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Abstract. This paper describes a new framework for white matter trac-
tography in high angular resolution diffusion data. A direction-dependent
local cost is defined based on the diffusion data for every direction on
the unit sphere. Minimum cost curves are determined by solving the
Hamilton-Jacobi-Bellman using an efficient algorithm. Classical costs
based on the diffusion tensor field can be seen as a special case. While the
minimum cost (or equivalently the travel time of a particle moving along
the curve) and the anisotropic front propagation frameworks are related,
front speed is related to particle speed through a Legendre transforma-
tion which can severely impact anisotropy information for front propa-
gation techniques. Implementation details and results on high angular
diffusion data show that this method can successfully take advantage of
the increased angular resolution in high b-value diffusion weighted data
despite lower signal to noise ratio.

1 Introduction

The development of Diffusion Tensor MRI has raised hopes in the neuroscience
community for in vivo methods to track fiber paths in white matter. Diffusion
Tensor Magnetic Resonance Imaging (DT-MRI) measures the self-diffusion of
water in biological tissue [1]. The utility of this method stems from the fact
that tissue structure locally affects the Brownian motion of water molecules and
will be reflected in the DT-MRI diffusion measurements. In classical theory,
diffusion follows a Gaussian process which can be described locally by a second
order tensor.

A simple and effective method for tracking nerve fibers using DT-MRI is to
follow the direction of maximum diffusion at each voxel [2,3,4,5]. Although this
method is widely spread and used in various ways the fiber trajectory is based
solely on local information which makes it very sensitive to noise. Moreover the
major direction of diffusion can become ill-defined for example at fiber crossings.

It has been proposed to shift from the Lagrangian, particle3 based streamline
approach described above to a Eulerian front propagation approach that can use

3 In this work, “particle” refers to the position of a fictitious evolving point
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full tensor information and is more robust to noise [6,7]. This can be set in a
Riemannian framework [8,9].

The Gaussian assumption of diffusion tensor imaging does not hold for ex-
ample if several fibers with different directions co-exist within the same voxel.
Extensions to the tensor model have been proposed [10]. High angular resolution
diffusion modalities such as Q-Ball imaging [11] acquire diffusion information
in potentially hundreds of directions thus measuring direction information in
a non-parametric way. Hagmann et al. [12] extend the streamline technique to
multi-valued vector fields and Campbell [13] proposes a front evolution approach
based on high angular resolution data.

In this work tractography is set in a continuous minimum cost framework.
This is different from [12,13] who do not propose variational (cost minimizing)
techniques. Local costs are defined for every direction on the unit sphere based
on high angular resolution diffusion imagery. Equivalently this can be consid-
ered a minimum arrival time framework in which the speed of fictitious particles
would be the inverse of the cost. We show that while the minimum arrival time
and anisotropic front propagation frameworks are deeply related, front speed
is related to particle speed through a Legendre transformation [14] which can
severely impact anisotropy information for front propagation techniques (Sec-
tion 2). Implementation details for our technique are discussed (Section 3) along
with considerations on the definition of the cost and the use of prior information
(Section 4). Finally, the technique is illustrated on high angular resolution diffu-
sion imagery (Section 5). Due to space constraints, full details will be published
in [15].

2 Theory

2.1 Direction-Dependent Local Costs

Minimum cost approaches have been used extensively in image segmentation.
In active contour models, an initial curve Γ (t = 0) is continually deformed
using calculus of variations in a way that optimally minimizes a global cost
C(Γ (t)). This global cost is obtained by integrating along the curve a local
cost, Ψ : Rn → R+ based on image information. The Live-Wire algorithm [16]
determines all the optimal curves between a seed region and any pixel of the
image using dynamic programming.

We propose to extend these two techniques to directional data by considering
direction-dependent local costs of the form4 Ψ : Rn × Sn−1 → R+. The global
cost of a given curve Γ , is then defined to be

C(Γ ) ,
∫

Γ

Ψ(Γ , Γ̂ s) ds, (1)

which depends locally not only on the position of the curve but also on the
direction of its unit tangent Γ̂ s.
4 A position p in n-dimensional space Rn is written in bold, and a hat denotes a

direction d̂ of the unit sphere Sn−1.



2.2 Calculus of Variations

The first variation of the functional (1) can be computed which leads to the
optimal minimizing deformation

∂Γ

∂t
= −P

Γ̂
⊥
s
( ∇ΓΨ − ∂

∂s
∇Γ̂ s

Ψ ) + ΨΓ ss, (2)

where P
Γ̂
⊥
s

is the projection onto the plane normal to Γ̂ s and any user-defined

direction-dependent cost Ψ(Γ , Γ̂ s) can be used. This result extends minimizing
flows for functional of the form C(Γ ) =

∫
Γ

v.Γ̂ s ds, proposed independently for
tractography [13,17].

2.3 Dynamic Programming

This technique is based on defining a value function C∗(p) that represents, for
any point p in the domain, the minimum cost over all curves between p and the
region S. From any p, the optimal curve back to S is obtained by descent on C∗.
It can be shown that the value function C∗ satisfies the Hamilton-Jacobi-Bellman
equation

max
d̂∈Sn−1

{ ∇C∗(p).d̂− Ψ(p, d̂) } = 0. (3)

The cost Ψ can be interpreted as the inverse of the speed of a particle traveling
along the curve. C∗(p) is then the minimum arrival time at p. Alternatively, an
infinite number of particle departing from S at the same time would propagate
as a front geometrically evolving in the direction of its normal with a speed
F . The corresponding equation is ‖∇C∗(p)‖F (p,∇C∗(p)/‖∇C∗(p)‖) = 1. The
two speeds F and 1/Ψ are not identical because particles are not restricted to
moving along the normal of the evolving front. Front speed and cost (or its
inverse, particle speed) are related through the Legendre transformations [14]

F (p, n̂) = 1/ min
d̂.n̂>0

{ Ψ(p, n̂)

d̂.n̂
} and Ψ(p, d̂) = max

d̂.n̂>0
{ (d̂.n̂)/F (p, n̂) }. (4)

Anisotropic front propagation techniques are not set in a Hamilton-Jacobi-
Bellman framework. Consequently it is the front speed F which is defined from
the diffusion data. Curves will then be determined that are optimal for C, which
can only be interpreted as a cost (or an arrival time) in terms of Ψ . The max
operator present in the definition of Ψ from F will tend to filter out the highest
values of the front speed F that correspond to the preferred spatial directions
(and therefore potential fibers) while preserving the slowest directions. Simu-
lations and further analysis show that this distortion affects particularly speed
functions with very localized direction information such as those encountered
in high angular resolution diffusion imagery and can even result in loss of in-
formation. This problem can be avoided by setting directly the problem in a
minimum cost framework (as proposed) or taking into account the Legendre
transformation (4) when defining F .



Given the boundary condition C∗ = 0 on some seed region S the Hamilton-
Jacobi-Bellman equation (3) can be solved for the value function C∗ as well as
the characteristic direction d̂

∗
. Then, from any point p, an optimal curve Γ ∗(p)

can be determined back to S by following the characteristics d̂
∗
. By construction,

C(Γ ∗(p)) equals the optimal cost C∗(p). For these C-optimal curves, the value of
another global cost, K, corresponding to a different local cost Φ can be computed
by solving the transport equation

∇K(p).d̂
∗
(p) = Φ(p, d̂

∗
(p)) (5)

with boundary condition K = 0 on the seed region S. In particular the length
L(Γ ∗(p)) =

∫
Γ ∗(p) 1 ds of these optimal curves corresponds to Φ = 1. The cost

per unit length K/L can be used to define a validity index and rank curves that
are optimal for one criterion using another criterion as in [6,7].

3 Implementation

The HBJ equation (3) can be solved using a fast sweeping numerical scheme
proposed by Kao et al. [18], similar to the one used in [7]. The algorithm

Algorithm 1 Sweeping algorithm to solve the Hamilton-Jacobi-Bellman equa-
tion (3), see [18]
Require: seed region S, direction-dependent local cost Ψ
1: Initialize C∗(·) ← +∞, except at starting points s ∈ S where C∗(s) ← 0
2: repeat
3: sweep through all voxels p, in all possible grid directions
4: d̂

′ ← arg mind∈Sn−1 fC∗,Ψ (p, d̂)
5: if fC∗,Ψ (p, d̂

′
) < C∗(p) then C∗(p) ← fC∗,Ψ (p, d̂

′
) and d̂

∗
(p) ← d̂

′

end if
6: end sweep
7: until convergence of C∗

8: return value function C∗, characteristics d̂
∗

sweeps through all points p in search of the least expensive direction. The cu-
mulated cost to reach p from direction d̂ is fC∗,Ψ (p, d̂) , (

∑n
k=1 αkC∗(p+δk)+

Ψ(p, d̂))/(
∑n

k=1 αk), where the n neighbors5 p+ δ1, . . . , p+ δn of p in direction
d̂ are interpolated using the components of the vector α , [δ1 | . . . | δn]−1d̂.
For example, if d̂ = δk/‖δk‖ (i.e., d̂ points directly at one of the neighbor-
ing voxels) then f = C∗(p + δk) + Ψ(p, d̂)‖δk‖. While this is reminiscent of
Dijkstra’s algorithm, the search for the optimal direction is not restricted to

5 in 3D, this is n = 3 neighbors among 26.



discrete grid directions. In our implementation the minimization is performed
over 100 directions sampled uniformly on the sphere and the coefficients α(d̂)
are pre-computed.

Once the vector field d̂
∗

is known, a slightly modified6 version of Algorithm 1
is used to solve transport equations.

4 Application to High Angular Diffusion MRI
Tractography

4.1 Constructing the Direction-Dependent Cost

Most front propagation techniques for diffusion tensor tractography use some ad
hoc function f of the quadratic form d̂

t
Dd̂. If the Gaussian assumption holds,

the diffusion weighted images follow S(p, d̂) ' S(p,0) exp(−b d̂
t
D(p)d̂). Tensor

based techniques can formally be extended to high angular resolution diffusion
datasets by setting

Ψ(p, d̂) , f(−1
b

log(
S(d̂)
S(0)

)) (6)

Notice that Q-Ball datasets [11] and direction-dependent local costs Ψ are both
defined on the same space R3 × S2.

However, due to the low signal to noise ratio of these datasets, it is desirable
to consider more than one value at a time. The anisotropic cost can be defined
by some decreasing function f ′ of the Funk-Radon transform7 of the attenuation
S(p, ·)/S(p,0).

Ψ ′(p, d̂) , f ′(
∫

v̂⊥d̂

S(v̂)
S(0)

dv̂) (7)

The cost Ψ ′(p, d̂) will therefore be small if and only if there is limited diffusion
loss over the corresponding equator, i.e., if diffusion does not occur normal to d̂.

4.2 Using Prior Knowledge

Mumford [19] showed that variational techniques, such as the one proposed here,
can be set in an elegant and principled Bayesian framework by considering
the cost Ψ = Ψdata + Ψprior. The extreme simplicity of this construction con-
stitutes another advantage over non-variational front propagation approaches.
Here, Ψdata would be as described above and Ψprior could be obtained from an
atlas of neural tracts.

The problems of generating such an atlas and registering it to the dataset at
hand are well beyond the scope of this paper. Note however that masking off
(with infinite cost values) the non white matter regions of the brain is a trivial
and widely employed use of prior knowledge.
6 no minimization needs to be performed
7 Interestingly, the FRT is also central to the Q-Ball technique [11].



5 Results

Here we show results obtained by applying the methodology described in the
above sections to diffusion weighted data sets acquired using a single-shot diffusion-
weighted EPI sequence, with 31 different gradient directions with b-values of 500,
1000, and 1500 s/mm2, on a 1.5 Tesla GE Echospeed system. The data was ac-
quired with different b-values to enable comparisons of the results. Traditional
eigenvector based tractography is normally carried out in data with b-values in
the range of 700-1000 s/mm2. Higher b-values give data with higher angular
contrast but at the expense of more noise.

Cost per unit length, which can be interpreted as a validity index for the pu-
tative tracts was determined for all b-values Fig. 1. All curves are optimal given

(a) b = 500 (b) b = 1000 (c) b = 1500

Fig. 1. Cost per unit length of end points of optimal curves for different b-values
is a validity index (see text). Best results are achieved for the highest b-value.

their starting point. The cost per unit length is a measure of how good they are
compared to each other. The best contrast (corresponding to the most coherent
set of “super-optimal” tracts for a given seed point posterior of the corpus cal-
losum) was obtained at the highest b-value available. This could indicate that
the algorithm was was able to take advantage of the higher angular contrast in
spite of the lower SNR.

Tract results for several user defined seed points are presented on Fig. 2.
Finally the proposed technique was compared to a streamline technique for

the needs of which the tensor field was computed (Fig. 3). While validation is a
very challenging task due to the unavailability of ground truth, it can be noted
that both algorithm give similar results even though their inputs are different.
The tracts of the proposed technique tend to be more coherent as any noise in
the data might set the streamline off course whereas the proposed technique is
more global.

6 Conclusion

A novel technique has been proposed for fiber tractography from high angular
resolution diffusion imagery. In difference to [12,13] this is based on a princi-



(a) (b)

Fig. 2. Fiber tracking from high angular resolution dataset (b=1500 s/mm2).

Fig. 3. Proposed technique on high angular resolution data (blue) compared
with streamline technique on tensor field (red) (b=1500 s/mm2).

pled minimum cost (or arrival time) approach. By setting front propagation
techniques in a variational light the proposed technique gives some insights on
the interpretation of front speed versus particle speed. Preliminary results show
that the technique performs better for high b-values when directional resolution
is higher. Further research topics include detailed validation as well as the use
of prior information.

Acknowledgments

This work is part of the National Alliance for Medical Image Computing (NAMIC),
funded by the National Institutes of Health through the NIH Roadmap for Med-
ical Research, Grant U54 EB005149. It is also supported by NIH grant NAC
P41 RR-13218.



References

1. Basser, P., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imag-
ing. Biophys. J. 66 (1994) 259–267

2. Mori, S., Crain, B., Chacko, V., van Zijl, P.: Three-dimensional tracking of axonal
projections in the brain by magnetic resonance imaging. Ann Neurol. 45 (1999)
265–269

3. Conturo, T., Lori, N., Cull, T., Akbudak, E., Snyder, A., Shimony, J., McKinstry,
R., Burton, H., Raichle, M.: Tracking neuronal fiber pathways in the living human
brain. In: Proc. Natl. Acad. Sci. USA. (1999) 10422–10427

4. Westin, C.F., Maier, S.E., Khidhir, B., Everett, P., Jolesz, F.A., Kikinis, R.: Image
processing for diffusion tensor magnetic resonance imaging. In: MICCAI. (1999)
441–452

5. Basser, P., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractog-
raphy using DT-MRI data. Magnetic Resonance in Medicine 44 (2000) 625–632

6. Parker, G., Wheeler-Kingshott, C., Barker, G.: Estimating distributed anatomical
connectivity using fast marching methods and diffusion tensor imaging. IEEE
Transactions on Medical Imaging 21 (2002) 505–512

7. Jackowski, M., Kao, C.Y., Qiu, M., Constable, R.T., Staib, L.: Estimation of
anatomical connectivity by anisotropic front propagation and diffusion tensor imag-
ing. In: MICCAI. (2004) 663–671

8. O’Donnell, L., Haker, S., Westin, C.F.: New approaches to estimation of white
matter connectivity in diffusion tensor MRI: Elliptic PDEs and geodesics in a
tensor-warped space. In: MICCAI. (2002)

9. Lenglet, C., Deriche, R., Faugeras, O.: Inferring white matter geometry from
diffusion tensor MRI: Application to connectivity mapping. In: ECCV. (2004)

10. Liu, C., Bammer, R., Acar, B., Moseley, M.: Characterizing non-Gaussian diffusion
by using generalized diffusion tensors. Magnetic Resonance in Medicine 51 (2004)
924–937

11. Tuch, D.: Q-ball imaging. Magn Reson Med. 52 (2004) 1358–1372
12. Hagmann, P., Reese, T.G., Tseng, W.Y.I., Meuli, R., Thiran, J.P., Wedeen, V.J.:

Diffusion spectrum imaging tractography in complex cerebral white matter: an
investigation of the centrum semiovale. In: ISMRM. (2004)

13. Campbell, J.S.: Diffusion Imaging of White Matter Fibre Tracts. PhD thesis,
McGill University (2004)

14. Strang, G.: Introduction to Applied Mathematics. Wellesley-Cambridge Press
(1986)

15. Pichon, E. PhD thesis, Department of Electrical and Computer Engineering, Geor-
gia Institute of Technology (2005)

16. Mortensen, E., Morse, B., Barrett, W., Udupa, J.: Adaptive boundary detection
using live-wire two-dimensional dynamic programming. In: IEEE Proceedings of
Computers in Cardiology. (1992) 635–638

17. Pichon, E., Sapiro, G., Tannenbaum, A.: Segmentation of Diffusion Tensor Im-
agery. Number 286 in LNCIS. In: Directions in Mathematical Systems Theory and
Optimization. (2003) 239–247

18. Kao, C., Osher, S., Tsai, Y.: Fast sweeping methods for static Hamilton-Jacobi
equations. Technical Report 03-75, UCLA CAM (2003)

19. Mumford, D.: The Bayesian Rationale for Energy Functionals. In: Geometry-driven
Diffusion in Computer Vision. Kluwer Academic Publisher (1994) 141–153


