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Abstract. In this short communication, we present the multi-symplectic structure for

the two-layer Serre–Green–Naghdi equations describing the evolution of large ampli-

tude internal gravity water waves when both layers are shallow. We consider only a

two-layer stratification with rigid bottom and lid for simplicity, generalisations to sev-

eral layers being conceivable. This multi-symplectic formulation allows the application

of various multi-symplectic integrators (such as Euler or Preissman box schemes) that

preserve exactly the multi-symplecticity at the discrete level.
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1. Introduction

The density stratification in oceans exists due, mainly, to the dependence of the water
density on temperature and salinity [14]. The density stratification supports the so-called
‘internal waves’. These are ubiquitous in the ocean and, comparing to surface waves,
internal waves may have a huge amplitude of the order of hundreds of meters [13]. These
waves play an important role in ocean dynamics and they attract permanent attention of
several scientific communities. Compared to surface gravity waves, the physics of internal
waves is richer and their modelling leads to more complicated equations, in general (see
the reviews [1, 20] for more information).

Lagrangian and Hamiltonian formalisms are tools of choice in theoretical physics, in par-
ticular for studying nonlinear waves. Quite recently, the multi-symplectic formalism have
been proposed as an attractive alternative. This formulation generalises the classical Hamil-
tonian structure to partial differential equations by treating space and time on the equal
footing [5]. Multi-symplectic formulations are gaining popularity, both for mathematical
investigations and numerical modelling [7, 19].

Multi-symplectic formulations of various equations modelling surface waves can be found
in the literature. However, to our knowledge, no such formulations have been proposed for
internal waves. In this note, we show that the multi-symplectic structure of a homogeneous
fluid should be easily extended to fluids stratified in several homogeneous layers. For
the sake of simplicity, we focus on two-dimensional irrotational motions of internal waves
propagating at the interface between two perfect fluids, bounded below by an impermeable
horizontal bottom and bounded above by an impermeable rigid lid.

The present article should be considered as a further step in understanding the un-
derlying mathematical structure of an important model of long internal waves — the so-
called two-layer Serre equations [21] — where the thicknesses of the fluid layers are
small compared to the characteristic wavelength (shallow layers). Serre’s equations are
approximations for large amplitude long waves. This model is sometimes referred to as
weakly-dispersive fully-nonlinear and was first derived by Serre for surface waves [21]. Its
generalisation for two layers internal waves was apparently first in the late nineteen eighties
[4, 16, 18], both with a rigid lid and with a free surface, and later re-derived using different
approaches [2, 3, 9].

The Hamiltonian formulation for the classical Serre equations describing surface waves
can be found in [15], for example. However, this structure is non-canonical and quite non-
trivial. The two-layer Serre equations also have a non-canonical Hamiltonian structure
[2, 11]. In the present study, we propose a multi-symplectic formulation of the two-layer
Serre equations with a rigid lid. This work is a direct continuation of [8] where the
multi-symplectic structure was proposed for the original Serre equations.

The results obtained in this study can be used to propose new structure-preserving
numerical schemes to simulate the dynamics of internal waves. Indeed, now it is straight-
forward to apply the Euler-box or the Preissman-box schemes [19] to two-layers Serre
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Figure 1. Sketch of the two-fluid domain.

equations. The advantage of this approach is that such schemes preserve exactly the multi-
symplectic form at the discrete level [5, 7]. To our knowledge, this direction is essentially
open. We are not aware of the existing structure-preserving numerical codes to simulate
internal waves. This situation may be explained by higher complexity of these models
compared to, e.g. surface waves.

The present manuscript is organised as follows. In Section 2, we present a simple varia-
tional derivation of the governing equations. Their multi-symplectic structure is provided
in Section 3 and the implied conservation laws are given in Section 4. The main conclusions
and perspectives of this study are outlined in Section 5.

2. Model derivation

We consider a two-dimensional irrotational flow of an incompressible fluid stratified in
two homogeneous layers of densities ρj, subscripts j = 1 and j = 2 denoting the lower and
upper layers, respectively. The fluid is bounded below by a horizontal impermeable bottom
at y = −d1 and above by a rigid lid at y = d2, y being the upward vertical coordinate
such that y = 0 and y = η(x, t) are, respectively, the equations of the still interface
and of the wavy interface (see Figure 1). Here, x denotes the horizontal coordinate, t is
the time, g is the downward (constant) acceleration due to gravity and surface tension is
neglected. The lower and upper thicknesses are, respectively, h1 = d1 + η and h2 = d2 − η,

such that h1 + h2 = d1 + d2
def

:= D is a constant. Finally, we denote uj = (uj, vj) the
velocity fields in the j-th layer (uj the horizontal velocities, vj the vertical ones). We derive
here the fully-nonlinear weakly-dispersive long wave approximation Serre-like equations
[4, 9] following a variational approach initiated in [22] for the (one-layer) classical Serre

equations. Further relations are given in the Appendix A.
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2.1. Ansatz

In order to model long waves in shallow water with rigid horizontal bottom and lid, the
velocity fields in each layer is approximated as

uj(x, y, t) ≈ ūj(x, t), vj(x, y, t) ≈
(

(−1)jdj − y
)

ūjx, (2.1)

where ūj is the horizontal velocity averaged over the j-th layer, i.e., ū1

def

:= h−1

1

´ η

−d1
u1dy ,

ū2

def

:= h−1

2

´ d2

η
u2dy. The horizontal velocities uj are thus (approximately) uniform along

the layer column and the vertical velocities vj are chosen so that the fluid incompressibility
is fulfilled together with the bottom and the lid impermeabilities.

With the ansätze (2.1), the vertical accelerations are

Dtvj
def

:= vjt + uj vjx + vj vjy ≈ γj h
−1

j

{

dj − (−1)jy
}

,

where Dt is the temporal derivative following the motion and γj are the vertical accelera-
tions at the interface, i.e.

γj
def

:= Dtvj |y=η
≈ (−1)j hj

{

ūjxt + ūj ūjxx − ū 2

jx

}

. (2.2)

The kinetic and potential energies of the liquid column are, respectively,

K
def

:=

ˆ η

−d1

ρ1
u 2

1
+ v 2

1

2
dy +

ˆ d2

η

ρ2
u 2

2
+ v 2

2

2
dy ≈

∑2

j=1
ρj

(

1

2
hj ū

2

j + 1

6
h 3

j ū
2

jx

)

,

V
def

:=

ˆ η

−d1

ρ1 g (y + d1) dy +

ˆ d2

η

ρ2 g (y + d1) dy = 1

2
(ρ1 − ρ2) g h

2

1 + 1

2
ρ2 g D

2.

Note that the potential energy is defined relatively to the bottom without loss of generality.
The incompressibility of the fluids and the impermeabilities of the lower and upper

boundaries being fulfilled, a Lagrangian density L is then obtained from the Hamilton
principle: the Lagrangian is the kinetic minus potential energies plus constraints for the
mass conservation of each layer, i.e.

L
def

:= K − V + ρ1 { h1t + [ h1 ū1 ]x }φ1 + ρ2 { h2t + [ h2 ū2 ]x }φ2, (2.3)

where φj are Lagrange multipliers and with the constraint h2 = D − h1 being assumed.
The latter could be relaxed adding λ(h1 + h2 − D) (λ another Lagrange multiplier) into
the right-hand side of (2.3) [6]. However, we do not do it here in order to handle fewer
equations.
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2.2. Equations of motion

The Euler–Lagrange equations for the functional
s

L dx dt yield (together with
h2 = D − h1 and for j = 1, 2)

δφj : 0 = hjt + [ hj ūj ]x , (2.4)

δūj : 0 = φj hjx − [ hj φj ]x − 1

3
[ h 3

j ūjx ]x + hj ūj, (2.5)

δh1 : 0 = 1

2

(

ρ1 ū
2

1
− ρ2 ū

2

2

)

− (ρ1 − ρ2) g h1 + 1

2

(

ρ1 h
2

1
ū 2

1x − ρ2 h
2

2
ū 2

2x

)

− ρ1 φ1t + ρ2 φ2t − ρ1 ū1 φ1x + ρ2 ū2 φ2x. (2.6)

Adding the two equations (2.4) and integrating the result, one obtains

h1 ū1 + h2 ū2 = Q(t),

Q being an integration ‘constant’ (U
m

def

:= Q/D is often called mix velocity in the theory of
multiphase flows). The relation (2.5) can be rewritten

φjx = ūj − 1

3
h−1

j [ h 3

j ūjx ]x = ūj − 1

3
h 2

j ūjxx − hj hjx ūjx (j = 1, 2), (2.7)

thence

h1 φ1x + h2 φ2x = Q − 1

3
[ h 3

1
ū1x + h 3

2
ū2x ]x, (2.8)

ρ1 φ1x − ρ2 φ2x = ρ1 ū1 − ρ2 ū2

− 1

3
ρ1 h

−1

1
[ h 3

1
ū1x ]x + 1

3
ρ2 h

−1

2
[ h 3

2
ū2x ]x, (2.9)

ρ1 u1 φ1x − ρ2 u2 φ2x = ρ1 ū
2

1
− ρ2 ū

2

2

− 1

3
ρ1 u1 h

−1

1 [ h 3

1 ū1x ]x + 1

3
ρ2 u2 h

−1

2 [ h 3

2 ū2x ]x. (2.10)

The equation (2.6) then gives

ρ1 φ1t − ρ2 φ2t = 1

2

(

ρ1 h
2

1 ū
2

1x − ρ2 h
2

2 ū
2

2x

)

− 1

2

(

ρ1 ū
2

1 − ρ2 ū
2

2

)

− (ρ1 − ρ2) g h1

+ 1

3
ρ1 ū1 h

−1

1
[ h 3

1
ū1x ]x − 1

3
ρ2 ū2 h

−1

2
[ h 3

2
ū2x ]x , (2.11)

and eliminating φj between (2.9) and (2.11), one obtains

∂t
{

ρ1 ū1 − ρ2 ū2 − 1

3
ρ1 h

−1

1
[ h 3

1
ū1x ]x + 1

3
ρ2 h

−1

2
[ h 3

2
ū2x ]x

}

+

∂x
{

1

2
ρ1 ū

2

1
− 1

2
ρ2 ū

2

2
+ (ρ1 − ρ2) g h1 − 1

2
ρ1 h

2

1
ū 2

1x + 1

2
ρ2 h

2

2
ū 2

2x

− 1

3
ρ1 ū1 h

−1

1 [ h 3

1 ū1x ]x + 1

3
ρ2 ū2 h

−1

2 [ h 3

2 ū2x ]x
}

= 0, (2.12)

that, physically, is an equation for the conservation of the difference between the tangential
momenta at the interface. One can also easily derive a non-conservative equation for the
horizontal momentum

ρ1 (ū1t + ū1 ū1x) − ρ2 (ū2t + ū2 ū2x) + (ρ1 − ρ2) g h1x

+ 1

3
ρ1 h

−1

1 [ h 2

1 γ1 ]x + 1

3
ρ2 h

−1

2 [ h 2

2 γ2 ]x = 0. (2.13)

On the other hand, equations for the momentum and energy fluxes are not easily derived
from these equations. This is where a multi-symplectic formulation comes to help.



D. Clamond & D. Dutykh 8 / 14

3. Multi-symplectic structure

A system of partial differential equations has a multi-symplectic structure if it can written
as a system of first-order equations [5, 17]

M · zt + K · zx = ∇z S(z), (3.1)

where a dot denotes the contracted (inner) product, z ∈ R
n is a rank-one tensor (vector) of

state variables, M ∈ R
n×n and K ∈ R

n×n are skew-symmetric rank-two tensors (matrices)
and S is a smooth rank-zero tensor (scalar) function depending on z. S is sometimes called
the ‘Hamiltonian’, though it is generally not a classical Hamiltonian.

The multi-symplectic structure for the one-layer Serre equations is already known [8].
This structure can be easily extended to two (and more) layers. The multi-symplectic
formulation for one layer involves 8-by-8 matrices. For two layers, we then expect a priori

a multi-symplectic formulation with 16-by-16 matrices. However, since we consider a rigid
lid, one variable can be eliminated, thus reducing the formulation to 15-by-15. Thus,
introducing h1 = h and h2 = D − h for brevity, we seek for a multi-symplectic structure
with

z = h e1 + ϕ1 e2 + ū1 e3 + ṽ1 e4 + p1 e5 + q1 e6 + r1 e7 + s1 e8

+ ϕ2 e9 + ū2 e10 + ṽ2 e11 + p2 e12 + q2 e13 + r2 e14 + s2 e15, (3.2)

(ei standard unitary basis vectors) and

M = ρ1 (e1 ⊗ e2 − e2 ⊗ e1) + 1

3
ρ1 (e1 ⊗ e5 − e5 ⊗ e1)

− ρ2 (e1 ⊗ e9 − e9 ⊗ e1) − 1

3
ρ2 (e1 ⊗ e12 − e12 ⊗ e1) , (3.3)

K = 1

3
ρ1 (e1 ⊗ e7 − e7 ⊗ e1) − ρ1 (e2 ⊗ e6 − e6 ⊗ e2)

− 1

3
ρ2 (e1 ⊗ e14 − e14 ⊗ e1) + ρ2 (e9 ⊗ e13 − e13 ⊗ e9) , (3.4)

S = ρ1
(

1

6
ṽ 2

1
− 1

2
ū 2

1
− 1

3
s1ū1ṽ1

)

h + ρ2
(

1

6
ṽ 2

2
− 1

2
ū 2

2
− 1

3
s2ū2ṽ2

)

(D − h)

− 1

2
(ρ1 − ρ2) g h

2 + 1

3
ρ1 p1 (ū1s1 − ṽ1) − 1

3
ρ2 p2 (ū2s2 − ṽ2)

+ ρ1 q1(ū1 +
1

3
s1ṽ1) − ρ2 q2(ū2 +

1

3
s2ṽ2) − 1

3
ρ1 r1 s1 + 1

3
ρ2 r2 s2. (3.5)

These two-layer expressions for z, M, K and S are simple duplication of the corresponding
expression for one layer [8]. We show below that they indeed lead to the two-layer Serre-
like equations derived in the previous Section.

Physically, ϕj are the velocity potentials written at the interface, while φj are related
to the velocity potentials integrated over the fluid layers. Using the velocity potentials
at the interface, we obtained rather easily the multi-symplectic structure of the Serre-
like equations. Conversely, with the equivalent formulation involving φj it is difficult, and
likely impossible, to obtain a multi-symplectic structure of the Serre-like equations. It
is reminiscent of the classical Hamiltonian formulation for finite-depth two-layer flow with
a rigid lid, where the weighted difference between the velocity potentials at the interface
turns out to be the correct canonical variable [10].
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The substitution of (3.2)–(3.5) into (3.1) yields the fifteen equations

ρ1
{

ϕ1t +
1

3
p1t +

1

3
r1x

}

− ρ2
{

ϕ2t +
1

3
p2t +

1

3
r2x

}

= − (ρ1 − ρ2) g h

+ ρ1
{

1

6
ṽ 2

1 − 1

2
ū 2

1 − 1

3
ū1 ṽ1 s1

}

− ρ2
{

1

6
ṽ 2

2 − 1

2
ū 2

2 − 1

3
ū2 ṽ2 s2

}

, (3.6)

−ρ1 { ht + q1x } = 0, (3.7)

0 = ρ1
{

q1 − h
(

ū1 + 1

3
ṽ1 s1

)

+ 1

3
p1 s1

}

, (3.8)

0 = −1

3
ρ1 { p1 − h ( ṽ1 − ū1 s1 ) − q1 s1 } , (3.9)

−1

3
ρ1 ht = −1

3
ρ1 { ṽ1 − s1 ū1 } , (3.10)

ρ1 ϕ1x = ρ1
{

ū1 + 1

3
s1 ṽ1

}

, (3.11)

−1

3
ρ1 hx = −1

3
ρ1 s1, (3.12)

0 = −1

3
ρ1 { r1 + h ū1 ṽ1 − p1 ū1 − q1 ṽ1 } , (3.13)

ρ2 { ht + q2x } = 0, (3.14)

0 = −ρ2
{

q2 + (D − h)
(

ū2 + 1

3
ṽ2 s2

)

+ 1

3
p2 s2

}

, (3.15)

0 = 1

3
ρ2 { p2 + (D − h) ( ṽ2 − ū2 s2 ) − q2 s2 } , (3.16)

1

3
ρ2 ht = 1

3
ρ2 { ṽ2 − s2 ū2 } , (3.17)

−ρ2 ϕ2x = −ρ2
{

ū2 + 1

3
s2 ṽ2

}

, (3.18)
1

3
ρ2 hx = 1

3
ρ2 s2, (3.19)

0 = 1

3
ρ2 { r2 − (D − h) ū2 ṽ2 − p2 ū2 − q2 ṽ2 } . (3.20)

Twelve of these equations are trivial and can be simplified as (with j = 1, 2)

qj = (−1)j−1 hj ūj, pj = (−1)j−1 hj ṽj, sj = (−1)j−1 hjx,

rj = ūj pj , ṽj = (−1)j−1 (hjt + ūj hjx ) , ϕjx = ūj + 1

3
sj ṽj,

the remaining three giving the mass conservation equations (together with h1 + h2 = D)

h1t + [ h1 ū1 ]x = 0, h2t + [h2 ū2 ]x = 0, (3.21)

and, exploiting the relations (3.21), the equation for the tangential momenta at the interface

ρ1 ϕ1t − ρ2 ϕ2t = 1

2

(

ρ1 h
2

1 ū
2

1x − ρ2 h
2

2 ū
2

2x

)

− 1

2

(

ρ1 ū
2

1 − ρ2 ū
2

2

)

+ 1

3
ρ1 ū1 h

−1

1
[ h 3

1
ū1x ]x − 1

3
ρ2 ū2 h

−1

2
[ h 3

2
ū2x ]x

+ 1

3
ρ1 [ h

2

1 ū1x ]t − 1

3
ρ2 [ h

2

2 ū2x ]t − (ρ1 − ρ2) g h1 . (3.22)

One can verify that these equations are equivalent to the ones obtained above.
The multi-symplectic structure described above involves the potentials ϕj that are dif-

ferent from the potentials φj used to derive Serre-like equations of the section 2. After
elimination of φj and ϕj, the two systems of equations are identical. Indeed, the differences
between these two velocity potentials are — from (2.7), (3.17) and (3.21) — given by

ϕjx − φjx = 1

3
hjx (hjt + uj hjx ) + 1

3
h 2

j ūjxx + hj hjx ūjx

= 1

3
h 2

j ūjxx + 2

3
hj hjx ūjx = 1

3

[

h 2

j ūjx

]

x
, (3.23)
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thence with ϕj = φj +
1

3
h 2

j ūjx substituted into (3.22), the equation (2.11) is recovered.

4. Conservation laws

From the multi-symplectic structure, one obtains local conservation laws for the energy
and the momentum

Et + Fx = 0, It + Gx = 0, (4.1)

where E(z) = S(z) + 1

2
zx · K · z, F (z) = −1

2
zt · K · z, G(z) = S(z) + 1

2
zt · M · z and

I(z) = −1

2
zx ·M · z. For the Serre-like equations, exploiting the results of the previous

section and after some algebra, one obtains

E = ρ1
[

1

2
ϕ1 h1 ū1 + 1

6
h 3

1
ū1 ū1x

]

x
− 1

2
ρ1 h1 ū

2

1
− 1

6
ρ1 h

3

1
ū 2

1x

+ ρ2
[

1

2
ϕ2 h2 ū2 + 1

6
h 3

2
ū2 ū2x

]

x
− 1

2
ρ2 h2 ū

2

2
− 1

6
ρ2 h

3

2
ū 2

2x

− 1

6
ρ2D

[

h 2

2
ū2 ū2x

]

x
− 1

2
(ρ1 − ρ2) g h

2

1
, (4.2)

F = − ρ1
[

1

2
ϕ1 h1 ū1 + 1

6
h 3

1 ū1 ū1x

]

t
− ρ1 h1 ū1

(

1

2
ū 2

1 + 1

6
h 2

1 ū
2

1x + 1

3
h1 γ1

)

− ρ2
[

1

2
ϕ2 h2 ū2 + 1

6
h 3

2
ū2 ū2x

]

t
− ρ2 h2 ū2

(

1

2
ū 2

2
+ 1

6
h 2

2
ū 2

2x − 1

3
h2 γ2

)

+ 1

6
ρ2 D

[

h 2

2
ū2 ū2x

]

t
− (ρ1 − ρ2) g h

2

1
ū1 + ρ2 Qφ2t + 1

2
ρ2 Q ū 2

2

− ρ2Q
[

1

2
h 2

2
ū2 ū2x

]

x
+ 1

6
ρ2 Qh 2

2
ū2 ū2xx, (4.3)

G = ρ1 h1 ū
2

1 + 1

2
(ρ1 − ρ2) g h

2

1 + 1

3
ρ1 h

2

1 γ1 + ρ1
[

1

2
ϕ1 h1 + 1

6
h 3

1 ū1x

]

t

− 1

2
ρ2 (h1 − h2) ū

2

2
− 1

3
ρ2 h

2

2
γ2 + ρ2

[

1

2
ϕ2 h2 + 1

6
h 3

2
ū2x

]

t

− 1

2
ρ2 Dφ2t + 1

2
ρ2D

[

h 2

2
ū2 ū2x

]

x
− 1

6
ρ2 Dh 2

2
ū2 ū2xx, (4.4)

I = ρ1 h1 ū1 − ρ1
[

1

2
ϕ1 h1 + 1

6
h 3

1
ū1x

]

x
− 1

2
ρ2Dφ2x

+ ρ2 h2 ū2 − ρ2
[

1

2
ϕ2 h2 + 1

6
h 3

2
ū2x

]

x
. (4.5)

Note that these relations involve both ϕj and φj in order to handle more compact expres-
sions.

4.1. Momentum flux

From the relations (4.4) and (4.5), after simplifications and some elementary algebra,
one obtains the equation for the conservation of the momentum

∑2

j=1
∂t[ ρj hj ūj ] + ∂x

[

ρj hj

{

ū 2

j − (−1)j 1

2
g hj − (−1)j 1

3
hj γj

}]

=

Dρ2 ∂x
[

φ2t + 1

2
ū 2

2 − h2 h2x ū2 ū2x − 1

2
h 2

2 ū
2

2x − 1

3
h 2

2 ū2 ū2xx − g h2

]

, (4.6)

and comparison with the equation (A.2) gives an expression for the pressure at the interface

P̃ / ρ2 = K2(t) − φ2t − 1

2
ū 2

2
+ h2 h2x ū2 ū2x + 1

2
h 2

2
ū 2

2x + 1

3
h 2

2
ū2 ū2xx + g h2 , (4.7)
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where K2(t) is an arbitrary function (integration ‘constant’). The horizontal derivative of
this relation, with (2.4) and (2.7), yields after some algebra

P̃x / ρ2 = g h2x − ū2t − ū2 ū2x + 1

3
h−1

2

[

h 2

2
γ2

]

x
, (4.8)

that is the upper-layer averaged horizontal momentum equation (A.3), as it should be. We
have obtained the Cauchy–Lagrange equation (4.7) because we used h = h1 as main
variable for the interface in the multi-symplectic formalism and because we eliminated φ1

from the equations. Had we instead used h2 and eliminated φ2, we would have obtained a
Cauchy–Lagrange equation for the lower layer. The latter can be easily derived in the
form

P̃ / ρ1 = K1(t) − φ1t − 1

2
ū 2

1
+ h1 h1x ū1 ū1x + 1

2
h 2

1
ū 2

1x + 1

3
h 2

1
ū1 ū1xx − g h1.

The arbitrary functions Kj are Bernoulli “constants”. Their determination requires
gauge conditions on φj and Pj (in order to have unequivocal definitions of these quantities)
and a precise definition of the mean interface level and of the frame of reference.

4.2. Energy flux

From the relations (4.2) and (4.3), after simplifications and some elementary algebra,
one obtains the equation for the conservation of the energy flux

∑2

j=1
∂t

[

1

2
ρj hj

{

ū 2

j + 1

3
h 2

j ū
2

jx − (−1)j g hj

}

]

+

∂x

[

ρj hj ūj

{

1

2
ū 2

j + 1

6
h 2

j ū
2

jx − (−1)j 1

3
hj γj − (−1)j g hj

}

]

=

Qρ2 ∂x
[

φ2t + 1

2
ū 2

2 − h2 h2x ū2 ū2x − 1

2
h 2

2 ū
2

2x − 1

3
h 2

2 ū2 ū2xx − g h2

]

. (4.9)

The right-hand sides of equations (4.6) and (4.9) both involve φ2. The latter can be
eliminated computing D × (4.9)−Q× (4.6), yielding after one integration by parts

∑2

j=1
∂t

[

1

2
Dρj hj

{

ū 2

j + 1

3
h 2

j ū
2

jx − (−1)j g hj

}

− Qρj hj ūj

]

+ ∂x

[

Dρj hj ūj

{

1

2
ū 2

j + 1

6
h 2

j ū
2

jx − (−1)j 1

3
hj γj − (−1)j g hj

}

− Qρj hj

{

ū 2

j − (−1)j 1

2
g hj − (−1)j 1

3
hj γj

}

]

= −
dQ

dt
{ ρ1 h1 ū1 + ρ2 h2 ū2 } = − ρ2Q

dQ

dt
−

dQ

dt
(ρ1 − ρ2) h1 ū1. (4.10)

5. Conclusions and perspectives

We have derived the shallow two-layer Serre-type equations from a variational frame-
work. The main contribution of this study is that we presented their multi-symplectic
structure. The rather complicated nonlinear dispersion of the Serre-like equations makes
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non-trivial the derivation of the multi-symplectic structure, a priori. However, we have
shown here that this structure for fluids stratified in several homogeneous layers can be
rather easily obtained from the one layer case. For the sake of simplicity, we focused
here on two layers in two-dimension with horizontal bottom and lid. Generalisations for
three-dimensional several-layer stratifications should be straightforward from the multi-
symplectic structure of the one-layer three-dimensional Serre equations with a varying
bottom. This will be the subject of future investigations.

The size of the multi-symplectic structure increases rapidly with the number of layers
and the number of spatial dimensions. However, the matrices involved are sparse and most
of the equations are algebraically elementary. Thus, the calculus can be achieved easily
and straightforwardly with any Computer Algebra System capable of performing symbolic
computations.

Finding a multi-symplectic structure opens up new directions in the analysis and nu-
merics of equations. In this paper, we illustrate another advantage of the multi-symplectic
formalism: it also provides an efficient tool of calculus. Thanks to the multi-symplectic
formalism, the conservation laws are obtained automatically, and thus the conserved quan-
tities and their fluxes are obtained as well. The ‘automatic’ derivation of these conservation
laws is an advantage of the multi-symplectic structure.

As the main perspective, we would like to mention the structure-preserving numerical
simulations of nonlinear internal waves. The proposed multi-symplectic structure can be
transposed to the discrete level if one employs a multi-symplectic integrator [7, 19]. These
schemes were already rested in complex KdV simulations [12], but this direction seems to
be essentially open for internal wave models.

A. Complementary equations

Multiplying by (y + d1) and (d2 − y) the vertical momentum (full Euler) equation
for the lower and upper layers, respectively, and integrating over the layer thicknesses, we
have

ˆ η

−d1

ρ1 (y + d1)

[

D v1
Dt

+ g

]

dy = −

ˆ η

−d1

(y + d1)
∂ P1

∂y
dy = h1

(

P̄1 − P̃
)

,

ˆ d2

η

ρ2 (d2 − y)

[

D v2
Dt

+ g

]

dy = −

ˆ d2

η

(d2 − y)
∂ P2

∂y
dy = h2

(

P̃ − P̄2

)

,

where P̃ is the (unknown) pressure at the interface and P̄j is the layer-averaged pressure.
With the ansätze (2.1) one obtains

P̄j = P̃ + (−1) j−1 1

2
ρj g hj + (−1) j−1 1

3
ρj hj γj, (j = 1, 2).
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Integrating over the layer thicknesses the horizontal momenta, one obtains
ˆ η

−d1

ρ1
D u1

Dt
dy = −

ˆ η

−d1

∂ P1

∂x
dy =

[

h1

(

P̃ − P̄1

)]

x
− h1 P̃x,

ˆ d2

η

ρ2
D u2

Dt
dy = −

ˆ d2

η

∂ P2

∂x
dy =

[

h2

(

P̃ − P̄2

)]

x
− h2 P̃x,

thence with the ansätze (2.1) (with j = 1, 2)

[ hj ūj ]t +
[

hj ū
2

j − (−1)j 1

2
g h 2

j − (−1)j 1

3
h 2

j γj
]

x
= − ρ−1

j hj P̃x.

From these relations, we obtain at once (with Q̇ = dQ/dt)

Q̇ +
[

h1 ū
2

1
+ h2 ū

2

2
+ g D h1 + 1

3
h 2

1
γ1 − 1

3
h 2

2
γ2

]

x
= −

(

h1 ρ
−1

1
+ h2 ρ

−1

2

)

P̃x,
(A.1)

∑2

j=1
ρj

{

[hj ūj ]t +
[

hj ū
2

j − (−1)j 1

2
g h 2

j − (−1)j 1

3
h 2

j γj
]

x

}

= −D P̃x, (A.2)

ūjt + ūj ūjx − (−1)j g hjx − (−1)j 1

3
h−1

j

[

h 2

j γj
]

x
= − ρ−1

j P̃x. (A.3)

The elimination of P̃x between the two equations (A.3) yields (2.13).
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