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Abstract. This work provides a framework for modeling and extracting Cin-
gulum Bundle (CB) from Diffusion-Weighted Imagery (DW-MRf the brain.
The CB is a tube-like structure in the brain that is of pothtiof tremendous im-
portance to clinicians since it may be helpful in diagnosiuizophrenia. This
structure consists of a collection of fibers in the brain thete locally similar
diffusion patterns, but vary globally. Standard regiosdzh segmentation tech-
niques adapted to DW-MRI are not suitable here because ffusidn pattern
of the CB cannot be described bygéobal set of simple statistics. Active sur-
face models extended to DW-MRI are not suitable since tHewdbr arbitrary
deformations that give rise to unlikeshapeswhich do not respect the tubular
geometry of the CB. In this work, we explicitly model the CBaatube-like sur-
face and construct a general class of energies defined odikebsurfaces. An
example energy of our framework is optimized by a tube thatoses a region
that hadocally similar diffusion patterns, which differ from the diffusigatterns
immediately outside. Modeling the CB as a tube-like surfacanatural shape
prior. Since a tube is characterized by a center-line and a radngién, the
method is reduced to a 4D (center-line plus radius) curvéugeo that is com-
putationally much less costly than an arbitrary surfacéutiam. The method also
provides the center-line of CB, which is potentially of adial significance.

1 Introduction

In this work, we are interested in extracting a structurdmhrain called theingulum
bundle (CB) from diffusion-weighted magnetic resonance imagery (DW-MRIhe
brain. DW-MRI is imagery that at each voxel indicates théudifon of water molecules
at each particular samplirdjrectionin 3D space. Adding an extra dimension, direc-
tionality, to the data is necessary to discriminate ourcstme of interest - the cingulum
bundle. The CB has recently become the subject of interes amatomical structure
which may display quantifiable differences between scHirepic and normal control
populations, and studying it may aid in the diagnosis ofagpiirenia [1, 2].

The Cingulum Bundle is ¢hin, highly curvedstructure that consists of a collec-
tion of neural fibers, which are mostly disjoint possiblyergecting, roughly aligned
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and centered around a fiber. The collection of fibers appratdéim form a tube-like

structure. The diffusion pattern in the CB varies in oriéiotaand anisotropy smoothly
along the structure, and it has a distinct diffusion pattesm surrounding areas of the
brain (see Fig. 2 for a sagittal slice of the CB). The CB posses challenge to seg-
ment because of inhomogeneity of its diffusion pattgobally and the noisy nature of
DW-MRI makes it difficult to detect edges separating the GBrfithe rest of the image.

There has been much research in detecting and charaatenigirral connections
between brain structures in DW-MRI. Early methods for detecfibers, i.e.ractog-
raphy, are based on streamlines where the fiber path is constrbgtéallowing the
direction of the principal eigenvector of diffusion tensdrom an initial seed point,
e.g., [3,4]. These methods have been shown to perform poongisy situations and
they often terminate prematurely before the fiber endingalleviate these problems,
there has been a number of works, e.g., [5—11], where an apgiath, in some sense,
is constructed from seed region(s). The procedure is repdatdetect all fibers of a
bundle. These methods, however, do not explicitly providegmentation of the entire
fiber bundle.

We are interested in segmenting the entire fiber bundle adacsuStandard active
surface techniques, e.g. [12, 13], adapted to DW-MRI are&lly difficult to segment
the CB since the DW-MRI of the brain are extremely noisy andtaim many local
features that trap the active surface in unlikely configaregtthat are not representative
of the CB. Indeed, the CB is difficult to segment withowdreape priorfavoring its thin
tube-like geometry. Standard region-based techniqueged o DW-MRI or DT-MRI,
e.g. [14], are generally not applicable to the segmentatidhe CB since the statistics
of the DW-MRI inside the CB cannot be described by a fgabal parameters (e.g.
mean). The Mumford-Shah energy extended to DT-MRI, [15]icwlassumes piece-
wise smooth image data inside the surface, is applicableet@B, but the technique
needs a shape prior for the CB and is computationally costlyessmooth functions
must be determined at each update of the evolving surfagé6lnthe authors model
the probability distribution of the CB and design an aldaritto classify voxels of the
image, and the method could benefit greatly modeling the GBngéry. Noticing that
standard region-based techniques are not applicable t€Bhen edge-based active
surface method for segmenting the CB is considered by [1@\vever, the method is
sensitive to the noise in the DW-MRI, and the method doesmaairporate the tube-like
geometry into the segmentation. The work [18] designs arggra volumetric regions
that incorporates “local region-based” information andiardfavoring regions that are
close to an initially detected center-line curve. Howetlez,energy is highly dependent
on the correct placement of the detected center-line, wisictiten not exactly in the
center of the CB. Moreover, the method does not enforce the like geometry of the
CB.

In this work,we explicitly model the CB as a tubular surfae@dconstruct a gen-
eral class of energies defined on these tubular surfatbs enforces a tubular ge-
ometry during the segmentation process. Since the tubulfaices we consider are
determined by a center-line in 3D space and a radius fundidined at each point of
the center-line (see Fig. 1), the problem is reduced to apitig an energy defined on
4D curvesThis significantly reduces the computational cost of thénipation proce-



dure when compared to an unconstrained surface optimizaarther,we show how
to construct energies that are tailored to the varying natof the diffusion pattern in
the CB

Our method is inspired by the work of [19] in which the authorsdel vessels as
tubular regions formed by the union of spheres along a cdinterEnergies are con-
structed on 4D curves that represent tubes, and these esargi globally minimized
using the minimal path technique [20]. The energies we coastannot be optimized
using the minimal path technique since our energies arettrelly dependent - they
depend on the position of the 4D curve andtésgent Moreover, for the energies we
consider, we are not interested in a global minimum but ratketain local minima.
As we shall see (in Section 4), the optimization of our en@fgnterest using gradient
descent requires special consideration, and this integhgties to the metric structure
on the space of 4D curves.

2 The Cingulum Bundle

The cingulum bundle is a 5-7 mm in diameter fiber bundle thiraonnects all parts
of the limbic system. It originates within the white mattdrtbe temporal pole, and
runs posterior and superior into the parietal lobe, themstuiorming a “ring-like belt”
around the corpus callosum, into the frontal lobe, ternmiigedinterior and inferior to the
genu of the corpus callosum in the orbital-frontal corteX][Moreover, the CB con-
sists of long, association fibers that directly connect teraland frontal lobes, as well
as shorter fibers radiating into their own gyri. The CB alsdudes most afferent and
efferent cortical connections of cingulate cortex, inohgdthose of prefrontal, parietal
and temporal areas, and the thalamostriatae bundle. Iti@udesion studies docu-
ment a variety of neurobehavioral deficits resulting fronesidn located in this area,
including akinetic mutism, apathy, transient motor aphasinotional disturbances, at-
tentional deficits, motor activation, and memory deficitec8use of its involvement
in executive control and emotional processing, the CB has bhevestigated in several
clinical populations, including depression and schizepia. Previous studies, using
DTI, in schizophrenia, demonstrated decrease of FA in amtpart of the cingulum
bundle [1, 2], at the same time pointing to the technical thtidns restricting these
investigations from following the entire fiber tract.

3 Proposed Framework

In this section, we model the cingulum bundle (CB) as a tubsilaface inR3. We
show that the tubular surface is completely determineddgénter-line and the radius
function of the discs along the center-line, and thereftwetubular surface iR? can be
effectively reduced to a curve IR*. We formulate a general class of energies directly on
curves living inR*, and then observe that special consideration of the métrictsre

on curves is needed to optimize the energy.

3.1 Modeling the Cingulum Bundle (CB) as a Tubular Surface

We are interested in tubular surfaces since these surfatesty model the CB. These
surfaces have the additional advantage that they may beseqed as space curves thus
significantly reducing the computational complexity of algorithm.



Fig. 1: lllustration of Tubular Surface model

The tubular surfaces we consider are determined by a céméemihich is an open
curve lying inR3, and a radius function defined at each point of the center-Biven
an open curve : [0,1] — R?, the center line, and a function: [0,1] — RT, the
radius function, we can define the tubular surfage,S! x [0,1] — R? (S' is [0, 27]
with endpoints identified) as follows:

S(0,u) = c(u) + r(u)[ni(u) cos @ + na(u) sin 6] 1)

whereny,ny : [0,1] — R3 are normals to the curve defined to be orthonormal,
smooth, and such that the dot produ¢ts) - n; (u) vanish. See Fig. 1 for an illustration
of a tubular surface. The idea is simply that the tubularaiefis represented as a
collection of circles each of which lie in the plane perpendhr to the center line. Note
that the surface in (1) may thus be identified with a 4D spaceesd : [0,1] — R?,
defined as a cross-product:

&(u) = (c(u),r(u)". )
3.2 \Variational Approach for Detecting the Cingulum Bundle

We now define a general class of energy functionals definedttiiron 4D curves (2)
that when optimized result in the 4D curve that represe B from DW-MRI of the
brain.

Let S? ¢ R? denote the 2D sphere, which is to represent the set of alilgess
angular acquisition directions of the scanning device ff-BIRI. Let I : R? x S2 —
R* be the diffusion image. We are interested in weighted lefigtitctionals on 4D
curves as energy functionals of interest. Indeed?letR* x S? — Rt (¥(x,7,v) €
RT) be a weighting function, which we call theotentialto be chosen, and define the
energy as

EE:/![/Eé, —)ds, ¢= (¢, r 3)
@ = [ 7@, 550 (c.7)
whereds = |&(u)| du = /(r'(uv))2 + |¢(u)[? du is the arclength measure of the 4D
curve, and’(5)/|c/(8)] is the unit tangent te, the center line. When (3) is minimized,
the term ds penalizes the non-smoothness of the center line and thesr&ahction.
The energy (3) is related to the length of a curve in a Finskenifold [22].




The goal is to choos# so that the energy is optimized bycavhich determines
a surface enclosing the diffusion pattern of the CB in the DN} of the brain. The
diffusion pattern in the cingulum varies in orientation amdsotropy across the length
of the bundle, althouglocally similar (see Fig. 2), and that pattern differs from the pat-
tern immediately outside the CB. This fact precludes theofiseditional region-based
techniques adapted to DT-MRI since these techniques assomegeneous statistics
within theentireregion enclosed by the surface, whereas we will assume henedty
within local regions. In the next section, we show hdwmay be chosen so that the
energy can capture the varying diffusion pattern of the Cfige ilea is to chooség at
a particular coordinatér, r, p) to incorporate statistics of the DT-MRical to the disc
determined by(x, r, p) rather than using statistics global to the entire strucasrén
traditional region based methods.

3.3 Example Potentials¥

In this section, we give two choices@fthat are meaningful for extracting the CB from
DW-MRI, both based ofocal region-based statistics.

The first potential?; at a coordinatéxr, r,v) € R3 x R x S§? is constructed so as
to be small when thenean diffusion profilénside the discD(z,r, v), differs greatly
from the mean diffusion profile inside the annular regibfiz, ar, v)\ D(z, r, v) where
«a > 1, outsideD(x, r, p). This is given by the following expressions:

1

U (p,v) = (4)
1+ [[1D(5.0) = BD((p.ar), o)\ D) 12
where theu's are means:
. 1 .
poGa @ =5 [ 1w9)dd) )
r D(p,v)

1

HD(@on N6 (1) = 51y I(z,0)dA(z),  (6)

/D((p,mm\D(m)

where dA is the area element arjd- || is a suitable norm on functions of the form
f:8$? =Rt eqg.,

1= 21 = [ 1710) = )P aSE). 7

wheredsS is the surface area element. The energy correspondifigiminimized
Another example potential is chosen such that the correipgrenergy is related
to a weighted surface area:
2
Uy (z,r,p) =71 o(z +rpt(0))d, andpt(0) = ny cosh 4 nysinh  (8)
0

wheren,, ny are orthonormal vectors perpendiculaptcande : R? — RT is large
near the boundary of differing diffusion regions, e.g.,

1

TR I(y, ) — m()I2d 9
1B(x,R)| Jp(a,r) 1 Cy, ) = mpem (OI”dy (9)

¢(z) =



where B(z, R) is the ball centered at of chosen radius?, |B(x, R)| denotes the
volume, and the norm is defined as in (7). For this choice ofmitdl, we are interested
in maximizinghe corresponding energy. The objective is to initializettbular surface
inside the CB, and then increase surface area until thecaurémaches the boundary of
differing diffusion patterns.

4 Energy Optimization
In this section, we construct a steepest descent flow to nerithe energy of inter-

est (3). A steepest descent is considered since we are nedsady interested in the
global maximizer or minimizer; indeed, the energy correspog to (8) does not have
a global maximizer. We begin with a tubular surface inigation (see Section 5 for the
procedure), i.e., an initial 4D curve, and follow the graudier its opposite depending
on the whether we want to maximize or minimize the energy.

4.1 Gradient Descent: Fixed Endpoints

The standard technique for calculating the gradient of arggndefined on curves,
which is based on a geometrized metric on the space of curves, cannot be applied to
our energy of interest. This is because of the fact that whianmizing (3) usinglL?,

¥ must satisfy a certain positivity condition (see [22]) thet cannot guarantee for our
choices of¥ otherwise the gradient descent is ill-posed. Moreover,nwhaximizing

(3), we are indeed maximizing a weighted length, which wébpect to the standard
geometrized.? curve metric, leads to amstable reverse diffusiods shown in [23],
such weighted length functionals may be optimized stablemanner by moving in
the gradient direction of the energy (3) with respect gieametrized Sobolev metric

Definition 1. Leté : [0, 1] — R* be such tha€(0), &(1) are fixed. Let, k : [0,1] —
R* be perturbations of then

R
(hK), =1 /6h(s) k(3 ds,
(hky, =L / W) - K(5) ds,

wherelL is the length of of the cun& ds is arclength element @ and the derivatives
are with respect to the arclength parameter
It can be shown that the gradient of (3) with respect to theo&skmetric above is

%VSObE(E) = K () + 0: K (Uy\/1 + (r3/]cs])? + Wés), (10)

where

S S o 1 [2(1-%2) 0<5 <35
K(f)_/o K(,S)f(S)dS, K(81752)—L{%(1_§_L2) §1S§2 . (11)
The expression has the additional numerical advantag®tthafirst order derivatives
are required in comparison to the stand&fdgradient, which needs second order in-
formation, and simply cannot be used anyway since it regulis unstable flow. Note
that as stated in [23], the expression (10) may be compufietketly in orderN com-
plexity, whereN is the number of sample points of the curve.



4.2 Evolving Endpoints

In the previous subsection, we derived a gradient descentffio (3) provided the
endpoints of thelD curve (i.e., the end cross sections of the tube) are fixed. &¥e n
describe how to evolve the endpoints so as to reduce theyeég is useful for some
choices of? in (3), for example¥, defined in (8). To determine the evolution of the
endpoints, we compute the variation with respect to the eimip This results in

2 2
6 (0) = T, [1+ <|Z—|> FWEs, G(1) = 20y [1+ (ﬁ) e, (12)

which will minimize/maximize the energy (depending on tlgnshosen above). There-
fore, the algorithm to reduce the energy is to alternatiestylve the endpoints by (12)
and then evolve the 4D curve by (10).

Fig. 2: Selected slice-wise views of CB Segmentation restdim proposed framework. The top

row shows the DWI data and the bottom row shows the DWI dath thi¢ extracted surface
rendered in 3D.

5 Experiments and Results

The algorithm was applied to DWI data of the brain from a datatkat included
schizophrenic and normal control subjects, with the DWhbeacquired for 54 sam-
pling directions. Results are included for the data from Bjexts, and show the CB
extracted for both the right and left bundles in each case.

In this paper, a perturbation of the anchor tract is usedasittial centerline curve
and the smallest possible radius of 0.5 is used, with the@seréssentially growing out
from this initial radius. There are also other options td@en this initialization. Since
we are given seed regions determined by an expert, an alteriaitialization would
be to connect the two seed regions with a streamline thatgaasove the Corpus
Callosum (which is easy to segment). This initializatiorb&ing explored for future
work.

The results included in this paper show the application®fttoposed framework to
the data sets, using the energy (3) using the potehtiéd). Figure 2 shows slice-wise



views of the CB segmentation results obtained from the pegdramework indicating
the homogeneity of the discs within the captured volume.Higares, 3, and 4 show
the tubular surface extracted by the proposed algorithisitdtbe noted that the surfaces
are accurate while the boundaries shown in Figure 2 are tinedaoy locations rounded
off to the grid points by the visualization process.

Fig. 3: CB Segmentation Results for Brain data set 1. Yellbows the left CB and magenta
shows the right CB.

6 Conclusions and Future work

We have proposed a novel technique to extract the cingulumlbuwhich is of in-
terest in the medical community because of its ties to sgihiznia, from DW-MRI
of the brain. Unlike other standard techniques for extracfiber bundles in the brain,
we are able textract the entire bundle as a region at once ratligan detecting in-
dividual fibers and then combining them to form the bundleicwhs laborious and
prone to errors, while also performing this as a curve eumtutather than a surface
evolution thus avoiding the computational disadvantadeslevelset implementation.
We havemodeled the cingulum bundle as a tubular surfacel constructed a varia-
tional approach to detect the optimum tubular surface fraMiARI, which represents
the CB. Tubular surfaces provide a natural and acculadge priorfor the cingulum
bundle, and such a shape prior is necessary due to the ndigy d the imagery and
the fact that data is not very visible or highly corrupted @rtain slices. As we have
shown, the tubular surface can be represented as a 4D cad/é)as, we were able to
significantly reduce the computational cadtthe algorithm compared to extracting an
arbitrary surface. The proposed model was shown to yield gegmentations of the
Cingulum Bundle upon visual inspection; unfortunatelgrehis no expert ground truth
data available since it is laborious to hand segment aneevdiume and certain slices
do not even display the CB diffusion pattern accurately.

In future work, the authors plan to explore different cheicé ¥ in the energy
functional(3), and explore smoothness terms for the tubélse energy. We will also



Fig.4: CB Segmentation Results for Brain data set 2. Yelloaws the left CB and magenta
shows the right CB.

implement the evolution of endpoints, which will be usefialcg the initialization will
have to only be a single seed point. Further, the use of thaagt Cingulum Bundles
will be explored in population studies for the discrimimatiof Schizophrenia. We are
also interested in applying the framework other tubularcttrres such as the Uncinate
Fasciculus in the brain.
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