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INTERIOR FEEDBACK STABILIZATION OF WAVE EQUATIONS WITH DYNAMIC

BOUNDARY DELAY

KAÏS AMMARI AND STÉPHANE GERBI

Abstract. In this paper we consider an interior stabilization problem for the wave equation with dynamic

boundary delay. We prove some stability results under the choice of damping operator. The proof of

the main result is based on a frequency domain method and combines a contradiction argument with the
multiplier technique to carry out a special analysis for the resolvent.
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1. Introduction

We study the interior stabilization of a wave equation in an open bounded domain Ω of Rn, n ≥ 2. We
denote by ∂Ω the boundary of Ω and we assume that ∂Ω = Γ0 ∪ Γ1, where Γ0, Γ1 are closed subsets of ∂Ω
with Γ0 ∩ Γ1 = ∅. Moreover we assume meas(Γ0) > 0. The system is given by:

utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− µut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.1)

where ν stands for the unit normal vector of ∂Ω pointing towards the exterior of Ω and ∂
∂ν is the normal

derivative. Moreover, the constant τ > 0 is the time delay, a and µ are positive numbers and the initial data
u0 , u1, f0 are given functions belonging to suitable spaces that will be precised later.

Let us first review some results for particular cases which seem to us interesting.
In the absence of the delay term (i.e. τ = 0) problem (1.1) becomes

utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− µut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.2)

This type of problems arise (for example) in modelling of longitudinal vibrations in a homogeneous bar
in which there are viscous effects. The term aut, indicates that the stress is proportional not only to the
strain, but also to the displacement rate (see [13] for instance). From the mathematical point of view, these
problems do not neglect acceleration terms on the boundary. Such type of boundary conditions are usually
called dynamic boundary conditions. They are not only important from the theoretical point of view but
also arise in several physical applications. For instance in one space dimension, problem (1.2) can modelize
the dynamic evolution of a viscoelastic rod that is fixed at one end and has a tip mass attached to its free
end. The dynamic boundary conditions represents the Newton’s law for the attached mass (see [12, 6, 17] for
more details). In the two dimension space, as showed in [49] and in the references therein, these boundary
conditions arise when we consider the transverse motion of a flexible membrane Ω whose boundary may be
affected by the vibrations only in a region. Also some dynamic boundary conditions as in problem (1.2)
appear when we assume that Ω is an exterior domain of R3 in which homogeneous fluid is at rest except for
sound waves. Each point of the boundary is subjected to small normal displacements into the obstacle (see
[9] for more details). This type of dynamic boundary conditions are known as acoustic boundary conditions.

Well-posedness and longtime behavior for analogous equations as (1.1) (without delay) on bounded do-
mains have been investigated by many authors in recent years (see, e.g., [25], [26], [45], [46]).

Among the early results dealing with this type of boundary conditions are those of Grobbelaar-Van Dalsen
[25, 26, 27] in which the author has made contributions to this field.

In [25] the author introduced a model which describes the damped longitudinal vibrations of a homoge-
neous flexible horizontal rod of length L when the end x = 0 is rigidly fixed while the other end x = L is
free to move with an attached load. This yields to a system of two second order equations of the form

utt − uxx − utxx = 0, x ∈ (0, L), t > 0,

u(0, t) = ut(0, t) = 0, t > 0,

utt(L, t) = − [ux + utx] (L, t), t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = v0 (x) x ∈ (0, L),
u (L, 0) = η, ut (L, 0) = µ .

(1.3)

2



By rewriting problem (1.3) within the framework of the abstract theories of the so-called B-evolution theory,
an existence of a unique solution in the strong sense has been shown. An exponential decay result was also
proved in [27] for a problem related to (1.3), which describe the weakly damped vibrations of an extensible
beam. See [27] for more details.

Subsequently, Zang and Hu [51], considered the problem

utt − p (ux)xt − q (ux)x = 0, x ∈ (0, 1) , t > 0,

u (0, t) = 0, t ≥ 0 ,

(p (ux)t + q (ux) (1, t) + kutt (1, t)) = 0, t ≥ 0 ,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, 1) .

(1.4)

By using the Nakao inequality, and under appropriate conditions on p and q, they established both expo-
nential and polynomial decay rates for the energy depending on the form of the terms p and q.

Similarly, and always in the absence of the delay term, Pellicer and Sol-Morales [46] considered the one
dimensional problem of (1.1) as an alternative model for the classical spring-mass damper system, and by
using the dominant eigenvalues method, they proved that for small values of the parameter a the partial
differential equations in problem (1.2) has the classical second order differential equation

m1u
′′(t) + d1u

′(t) + k1u(t) = 0,

as a limit, where the parameter m1 , d1 and k1 are determined from the values of the spring-mass damper
system. Thus, the asymptotic stability of the model has been determined as a consequence of this limit. But
they did not obtain any rate of convergence. This result was followed by recent works [45, 47]. In particular
in [47], the authors considered a one dimensional nonlocal nonlinear strongly damped wave equation with
dynamical boundary conditions. In other words, they looked to the following problem:

utt − uxx − αutxx + εf
(
u(1, t), ut(1,t)√

ε

)
= 0,

u(0, t) = 0,

utt(1, t) = −ε [ux + αutx + rut] (1, t)− εf
(
u(1, t), ut(1,t)√

ε

)
,

(1.5)

with x ∈ (0, 1), t > 0, r, α > 0 and ε ≥ 0. The above system models a spring-mass-damper system, where

the term εf
(
u(1, t), ut(1,t)√

ε

)
represents a control acceleration at x = 1. By using the invariant manifold

theory, the authors proved that for small values of the parameter ε, the solutions of (1.5) are attracted to a
two dimensional invariant manifold. See [47], for further details.

The main difficulty of the problem considered is related to the non ordinary boundary conditions defined
on Γ1. Very little attention has been paid to this type of boundary conditions. We mention only a few
particular results in the one dimensional space [29, 46, 23, 32].

A related problem to (1.2) is the following:

utt −∆u+ g(ut) = f in Ω× (0, T )

∂u

∂ν
+K(u)utt + h(ut) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω

ut(x, 0) = u1(x) in Ω

where the boundary term h(ut) = |ut|ρut arises when one studies flows of gas in a channel with porous
walls. The term utt on the boundary appears from the internal forces, and the nonlinearity K(u)utt on
the boundary represents the internal forces when the density of the medium depends on the displacement.
This problem has been studied in [23, 22]: by using the Fadeo-Galerkin approximations and a compactness
argument the authors proved the global existence and the exponential decay of the solution of the problem.

We recall some results related to the interaction of an elastic medium with rigid mass. By using the
classical semigroup theory, Littman and Markus [35] established a uniqueness result for a particular Euler-
Bernoulli beam rigid body structure. They also proved the asymptotic stability of the structure by using
the feedback boundary damping. In [36] the authors considered the Euler-Bernoulli beam equation which
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describes the dynamics of clamped elastic beam in which one segment of the beam is made with viscoelastic
material and the other of elastic material. By combining the frequency domain method with the multiplier
technique, they proved the exponential decay for the transversal motion but not for the longitudinal motion
of the model, when the Kelvin-Voigt damping is distributed only on a subinterval of the domain. In relation
with this point, see also the work by Chen et al. [16] concerning the Euler-Bernoulli beam equation with
the global or local Kelvin-Voigt damping. Also models of vibrating strings with local viscoelasticity and
Boltzmann damping, instead of the Kelvin-Voigt one, were considered in [37] and an exponential energy
decay rate was established. Recently, Grobbelaar-Van Dalsen [28] considered an extensible thermo-elastic
beam which is hanged at one end with rigid body attached to its free end, i.e. one dimensional hybrid
thermoelastic structure, and showed that the method used in [44] is still valid to establish an uniform
stabilization of the system. Concerning the controllability of the hybrid system we refer to the work by
Castro and Zuazua [14], in which they considered flexible beams connected by point mass and the model
takes account of the rotational inertia.

The purpose of this paper is to study problem (1.1), in which a delay term acted in the dynamic boundary
conditions. In recent years one very active area of mathematical control theory has been the investigation
of the delay effect in the stabilization of hyperbolic systems and many authors have shown that delays can
destabilize a system that is asymptotically stable in the absence of delays (see [2, 3, 21, 39, 40, 42] for more
details).

As it has been proved by Datko [19, Example 3.5], systems of the form{
wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, wx (1, t) = −kwt (1, t− τ) , t > 0,
(1.6)

where a, k and τ are positive constants become unstable for an arbitrarily small values of τ and any values
of a and k. In (1.6) and even in the presence of the strong damping −awxxt, without any other damping,
the overall structure can be unstable. This was one of the main motivations for considering problem (1.1)(
of course the structure of problem (1.1) and (1.6) are different due to the nature of the boundary conditions
in each problem).

Subsequently, Datko et al [21] treated the following one dimensional problem:
utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) = −kut(1, t− τ), t > 0,

(1.7)

which models the vibrations of a string clamped at one end and free at the other end, where u(x, t) is the
displacement of the string. Also, the string is controlled by a boundary control force (with a delay) at the
free end. They showed that, if the positive constants a and k satisfy

k
e2a + 1

e2a − 1
< 1,

then the delayed feedback system (1.7) is stable for all sufficiently small delays. On the other hand if

k
e2a + 1

e2a − 1
> 1,

then there exists a dense open set D in (0,∞) such that for each τ ∈ D, system (1.7) admits exponentially
unstable solutions.

It is well known that in the absence of delay in (1.7), that is for τ = 0, system (1.7) is uniformly
asymptotically stable under the condition a2 + k2 > 0 and the total energy of the solution satisfies for all
t > 0,

E(t, u) =

∫ 1

0

(u2
t + u2

x + a2u2)dx ≤ CE (0, u) e−αt (1.8)

for some positive constant α. See [15] for more details.
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Recently, Ammari et al [5] have treated the N−dimensional wave equation

utt(x, t)−∆u(x, t) + aut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

∂u

∂ν
(x, t) = −ku(x, t), x ∈ Γ1, t > 0,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ) ,

(1.9)

where Ω is an open bounded domain of RN , N ≥ 2 with boundary ∂Ω = Γ0 ∪ Γ1 and Γ0 ∩ Γ1 = ∅. Under
the usual geometric condition on the domain Ω, they showed an exponential stability result, provided that
the delay coefficient a is sufficiently small.

In [39] the authors examined a system of wave equation with a linear boundary damping term with a
delay. Namely, they looked to the following system

utt −∆u = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

∂u

∂ν
(x, t) = µ1ut(x, t) + µ2ut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x), x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = g0(x, t− τ) x ∈ Ω, τ ∈ (0, 1) ,

(1.10)

and proved under the assumption

µ2 < µ1 (1.11)

(which means that the weight of the feedback with delay is smaller than the one without delay) that null
stationary state is exponentially stable. On the contrary, if (1.11) does not hold, they found a sequence of
delays for which the corresponding solution of (1.10) will be unstable. The main approach used in [39], is
an observability inequality obtained with a Carleman estimate.

The case of time-varying delay (i.e. τ = τ(t) is a function depending on t) has been studied by Nicaise,
Valein and Fridman [43] in one space dimension. In their work, an exponential stability result was given
under the condition:

µ2 <
√

1− d µ1, (1.12)

where d is a constant such that

τ ′(t) ≤ d < 1, ∀t > 0. (1.13)

Delay effects arise in many applications and practical problems and it is well-known that an arbitrarily
small delay may destabilize a system which is uniformly asymptotically stable in absence of delay (see e.g.
[33, 34, 18, 21, 52]).

The stability of (1.1) with τ = 0, a = 0 has been studied in [1] where it has been shown that the system
is stable under some geometric condition on Γ1 (as in [7]). Moreover, if µ = 0, that is in absence of delay,
the above problem for any a > 0 is exponentially stable even. On the contrary, in presence of a delay term
there are instability phenomena probably, as in [39].

Let us also cite the recent work of Ammari and Nicaise, [4], in which the authors performed a complete
study of the stabilisation of elastic systems by collocated feedback with or without delay.

In this paper the idea is to contrast the effect of the time delay by using the dissipative feedback (i.e., by
giving the control in the feedback form a ut(x, t) or −a∆ut(x, t), x ∈ Ω, t > 0).

In the next section, we will show the global existence of problem (1.1) by transforming the delay term and
by using a semigroup approach. The natural question is then the stability of problem (1.1). This is the goal
of section 3. We will show that a “shifted” problem is asymptotically stable with a polynomial decay rate
and we cannot answer the question of the stability of problem (1.1). In fact, in the last section, numerical
experiments in 1D shows that under certain conditions, problem (1.1) is unstable.
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To stabilize problem (1.1), we will see that a Kelvin-Voigt damping is efficient. This is done in section 4.
Lastly, we will conduct some numerical examples in 1D to illustrate these stability or instability results.

2. Well-posedness of problem (1.1)

In this section we will first transform the delay boundary conditions by adding a new unknown. Then we
will use a semigroup approach and the Lumer-Phillips’ theorem to prove the existence and uniqueness of the
solution of the problem (1.1).

We point out that the well-posedness in evolution equations with delay is not always obtained. Recently,
Dreher, Quintilla and Racke have shown some ill-posedness results for a wide range of evolution equations
with a delay term [24].

2.1. Setup and notations. We present here some material that we shall use in order to prove the local
existence of the solution of problem (1.1). We denote

H1
Γ0

(Ω) =
{
u ∈ H1(Ω)/ uΓ0

= 0
}
.

By (., .) we denote the scalar product in L2(Ω) i.e. (u, v)(t) =

∫
Ω

u(x, t)v(x, t)dx. Also we mean by ‖.‖q
the Lq(Ω) norm for 1 ≤ q ≤ ∞, and by ‖.‖q,Γ1

the Lq(Γ1) norm.
Let T > 0 be a real number and X a Banach space endowed with norm ‖.‖X .
Lp(0, T ;X), 1 ≤ p <∞ denotes the space of functions f which are Lp over (0, T ) with values in X, which

are measurable and ‖f‖X ∈ Lp (0, T ). This space is a Banach space endowed with the norm

‖f‖Lp(0,T ;X) =

(∫ T

0

‖f‖pXdt

)1/p

.

L∞ (0, T ;X) denotes the space of functions f : ]0, T [ → X which are measurable and ‖f‖X ∈ L∞ (0, T ).
This space is a Banach space endowed with the norm:

‖f‖L∞(0,T ;X) = ess sup
0<t<T

‖f‖X .

We recall that if X and Y are two Banach spaces such that X ↪→ Y (continuous embedding), then

Lp (0, T ;X) ↪→ Lp (0, T ;Y ) , 1 ≤ p ≤ ∞ .

2.2. Semigroup formulation of the problem. In this section, we will prove the global existence and the
uniqueness of the solution of problem (1.1). We will first transform the problem (1.1) to the problem (2.3)
by making the change of variables (2.1), and then we use the semigroup approach to prove the existence of
the unique solution of problem (2.3).

To overcome the problem of the boundary delay, we introduce the new variable:

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Γ1, ρ ∈ (0, 1) , t > 0. (2.1)

Then, we have
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in Γ1 × (0, 1)× (0,+∞) . (2.2)

Therefore, problem (1.1) is equivalent to:

utt −∆u+ a ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− µz(x, 1, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,
ut(x, 0) = u1(x) x ∈ Ω ,
z(x, ρ, 0) = f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(2.3)

The first natural question is the existence of solutions of the problem (2.3). In this section we will give a
sufficient condition that guarantees that this problem is well-posed.

6



For this purpose we will use a semigroup formulation of the initial-boundary value problem (2.3). If we

denote V := (u, ut, γ1(ut), z)
T

, we define the energy space:

H = H1
Γ0

(Ω)× L2 (Ω)× L2(Γ1)× L2(Γ1 × (0, 1)).

Clearly, H is a Hilbert space with respect to the inner product

〈V1, V2〉H =

∫
Ω

∇u1.∇u2dx+

∫
Ω

v1v2dx+

∫
Γ1

w1w2dσ + ξ

∫
Γ1

∫ 1

0

z1z2dρdσ (2.4)

for V1 = (u1, v1, w1, z1)T , V2 = (u2, v2, w2, z2)T and ξ > 0 a nonnegative real number defined later.
Therefore, if V0 ∈H and V ∈H , the problem (2.3) is formally equivalent to the following abstract evolution
equation in the Hilbert space H : {

V ′(t) = A V (t), t > 0,

V (0) = V0,
(2.5)

where ′ denotes the derivative with respect to time t, V0 := (u0, u1, γ1(u1), f0(.,−.τ))
T

and the operator A
is defined by:

A


u

v

w

z

 =



v

∆u− a v

−∂u
∂ν
− µz (., 1)

−1

τ
zρ


.

The domain of A is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
×H1

Γ0
(Ω)× L2(Γ1)× L2

(
Γ1;H1(0, 1)

)
, (2.6)

w = γ1(v) = z(., 0) on Γ1. (2.7)

Let us finally define ξ? = µτ . For all ξ > ξ?,we also define µ1 =
ξ

2τ
+
µ

2
and Ad = A − µ1 I.

The well-posedness of problem (2.3) is ensured by:

Theorem 2.1. Let V0 ∈H , then there exists a unique solution V ∈ C (R+; H ) of problem (2.5). Moreover,
if V0 ∈ D (A ), then

V ∈ C (R+; D (A )) ∩ C1 (R+; H ) .

Proof. To prove Theorem 2.1, we first prove that there exists a unique solution V ∈ C (R+; H ) of the shifted
problem: {

V ′(t) = AdV (t), t > 0,

V (0) = V0,
(2.8)

Then as A = Ad + µ1 I, there will exist V ∈ C (R+; H ) solution of problem (2.5).
In order to prove the existence and uniqueness of the solution of problem (2.8) we use the semigroup

approach and the Lumer-Phillips’ theorem.
Indeed, let V = (u, v, w, z)T ∈ D (A ). By definition of the operator A and the scalar product of H , we

have:

〈A V, V 〉H =

∫
Ω

∇u.∇vdx+

∫
Ω

v∆udx−
∫

Ω

a|v(x)|2dx

+

∫
Γ1

w

(
−∂u
∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫
Γ1

∫ 1

0

zzρdρdσ.

By Green’s formula we obtain:

〈A V, V 〉H = −
∫

Ω

a|v(x)|2dx− µ
∫

Γ1

z (σ, 1)wdσ − ξ

τ

∫
Γ1

∫ 1

0

zρzdρdx. (2.9)
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But we have:

ξ

τ

∫
Γ1

∫ 1

0

zρz(σ, ρ) dρ dσ =
ξ

2τ

∫
Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ) dρ dσ

=
ξ

2τ

∫
Γ1

(
z2(σ, 1, t)− z2(σ, 0)

)
dσ . (2.10)

Thus from the compatibility condition (2.7), we get:

− ξ

τ

∫
Γ1

∫ 1

0

zρz dρ dσ =
ξ

2τ

∫
Γ1

(
v2 − z2(σ, 1, t)

)
dσ .

Therefore equation (2.9) becomes:

〈A V, V 〉H = −
∫

Ω

a|v(x)|2dx− ξ

2τ

∫
Γ1

∫ 1

0

z2(σ, 1, t)dσ +
ξ

2τ

∫
Γ1

|v|2(σ)dσ

−µ
∫

Γ1

z (σ, 1)wdσ .
(2.11)

To treat the last term in the preceding equation,Young’s inequality gives:

−
∫

Γ1

v(σ)z (σ, 1) dσ ≤ 1

2

∫
Γ1

z2 (σ, 1) dσ +
1

2

∫
Γ1

v2(σ, t)dσ . (2.12)

Therefore, we firstly get:

〈A V, V 〉H +

∫
Ω

a|v(x)|2dx−
(
ξ

2τ
+
µ

2

)∫
Γ1

|v(σ)|2dσ +

(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ ≤ 0 , (2.13)

which writes

〈A V, V 〉H +

∫
Ω

a|v(x)|2dx− µ1

∫
Γ1

|v(σ)|2dσ +

(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ ≤ 0 .

From the preceding inequality, we get:〈(
A − µ1 I

)
V, V

〉
H
≤ −

∫
Ω

a|v(x)|2dx−
(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ . (2.14)

As ∀ξ > ξ? ,

(
ξ

2τ
− µ

2

)
> 0, we finally get:〈(

A − µ1 I
)
V, V

〉
H
≤ 0 . (2.15)

Thus the operator Ad = A − µ1 I is dissipative.
Now we want to show that ∀λ > 0 , ∀ξ > ξ? , λI − Ad is surjective. To prove that, it is clear that it

suffices to show that λI −A is surjective for all λ > 0.
For F = (f1, f2, f3, f4)T ∈H , let V = (u, v, w, z)T ∈ D (A ) solution of

(λI −A )V = F,

which is:

λu− v = f1, (2.16)

λv −∆u+ av = f2, (2.17)

λw +
∂u

∂ν
+ µz(., 1) = f3, (2.18)

λz +
1

τ
zρ = f4. (2.19)

To find V = (u, v, w, z)T ∈ D (A ) solution of the system (2.16), (2.17), (2.18) and (2.19), we suppose u
is determined with the appropriate regularity. Then from (2.16), we get:

v = λu− f1 . (2.20)
8



Therefore, from the compatibility condition on Γ1, (2.7), we determine z(., 0) by:

z(x, 0) = v(x) = λu(x)− f1(x), for x ∈ Γ1. (2.21)

Thus, from (2.19), z is the solution of the linear Cauchy problem:{
zρ = τ

(
f4(x)− λz(x, ρ)

)
, for x ∈ Γ1 , ρ ∈ (0, 1),

z(x, 0) = λu(x)− f1(x).
(2.22)

The solution of the Cauchy problem (2.22) is given by:

z(x, ρ) = λu(x)e−λρτ − f1e
−λρτ + τe−λρτ

∫ ρ

0

f4(x, σ)eλστdσ for x ∈ Γ1 , ρ ∈ (0, 1). (2.23)

So, we have at the point ρ = 1,

z(x, 1) = λu(x)e−λτ + z1(x), for x ∈ Γ1 (2.24)

with

z1(x) = −f1e
−λτ + τe−λτ

∫ 1

0

f4(x, σ)eλστdσ, for x ∈ Γ1.

Since f1 ∈ H1
Γ0

(Ω) and f4 ∈ L2(Γ1)× L2(0, 1), then z1 ∈ L2(Γ1).
Consequently, knowing u, we may deduce v by (2.20), z by (2.23) and using (2.24), we deduce w = γ1(v)

by (2.18).
From equations (2.17) and (2.18), u must satisfy:

λ(λ+ a)u−∆u = f2 + (λ+ a)f1, in Ω (2.25)

with the boundary conditions

u = 0, on Γ0 (2.26)

∂u

∂ν
= f3 − λz(., 0)− µz(., 1), on Γ1. (2.27)

Using the preceding expression of z(., 1) and the expression of v given by (2.20), we have:

∂u

∂ν
= −

(
λ2 + µλe−λτ

)
u+ f(x), for x ∈ Γ1 (2.28)

with
f(x) = f3(x) + λf1(x)− µz1(x), for x ∈ Γ1 .

From the regularity of f3 , f2 , z1, we get f ∈ L2(Γ1).
The variational formulation of problem (2.25), (2.26),(2.28) is to find u ∈ H1

Γ0
(Ω) such that:∫

Ω

λ(λ+ a)uω +∇u∇ωdx +

∫
Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ, (2.29)

=

∫
Ω

(f2 + (λ+ a)f1)ωdx+

∫
Γ1

f(σ)ω(σ)dσ,

for any ω ∈ H1
Γ0

(Ω). Since λ > 0, µ > 0, the left hand side of (2.29) defines a coercive bilinear form on

H1
Γ0

(Ω). Thus by applying the Lax-Milgram theorem, there exists a unique u ∈ H1
Γ0

(Ω) solution of (2.29).

Now, choosing ω ∈ C∞c , u is a solution of (2.25) in the sense of distribution and therefore u ∈ H2(Ω)∩H1
Γ0

(Ω).
Thus using the Green’s formula and exploiting the equation (2.25) on Ω, we obtain finally:∫

Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ +

〈
∂u

∂ν
;ω

〉
Γ1

=

∫
Γ1

f(σ)ω(σ)dσ ∀ω ∈ H1
Γ0

(Ω) .

So u ∈ H2(Ω) ∩H1
Γ0

(Ω) verifies (2.28) and we recover u and v and thus by (2.23), we obtain z and finally

setting w = γ1(v), we have found V = (u, v, w, z)T ∈ D (A ) solution of (I −A )V = F .
Thus from the Lumer-Phillips’ theorem, there exists a unique solution V ∈ C (R+; H ) of the shifted

problem (2.8). This completes the proof of Theorem 2.1. �

Remark 2.2. According to the above the operator Ad generates a C0 semigroup of contractions etAd on
H .
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3. Asymptotic behavior

In this section, we show that if ξ > ξ∗, the semigroup etAd decays to the null steady state with a polynomial
decay rate for regular initial data. To obtain this, our technique is based on a frequency domain method
and combines a contradiction argument with the multiplier technique to carry out a special analysis for the
resolvent.

Theorem 3.1. Let ξ > ξ∗. Then there exists a constant C > 0 such that, for all V0 ∈ D(Ad), the semigroup
etAd satisfies the following estimate∥∥etAdV0

∥∥
H
≤ C√

t
‖V0‖D(Ad) ,∀ t > 0. (3.1)

Remark 3.2. Let us notice that although the semigroup etAd generates a polynomial stability, we cannot
conclude on the stability of the semigroup etA .

Indeed let us consider V0 ∈ D(A ) and Ṽ0 = V0 − µ1V0, and the two following problems:{
V ′ = A V
Vt=0 = V0

and

{
Ṽ ′ = AdṼ

Ṽt=0 = Ṽ0 .

Given V0 = (u0, u1, γ1(u1), z0)T ∈ D(A ), the second problem writes in term of
V = (u, ut, γ1(ut), z)

T :

utt −
1

1 + µ1
∆u+

a+ µ1

1 + µ1
ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− µz(x, 1, t)− µut(x, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) + µ1τz(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = (1− µ1)u0(x) x ∈ Ω ,
ut(x, 0) = (1− µ1)u1(x) x ∈ Ω ,
z(x, ρ, 0) = (1− µ1)f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(3.2)

We call this problem the “shifted” problem.
By Duhamel’s formula, we get:

∀t > 0 , e−µ1tV (t) =
−e−µ1t

1 + µ1
V0 +

Ṽ (t)

1 + µ1
− µ1

1 + µ1

∫ t

0

e−µ1(t−s) Ṽ (s)ds . (3.3)

The first two terms of the right hand side of equation (3.3) tends to zero as t tends to infinity. So we obtain:

V (t) '
∫ t

0

eµ1s Ṽ (s)ds .

We only know at this stage that ‖Ṽ (s)‖D(Ad) tends to zero at least as s−1/2, and thus ‖V (t)‖D(A ) may tend
to zero or blow-up in infinite time. We will illustrate this behavior by numerical examples in 1D in the last
section of this work.

Proof of theorem 3.1. We will use the following frequency domain theorem for polynomial stability from [10]
(see also [8, 38] for weaker variants) of a C0 semigroup of contractions on a Hilbert space:

Lemma 3.3. A C0 semigroup etL of contractions on a Hilbert space H satisfies

||etLU0||H ≤
C

t
1
θ

||U0||D(L)

for some constant C > 0 and for θ > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (3.4)

and

lim sup
|β|→∞

1

βθ
‖(iβI − L)−1‖L(H) <∞, (3.5)
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where ρ(L) denotes the resolvent set of the operator L.

Remark 3.4. In view of this theorem we need to identify the spectrum of Ad lying on the imaginary
axis. Unfortunately, as the embedding of L2

(
Γ1, H

1(0, 1)
)

into L2 (Γ1 × (0, 1)) = L2
(
Γ1 × L2(0, 1)

)
is not

compact, Ad has not a compact resolvent. Therefore its spectrum σ(Ad) does not consist only of eigenvalues
of Ad. We have then to show that :

(1) if β is a real number, then iβI −Ad is injective and
(2) if β is a real number, then iβI −Ad is surjective.

It is the objective of the two following lemmas.

First we look at the point spectrum of Ad.

Lemma 3.5. If β is a real number, then iβ is not an eigenvalue of Ad.

Proof. We will show that the equation

AdZ = iβZ (3.6)

with Z = (u, v, w, z)T ∈ D(Ad) and β ∈ R has only the trivial solution.
Equation (3.6) writes :

(iβ + µ1)u− v = 0, (3.7)

(iβ + µ1)v −∆u+ av = 0, (3.8)

(iβ + µ1)w +
∂u

∂ν
+ µz(., 1) = 0, (3.9)

(iβ + µ1)z +
1

τ
zρ = 0 . (3.10)

By taking the inner product of (3.6) with Z and using (2.14), we get:

< (< AdZ,Z >H ) ≤ −
∫

Ω

a |v(x)|2 dx−
(
ξ

2τ
− µ

2

) ∫
Γ1

|z(σ, 1)|2 dσ. (3.11)

Thus we firstly obtain that:

v = 0 and z(., 1) = 0.

Next, according to (3.7), we have v = (iβ + µ1) u.
Thus we have u = 0; since w = γ1(v) = z(., 0), we obtain also w = 0 and z(., 0) = 0. Moreover as z
satisfies (3.10) by integration, we obtain:

z(., ρ) = z(., 0) e−τ(iβ+µ1)ρ.

But as z(., 0) = 0, we finally have z = 0.
Thus the only solution of (3.6) is the trivial one. �

Next, we show that Ad has no continuous spectrum on the imaginary axis.

Lemma 3.6. Let ξ > ξ∗. If β is a real number, then iβ belongs to the resolvent set ρ(Ad) of Ad.

Proof. In view of Lemma 3.5 it is enough to show that iβI −Ad is surjective.
For F = (f1, f2, f3, f4)T ∈H , let V = (u, v, w, z)T ∈ D (Ad) solution of

(iβI −Ad)V = F,

which is:

(iβ + µ1)u− v = f1, (3.12)

(iβ + µ1)v −∆u+ av = f2, (3.13)

(iβ + µ1)w +
∂u

∂ν
+ µz(., 1) = f3, (3.14)

(iβ + µ1)z +
1

τ
zρ = f4. (3.15)

11



To find V = (u, v, w, z)T ∈ D (Ad) solution of the system (3.12), (3.13), (3.14) and (3.15), we suppose u
is determined with the appropriate regularity. Then from (3.12), we get:

v = (iβ + µ1)u− f1 . (3.16)

Therefore, from the compatibility condition on Γ1, equation (2.7), we determine z(., 0) by:

z(x, 0) = v(x) = (iβ + µ1)u(x)− f1(x), for x ∈ Γ1. (3.17)

Thus, from (3.15), z is the solution of the linear Cauchy problem:{
zρ = τ

(
f4(x)− (iβ + µ1)z(x, ρ)

)
, for x ∈ Γ1 , ρ ∈ (0, 1),

z(x, 0) = (iβ + µ1)u(x)− f1(x).
(3.18)

The solution of the Cauchy problem (3.18) is given by: for x ∈ Γ1 , ρ ∈ (0, 1)

z(x, ρ) = (iβ + µ1)u(x)e−(iβ+µ1)ρτ − f1e
−(iβ+µ1)ρτ + τe−(iβ+µ1)ρτ

∫ ρ

0

f4(x, σ)e(iβ+µ1)στdσ (3.19)

So, we have at the point ρ = 1,

z(x, 1) = (iβ + µ1)u(x)e−(iβ+µ1)τ + z1(x), for x ∈ Γ1 (3.20)

with

z1(x) = −f1e
−(iβ+µ1)τ + τe−(iβ+µ1)τ

∫ 1

0

f4(x, σ)e(iβ+µ1)στdσ, for x ∈ Γ1.

Since f1 ∈ H1
Γ0

(Ω) and f4 ∈ L2(Γ1)× L2(0, 1), then z1 ∈ L2(Γ1).
Consequently, knowing u, we may deduce v by (3.16), z by (3.19) and using (3.20), we deduce w = γ1(v)

by (3.14).
From equations (3.13) and (3.14), u must satisfy:

(iβ + µ1)(iβ + µ1 + a)u−∆u = f2 + (iβ + µ1 + a)f1, in Ω (3.21)

with the boundary conditions

u = 0, on Γ0 (3.22)

∂u

∂ν
= f3 − (iβ + µ1)z(., 0)− µz(., 1), on Γ1. (3.23)

Using the preceding expression of z(., 1) and the expression of v given by (3.16), we have:

∂u

∂ν
= −

(
(iβ + µ1)2 + µβe−(iβ+µ1)τ

)
u+ f(x), for x ∈ Γ1 (3.24)

with

f(x) = f3(x) + (iβ + µ1)f1(x)− µz1(x), for x ∈ Γ1 .

From the regularity of f3 , f2 , z1, we get f ∈ L2(Γ1).
The variational formulation of problem (3.21), (3.22),(3.24) is to find u ∈ H1

Γ0
(Ω) such that

for any ω ∈ H1
Γ0

(Ω):∫
Ω

(
(iβ + µ1)(iβ + µ1 + a)uω̄ +∇u∇ω̄

)
dx

+

∫
Γ1

(
(iβ + µ1)2 + µ(iβ + µ1)e−(iβ+µ1)τ

)
u(σ)ω̄(σ)dσ

=

∫
Ω

(f2 + (iβ + µ1 + a)f1) ω̄dx+

∫
Γ1

f(σ)ω̄(σ)dσ

(3.25)
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Multiplying the preceding equation by −iβ + µ1 leads to, for any ω ∈ H1
Γ0

(Ω):∫
Ω

(
|iβ + µ1|2(iβ + µ1 + a)uω̄ + (−iβ + µ1)∇u∇ω̄

)
dx

+

∫
Γ1

|iβ + µ1|2
(
iβ + µ1 + µe−(iβ+µ1)τ

)
u(σ)ω̄(σ)dσ

=

∫
Ω

(−iβ + µ1) (f2 + (iβ + µ1 + a)f1) ω̄dx

+

∫
Γ1

(−iβ + µ1) f(σ)ω̄(σ)dσ.

(3.26)

Since µ1 > µ > 0, the left hand side of (3.26) defines a coercive sesquilinear form on H1
Γ0

(Ω). Thus by

applying the Lax-Milgram theorem, there exists a unique u ∈ H1
Γ0

(Ω) solution of (3.25). Now, choosing
ω ∈ C∞c , u is a solution of (3.21) in the sense of distribution. Using the regularity of f1 and f2, we finally
have u ∈ H2(Ω) ∩ H1

Γ0
(Ω). Thus using the Green’s formula and exploiting the equation (3.21) on Ω, we

obtain finally: ∀ω ∈ H1
Γ0

(Ω),∫
Γ1

(
(iβ + µ1)2 + µ(iβ + µ1)e−(iβ+µ1)τ

)
u(σ)ω(σ)dσ +

〈
∂u

∂ν
;ω

〉
Γ1

=

∫
Γ1

f(σ)ω(σ)dσ .

So u ∈ H2(Ω) ∩ H1
Γ0

(Ω) verifies (3.24). Then we recover v by equation (3.12) and by equation (3.19), we

obtain z. Finally setting w = γ1(v), we have found V = (u, v, w, z)T ∈ D (Ad) solution of (iβI −Ad)V = F .
�

The following lemma shows that (3.5) holds with L = Ad and θ = 2.

Lemma 3.7. The resolvent operator of Ad satisfies condition (3.5) for θ = 2.

Proof. Suppose that condition (3.5) is false with θ = 2. By the Banach-Steinhaus Theorem (see [11]), there
exists a sequence of real numbers βn → +∞ and a sequence of vectors Zn = (un, vn, wn, zn)t ∈ D(Ad) with
‖Zn‖H = 1 such that

||β2
n(iβnI −Ad)Zn||H → 0 as n→∞, (3.27)

i.e.,

βn ((iβn + µ1)un − vn) ≡ fn → 0 in H1
Γ0

(Ω), (3.28)

βn (iβnvn −∆un + (µ1 + a)vn) ≡ gn → 0 in L2(Ω), (3.29)

βn

(
(iβn + µ1)wn +

∂un
∂ν

+ µzn(., 1)

)
≡ hn → 0 in L2(Γ1), (3.30)

βn

(
(iβn + µ1)zn +

1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)) (3.31)

since βn ≤ β2
n.

Our goal is to derive from (3.27) that ||Zn||H converges to zero, thus there is a contradiction.
We first notice that we have

||β2
n(iβnI −Ad)Zn||H ≥ |<

(
〈β2
n(iβnI −Ad)Zn, Zn〉H

)
|. (3.32)

Then, by (3.11) and (3.27),

βn vn → 0, in L2(Ω), βn zn(., 1)→ 0, in L2(Γ1), (3.33)

and

un → 0, ∆un → 0 in L2(Ω)⇒ un → 0 in H1
Γ0

(Ω) . (3.34)

This further leads, by (3.30) and the trace theorem, to

wn → 0 in L2(Γ1). (3.35)

Moreover, since Zn ∈ D(Ad), we have, by (3.35),

zn(., 0)→ 0 in L2(Γ1). (3.36)
13



We have

zn(., ρ) = zn(., 0) e−(iβn+µ1)τρ +

∫ ρ

0

e−(iβn+µ1)τ(ρ−s) τkn(s)

βn
ds. (3.37)

Which implies, according to (3.37), (3.36) and (3.31), that

zn → 0 in L2(Γ1 × (0, 1))

and clearly contradicts ‖Zn‖H = 1. �

The two hypotheses of Lemma 3.3 are proved by Lemma 3.7 and Lemma 3.6. Then (3.1) holds. The
proof of Theorem 3.1 is then finished. �

4. Changing the damping law

Let us consider now the same system as (1.1) but with a Kelvin-Voigt damping. The system is given by:

utt −∆u− a∆ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− a ∂ut
∂ν
− µut(x, t− τ) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,

ut(x, 0) = u1(x) x ∈ Ω ,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ).

(4.1)

Which, as above, is equivalent to:

utt −∆u− a∆ut = 0, x ∈ Ω, t > 0 ,

u(x, t) = 0, x ∈ Γ0, t > 0 ,

utt(x, t) = −∂u
∂ν

(x, t)− a∂ut
∂ν

(x, t)− µz(x, 1, t), x ∈ Γ1, t > 0 ,

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1) , t > 0 ,

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0 ,

u(x, 0) = u0(x) x ∈ Ω ,
ut(x, 0) = u1(x) x ∈ Ω ,
z(x, ρ, 0) = f0(x,−τρ) x ∈ Γ1, ρ ∈ (0, 1) .

(4.2)

Let the operator Akv defined by:

Akv


u

v

w

z

 =



v

∆u+ a∆v

−∂u
∂ν
− a∂v

∂ν
− µz (., 1)

−1

τ
zρ


.

The domain of Akv is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
×H1

Γ0
(Ω)× L2(Γ1)× L2

(
Γ1;H1(0, 1)

)
, (4.3)

∂v

∂ν
∈ L2(Γ1), (4.4)

w = γ1(v) = z(., 0) on Γ1. (4.5)

Notations:
For c ∈ R, we define:

CΩ(c) = inf
u∈H1

Γ0
(Ω)

‖∇u‖22 + c‖u‖22,Γ1

‖u‖22
(4.6)
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CΩ(c) is the first eigenvalue of the operator −∆ under the Dirichlet-Robin boundary conditions:{
u(x) = 0, x ∈ Γ0

∂u

∂ν
(x) + cu(x) = 0 x ∈ Γ1 .

(4.7)

From Kato’s perturbation theory [30] (see also [31, Theorem 1.3.1]), CΩ(c) is a continuous increasing function.
From Poincar’s inequality and the continuity of the trace operator γ1, we have CΩ(0) > 0 and CΩ(c)→ −∞
as c→ −∞. Thus it exists a unique c? < 0 such that:

CΩ(c?) = 0 . (4.8)

In the following, we fix ξ = µτ in the norm (2.4). We will see in the next result why this choice is well
adapted.

Theorem 4.1. Suppose that aand µ satisfy the following assumption:

µ < |c?|a. (4.9)

Then, the operator Akv generates a C0 semigroup of contractions on H . We have, in particular, if V0 ∈H ,
then there exists a unique solution V ∈ C (R+; H ) of problem (4.1). Moreover, if V0 ∈ D (Akv), then

V ∈ C (R+; D (Akv)) ∩ C1 (R+; H ) .

Proof. To prove Theorem 4.1, we use again the semigroup approach and the Lumer-Phillips’ theorem.
For this purpose, we show firstly that the operator Akv is dissipative.
Indeed, let V = (u, v, w, z)T ∈ D (Akv). By definition of the operator Akv and the scalar product of H ,

we have:

〈AkvV, V 〉H =

∫
Ω

∇u.∇vdx+

∫
Ω

v (∆u+ a∆v) dx

+

∫
Γ1

w

(
−∂u
∂ν
− a∂v

∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫
Γ1

∫ 1

0

zzρdρdσ.

Applying Green’s formula and the compatibility condition w = γ1(v), we obtain:

〈AkvV, V 〉H = −µ
∫

Γ1

z (σ, 1)wdσ − a
∫

Ω

|∇v|2 dx− ξ

τ

∫
Γ1

∫ 1

0

zρzdρdx. (4.10)

But we have:

ξ

τ

∫
Γ1

∫ 1

0

zρz(σ, ρ, t) dρ dσ =
ξ

2τ

∫
Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ, t) dρ dσ

=
ξ

2τ

∫
Γ1

(
z2(σ, 1, t)− z2(σ, 0, t)

)
dσ . (4.11)

Thus from the compatibility condition (2.7), we get:

− ξ

τ

∫
Γ1

∫ 1

0

zρz dρ dσ =
ξ

2τ

∫
Γ1

(
v2 − z2(σ, 1, t)

)
dσ .

Therefore equation (4.10) becomes:

〈AkvV, V 〉H = −a
∫

Ω

|∇v|2 dx+
ξ

2τ

∫
Γ1

v2dσ − ξ

2τ

∫
Γ1

∫ 1

0

z2(σ, 1, t)dσ

−µ
∫

Γ1

v(σ, t)z (σ, 1) dσ .
(4.12)

To treat the last term in the preceding equation, Young’s inequality gives:

−
∫

Γ1

v(σ, t)z (σ, 1) dσ ≤ 1

2

∫
Γ1

z2 (σ, 1) dσ +
1

2

∫
Γ1

v2(σ, t)dσ . (4.13)

Therefore, we firstly get:

〈AkvV, V 〉H + a

∫
Ω

|∇v|2 dx−
(
ξ

2τ
+
µ

2

)∫
Γ1

v2dσ +

(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1, t)dσ ≤ 0 .

15



At this point, as ξ = µτ , the previous inequality becomes:

〈AkvV, V 〉H + a

∫
Ω

|∇v|2 dx− µ
∫

Γ1

v2dσ ≤ 0 .

Denoting now c = −µ
a

, we get:

〈AkvV, V 〉H + a

(∫
Ω

|∇v|2 dx+ c

∫
Γ1

v2dσ

)
≤ 0 .

By definition (4.6), we thus get:

〈AkvV, V 〉H + aCΩ(c)‖v‖22 ≤ 0 . (4.14)

From assumption (4.9), CΩ(c) > 0. This inequality proves that the operator Akvis dissipative. To show that
λI −Akv is surjective for all λ > 0, we easily adapt the proof of Theorem 2.1.

The proof of Theorem 4.1, follows from the Lumer-Phillips’ theorem. �

Moreover the semigroup operator etAkv is exponential stable on H . We have the following result.

Theorem 4.2. Suppose that the assumption (4.9) is satisfied. Then, there exist C,ω > 0 such that for all
t > 0 we have ∥∥etAkv

∥∥
L(H )

≤ C e−ωt.

Remark 4.3. We note here that, in this case where the damping operator is sufficiently unbounded for
controlling the delay one, we obtain the exponential stability result.

Note that without internal damping (i.e. if a = 0), the previous model is destabilized for arbitrarily small
delays for every value µ > 0 , see [20]. Thus, the internal damping −a∆ut makes the system robust with
respect to time delays in the boundary condition if the coefficient a is sufficiently large with respect to µ.

Remark 4.4. In the recent work of Nicaise and Pignotti, [41], they studied the existence and stability of a
problem closely related to problem (4.1). They obtain a slightly different condition to ensure the existence
and the stability. Namely, let us define CP , a sort of Poincar’s constant, by:

CP = sup
u∈H1

Γ0
(Ω)

‖u‖22,Γ1

‖∇u‖22
.

By using the semigroup approach and the Lumer-Phillips’ theorem they proved the global existence of the
solution and by using an observability inequality they proved the exponential stability under the condition:

µCP < a .

A simple argument shows that 1
CP
≥ |c?|. Thus in this work, we obtain a better bound for the coefficient a

than the one obtained by Nicaise and Pignotti since we proved the existence and the exponential stability
for :

µ

|c?|
< a ≤ µCP .

Proof of theorem 4.2. We will employ the following frequency domain theorem for exponential stability from
[48] of a C0 semigroup of contractions on a Hilbert space:

Lemma 4.5. A C0 semigroup etL of contractions on a Hilbert space H satisfies, for all t > 0,

||etL||L(H) ≤ Ce−ωt

for some constant C,ω > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (4.15)

and

lim sup
|β|→∞

‖(iβI − L)−1‖L(H) <∞, (4.16)

where ρ(L) denotes the resolvent set of the operator L.
16



The proof of Theorem 4.2 is based on the following lemmas.
For the same reason as before (see remark (3.4)), we have to show that there is no eigenvalue lying on the

imaginary axis and that Akv has no continuous spectrum on the imaginary axis.
We first we look at the point spectrum.

Lemma 4.6. If β is a real number, then iβ is not an eigenvalue of Akv.

Proof. We will show that the equation

AkvZ = iβZ (4.17)

with Z = (u, v, w, z)T ∈ D(Akv) and β ∈ R has only the trivial solution. System (4.17) writes:

v = iβu (4.18)

∆u+ a∆v = iβv (4.19)

−∂u
∂ν
− a∂v

∂ν
− µz (., 1) = iβw (4.20)

−1

τ
zρ = iβz (4.21)

Denoting now c = −µ
a

, by taking the inner product of (4.17) with Z, , using the inequality (4.14) we get:

< (< AkvZ,Z >H ) ≤ −aCΩ(c)‖v‖22 . (4.22)

From assumption (4.9), CΩ(c) > 0 and thus we obtain that v = 0.
Next, we have w = γ1(v), we also have w = 0. Moreover as we have w = z(., 0), we get: z(., 0) = 0.
From (4.20) we also have z(., 1) = 0.
As z satisfies (4.21), we get the following identity:

z(., ρ) = e−iβτρz(., 0).

Thus the only solution of (4.17) is the trivial one. �

By the same way, as in Lemma 3.6, we show that Akv has no continuous spectrum on the imaginary axis.

Lemma 4.7. If λ is a real number, then iλ belongs to the resolvent set ρ(Akv) of Akv.

Lemma 4.8. The resolvent operator of Akv satisfies condition (4.16).

Proof. Suppose that condition (4.16) is false. By the Banach-Steinhaus Theorem (see [11]), there exists
a sequence of real numbers βn → +∞ and a sequence of vectors Zn = (un, vn, wn, zn)T ∈ D(Akv) with
‖Zn‖H = 1 such that

||(iβnI −Akv)Zn||H → 0 as n→∞, (4.23)

i.e.,

(iβnun − vn) ≡ fn → 0 in H1
Γ0

(Ω), (4.24)

(iβnvn −∆un − a∆vn) ≡ gn → 0 in L2(Ω), (4.25)(
iβnwn +

∂un
∂ν

+ a
∂vn
∂ν

+ µzn(., 1)

)
≡ hn → 0 in L2(Γ1), (4.26)(

iβnzn +
1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)). (4.27)

Our goal is to derive from (4.23) that ||Zn||H converges to zero, thus there is a contradiction.
We first notice that we have

||(iβnI −Akv)Zn||H ≥ |< (〈(iβnI −Akv)Zn, Zn〉H ) |. (4.28)

Thus by (4.22) and (4.23),

vn → 0 in L2(Ω) .

From (4.24),

un → 0 in L2(Ω) .
17



But we also have,
∆un → 0 in L2(Ω) and ∆vn → 0 in L2(Ω) .

Thus we firstly obtain:
un → 0 in H1

Γ0
(Ω) and vn → 0 in H1

Γ0
(Ω) . (4.29)

By the trace theorem, we have:
wn = γ(vn)→ 0 in L2(Γ1) . (4.30)

Moreover, since Zn ∈ D(Akv), wn = zn(., 0). Thus we get:

zn(., 0)→ 0 in L2(Γ1) . (4.31)

Now from (4.26), we also have:
zn(., 1)→ 0 in L2(Γ1) . (4.32)

As we have the following identity:

zn(., ρ) = zn(., 0) e−iτβnρ + τ

∫ ρ

0

e−iτβn(ρ−s)kn(., s) ds

according to (4.27) (4.31) we finally have:

zn → 0 in L2(Γ1 × (0, 1)) . (4.33)

Identities (4.29),(4.30) and (4.33) clearly contradicts the fact that:

∀ n ∈ N , ‖Zn‖H = 1 .

�

The two hypotheses of Lemma 4.5 are proved. The proof of Theorem 4.2 is then finished. �

5. Comments and numerical illustrations

To illustrate numerically the results presented in this paper, we present numerical simulations for problem
(1.1) and for the Kelvin-Voigt damping, namely problem (4.1), in 1D. So let us consider Ω = (0, 1) , Γ0 =
{0},Γ1 = {1}.

To solve numerically problem (1.1) (resp. problem (4.1)), we have to consider its equivalent formulation,
namely problem (2.3) (resp. problem (4.2)), which writes in the present case:

utt − uxx + a ut = 0, x ∈ (0, 1), t > 0 ,

u(0, t) = 0, t > 0 ,

utt(1, t) = −ux(1, t)− µz(x, 1, t), t > 0 ,

τzt(1, ρ, t) + zρ(1, ρ, t) = 0, ρ ∈ (0, 1) , t > 0 ,

z(1, 0, t) = ut(1, t) t > 0 ,

u(x, 0) = u0(x) x ∈ (0, 1) ,
ut(x, 0) = u1(x) x ∈ (0, 1) ,
z(1, ρ, 0) = f0(1,−τρ) ρ ∈ (0, 1) .

(5.1)

A 1D formulation of the “shifted” problem (3.2) as well as the Kelvin-Voigt damping problem, problem (4.2)
is of the same type.

As the stability result that we have presented in this work, namely Theorem 3.1, is a stability result for
the “shifted” problem (3.2), we have to perform numerical simulations for both problems: the original one,
problem (1.1) and the “shifted” problem (3.2).

For this sake, to avoid a CFL condition between the mesh size and the time step, we decided to discretize
the different problems by implicit first order in time, and finite difference method in space. For every
simulations the numerical parameters are the following:

τ = 2 , ξ = 2ξ? , ∆x = 1
20 , ∆ρ = 1

20 , ∆t = 0.1
u0(x) = u1(x) = xe10x , f0(1, ρ) = eρe10 .

For every time t > 0, we denote E(t) =
∥∥∥(u(., t), ut(., t), ut(1, t), z(1, ., t)

)T∥∥∥
H

. The choice of u0 , u1, f0

ensures a large initial energy.
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In Figure 1 and Figure 2, we present the resulting simulation for the original problem and the “shifted”
one.
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Figure 1. Energy (in -log scale) versus time: influence of µ.
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Figure 2. Energy (in -log scale) versus time: influence of a.

Let us first notice that the convergence rate for the shifted problem is better than the one expected: we
have proved a polynomial decay rate whereas numerically, we observe an exponential decay rate. This is
probably due two facts :

(1) the particular case of the dimension 1 as proved recently by G.Q. Xu, S. P. Yung and L. Kwan Li
[50].

(2) the numerical diffusion participates to the exponential stability as for the Kelvin-Voigt damping.

Moreover, as it was conjectured in Remark 3.2, the “shifted” problem converges for a large set of param-
eters aand µ whereas the original problem does not and even worse, it exhibits an exponential growth.

In Figure 3, we present the simulations for the case of the Kelvin-Voigt damping for which we have proved
that under the condition µ < |c?|a, we have an exponential decay rate.
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From equations (4.7) and (4.8), the constant c? must satisfy:{
uxx = 0 , x ∈ (0, 1),
u(0) = 0 , ux(1) + c?u(1) = 0 .

Thus we obtain c? = −1. Let us first notice that even though the condition between a and µ is not fulfilled,
we have an exponential decay of the solution. This is also probably due to the particular case of the dimension
1 as well. Secondly it seems that numerically the convergence rate does not depend on the parameter µ.
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Figure 3. Energy (in -log scale) versus time.
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