) Chauvel et al. (in 
press)

Baker et al. (2002)
Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Chauvel et al. (in 

press)
Baker et al. (2002)

La 83.9 1.3 83.5 0.5 82.5 82.29
Ce 154.0 1.3 155 0.1 155 152.3
Pr 17.4 1.3 17.6 0.1 17.4 17.09
Nd 66.2 2.1 66.6 0.6 67.7 65.98
Sm 11.7 3.9 12.2 0.3 12.2 12.03
Eu 3.57 4.1 3.67 1.1 3.67 3.619
Gd 9.52 0.5 9.75 1.1 9.87 9.771
Tb 1.21 3.4 1.25 0.7 1.26 -
Dy 6.37 3.2 6.39 1.1 6.32 6.397
Ho 1.06 1.8 1.09 0.3 1.09 -
Er 2.57 2.0 2.56 2.1 2.59 2.572
Tm 0.312 4.1 - - - -
Yb 1.81 4.5 1.88 0.6 1.84 1.771
Lu 0.24 5.5 0.244 3.3 0.245 0.2411

BRBRBRBRBRBRBR

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=4)without spike (n=4) with spike (n=5)with spike (n=5) Eggins et al. 
(1997)

Roy et al. (2002)
Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Eggins et al. 

(1997)
Roy et al. (2002)

La 83.2 1.0 83.6 0.2 82.1 82.13
Ce 153.0 1.0 154.0 0.4 152 154
Pr 17.7 2.2 17.6 1.2 17.36 17.52
Nd 67.3 2.0 66.9 0.3 66.1 67.37
Sm 12.1 2.5 12.2 2.2 12.11 12.2
Eu 3.63 0.1 3.63 0.4 3.58 3.65
Gd 9.63 1.8 9.49 0.3 9.57 9.61
Tb 1.24 3.0 1.29 4.0 1.29 1.32
Dy 6.4 1.6 6.36 1.1 6.3 6.4
Ho 1.08 0.9 1.08 0.9 1.087 1.09
Er 2.57 1.8 2.61 1.4 2.59 2.6
Tm 0.308 2.6 - - 0.303 -
Yb 1.8 0.7 1.84 3.3 1.81 1.85
Lu 0.246 1.9 0.243 2.7 0.251 0.24

BR 24BR 24BR 24BR 24BR 24BR 24BR 24

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=5)without spike (n=5) with spike (n=3)with spike (n=3) Carpentier et al. 
(2009)

Chauvel et al. 
(2010)

Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Carpentier et al. 

(2009)
Chauvel et al. 

(2010)

La 33.4 3.4 34.2 0.3 33.7 33.6
Ce 72.7 3.2 74.3 0.3 73.9 73.9
Pr 9.53 3.2 9.67 0.5 9.56 9.61
Nd 39.8 3.3 40.2 0.5 39.8 39.9
Sm 8.29 5.1 8.33 0.7 8.34 8.36
Eu 2.54 5.0 2.56 1.1 2.51 2.53
Gd 7.48 5.2 7.37 1.8 7.33 7.28
Tb 1.03 3.2 1.09 3.1 1.10 1.03
Dy 5.80 2.3 5.77 0.6 5.69 5.77
Ho 1.05 1.6 1.06 0.1 1.06 1.05
Er 2.68 2.0 2.76 0.9 2.73 2.7
Tm 0.349 1.8 - - - -
Yb 2.14 2.2 2.11 2.2 2.13 2.13
Lu 0.297 1.8 0.298 1.4 0.31 0.297

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.

Methods used in the various publications: Baker et al. (2002): ICP-MS; Bayon et al. (2009): ICP-MS; Carpentier et al. (2009): 
ICP-MS; Chauvel et al. (in press): ICP-MS; Eggins et al. (1997): ICP-MS; Garbe-Schönberg (1993): ICP-MS;  Nakamura and 
Chang (2007): ICP-MS; Raczek et al. (2001): ID/TIMS and MIC-SSMS; Roy et al. (2007): ICP-MS; Ryder et al. (2006): HR-ICP-
MS; Willbold and Jochum (2005): ID/SF-ICP-MS. RSD = Relative Standard Deviation.



Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)

RGM-1RGM-1RGM-1RGM-1RGM-1RGM-1RGM-1

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=4)without spike (n=4) with spike (n=3)with spike (n=3) Eggins et al. 
(1997)

Ryder et al. 
(2006)

Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Eggins et al. 

(1997)
Ryder et al. 

(2006)

La 23.5 0.4 23.2 1.8 23.2 23.1
Ce 47.1 0.9 46.3 2.0 45.9 45.3
Pr 5.47 1.4 5.34 0.9 5.32 5.33
Nd 19.3 1.1 19.1 1.7 19.1 19.3
Sm 3.82 2.8 3.88 2.2 3.94 3.96
Eu 0.579 1.5 0.575 2.0 0.547 0.637
Gd 3.78 1.7 3.54 4.8 3.56 3.66
Tb 0.572 3.8 0.597 4.5 0.605 0.599
Dy 3.67 1.9 3.62 0.1 3.6 3.65
Ho 0.769 0.9 0.764 0.7 0.769 0.766
Er 2.35 0.6 2.37 1.7 2.33 2.29
Tm 0.364 0.7 - - - 0.37
Yb 2.51 2.5 2.47 1.2 2.47 2.51
Lu 0.393 0.9 0.383 1.0 0.386 0.388

BHVO-2BHVO-2BHVO-2BHVO-2BHVO-2BHVO-2BHVO-2

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=4)without spike (n=4) with spike (n=5)with spike (n=5) Willbold and 
Jochum (2005)

Raczek et al. 
(2001)

Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Willbold and 

Jochum (2005)
Raczek et al. 

(2001)

La 15.3 0.9 15.3 1.3 15.3 15.2
Ce 37.8 1.1 37.8 1.1 37.6 37.5
Pr 5.41 1.7 5.38 0.6 5.31 5.29
Nd 24.6 1.3 24.5 0.3 24.5 24.5
Sm 6.10 3.6 6.04 1.0 6.04 6.07
Eu 2.06 3.0 2.06 0.5 2.05 2.07
Gd 6.24 2.4 6.27 0.7 6.23 6.24
Tb 0.922 1.7 0.92 0.7 0.933 0.936
Dy 5.29 1.0 5.29 1.0 5.29 5.31
Ho 0.978 0.8 0.977 0.8 0.964 0.972
Er 2.55 0.6 2.52 0.3 2.49 2.54
Tm 0.332 1.2 - - 0.321 0.341
Yb 1.99 1.2 1.98 0.2 1.95 2.00
Lu 0.275 1.1 0.269 1.4 0.269 0.274

BIR-1BIR-1BIR-1BIR-1BIR-1BIR-1BIR-1

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=4)without spike (n=4) with spike (n=3)with spike (n=3) Willbold and 
Jochum (2005)

Bayon et al. 
(2009)

Element

Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)
Willbold and 

Jochum (2005)
Bayon et al. 

(2009)

La - - 0.595 0.9 0.604 0.600
Ce - - 1.88 0.9 1.89 1.91
Pr - - 0.374 0.3 0.374 0.372
Nd - - 2.37 0.6 2.37 2.40
Sm - - 1.11 1.6 1.09 1.102
Eu - - 0.518 2.2 0.508 0.530
Gd - - 1.84 2.0 1.79 1.81
Tb - - 0.366 2.6 0.399 0.366
Dy - - 2.55 0.6 2.52 2.59
Ho - - 0.571 0.6 0.559 0.591
Er - - 1.74 0.8 1.68 1.74
Tm - - - - - -
Yb - - 1.63 1.0 1.62 1.63
Lu - - 0.245 0.7 0.241 0.243



Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)Table 2 (continued)

UB-NUB-NUB-NUB-NUB-NUB-NUB-N

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=3)without spike (n=3) with spike (n=5)with spike (n=5) Garbe-Schönberg 
(1993)

Bayon et al. 
(2009)

Element
Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)

Garbe-Schönberg 
(1993)

Bayon et al. 
(2009)

La 0.286 2.8 0.306 0.4 0.3 0.29
Ce 0.754 0.6 0.770 0.5 0.8 0.77
Pr 0.115 1.2 0.115 1.1 0.12 0.118
Nd 0.579 1.3 0.594 1.1 0.60 0.613
Sm 0.210 6.5 0.214 1.6 0.21 0.222
Eu 0.078 9.5 0.080 1.9 0.08 0.087
Gd 0.305 2.9 0.323 1.1 0.31 0.32
Tb 0.058 0.4 0.059 0.9 0.06 0.063
Dy 0.425 0.8 0.424 2.3 0.41 0.434
Ho 0.090 1.0 0.094 1.0 0.09 0.099
Er 0.284 5.3 0.287 0.4 0.28 0.299
Tm 0.041 1.5 - - 0.043 -
Yb 0.295 0.6 0.295 0.5 0.28 0.299
Lu 0.043 5.5 0.045 0.9 0.043 0.047

DTS-2DTS-2DTS-2DTS-2DTS-2DTS-2DTS-2

Element

This studyThis studyThis studyThis study ReferencesReferences

Element without spike (n=0)without spike (n=0) with spike (n=5)with spike (n=5) Raczek et al. 
(2001)

Nakamura et 
Chang (2007)

Element
Average (µg.g-1) RSD (%) Average (µg.g-1) RSD (%)

Raczek et al. 
(2001)

Nakamura et 
Chang (2007)

La - - 0.0124 3.3 0.0127 0.0132
Ce - - 0.0252 3.5 0.0254 0.0263
Pr - - 0.0030 4.2 0.0032 0.0033
Nd - - 0.0132 5.8 0.0131 0.0136
Sm - - 0.0027 8.2 0.00302 0.0033
Eu - - 0.0008 9.0 0.00087 0.0009
Gd - - 0.0037 3.5 0.00304 0.0038
Tb - - 0.0006 1.7 - 0.0006
Dy - - 0.0044 4.1 0.00419 0.0047
Ho - - 0.0012 2.1 - 0.0013
Er - - 0.0051 1.3 0.00465 0.0055
Tm - - - - - 0.0012
Yb - - 0.01 0.1 0.00963 0.0107
Lu - - 0.0021 3.2 0.002 0.0023


