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Abstract 

The work within this thesis is concerned with the creation of a 
temperature-sensitive Schizosaccharomyces pombe marker protein, and the 
regulation of the pheromone communication system of Sz. pombe reporter strains 
by RGS proteins. 

There are a limited number of marker proteins available for use in the 
genetic manipulation of Sz. pombe, and the generation of a temperature-sensitive 
Ura4p was envisaged to expand the scope of carrying out sequential gene 
disruptions in the fission yeast. PCR-based mutagenesis was used to introduce 
mutations in the ura4 cassette, and a leucine to proline mutation identified at 
residue 261 in the ura4 open reading frame conferred a temperature-sensitive 
requirement for uracil. To demonstrate the use of the Ura4sp marker in gene 
disruption, the Sz. pombe irpl gene was disrupted with the ura4u cassette, and 
subsequently, the prkl gene was disrupted with the wild-type ura4 cassette. 

RGS proteins are a recently discovered family of proteins that negatively 
regulate G protein-coupled signalling pathways. This thesis describes the ability 
of mammalian RGS proteins to regulate the pheromone communication system of 
Sz. pombe reporter strains. Human RGS 1 and human RGS4 displayed the greatest 
ability to negatively regulate the Sz. pombe pheromone signalling pathway when 
expressed from multicopy expression vectors. Human RGS2, human RGS3, 
human RGS9-2 and murine RGS2 displayed lesser, varying abilities. Expression 
of human RGS 1 from single copy reduced signalling at low pheromone 
concentrations. Expression of human RGS4 from single copy was incapable of 
reducing pheromone-independent and pheromone-dependent signalling. 

This thesis also describes the search for gain-of-function RGS proteins. 
Two potential gain-of-function szRgslp mutants were previously identified, and 
these mutants were recreated. The two mutations identified (histidine to arginine 
at szRgslp residue 171 and valine to isoleucine at szRgslp residue 305) conferred 
gain-of-function szRgslp phenotypes in an sxa2:: ura4 reporter strain. 
Hydroxylamine treatment of the human RGS4 open reading frame resulted in the 
identification of a potential gain-of-function RGS4 mutant. The lysine to arginine 
mutation at huRGS4p residue 20 conferred a gain-of-function huRGS4p 

phenotype in an sxa2:: ura4 reporter strain. 
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Chapter 1. General Introduction 



1.1. Cell communication 

1.1.1. Intercellular and intracellular communication 

Both unicellular and multicellular organisms are constantly being challenged 
by a changing environment, and in order for them to react favourably to changing 

circumstances, cells within unicellular or multicellular communities must be able to 

influence and communicate with each other. 
Unicellular organisms communicate with each other for reproduction and 

survival. For example, yeast cells secrete pheromones that induce mating responses 
in target cells. Multicellular organisms, besides communicating with each other, have 

circulatory systems that enable cells to communicate with cells at distant 

physiological sites. 
Signals received at the cell surface are transmitted to intracellular targets via 

intracellular signal transduction pathways. Signalling cascades within cells transmit 

and amplify signals received at the cell surface to intracellular effector molecules. 

This results in a change in cell physiology and/or biochemistry. Regardless of the 

nature of stimulant, target cells recognise agonists via cell surface receptors, and the 

huge diversity in the chemical structure of agonists requires a similarly diverse array 

of receptors. Diversity among receptors and intracellular signalling pathways means 

that different cells can respond differently to the same agonist. 

1.1.2. Adaptation in signal transduction pathways 

The presence of an agonist rarely remains at the same concentration, and in 

order for a cell to adapt to the removal of an agonist or its continued presence, 

mechanisms exist that switch off signalling through a pathway, and reset the cell for 

future stimulation. Adaptation mechanisms exist at all stages in signalling pathways. 
The agonist may be inactivated or internalised even before it binds to a receptor. 
Likewise, the receptor can be inactivated or internalised. Downstream effector 

molecules are also subject to adaptation mechanisms. 
Adaptation mechanisms are activated by agonist-induced signal transduction, 

and provide negative feedback mechanisms that turn off signalling. 
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1.1.3. G protein signalling pathways 

The largest receptor family is the G protein-coupled receptor (GPCR) family, 

whose members possess seven trans-membrane domains. GPCRs couple to 

heterotrimeric G proteins within the cell, which are activated upon ligand binding to 

receptors. Activation of the cognate G protein in turn modulates the activity of 
downstream second messenger molecules, resulting in a physiological response. 

Signal amplification arises from the ability of a single receptor to activate many G 

proteins, and the resulting stimulation of many cycles of the effector. 

1.2. G protein-coupled signalling pathways 

1.2.1. Overview 

Signal transduction pathways that are coupled to heterotrimeric G proteins 
have undergone intense research in the last decade. Heptahelical receptors represent 

the largest family of cell surface receptors, and it has been estimated that over half of 

pharmaceutical therapeutic drugs are directed towards G protein-coupled signalling 

pathways (Milligan and Rees, 1999; Marchese et al., 1999). 

G protein signalling pathways are ubiquitous throughout eukaryotic systems, 

and represent one of a number of signalling pathway families responsible for 

transducing signals from the extracellular environment to the intracellular 

machinery. G protein signalling pathways consist of a member of the seven 

transmembrane receptor family, a heterotrimeric guanine nucleotide-binding protein 
(G protein) and downstream effectors (including adenylyl cyclases, 

phosphodiesterases and phospholipase isoforms) (Figure 1). Agonist binding causes 

conformational changes in the cell surface heptahelical receptor, which are 
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Figure 1. G protein signalling pathways 

v 

Agonist binding to a seven-transmembrane receptor results in a conformational change 
being transmitted to an inactive heterotrimeric G protein. Activation of the cognate G 

protein causes the dissociation of GDP from the Ga subunit, which is followed by the 
binding of GTP to the Ga subunit. The binding of GTP to the G, x subunit causes the 
dissociation of the Ga, 

_(iTP and Gpy subunits, which are then available to modulate the 
activity of second messenger molecules within the cell. 
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sterically transmitted to a coupled heterotrimeric G protein on the cytoplasmic face 

of the plasma membrane. The inactive heterotrimeric G protein is comprised of three 

subunits (a, ß, y). In the inactive heterotrimeric G protein, GDP is bound to the Ga 

subunit. Activation of the G protein results in the dissociation of Ga-bound GDP and 

the subsequent binding of GTP. The Ga conformational change following GTP 

binding results in the liberation of the Ga, -GTP complex from the Gp7 complex. The 

Gßß, subunit exists as a tightly bound heterodimer, and has low affinity for the GTP- 

bound Ga subunit. One or both of these liberated complexes are then free to 

modulate the activity of downstream effectors in the pathway, or act as effectors 

themselves. Thus, in G protein signalling pathways, agonist binding to a cell surface 
heptahelical receptor is coupled to downstream events via guanine nucleotide 
binding regulatory proteins. 

G proteins may stimulate or inhibit signal transduction pathways, via the 

modulation of second messenger activity. The Ga subunit has an intrinsic GTPase 

activity, which slowly hydrolyses the bound GTP to GDP. The high affinity of Ga, - 
GDP for the Gp, subunit causes the Ga, and Gpy subunits to reassociate, reforming the 

inactive heterotrimeric G protein. 

1.2.2. G protein-coupled receptors 

G protein-coupled receptors share a common seven-helix trans-membrane 

structure, and provide the link between the extracellular and intracellular 

environments (reviewed in Dohlman et al., 1991; Inglese et al., 1993). A diverse 

number of agonists are detected by GPCRs, such as photons, odorants, peptide 
hormones and neurotransmitters (Dohlman et al., 1991), and it is the primary 
function of GPCRs to discriminate between the hundreds of ligands in the 

extracellular environment in order for the cell to carry out an appropriate response. 
The specificity with which the receptor can interact with G proteins defines the range 

of responses a cell can make. Receptors are highly specific for their cognate ligand, 

and a ligand that gives a specific response in one cell may cause a pleiotropic 

response in another. 
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Ligand binding induces conformational changes in the tertiary structure of 

the receptor (reviewed in Hulme et al., 1999), which are transmitted to an inactive, 

GDP-bound heterotrimeric G protein. Evidence suggests that the second and third 

cytoplasmic loops are the interaction sites with G proteins in several GPCRs (Liu et 

al., 1995; Eason and Liggett, 1996; Yamashita et al., 2000). Experimental evidence 

suggests that structural constraints keep GPCRs in an inactive conformation that 

prevents an effective interaction between peptide sequences in the intracellular loops 

of the GPCR and the G protein. Agonist binding or mutations in constitutively active 

mutant (CAM) GPCRs are believed to relieve the constraints and to cause the GPCR 

to adopt an active conformation (reviewed in Leurs et al., 1998). It has been 

hypothesised that particular sequences in the cytoplasmic domain of heptahelical 

receptors become accessible to epitopes on the G protein as a consequence of ligand- 

induced activation. One crucial interaction is with the C-terminus of the Ga, subunit, 

which is important in dictating receptor specificity. 

GPCRs can spontaneously couple to signal transduction pathways (Leurs et 

al., 1998), and can signal through associations with intracellular partners other than 

G proteins, including polyproline binding proteins, arrestins, GRKs, small GTP 

binding proteins, SH2 domain-containing proteins and PDZ domain-containing 

proteins (reviewed in Hall et al., 1999; Marinissen and Gutkind, 2001). This 

presumably allows receptors to initiate multiple intracellular signalling pathways, 

with each subtype of receptor likely coupled to a relatively unique set of effectors. 
The biological outcome of GPCR activation probably results from the 

integration of a complex network of biochemical responses, which are highly 

dependent on receptor expression levels, coupling specificity and the repertoire of 

signalling molecules expressed in each cellular system. 

1.2.3. Heterotrimeric G proteins 

Heterotrimeric G proteins are comprised of three subunits, and it is the Ga 

subunit that is responsible for the activation state of the G protein. When the Ga 

subunit is in its GDP-bound state the Ga, subunit is associated with both the 

intracellular carboxy-terminal tail of a seven-transmembrane receptor and a weakly 
bound Gp, dimer, and both G protein moieties are unable to modulate the activity of 
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downstream effector molecules. Upon activation by its cognate receptor, GDP 

dissociates from the Ga subunit (probably as a result of conformational changes 

[Bourne, 1997]), and GTP is consequently bound by the Ga, subunit. The binding of 

GTP results in the dissociation of Ga, -GTP from the Gp, subunits (Lambright et al., 

1994). The GTP-dependent conformational switch disrupts the extensive switch 

interface by rearranging many of the residues on the Ga, subunit that are directly 

involved in Gßy contact (reviewed in Lambright et al., 1996). 

Ga, subunits are composed of two domains. A GTPase domain contains the 

guanine nucleotide binding pocket, as well as sites for binding receptors, effectors 

and the Gpy subunit (reviewed in Neer, 1995). The function of the second domain is 

not clear, but this helical domain is thought to play a role in defining the specificity 

of receptor interactions in some G proteins. G proteins are classified according to 

their Ga subunits. There are 23 distinct members of the Ga family encoded by 17 

genes, and they are divided into four sub-families based on amino acid sequences 

(Ga, subunits share -45-95% amino acid similarity) and shared intracellular effector 

molecules (Strathmann et al., 1989; Strathmann and Simon, 1991). The G. class 

((xs, golf) stimulate adenylate cyclase isoforms. There are numerous members of the 

Gai/oit class (Gial-3, az, aol/2, at, agust), which function to down-regulate a 

number of G protein-coupled signal transduction pathways. The Gaq class of Ga, 

subunits (aq, all, a14, a15/16) activate the ß isoforms of PLC and non-receptor 

tryrosine kinases of the Btk family. The fourth class of Ga subunits, the Gaj2/13 

subunits, regulate low molecular weight G proteins of the Rho family and the Na+H+ 

exchanger (Freissmuth et al., 1999). Thus, Ga subunits can exhibit opposing 

activities upon effectors (adenylate cyclase is stimulated by Gas and inhibited by 

Gai). 

The Go and G. subunits also exist in multiple forms (reviewed in Clapham 

and Neer, 1993). Six highly conserved Gp subunits and twelve more divergent G. 

subunits can associate to form multiple tightly bound heterodimers (though they do 

not pair indiscriminately), providing further specificity. The G. moieties are more 

divergent than Gp subunits (Cali et al., 1992), and are thought to have significant 
influence on the specificity of Gpy interactions with receptor molecules within the 
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heterotrimeric G protein. Gpy subunits have also been implicated in the recruitment 

of GRKs to the membrane (Touhara et al., 1994). The Gß N-terminal region is 

thought to form an amphipathic alpha-helix (Lupas et al., 1992) followed by seven 

repeating units of -43 amino acids each (Simon et al., 1991). These are an example 

of the WD repeats found in a family of proteins involved in signal transduction, cell 
division, and transcription. The Gy subunit is predicted to be largely alpha-helical 
(Lupas et al., 1992). 

Many G protein subunits are expressed ubiquitously (Strathmann and Simon, 

1991; Kaziro et al., 1991), while others have differential spatial and/or temporal 

expression patterns. G proteins can exist at cellular locations distinct from the plasma 

membrane, where they may be functional and involved in important cellular 

processes (reviewed in Willard and Crouch, 2000). There is emerging evidence that 

serpentine receptors exist in the nucleus and are coupled to G proteins (Rubins et al., 
1990; Crouch, 1991). There is also experimental evidence demonstrating direct 

association of G proteins with the cytoskeleton (Rasenick and Wang, 1988) and 
Golgi membranes (Stow et al., 1991; Maier et al., 1995). Heterotrimeric G proteins 

are reviewed in Neer (1995), Hamm and Gilchrist (1996) and Offermans and Simon 

(1996). 

There is evidence that G proteins can be activated independently of receptor 

stimulation (Cismowski et al., 2001). AGS proteins (Activators of G protein 

Signalling) activate G protein signalling in the absence of a typical receptor, and 

appear to do so by a number of different mechanisms. 

1.2.3.1. GTPase activity of the Ga subunit 

G proteins act like molecular switches - signalling is activated when GDP is 

exchanged for GTP on the Ga subunit, which is catalysed by agonist binding to the 

cognate receptor. The Ga and/or Gp1 subunits are then able to modulate the activity 

of downstream effector molecules. Signalling is turned off when the bound GTP is 

hydrolysed to GDP. 

The slow intrinsic GTPase activity of Ga subunits hydrolyses the bound GTP 

to GDP, with the consequence that the Ga and Gpy subunits reassociate, re-forming 
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the inactive heterotrimer (Gilman, 1987). Thus, the lifetime of activation depends 

upon the rate at which GTP is hydrolysed to GDP. 

Upon Ga, activation, a structural change in the heterotrimer affects the 

guanine nucleotide affinity of the Ga subunit, where it preferentially binds GTP and 

Mg2+ over GDP. The nucleotide-binding site of Ga, is composed of three distinct 

`switch' regions, which undergo considerable conformational change upon GTP 

hydrolysis (Wall et al., 1995; Lambright et al., 1996). As a result of the formation of 

the Ga, -GTP-Mg2+ complex, modifications in the structure of the three switch regions 

facilitate the dissociation of Ga from Gpy. Termination of the signal results when the 

process is reversed by the hydrolysis of the bound GTP molecule. Reassociation of 

Ga with Gp1 then occurs, which results in the inactivation of the G protein. The 

duration and strength of the G protein signal is therefore dependent on the GTPase 

activity of the Ga protein. 

Different Ga, subunits have different intrinsic rates of GTP hydrolysis (Carty 

et al., 1990; Linder et al., 1990), which can affect which pathway predominates if a 

GPCR couples to more than one G protein. 

The slow rate of GTP hydrolysis by Ga subunits in vitro is inconsistent with 

signal inactivation rates in vivo (Kurachi, 1995; Arshavsky et al., 1998), and this 

inconsistency has been resolved by the recent discovery of proteins that accelerate 

Ga GTP hydrolysis. RGS proteins (Regulators of G protein Signalling) act as 

GTPase-activating proteins (GAPs) for Ga subunits (Section 1.3. ). 

1.2.3.2. Ga, and Gß1 as signal propagators 

Both the Ga-GTP and Gß1 moieties of the activated G protein can go on to 

modulate the activity of downstream effector molecules (Logothetis et al., 1987). Gq_ 

GTP and Gß1 transmit signals via interactions with downstream effector proteins, and 

their activities persist until the intrinsic GTPase activity of Ga returns the Ga subunit 

to the GDP-bound state. Reassociation of Gpr with Ga-GDP obscures critical effector 

contact sites, thereby terminating effector activation (Gilman, 1987; Conklin and 
Bourne, 1993). 

9 



The GTP-bound Ga subunit is known to interact with and regulate a wide 

variety of second messenger enzymes and ionic channels (reviewed in Birnbaumer, 

1992; Clapham and Neer, 1993; Gautam et al., 1998). 

The GpT subunit (reviewed in Clapham and Neer, 1993; Gautam et al., 1998) 

was originally thought to be the inactive membrane-anchoring partner in the G 

protein, negatively regulating the activity of the Ga subunit. Recently however, the 

importance of Gpy subunits in transmitting signals to downstream effectors has 

become acknowledged (Gautam et al., 1998; Vanderbeld and Kelly, 2000), and they 

are no longer viewed as mere negative regulators of the Ga subunit. The first 

evidence of this was the finding that Gp1 can activate the muscarinic K+ channel 
(Logothetis et al., 1987). It has subsequently been shown that Gpy dimers act as 

regulators of a large number of effectors, including adenylate cyclase, PLCß2, t- 

ARK and GIRK1, as well as voltage-gated Ca2+ channels, and brain Na+ and K+ 

channels (Jing et al., 1999). A recently discovered function of the Gp5 subunit is its 

ability to bind to Gy-like (GGL) domains in proteins, including RGS proteins 
(Kovoor et al., 2000). 

1.2.4. Adaptation in G protein-coupled signalling pathways 

Integral to all signal-response systems is the ability of a cell to recover from 

agonist stimulation in order for that cell to respond to subsequent stimulation. In the 

absence of a signal there is no requirement for the pathway to be activated, and 
indeed it can be detrimental to the cell. In the continued presence of agonist the cell 
becomes less responsive to agonist stimulation over time, and this phenomenon is 

termed desensitisation, or recovery. Desensitisation to therapeutic drugs is a major 
factor that limits their efficacy and duration of action. Cells have both short-term and 
long-term regulatory mechanisms that limit the duration of G protein signalling. 
Adaptation may exist at all levels; the receptor, G protein, downstream second 

messengers and targets themselves (Figure 2). 
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Figure 2. Adaptation in G protein signalling pathways 

In order to adapt to persistent stimulation and reset cells for future stimulation, adaptation 
mechanisms exist at each stage in G protein-coupled signalling pathways. These 
mechanisms dampen signalling by inactivating or uncoupling signalling proteins. 
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1.2.4.1. Adaptation at the signal level 

Removal or inactivation of the agonist before it binds to its cognate receptor 

reduces the extracellular concentration of active agonist, and reduces the number of 
cell surface receptors activated. Agonists may be removed by internalisation via cell 

surface transporters (for example in the removal of neurotransmitters, reviewed in 

Atwell and Mobbs [1994]). Inactivation of the agonist by secreted enzymes is also a 

method of adaptation at the signal level (reviewed in Ladds et al., 1996). 

1.2.4.2. Adaptation at the receptor level 

The second level of desensitisation in G protein signalling pathways lies at 
the level of G protein-coupled receptors (GPCRs). Mechanisms exist that desensitise 

GPCRs to stimulation both in the short term and long term, enabling cells to recover 
from both acute and chronic stimulation of G protein-coupled signalling pathways. 
Several mechanisms exist that regulate both the duration and strength of GPCR 

signals, depending on the receptor and cellular background. 

In the short term, receptors may undergo either homologous desensitisation 

(reduced responsiveness to the original stimulus) or heterologous desensitisation 

(reduced responsiveness as a result of stimuli acting through other receptors). Both 

mechanisms are associated with receptor phosphorylation and a subsequent 
impairment of G protein coupling. Homologous desensitisation of GPCRs is initiated 

by agonist-dependent phosphorylation. G protein-coupled receptor kinases (GRKs) 

specifically phosphorylate agonist-activated receptors, leaving non-activated 

receptors unaffected (reviewed in Lefkowitz, 1993; Bünemann and Hosey, 1999). 

Second messenger-dependent kinases (Hausdorff et al., 1990; Chuang et al., 1996) 

carry out heterologous desensitisation of GPCRs, and activation of these kinases by 

any pathway is sufficient to cause GPCR phosphorylation. 
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GRK-dependent desensitisation has been investigated most thoroughly for 

the visual receptor rhodopsin (Kuhn, 1974) and the 02-adrenergic receptors (Parruti, 

1993; Krupnick and Benovic, 1998; Lefkowitz, 1998). Termination of the active 

state for PAR and rhodopsin has been shown to be mediated by agonist- or light- 

dependent phosphorylation, respectively, of the receptor by GRKs. 

Phosphorylation of GPCRs by GRKs promotes the binding of ß-arrestin 

proteins (reviewed in Ferguson et al., 1996), which uncouple the receptor from its 

cognate heterotrimeric G protein, preventing further interactions (Lohse et al., 1990). 

The binding of (3-arrestin also targets the receptor for endocytosis. The 

phosphorylated, arrestin-bound receptor is targeted for internalisation and 

endocytosis (Koenig and Edwardson, 1997; Zhang et al., 1999), by virtue of the 

ability of ß-arrestins to interact with clathrin (Goodman et al., 1996; Zhang et al., 
1997). Arrestin- and clathrin-dependent internalisation is a dynamin-dependent event 
(Zhang et al., 1996), but other pathways may involve arrestin-and/or clathrin- 
independent events (Lee et al., 1998; Vogler et al., 1998). Multiple pathways of 
GPCR internalisation exist, and the best understood is GRK and arrestin-dependent. 

The relative contributions of phosphorylation and ß-arrestin binding to the 

desensitisation mechanism may vary in different systems (Richardson et al., 1993). 

Following internalisation and endocytosis, sequestered GPCRs are degraded 

or recycled back to the plasma membrane as fully functional receptors (Zhang et al., 
1997). The binding of ß-arrestins is also required for dephosphorylation of receptors 

and subsequent resensitisation to their pre-ligand exposed state (Sibley et al., 1986). 

Resensitisation to agonist is necessary to reset the cell for future stimulation, and the 

association of ß-arrestin with GPCRs during clathrin-mediated endocytosis dictates 

the profile of receptor resensitisation (Oakley et al., 1999). The interaction of f- 

arrestin with a specific motif in the GPCR C-terminal tail dictates the rate of receptor 
dephosphorylation, recycling and resensitisation (Oakley et al., 1999). The bound ß- 

arrestin protein may dissociate from the receptor at the plasma membrane (in the 

case of the P2-adrenergic receptor) or be internalised with the receptor into 

endosomes (in the case of the vasopressin V2 receptor [Oakley et al., 1999]). Thus, 

ß-arrestins are required not only for desensitisation of receptors, but also for 

initiating processes responsible for receptor resensitisation. 
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Phosphorylation of GPCRs by other kinases does not necessarily lead to 

arrestin binding (Lohse et al., 1992), and the cellular trafficking of ß-arrestin 

proteins is differentially regulated by the activation of distinct GPCRs (Zhang et al., 
2000). 

An emerging view is that phosphorylation and/or ß-arrestins can also initiate 

a new set of signalling pathways in addition to blocking those mediated by G protein 
activation (Hall et al., 1999). In this view, binding induces a switch in receptor 

signalling from classical second messenger-generating G protein mediated pathways 
to other pathways such as those involving Src and leading to the activation of MAP 

kinases (Pierce et al., 2001). 

Long-term desensitisation, following the persistent elevation of agonist, is 

characterised by a reduction in the total number of cell surface receptors (Sleight et 

al., 1995), as well as the attenuation of GPCR-G protein interactions. Following 

agonist stimulation, receptors are rapidly uncoupled from their cognate G protein and 

sequestered from the cell surface. There is decreased mRNA and protein synthesis as 

well as an increased rate of receptor degradation (Hausdorff et al., 1990). In order for 

the number of cell surface receptors to be recovered, de novo protein synthesis is 

required. 

1.2.4.3. Adaptation at the G protein level 

Besides their intrinsic GTPase activity, several mechanisms suppress 
downstream signalling by Ga,. Since Gpy inhibits guanine nucleotide dissociation, 

assembly of the inactive heterotrimeric protein inhibits Ga nucleotide exchange. The 

intrinsic GTPase activity of the Ga subunit of G proteins provides a slow mechanism 
for adaptation. 

A recently discovered family of proteins has been identified that negatively 

regulate the activity of the active Ga, subunit, and these proteins are collectively 
known as RGS proteins (Regulators of G protein Signalling). RGS proteins regulate 
Ga activity by accelerating the GTPase activity of the Ga subunit. This is achieved 
by stabilisation of the transition state conformation of the Ga subunit in the GTPase 

cycle, and effectively lowers the activation energy required for GTP hydrolysis 
(Tesmer et al., 1997; Srinivasa et al., 1998b). This family of proteins will be 
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discussed in Section 1.3. By turning off Ga subunits, RGS proteins also lead to 

reduced concentrations of Gpy dimers available for effector modulation. It has been 

routinely observed that the Ga, -GTP GTPase activity in vitro is slower than that 

observed in vivo. The basis for this anomaly has been discovered recently to be due 

to the action of RGS proteins. The prototype RGS protein (SST2) was identified in 

the budding yeast Saccharomyces cerevisiae (Chan & Otte, 1982a). Following the 

isolation of SST2 the number of RGS protein family members has expanded to 
include members in fungi (F1bA in Aspergillus nidulans), nematodes (EGL-10 in 

Caenorhabditis elegans), mice, rats and humans. RGS proteins (reviewed in 

Ashavsky & Pugh, 1998; Kehrl, 1998) negatively regulate G protein signalling 

(Huang et al., 1997), serving as GTPase-activating proteins (GAPs) for specific Ga 

sub-families (the G;,,,, Gya, and G. sub-families). 

A third regulatory mechanism at the level of the G protein is covalent 

modification of the Ga and Gpy subunits (reviewed in Casey, 1994; Chen and 

Manning, 2001). Ga, and Gp1 subunits are subject to several kinds of co- and post- 

translational covalent modifications, consisting of lipid modifications and/or 

phosphorylation. It is lipid modifications such as palmitoylation, myristoylation and 
isoprenylation that are thought to be involved in conferring membrane localisation. 

In many cases phosphorylation of Ga subunits changes localisation or association 

with other proteins as opposed to changing activity (Koch et al., 1995). 

Myristoylation at an N-terminal glycine is a co-translational lipid 

modification for members of the Ga; family, and is necessary for membrane 

attachment and facilitates the binding of the Gß1 subunit (Jones et al., 1990). N- 

terminal myristoylation is irreversible, and apparently does not serve a regulatory 

role. Palmitoylation is a post-translational modification that occurs for these and 

most other Ga, subunits. Palmitoylation is reversible, and this offers another level of 

regulation at the G protein level. One or both of these lipid modifications is required 
for plasma membrane targeting, and they contribute to regulating the strength of the 

Ga, interaction with the Gpy dimer, effectors and RGS proteins. Ga subunits, 
including those with transforming activity, are often inactive when unable to be 

modified with lipids (Gallego et al., 1992; Jones and Gutkind, 1998). 
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G, subunits are post-translationally modified by farnesyl or geranylgeranyl 

moieties (Fukada et al., 1990). Lipid modifications are thought to target the proteins 

to membranes. G., subunits differ from each other in the prenyl group modifying the 

C-terminal cysteine (reviewed in Casey, 1994), and while prenylation is not 

necessary for dimer formation, it is necessary for membrane attachment of the Gßr 

dimer, and for association with Ga subunits (Iniguez-Lluhi et al., 1992). 

1.2.5. G protein signalling pathways and disease 

Aberrant G protein signalling has been associated with a number of 

pathological conditions, including immune dysfunction, congestive heart failure 

(Milano et al., 1994; Zou et al., 1999), hypertension (Anand-Srivastava, 1996) and 

cancer. Deregulation of adaptation mechanisms plays an important role in many of 

these diseases. 

A variety of diseases are ascribed to constitutive activity of GPCRs caused by 

naturally occurring mutations (Leurs et al., 1998). The importance of the 

physiological roles of GPCRs is supported by studies using GPCR knockout animals 

(Rohrer and Kobilka, 1998), and their link with hereditary diseases (Stadel et al., 

1997). 

Activating mutations in Gas, Ga; 2 and Ga, 12 have also been correlated with 

different types of tumours. Almost all known Ga subunits have been inactivated by 

gene targeting in mice (reviewed in Offermanns and Simon, 1998; Offermans, 2001), 

and the effects range from the central nervous system, development, the immune 

system, heart, sensory systems, and platelets. Mice deficient in Gaj2 display growth 

retardation and develop a lethal diffuse colitis with clinical and histopathological 

features closely resembling ulcerative colitis in humans, including development of 

adenocarcinoma of the colon (Rudolph et al., 1995). 

Recent studies indicate that the asynchronous activation of G proteins can 
lead to the oncogenic transformation of different cell types (reviewed in 

Dhanasekaran et al., 1998; Radhika and Dhanasekaran, 2001). No mutation of the 

Gp, subunit has been associated with disease as yet, but the role played by Gpy dimers 

means that deregulation of their activity could potentially contribute to disease states. 
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1.3. RGS proteins 

1.3.1. Overview 

The prototype member of the RGS protein family, SST2, was isolated as a 

negative regulator of the pheromone response in S cerevisiae (Chan and Otte, 

1982a; Chan and Otte, 1982b). Members have since been found in fungi, nematodes, 

and at least 27 mammalian RGS proteins have been discovered (DeVries et al., 
2000). 

RGS proteins are characterised by a homologous, conserved alpha-helical 
domain of approximately 120 residues (the RGS domain, or RGS box) that binds Ga 

subunits and is responsible for their GAP (GTPase-activating protein) activity 

towards GTP-bound Ga, subunits. RGS proteins negatively regulate G protein- 

coupled signalling pathways by accelerating the intrinsic GTPase activity of the 

active Ga subunit (Berman et al., 1996; Apanovitch et al., 1998; Snow et al., 1998), 

driving the reformation of the inactive heterotrimeric G protein. 
RGS proteins vary in size, but can be roughly classified into small and large 

RGS proteins. The former class (including RGS 1, RGS2 and RGS4) possess short N- 

and C-termini flanking their RGS domain, and the latter class (including RGS9 and 
RGS 12) possess longer N- and C-termini that contain additional structural and 
functional motifs. Sequences outside the RGS domain show great diversity, and 

contribute to specificity of RGS action, linking them to other signalling networks. 
RGS proteins modulate signalling pathways in diverse cell functions, 

including proliferation, differentiation (Nishizuka et al., 2001), response to 

neurotransmitters (Jeong and Ikeda, 2000), membrane trafficking (Sullivan et al., 
2000) and embryonic development (Wu et al., 2000). RGS proteins are widely 

expressed, at least one is expressed in every organ, and many tissues express 

multiple RGS proteins. 
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1.3.2. SST2 is the prototype RGS protein 

The prototype member of the RGS family, SST2, was first identified 

following genetic screens for negative regulators of the S cerevisiae pheromone 

response (Chan and Otte, 1982a; Chan and Otte, 1982b). Stimulation of responsive 

cells with pheromone activates aG protein-linked protein kinase cascade, ultimately 
leading to Gi cell cycle arrest and morphological differentiation (Bardwell et al., 
1994; Herskowitz, 1995). Cells desensitise to pheromone after approximately 2h of 

continuous stimulation, resume growth, and return to their pheromone-responsive 

state. Genetic studies have shown that SST2 is important in the desensitisation 

process (Dietzel and Kurjan, 1987; Weiner et al., 1993; Dohlman et al., 1996). In the 

absence of SST2, both S. cerevisiae mating types are hypersensitive to pheromone 
(Dietzel and Kurjan, 1987), and are able to respond to 100-fold lower levels of 

pheromone compared to wild-type cells. Cells lacking SST2 are also unable to 

recover from pheromone-induced cell cycle arrest. SST2 is expressed at a low 

constitutive level, and is transcriptionally induced by pheromone stimulation 
following a time course that parallels that of desensitisation. SST2 is capable of 

inhibiting the pheromone response even after reaccumulation of cell surface 

receptors (Dietzel and Kurjan, 1987). The low constitutive level of SST2 expression 

is thought to limit sensitivity of naive yeast to pheromone, and induction of SST2 

activity is thought to be responsible for desensitisation to pheromone. SST2 has been 

shown to be the GAP (GTPase-activating protein) for the S. cerevisiae pheromone 

response Ga subunit, GPA1 (Apanovitch et al., 1998; Dohlman et al., 1996), and has 

also been shown to undergo proteolytic processing (Hoffman et al., 2000). 

1.3.3. Identification of RGS proteins in A. nidulans and C. elegans 

Following the identification of SST2 in S. cerevisiae, structural and 
functional homologues were identified in the fungus Aspergillus nidulans and the 

nematode Ceanorhabditis elegans. In A. nidulans, the protein F1bA inhibits 

signalling through the Ga subunit FadA, to regulate cell proliferation and 
development (Lee and Adams, 1994). F1bA is an early regulator of A. nidulans 

asexual sporulation, and its overexpression leads to activation of BrIA (a regulator of 
development) and premature initiation of development. 
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In C. elegans, the EGL-10 protein regulates signal transduction pathways that 

govern egg laying and motility (Koelle and Horvitz, 1996), which are stimulated by 

Gq signalling and inhibited by Go signalling (Hajda-Cronin et al., 1999). EGL-10 

regulates the C. elegans Ga subunit GOA-1 (a homologue of the mammalian G. 

proteins). 
SST2, F1bA and EGL-10 all contain the conserved RGS domain, although in 

SST2 and EGL-10 this domain is interrupted by non-conserved insertions, and are 

quite distantly related to the RGS domains of higher eukaryotes. EGL-10 and human 

RGS proteins possess a single conserved block of approximately 120 residues. 

1.3.4. Discovery of mammalian RGS proteins 

Following the isolation of SST2, F1bA and EGL-10, mammalian proteins 

were quickly discovered that possess the conserved RGS domain. 

GAIP (Ga Interacting Protein) was cloned following a two-hybrid screen for 

Ga; interacting proteins (DeVries et al., 1995). RGS 1 was identified following 

screens for B-lymphocyte-specific genes activated in chronic lymphocytic leukaemia 

cells (Hong et al., 1993), and RGS2, RGS3 and RGS4 were soon discovered 

(Siderovski et al., 1994; Druey et al., 1996). 

The identification and characterisation of human RGS proteins has been 

aided by their ability to function in heterologous systems, notably the pheromone 

response in S. cerevisiae. This has enabled mammalian proteins to be screened to 

determine whether they can functionally substitute for SST2 when expressed in S. 

cerevisiae (Druey et al., 1996). Expression of certain mammalian RGS proteins 

blunts signal transduction through the pheromone response pathway in S. cerevisiae, 

indicating that like SST2, they negatively regulate the pheromone pathway. 

All mammalian RGS proteins contain an uninterrupted conserved RGS 

domain, and some RGS proteins share unique structural features, suggesting the 

existence of particular RGS subgroups. Zheng (1999) proposed the division of the 

RGS family into six sub-families, based on the phylogenetic analysis of the RGS 

domain primary sequences of 62 mammalian and invertebrate RGS proteins. Over 25 

mammalian RGS proteins containing the diagnostic RGS domain have been 

identified to date, which regulate a broad range of G protein-coupled signalling 
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pathways (reviewed in DeVries, 2000). Mammalian RGS proteins express 

differential expression patterns, and possess diverse additional functions that link 

them to other signalling pathways. 

1.3.5. Mechanism of RGS GAP activity 

Resolution of the crystal structure of rat RGS4 complexed with G; a, i-Mg2+- 
GDP-A1F4 by Tesmer et al. (1997) provided important information concerning the 

structure of RGS4, and the mechanism of RGS activity. Only the core domain of 

RGS4 is visible in the crystal, and it forms a four-helix bundle that directly contacts 

the G, a, surface at three `switch' regions that undergo the greatest conformational 

change during the GTPase cycle (Sprang, 1997). On binding to G;,,,,, RGS4 reduces 

the flexibility of all three switch regions. These Ga, switch residues contain specific 

residues critical for GTP hydrolysis, which are intimately associated with the binding 

and hydrolysis of GTP, and they interact with the most highly conserved regions of 

RGS4. The interface between G; a, l and RGS4 is rich in electrostatic and hydrogen- 

bonding interactions (Tesmer et al., 1997), and RGS4 appears to accelerate 

hydrolysis of GTP by stabilising the transition state conformation of switch regions 

of Gi,, i through non-covalent interactions. 

The possibility of the conserved Asn-128 playing a catalytic role (by 

interacting with the hydrolytic water molecule or the side chain of G; ai Gln-204) has 

been proposed, but there is little evidence to suggest that RGS4 offers direct catalytic 

assistance to GTP hydrolysis (Natochin et al., 1998). 

The higher affinity of RGS proteins for the GDP-A1F4 complex of Ga than 

the GTPyS-bound form (Berman et al., 1996) supports the hypothesis that RGS 

proteins act by stabilising the transition state of Ga in the GTPase cycle. 

The NMR solution structure of free RGS4 suggests a significant 

conformational change upon binding Gtai (Moy et al., 2000), comprised of 

reorganisation of the packing of the N-terminal and C-terminal helices. There is a 

significant difference in the secondary structure between the G,, 1-bound and free 

forms of RGS4 within the C-terminal helical regions a6 and a7. Moy et al. (2000) 
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suggest a two-stage process composed of a binding and locking step from 

comparison of the free and bound forms of RGS4. 

No RGS proteins have as yet been identified to act as GAPs for G,, s subunits, 

and this has been proposed to be due to structural incompatibility. 

1.3.5.1. Mutational analysis of RGS proteins 
Mutagenic analyses of RGS4 have shed light on the importance of specific 

residues within the RGS domain. The mutation of 2 residues (N88 and L159), which, 

based on the crystal structure of RGS4 complexed with Gia, l-GDP-AIF4-, directly 

contact Gist essentially abolished RGS4 binding and GAP activity (Druey and Kerhl, 

1997). Two other mutations, one of a contact residue (R167) and the other an 

adjacent residue (F168) also significantly reduced RGS4 binding to the active Ga 

complex, but in addition directed binding toward the GTPy-S-bound form. These two 

mutants had impaired GAP activity, but in contrast to others, behaved as RGS 

antagonists. These results are consistent with hypothesis that the predominant role of 

RGS proteins is to stabilise the Ga transition state for GTP hydrolysis. 

1.3.6. RGS domains in other proteins 

A small collection of proteins contain somewhat less conserved RGS 

domains than RGS proteins. The RGS domain at N-terminal regions of the GPCR 

kinase, GRK2, specifically interacts with Ga, yii 1 and inhibits Gay-mediated activation 

of PLC P (Carman et al., 1999), suggesting that a subfamily of the GRKs may be 

bifunctional regulators of GPCR signalling operating directly on both receptors and 

G proteins. As well as the well-documented role in GPCR desensitisation, GRKs 

may also regulate signalling at the level of the Ga, subunit directly. 

A newly identified GEF for Rho GTPase, pl 15RhoGEF (Hart et al., 1996), 
has an RGS domain at its N-terminus and this domain acts as a specific GAP for 

Ga12 and Ga13 (Kozasa et al., 1998; Hart et al., 1998). Thus, pl 15RhoGEF is a direct 

link between heterotrimeric G proteins and Rho GTPase, functioning as an effector 

for Ga112 and Ga, 13 in addition to acting as their GAP. 
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An RGS domain is also present in the protein kinase A (PKA) anchoring 

protein D-AKAP2 (Huang et al., 1997). AKAPs are adaptor proteins that can 

assemble signalling complexes at the plasma membrane, including PKA, calcineurin 

and PKC. D-AKAP2 can bind to two subtypes of regulatory subunits of PKA (PKA 

anchor), and contains an N-terminal RGS domain for which a Ga target has not yet 
been identified. G protein signalling pathways and cAMP are linked directly via 

activation or inhibition of adenylate cyclase isoforms by Gas and Ga,; respectively, 

and D-AKAP2 appears to provide an additional link, via PKA anchoring and Ga 

binding. 

1.3.7. Links to other signalling pathways 

Many RGS proteins have been found to serve as links to other cellular 

signalling pathways through non-RGS domains such as DEP, GGL, PDZ and DH/PH 

domains (DeVries, 2000). 

RGS6, RGS7, RGS9, and RGS11 have N-terminal DEP (Dishevelled 
homology/EGL-10/pleckstrin homology) domains. The DEP domain of the 

Drosophila protein Dishevelled is responsible for its localisation to membranes. The 

DEP domain of RGS9 may thus be responsible for its tight membrane association 
(Cowan et al., 1998; He et al., 1998), although it is not clear whether its DEP domain 

can regulate membrane association directly or through interaction with other 

proteins. This family of RGS proteins also have GGL (G,, like) domains with 
homology to the G1, subunit, which form dimers with the Gß5 subunit (the least 

homologous of the Gp subunits) (Sondek and Siderovski, 2001). RGS6, RGS7 and 

RGS 11 complexed with Gp5 have GAP activity specific for Go. Analysis of native 
Gp5-RGS dimers and their coupled expression argue that in vivo, Gß5 and GGL- 

containing RGS proteins only exist as heterodimers (Witherow, 2000). Dimers do 

not bind Ga, with very high affinity, but they can still inhibit G protein signalling. 
PDZ domains bind to consensus C-terminal motifs in target proteins (Craven 

and Bredt, 1998), and are involved in the clustering of signalling molecules - an 
important role in organising protein networks on membranes. RGS12 is the largest 
RGS protein identified so far, and contains an N-terminal PDZ domain and a C- 
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terminal PDZ binding domain, although the in vivo targets are unknown (Snow et al., 
1997; Snow et al., 1998). Results from yeast two-hybrid and in vitro interactions 

have revealed that the chemokine IL-8 receptor B (CXCR-2) can specifically interact 

with the PDZ domain of RGS12 (Snow et al., 1998), suggesting that RGS12 might 
be an important scaffold molecule for components of G protein-linked chemokine 

signalling pathways. RGS12 also contains a C-terminal serine/proline rich coiled- 

coil structure that could interact with cytoskeleton proteins, and a PID/PTB domain 

that suggests interaction with a tyrosine-phosphorylated protein (Snow et al., 1998; 

Mao et al., 1998). 

The F-subfamily of RGS proteins is typified by the p115-Rho GEF (Guanine 

nucleotide Exchange Factor) (Kozasa et al., 1998). Rho GEF bears DH and PH 

domains C-terminal to a Ga1v13-specific RGS domain. Rho GEF not only accelerates 

G«Iz/13-GTPase activity, but also acts concomitantly as a Ga, -effector, since the 

binding of the RGS domain to Ga, -GTP stimulates the guanine-nucleotide exchange 

activity of the DH/PH tandem directed toward the monomeric G-protein Rho (Hart et 

al., 1998). 

RGS12 and RGS14 are presumed to play a role in coordinating cross-talk 
between heterotrimeric and Ras-superfamily G proteins, as they possess putative 

Ras-binding and novel Ga, -binding (GoLoco) domains (Siderovski et al., 1999). 

1.3.8. Regulation of RGS activity 

The large number of RGS proteins identified in higher eukaryotes requires 

that their activity must be regulated in some way. Human RGS proteins differ in their 

expression pattern, subcellular localisation, and interaction with other signalling or 

regulatory proteins to give them distinct biological functions. Regulation of RGS 

activity is thought to be achieved via a number of mechanisms, including Ga subunit 

selectivity, intracellular localisation, differential expression, covalent modification 

and links with other signalling pathways. 
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1.3.8.1. Ga, specificity of RGS proteins 

RGS proteins exhibit preferences for the Ga subunits they regulate. For 

example, RGS2 exhibits a preference for Gaq over Ga; (Heximer et al., 1997), an 

effect that is thought to be mediated by unique structural features of its Ga subunit 
binding interface. Other RGS proteins are more promiscuous towards G., subunits, 
for example RGS4 (Diverse-Pierluissi et al., 1999; Cavalli et al., 2000; Rogers et al., 
2001). 

1.3.8.2. Intracellular localisation of RGS proteins 
The intracellular localisation of a number of RGS proteins has been studied 

by a number of groups. RGS2-GFP localises to the nucleus, plasma membrane and 

cytoplasm of HEK293 cells (Heximer et al., 2001). Expression of activated Gq 

increased RGS2 association with the plasma membrane and decreased accumulation 
in the nucleus, suggesting signal-induced redistribution may regulate RGS2 function. 

The RGS2 N-terminus is necessary and sufficient for plasma membrane localisation, 

and contains an amphipathic helix that directs binding to anionic lipid surfaces. This 

alpha-helical motif is also present in other RGS proteins (RGS3, RGS4, and RGS16). 

Srinivasa et al. (1998a) showed that plasma membrane localisation is required for 

RGS4 function in S. cerevisiae. RGS4 mutants lacking the N-terminal 33 residues 

were non-functional and unable to localise to the plasma membrane. Localisation to 

the plasma membrane was restored by addition of a C-terminal membrane targeting 

sequence to RGS4. At the other extreme, RGS 10 is a soluble protein found in the 

cytosol. RGS3, RGS4, and RGS 16 display intermediate behaviour. RGS proteins are 

thought to localise in the cytoplasm, nucleus or shuttle between the two sites 

(Chatterjee and Fisher, 2000). 

1.3.8.3. Site-specific expression of RGS proteins 
Tissue- and cell-specific expression may also play an important role in 

regulating the function of RGS proteins. RGS 1 expression is restricted to 13- 

lymphocytes (Moratz et al., 2000). Region-specific regulation of RGS4 by stress and 

glucocorticoids has been demonstrated in the brain (Ni et al., 1999. ). 
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1.3.8.4. Alternative splicing of RGS mRNA 
The mRNA of a number of the larger RGS proteins is subject to alternative 

splicing. RGS9 mRNA is alternatively spliced to produce two site-specific RGS 

proteins (Zhang et al., 1999). The RGS9-1 isoform is found exclusively in the 

vertebrate visual transduction cascade where it serves as a GAP for the transducin Ga, 

subunit (Gta, ). RGS9-2 is a striatal-enriched isoform. Multiple alternatively spliced 
isoforms of RGS12 have also been identified (DeVries, 2000). 

1.3.8.5. Covalent modification of RGS proteins 

Covalent modification of a number of RGS proteins has been demonstrated, 

and fatty acylation is a possible mechanism for the regulation of their activity. One 

study with GAIP suggests that palmitoylation may be involved in the subcellular 

localisation and membrane trafficking of GAIP (DeVries et al., 1995, DeVries et al., 

1996). 

Ga subunits are known to be membrane associated, and cytosolic Gas and Ga; i 

translocate to membranes from a cytosolic pool, a process regulated by 

palmitoylation and myristoylation (Degtyarev, 1994; Wedegaertner, 1996). All Ga 

are myristoylated at an N-terminal glycine or palmitoylated at an internal cysteine, or 

both. Several RGS proteins are palmitoylated (GAIP, RGS4, RGS 16) at their N- 

terminus, which has been implicated in sub-cellular localisation and membrane 

association (DeVries et al., 1996; Srinivasa et al.; 1998a, Druey et al., 1999). RGS4 

is palmitoylated, with Cys-2 and Cys-12 likely sites (Srinivasa et al., 1998a). RGS1, 

RGS2, and RetRGS also contain cysteine strings that are probable sites for multiple 

palmitoylation. 

Phosphorylation may also serve a regulatory role. RGS9-2 contains several 

potential phosphorylation sites for protein kinase C, PKA, PKG, tyrosine kinases and 

casein kinase II. RGS IO activity is regulated through specific and inducible 

phosphorylation by cAMP-dependent kinase A (PKA). The phosphorylation- 

mediated attenuation of RGS 10 activity correlates with translocation of RGS 10 from 

the plasma membrane and cytosol into the nucleus, as opposed to reducing its GAP 

activity (Burgon, 2001. ). 
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1.3.8.6. Links with other signalling pathways 
The presence of functional motifs within RGS proteins is likely to present a 

mechanism of regulating RGS activity through links with other signalling pathways 
(Section 1.3.7). The GAP activity of RGS9 is uniquely potentiated by the G. subunit 

of the effector enzyme cGMP-phosphodiesterase (Pr) (McEntaffer et al., 1999). In 

contrast, P. attenuates the effects of several other RGS proteins, including RGS 16. 

The mechanism of potentiation of RGS9 GAP activity by P. is thought to involve a 

more rigid stabilisation of the Gta, switch regions when Gta, is bound to both RGS9 

and P.. 

1.3.9. Implications for disease 

Aberrant G protein signalling has been associated with a number of 

pathological conditions, and the fact that RGS proteins modulate G protein signalling 

at the G protein level means that altered levels of RGS activity could contribute to 

pathological states. The majority of information regarding RGS proteins and disease 

comes from cardiac tissue culture and animal models. 
Zhang et al. (1998) have shown that RGS3 and RGS4 gene expression is 

enhanced in two model systems of cardiac hypertrophy, while RGS3 and RGS4 

mRNA levels were reduced in failing myocardium. This indicates that RGS proteins 

may play an important role in regulating G protein signalling in cardiac tissue. 

Increased Ga; protein signalling due to decreased RGS protein activity may 

contribute to the observed reduction in myocardial contractility in association with 
heart failure. There is evidence that altered RGS gene expression may contribute to 

the pathogenesis of cardiac hypertrophy and failure (Rogers et al., 1999), as 

expression patterns of RGS proteins in cardiac tissue is altered in pathophysiological 

states and in response to cardiomyocyte dissociation (Zhang et al., 1998; 

Kardestuncer et al., 1998). 

RGS proteins may also be involved in the development of pathophysiological 

conditions that display alterations in signalling from multiple GPCRs, such as 

rejection of transplanted organs (Owen et al., 2001) and sepsis (Panetta et al., 1999). 
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The ability of RGS proteins with altered activity to modulate G protein 

signalling has been shown by a number of groups. Dominant gain-of-function 

mutants of SST2 in S. cerevisiae block the normal pheromone response, conferring a 

pheromone-resistant phenotype (Dohlman et al., 1995). The ability to express a 
hyperactivated RGS protein capable of normalising the level of G; protein signalling 

may prove to be beneficial in diseases associated with aberrant G protein signalling. 
No hyperactivated mammalian RGS protein has yet been isolated. 

The ability to modulate protein signalling pathways will undoubtedly be of 

great clinical significance for any disease in which abnormal levels of signalling 

contribute to disease pathology. The ubiquitous nature of G protein signalling 

pathways within intracellular signalling networks means that a diverse array of 
diseases and conditions could be favourably treated (among them cardiac disease, 

cancer, and immune and neurological dysfunction) through the expression of RGS 

proteins with altered activity. 

1.4. The Schizosaccharomyces pombe pheromone communication pathway 

1.4.1. Overview 

The fission yeast Si pombe is used as a simple eukaryotic model to 

investigate a number of cellular functions, including cytokinesis and signal 

transduction pathways. The tractability and genetic amenability of Sz. pombe 

enables the consequences of genetic manipulations to be rapidly determined, and 

enables the consequences of both dominant and recessive mutations to be observed. 
The Sz. pombe pheromone-responsive signalling pathway is closely related to 

G protein signalling pathways of more complex eukaryotes, and the simplicity of the 

Sz. pombe pheromone communication pathway means that it can be used to study 
heterogeneous signalling proteins without the additional complexities present in 

higher eukaryotic systems. The budding yeast S. cerevisiae is also used as a model 

system to study a large variety of cell functions, including signalling through its 

pheromone signalling pathway. The Sz. pombe system presents another model, which 

may be more suitable for studying specific signalling proteins, as it is the Ga, subunit 
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that propagates the signal in Sz. pombe, in contrast to S. cerevisiae, in which the Go, 

subunit propagates the pheromone signal. 

1.4.2. Life cycle of Sz. pombe 

Sz. pombe exists predominately as a haploid organism, replicating by mitotic 

cell division to produce two identical daughter cells. Sexual activity is repressed 
during mitotic growth, but when unfavourable conditions are encountered (i. e. 

nutrient starvation), cells of each mating-type secrete peptides that induce changes in 

the opposite mating-type to prepare them for mating (reviewed in Davey, 1998). 

Pheromone signalling results in the expression of proteins responsible for controlling 

conjugation, meiosis and sporulation, including the pheromone factors and receptors 

themselves. Expression and release of pheromone factors is initiated following 

nutrient starvation, and their binding and subsequent intracellular signal transduction 

induces Gl arrest in pheromone-responsive cells (Imai and Yamamoto, 1994; Davey 

and Nielsen, 1994). This cytostatic activity ensures conjugative partners contribute 

equal amounts of DNA to the zygote. A morphological consequence of pheromone 

stimulation in responsive cells is that cells continue to grow during the Gl arrest 

(Davey, 1991; Davey and Nielsen, 1994), and elongate unidirectionally towards the 

pheromone source to form an shmoo (Fukui et al., 1986; Leupold, 1987). Two 

haploid conjugants bind and fuse at the tips of the shmoos, forming the zygote (Egel, 

1971; Miyata et al., 1997). Zygotes arrest transiently at the G1 phase under 

nutritional starvation, then initiate premeiotic DNA synthesis and proceed through 

meiosis I and II, resulting in four haploid, encapsulated nuclei that develop to form 

mature spores. If transferred to rich medium immediately following conjugation, 

zygotes can grow as diploids. 

Two major signal transduction pathways regulate sexual development in Sz. 

pombe, one responding to nutritional conditions and the other to the mating 

pheromones. 
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1.4.3. Sz. pombe exists in two different mating types 

Sz. pombe cells exist as one of two mating types, M (Minus) or P (Plus). 

Heterothallic strains are fixed as either M or P cells, while homothallic strains 

change their mating type approximately once every three generations (Egel, 1973). 

The presence of one of two alternative DNA segments at the active mating 
type locus, matl, specifies the mating-type of the haploid cell (Willer et al., 1995; 

Yamamoto, 1996). The mating type locus,, denoted mall-P for P cells, and matl-M 
for M cells, consists of two divergently transcribed genes (Egel, 1973; Kelly et al., 
1988), termed mat]-Pc and mail -Pi (mat]-Pm) and mat]-Mc and mall -Mi (marl- 

Mm). Each segment encodes two mating type-specific functions that are required to 

produce the mating pheromones, pheromone receptors and a product required for 

meiosis. The Mat-IPc function produces the P-factor pheromone and the M-factor 

receptor, while the Matl-Mc function produces the M-factor pheromone and the P- 

factor receptor. The expression of these functions provides the means for the cells to 

initiate communication. The mail -Pi and mall -Mi loci are specifically required for 

meiosis. The product of matl-Mi is an HMG-family protein, and the product of 

mall-Pi is a homeobox protein. The P cell and M cell mating type information is 

also stored at the mat2 and mat3 loci respectively, but these are silent and are not 

expressed (Egel, 1973; Allshire, 1995). Homothallic Sz. pombe strains switch mating 
type as a result of transformation of the material stored at the silent mat2 and mat3 
loci to the active matl locus. 

Secreted pheromones are recognised by their cognate receptors expressed on 

the cell surface of the opposite mating type. Both pheromone receptors contain seven 

transmembrane domains, and are coupled to a heterotrimeric G protein. Pheromone 

binding leads to activation and dissociation of the coupled G protein, and the 

activated GTP-bound Ga subunit (Gpalp) activates a downstream protein kinase 

cascade. Pheromone signalling results in the eventual stimulation of a transcription 
factor necessary for the expression of genes required to bring about the changes 

necessary for conjugation. 
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1.4.4. The Sz. pombe pheromones 

The Sz. pombe pheromones and pheromone receptors are expressed and 

secreted following nutrient starvation, setting up the pheromone communication 

system. 

P cells respond to M-factor by expressing Map3p (Tanaka et al., 1993), the 

M-factor receptor. M cells express the P factor receptor, Mam2p (Kitamura and 
Shimoda, 1991). 

1.4.4.1. M-factor 

M-factor, produced and secreted by M cells, is encoded by three functionally 

redundant genes showing strong sequence similarity (mfml, mfm2, and mfm3). Each 

of the M-factor genes encodes a precursor containing a single copy of the mature M- 

factor peptide sequence within it (Davey, 1992, Kjaerulff et al., 1994). Any one of 

the mfm genes is able to produce sufficient M-factor to allow mating to occur 
(Kjaerulff et al., 1994). The mfm genes are only expressed in M cells, and expression 
is induced under conditions that initiate sexual development in Sz. pombe. The mfm 

genes are also induced upon stimulation of M cells with P-factor. M-factor binds to 

M-factor receptors (encoded by map3) on the surface of P cells. 
M-factor is a lipophilic nonapeptide, whose C-terminal cysteine residue is 

carboxymethylated and S-fameysylated (Davey, 1991; Davey et al., 1998). The 

biosynthesis of mature M-factor involves a number of processing steps. The C- 

terminus is farnesylated via a thioether linkage, the C-terminal tripeptide is cleaved 

and the exposed carboxyl group undergoes methyl esterification. The M-factor N- 

terminal extension is also proteolytically processed. These steps generate the mature 

pheromone ready for export, and M-factor is transported directly across the plasma 

membrane by an ATP-dependent transporter belonging to the ABC (ATP binding 

cassette) superfamily of proteins (Christensen et al., 1997). 

1.4.4.2. P-factor 

P-factor is a hydrophilic, unmodified peptide of 23 amino acids, encoded by 

the structural gene map2 (Imai and Yamamoto, 1994). The map2 gene product 

contains four repeats of 23 amino acids flanked by basic residues. Two of these 
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repeats have identical sequences, but the other two differ from them in 2 and 3 amino 

acids. The precursor encoded by map2 contains an N-terminal presequence that 

targets the protein to the endoplasmic reticulum, and is removed during translocation 

of the precursor across the ER membrane (Waters et al., 1988; Davey et al., 1994). 

Further processing occurs in the Golgi body, where the propheromone is split into its 

individual subunits by an endopeptidase (Krp I p), that cleaves on the C-terminal side 

of a pair of basic residues (Lys-Arg). Following N- and C-terminal trimming of the 

subunits, the mature pheromone is released into the medium. Unlike M-factor, P- 

factor is secreted via the conventional secretory pathway (Davey et al., 1994). 

1.4.5. The Sz. pombe pheromone communication pathway 

Nutrient starvation (more specifically, nitrogen starvation) is a requirement 
for the initiation of pheromone communication in Sz. pombe, and results in a 

decrease in the intracellular cAMP level. A recently identified gene, stml, has been 

proposed to function as a sentinel molecule sensing the nutritional state of the cells 

(Chung et al., 2001). This reduction in the intracellular cAMP concentration acts as a 

signal for the induction of nitrogen-starvation responsive genes, including those 

required for mating, meiosis and sporulation (Fukui et al., 1986; Maeda et al., 1990; 

Mochizuki and Yamamoto, 1992). The Ga homologue, Gpa2p, transmits the 

nutritional signal to the cAMP cascade. The reduction in cAMP levels that result 

from nitrogen starvation can be mimicked by disruption of the cyrl gene, encoding 

adenylate cyclase (Davey and Nielsen, 1994). Cells lacking cyrl are highly 

derepressed for sexual development, and can initiate mating and meiosis in nutrient- 

rich environments. Expression of nitrogen-starvation responsive genes depends upon 

the function of the stell gene product, whose activity is repressed by high levels of 

cAMP. The stell gene product is a key transcription factor regulating sexual 

development in Sz. pombe, and is a DNA-binding protein of the high-mobility group 

(HMG) family. Pheromone-induced genes carry between one and five copies of a cis 

element named the TR box (TTCTTTGTTY) in their 5' non-coding region, which 

provides a binding site for Stellp (Sugimoto et al., 1991). The stell gene itself 

possesses TR-box motifs in its 5' non-coding region that appear to be essential for its 

expression, and are likely to represent a positive feedback loop. The expression of 
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matl-Pc and mat]-Mc is dependent upon Stellp activity, and their expression enables 

cells to communicate via the mating pheromones. 
Following binding of pheromone factors to their respective heptahelical 

receptors on the surface of the cell, the pheromone signal is transmitted to a 
heterotrimeric G protein coupled to the pheromone receptors (Figure 3). The 

pheromone receptor-coupled G protein and the downstream signalling pathway are 

common to both mating types. The Ga subunit is encoded by gpal, and its disruption 

abolishes the pheromone response (Obara et al., 1991). A Go subunit is encoded by 

gpbl (Kim et al., 1996), but it is not known whether it associates with Gpalp (the 

pheromone pathway Ga, subunit) or Gpa2p (the cAMP response pathway Ga 

subunit). No G1 subunit has been identified yet. 

Once activated by the pheromone receptor, the Ga, subunit Gpalp (Obara et 

al., 1991), acting in concert with Raslp, activates a protein kinase cascade that is 

homologous to MAPK pathways in mammalian cells. Raslp (a small monomeric G 

protein related to the mammalian oncoprotein Ras) recruits the MAPKK kinase 

Byr2p (Wang et al., 1991) to the plasma membrane. Activated Byr2p phosphorylates 

the downstream MAPK kinase Byrlp (Nadin-Davis and Nasim, 1990), which in turn 

phosphorylates the MAPK Spklp (Gotoh et al., 1993). Byr2p is thought to be 

maintained in an inactive conformation through an inhibitory interaction between its 

N-terminal regulatory domain and the C-terminal catalytic domain (Tu et al., 1997). 

The MAPK Spklp is essential for propagating the pheromone signal, and 

presumably phosphorylates one or more target proteins. The best candidate for a 

pheromone-responsive transcription factor is Stel lp, which is a crucial regulator of 

the mating and meiotic pathway. Activation of Stellp enables it to induce the 

expression of pheromone-responsive genes. 

1.4.6. Adaptation in the pheromone communication pathway 

In common with mammalian cells, desensitisation mechanisms exist 

within the Sz. pombe pheromone signal transduction pathway, that enable responsive 

cells to desensitise to pheromone even in its continued presence. The G, cell cycle 

arrest caused by pheromone stimulation is transient, and stimulated cells recover and 
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Figure 3. Pheromone communication in Sz. pombe 

Pheromone receptors are activated by pheromone binding, and in turn activate the Ga 

subunit, Gpa 1 p. GTP-bound Gpa 1 p, in conjunction with Ras 1 p, activates a protein kinase 

cascade comprised of Byr2p, Byrlp and Spklp. Subsequent activation of the transcription 
factor, Stel ip, results in the expression of genes required for mating. 
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resume vegetative growth in several hours. Adaptation to pheromone stimulation 

enables cells that have not mated to inactivate components of the pheromone 

signalling pathway activated during the initial response, and to resume growth 
(Davey and Nielsen 1994). 

One aspect of the desensitisation process is the degradation of extracellular 

pheromone. Removal of the pheromone before it binds to cells is the first level of 

adaptation. M cells express and secrete Sxa2p, a serine carboxypeptidase (Imai and 
Yamamoto, 1994; Ladds et al., 1996) that degrades extracellular P-factor by 

removing the C-terminal leucine residue. Sxa2p expression is induced by P-factor 

stimulation, and thus constitutes a negative feedback mechanism promoting recovery 
in the absence of a mating partner. Sxa2p is not produced by P cells or unstimulated 
M cells. 

A second adaptation mechanism in the pheromone communication system is 

likely to be the phosphorylation and internalisation of pheromone receptors. S. 

cerevisiae pheromone receptors are rapidly phosphorylated following pheromone 

stimulation, and following ubiquitination, the receptors undergo vacuolar 
degradation (reviewed in Riezman, 1998). Sz. pombe pheromone receptors are 
likewise phosphorylated following stimulation (Chen and Konopka, 1996). The 

internalisation and recycling mechanisms of Sz. pombe pheromone receptors have 

not yet been elucidated. 
At the G protein level, the Sz. pombe RGS protein Rgslp accelerates the 

GTPase activity of the GTP-bound Ga, subunit, Gpalp. Cells lacking rgsl are 
hypersensitive to pheromone stimulation by both pheromone factors (Watson et al., 
1999; Pereira and Jones, 2001) and are sterile, reinforcing the importance of 

adaptation mechanisms in the pheromone signalling pathway. The rgsl gene is a 

target of Ste lip, possessing three TR-boxes. Like Sxa2p, Rgslp acts in a negative 
feedback loop, as it is expressed in response to pheromone signalling and then acts to 

down-regulate cellular sensitivity towards pheromone. 

Covalent modification of Ga subunits has been reported to be a mechanism of 

regulating their activity in mammalian cells, and it is possible that this also occurs 
for the Sz. pombe Ga, subunit. Ga, subunits in mammalian cells are myristoylated at 

an N-terminal glycine residue or palmitoylated at an internal cysteine residue, or 
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both (Wedegaertner et al., 1995). Fatty acylation of Ga, subunits is proposed to be a 

requirement for their localisation at the plasma membrane, and a mutant of the S. 

cerevisiae Ga subunit that could not be myristoylated was excluded from the plasma 

membrane (Song and Dohlman, 1996). Regulation of Ga activity via fatty acylation 
in Sz. pombe could be an effective mechanism for controlling transduction of the 

pheromone signal to the downstream MAPK cascade. Phosphorylation of the S. 

cerevisiae Go subunit has been reported (Leberer et al., 1992), but it is not known if 

any of the Sz. pombe G protein subunits are regulated by phosphorylation. 
As the components of the protein kinase cascade are activated via 

phosphorylation, each enzyme of the protein kinase cascade could be subject to 

regulation by phosphatases. While phosphatases have been reported for other protein 
kinase cascades in Sz. pombe, none have been reported that act specifically upon the 

MAPK cascade responsible for transducing the pheromone signal. The tyrosine- 

specific Pyplp and Pyp2p phosphatases dephosphorylate the stress-activated Stylp 

MAPK (Millar et al., 1995), and Pmplp encodes a MAPK phosphatase that acts 

upon the Pmklp MAPK involved in chloride homeostasis (Sugiura et al., 1998). 

1.4.7. Sz. pombe reporter strains have been constructed 

Reporter systems are used throughout biological research to investigate the 

promoter activity of genes. Reporter proteins, whose activity can be easily measured, 

are driven by the promoter under investigation, and their use has revolutionised the 
investigation of signal transduction pathways. Such reporter genes are inactive or 

weakly active with respect to transcription. Upon activation of the upstream 

promoter (as a result of signalling through the pathway under investigation) the 

reporter gene is transcribed, and following translation the reporter protein can be 

quantified by measuring its enzymatic activity. 
Reporter gene assays have been developed for both S. cerevisiae and Sz. 

pombe, normally using bacterial ß-galactosidase or a biosynthetic gene whose 

product is required for growth on selective media. The LacZ gene of E. coli encodes 
ß-galactosidase, which catalyses the hydrolysis of various ß-galactosides, and its 

activity can be easily measured using colorimetric, fluorescent and 
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chemiluminescent detection systems. The Sz. pombe auxotrophic gene ura4 encodes 

orotidine-5'-monophosphate decarboxylase (Bach, 1987). Uracil is required for 

growth, and Ura4 activity can be positively and negatively selected using selective 

growth media. The generation of a temperature-sensitive version of Ura4 is 

described in Chapter 3. 

The reporter assays described in this thesis utilise both the LacZ and Ura4 

reporter proteins, driven by the Sz. pombe sxa2 promoter (created by Dr. Mark 

Didmon and Dr. Kevin Davis in the Davey laboratory) (Figure 4). Activity of the 

sxa2 locus is tightly regulated, and is only induced upon signalling through the 

pheromone communication pathway. The induction and activity of sxa2 is used to 

investigate signalling through the pheromone signal transduction pathway to 

determine initially whether mammalian RGS proteins are active against the Sz. 

pombe G., GTPase activity, and to screen for gain-of-function RGS mutants. 
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Figure 4. Pheromone-dependent expression of reporter proteins in Sz. pombe 

In the Sz. pombe M cell reporter strains, a marker gene (LacZ or ura4) is driven by the 
pheromone-responsive sxa2 promoter. Expression of reporter genes is dependent upon 
signalling through the pheromone communication pathway, and thus signalling through the 
pathway can be monitored by measuring reporter protein activity. 
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1.5. Aims of the project 

To generate a temperature-sensitive Schizosaccharomyces pombe Ura4 

protein, and to investigate the activity of RGS proteins in the Sz. pombe pheromone 

communication pathway. 
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Chapter 2. Materials and Methods 
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2.1. Materials 

2.1.1. General laboratory reagents 

General laboratory reagents were supplied by the Sigma Chemical Co. 

(Poole, Dorset) or Merck BDH Laboratory Supplies (Poole, Dorset), and were of 

analytical grade unless otherwise stated. 

2.1.2. Molecular biology reagents 

Restriction enzymes, T4 DNA ligase, Taq DNA polymerase and bacterial 

alkaline phosphatase were supplied by Gibco BRL (Paisley, Scotland). T7 DNA 

polymerase and all nucleotides were supplied by Amersham Pharmacia Biotech 

(Little Chalfont, Buckinghamshire). Pwo DNA polymerase and the Random Primed 

DNA Labelling kit were purchased from Roche Molecular Biochemicals (Lewes, 

East Sussex). All oligonucleotides were synthesized by AltaBioscience (University 

of Birmingham, Birmingham). 

2.1.3. Electrophoresis reagents 

Ultrapure type-I and low melting point agarose were supplied by Gibco BRL 

(Paisley, Scotland). Acrylamide was supplied by Northumbria Biologicals Limited 

(Cramlington, Northumbria) as a 30% (w/v) solution of 37.5: 1 ratio 

acrylamide: bisacrylamide for Western blot analysis or a 40% (w/v) solution of 19: 1 

ratio acrylamide: bisacrylamide for DNA sequencing gels. 

2.1.4. Radioisotopes 

a35S-dATP (1000Ci/mmol) and a32P-dCTP (6000Ci/mmol) were supplied by 

Amersham Pharmacia Biotech (Little Chalfont, Buckinghamshire) 

2.1.5. Photographic Supplies 

Kodak Biomax MR autoradiographic film was supplied by Sigma Chemical 

Co. (Poole, Dorset). Fuji RX autoradiographic film was purchased from Fuji Co. 
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(Dusseldorf, Germany). Polaroid type 667 Land film was obtained from Polaroid UK 

Limited (St. Albans, Hertfordshire). DNA gels were visualised using a UVP GDS 

8000 gel documentation system with Grab-It software (Ultraviolet Products, 

Cambridge). 

2.1.6. Growth Media 

Luria broth, yeast extract and select agar were purchased from Gibco BRL 

(Paisley, Scotland). All components of Amino Acid selective medium (AA) and 
Defined Minimal Medium (DMM) were purchased from Sigma Chemical Co. 

(Poole, Dorset). Plates and liquid media for the selective growth of yeast were made 

using DMM or AA media. Rich (Yeast Extract) medium was used with appropriate 

amino acid supplements (250µg/ml) as required. Plates were made with 1.5% Select 

agar. 
The composition of DMM has been described previously (Davey et al., 

1995). 

Yeast Extract medium. 
Per litre; 

Yeast extract 5g 

Glucose 30g 

Selective medium (AA). 

Per litre; 

Yeast Nitrogen base w/o a. a. 6.7g 

Glucose 20g 

Amino acid mix 1.5g 

Select amino acid mix 0.5g 

Amino acid mix; 
L-alanine 2g 

L-asparagine 2g 

L-cysteine 2g 
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L-glutamine 2g 

L-glutamic acid 2g 

L-glycine 2g 

L-isoleucine 2g 

L-lysine 2g 

L-phenylalanine 2g 

L-proline 2g 

L-serine 2g 

L-threonine 2g 

L-tryptophan 2g 

L-tyrosine 2g 

L-valine 2g 

myo-inositol 2g 

para-amino benzoic acid 0.4g 

Select amino acid mix (components as required); 

Adenine 2g 

L-histidine 2g 

L-leucine 4g 

L-methionine 2g 

Uracil 2g 

2.1.7. Coulter Channelyser Supplies 

Cell numbers and cell volumes were determined using a C256 Coulter 

Channelyser and Isoton II azide-free electrolyte, both supplied by Coulter 

Electronics Limited (Luton, Bedfordshire). 

2.1.8. P-Factor 

P-factor pheromone was synthesized by standard solid-phase methodology 

using a Biotech instruments BT7300 Peptide synthesiser by AltaBioscience 

(University of Birmingham, Birmingham). 
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2.1.9. Antibodies 

Rabbit anti-human RGS2 and anti-human RGS4 antibodies were purchased 
from Santa Cruz Biotechnology (Santa Cruz, CA). Goat anti-rabbit horseradish 

peroxidase antibody was purchased from Sigma Chemical Co. (Poole, Dorset). 

2.1.10. Bacterial Strain 

General cloning was performed using Escherichia coli (E. coli) strain DH5 

supplied by Stratagene (Cambridge). E. cola DH5 genotype: supE44 hsdR17 endA96 

thi-1 relAl recAl gyrA96. 

2.1.11. Yeast Strains 

The following Sz. pombe strains were used or created in this study; 

JY383 matl-P Omat2,3:: LEU2 leul-32 ura4-D18 
JY497 matl-P Omat2,3:: LEU2 leul-32 ura4-D18 irp1:: ura4+ 

JY543 matl-P Omat2,3:: LEU2 leul-32 ura4-D18 irp1:: ura4`, 

JY544 matl-MOmat2,3:: LEU2 leu1" ade6-M216 ura4-D18 cyr1:: ura4+:: ura4- 

sxa2>lacZop- 
JY603 matt-MOmat2,3:: LEU2 leu1' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4- 

sxa2> ura4oj 
JY606 matl-P t mat2,3:: LEU2leul-32 ura4-D18, irpl:: ura4, ̀ prkl:: ura4+ 

JY629 mat]-MOmat2,3:: LEU2 leul' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4- 

sxa2>lacZop- Orgsl:: ura4+ 

JY727 mat]-M Omat2,3:: LEU leul' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2> ura4op' Ergs 1:: ura4+ 
JY1153 matt-MOmat2,3:: LEU2 leul" ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2>lacZOp' rgsl:: huRgs4 

JY1189 mat]-M Omat2,3:: LEU2 leul' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2>lacZojf rgsl:: rgs1" 30541le 
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JY1190 marl-MOmat2,3:: LEU2 leu1" ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2>lacZoRF rgsl:: rgsl H'sº7t4nrg 

JY1191 matl-MOmat2,3:: LEU21eu1' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4' 

sxa2>ura40pc rgsl:: rgsl Va130541le 

JY1192 mat] -MOmat2,3:: LEU2 leu1" ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2>ura4oRF rgsl:: rgslH'S»14A`g 
JY1193 mat]-MOmat2,3:: LEU2 leu1' ade6-M216 ura4-D18 cyrl:: ura4+:: ura4" 

sxa2> l acZoRp rgs l :: h uRgs l 

JY1194 mat]-MAmat2,3:: LEU2 leul ade6-M216 ura4-D18 cyrl:: ura4+:: ura4- 

sxa2>ura40j rgsl:: huRgsl 
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2.2. Methods 

2.2.1. General molecular biology techniques 

DNA manipulations were carried out using standard methods (Sambrook et 

al., 1989) and DNA modifying enzymes were used according to manufacturers 

recommendations. DNA fragments were analysed by electrophoresis on 1% agarose 

gels stained with 0.5gg/ml ethidium bromide. DNA fragments were recovered from 

0.8-1.0% low melting point (LMP) agarose gels using standard methods (Sambrook 

et al., 1989) or using the Geneclean II kit supplied by Anachem (Luton, 

Bedfordshire). 

2.2.2. Polymerase Chain Reaction (PCR) 

2.2.2.1. Purified DNA 

1µg each of sense and antisense oligonucleotide primer were added, and 

between 1 and 5ng template DNA used. Total reaction volume was typically 50µ1. In 

general, a denaturation step of 94°C held for 30s was followed by a 55°C annealing 

step, held for 1 min. The extension step at 72°C was typically held for 1 min per 1 kb 

of product. In general, 30 cycles of amplification were used per reaction. Reactions 

were concluded with a7 min incubation at 72°C. Taq DNA polymerase was used for 

screening bacterial and yeast strains and for PCR mutagenesis. Pwo DNA 

polymerase was used for amplifying fragments for cloning. 

2.2.2.2. Screening plasmid DNA from bacterial cells 

A single bacterial colony was suspended in 100gl water and stored at 4°C. 

1µl of this suspension was used as the template in a1 Oµl PCR reaction. 

2.2.2.3. Screening crude preparations of yeast genomic DNA 

A IOml yeast culture was grown to mid-log phase (1-2x107cells/ml), and lml 

harvested via centrifugation (13,000g for 10s). Cells were washed once in 500µ1 

5xTE (50mM Tris pH7.5,5mM EDTA) and the cells pelleted via centrifugation 
(13,000g for 10s). 450µl supernatant was removed and 0.5m1 acid-washed glass 
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beads (425-600µm, supplied by Sigma Chemical Co., Poole, Dorset) added. The 

mixture was vortexed for 1 min, after which the yeast homogenate and glass beads 

were transferred to a 0.5m1 Eppendorf tube. The bottom of the 0.5m1 tube was 

pierced, placed inside a 1.5m1 Eppendorf tube and centrifuged at 13,000g for 10s. 

450µl water was added to the lysate collected in the 1.5m1 Eppendorf tube. 

Typically, 1µl of the resulting solution was used in a 50µ1 PCR reaction. 

2.2.2.4. Random mutagenesis using Taq DNA polymerase 

In order to generate random mutations in DNA products using Taq 

polymerase, a modified Taq polymerase buffer was used: 660mM Tris-HCI, pH8.8, 

66mM MgC12,166mM (NH4)2SO4,100mM ß-mercaptoethanol, 0.2mM dATP, 

0.2. mM dCTP, 0.2mM dGTP, 2mM dTTP. Products obtained following 30 cycles of 

amplification (94°C for 30s, 55°C for 30s, 72°C for 1 min) contain an average of 1 

error per 1 Kb. 

2.2.3. Double stranded DNA sequencing 

2.2.3.1. Dideoxynucleotide chain-termination method 

Double-stranded DNA constructs were sequenced by the dideoxynucleotide 

chain-termination (Sanger et al., 1977). 

18µl template DNA (approximately 1-2µg of 5Kb DNA) was denatured for 3 

min at room temperature with 2µi 1OM NaOH. 8µ15M ammonium acetate and 100µl 

ethanol were then added, and DNA precipitated at -70°C for 10 min. DNA was 

pelleted by centrifugation at 4°C (13,000g for 10 min), washed with 80% ethanol, 

and resuspended in 7 t1 water. 1µl oligonucleotide primer (6.6ng/µl) and 2µl 

Sequencing buffer were added, and the solution incubated at 37°C for 20 min. 

Reactions were radioactively labelled by the addition of 5.5µl Labelling mix, and 

incubated at room temperature for 5 min. 3µ1 of the radioactively labelled mix were 

added to each of four micro-titre plate wells (purchased from Becton Dickinson, 

France) containing 2µ1 of either ddA, ddC, ddG or ddT Termination mixes, and 

reactions incubated for 5 min at 37°C. Reactions were terminated by the addition of 
4µ1 Stop solution. Samples were denatured at 80°C for 2 min prior to loading on 6% 

polyacrylamide sequencing gels. 
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Sequencing buffer; 200mM Tris pH7.5,100mM MgCI2,250mM NaCI 

Labelling mix; 0.55µM each dCTP, dGTP, dTTP, 

18mM DTT, 

0.5U T7 DNA polymerase/µl, 

1pCi [735S-dATP (1000Ci/mmol)]gl. 

Termination mix; 80µM each dATP, dGTP, dCTP, dTTP, 

81iM ddNTP (required dideoxynucleotide), 

50mM NaCl. 

Stop solution; 95% formamide, 

20mM EDTA, 

0.05% bromophenol blue, 

0.05% xylene cyanol. 

2.2.3.2. Automated cycle sequencing 

Double stranded DNA was also sequenced using the ABI-PRISM Dye 

Terminator Cycle Sequencing Ready Reaction Kit with AmpliTaq DNA polymerase 

(Applied Biosystems, Foster City, CA). PCR reactions were carried out in IOgl 

reactions in 0.2m1 thin-walled tubes. 4p1 Terminator Ready Reaction Mix was added 

to 100ng plasmid DNA and 3.2pmole oligonucleotide primer. 30 cycles of 

amplification were carried out (96°C for 30s, 50°C for 15s, 60°C for 4 min), 

following which DNA was ethanol-precipitated and incubated at -20°C for lh. DNA 

was pelleted by centrifugation at 13,000g for 30 min, before the supernatant was 

removed, and the pellet dried. Reactions were electrophoresed by the departmental 

sequencing service using ABI Prism 373 & 377 automated sequencers. Sequence 

chromatograms were viewed using Chromas software (v1.61; Technelysium Pty 

Ltd., Helensvale, Australia) 
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2.2.4. Bacterial transformation 

2.2.4.1. Chemically competent cells 
Chemically competent E. coli DH5 (Stratagene, Cambridge) were produced 

and transformed with plasmid DNA as described by Hanahan (1985). 

2.2.4.2. Electrocompetent cells 

Electrotransformation of electrocompetent E. coli was carried out using a 
MicroPulser electroporation system purchased from Bio-Rad (Hemel Hempstead, 

Hertfordshire). Electrocompetent E. coif were prepared and electroporated in 

accordance with manufacturers instructions. 

2.2.5. Yeast Transformation 

Circular plasmid DNA and linear DNA fragments were transformed into Sz. 

pombe using the lithium acetate method described by Okazaki et al. (1990). 

2.2.6. Preparation of Yeast Genomic DNA 

Yeast genomic DNA was prepared as described by Guthrie and Fink (1991). 

2.2.7. Southern Blot Analysis 

Southern blot analysis was carried out using standard methodology 
(Sambrook et al., 1989). Digested DNA was blotted to Hybond ECL nitrocellulose 

purchased from Amersham Pharmacia Biotech (Little Chalfont, Buckinghamshire), 

and detected using a32P-dCTP-labelled DNA probes prepared with the Random 

Primed DNA Labelling kit. 

2.2.8. Western Blot Analysis 

2.2.8.1. Preparation of crude yeast extracts 
10ml yeast cultures were cultured at 29°C to mid-log phase (typically Ix 107 

cells/ml) in DMM. Cells were harvested by centrifugation (1,500g for 5 min), 
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washed once with TEN buffer (100mM Tris pH6.8,10mM EDTA) and transferred to 

a 2m1 Eppendorf tube. Cells were pelleted by centrifugation at 1,500g for 5 min. All 

but 50µl of the supernatant was removed and 25µl I OX inhibitor stock (20mM 

PMSF, 20mM TLCK [Sigma Chemical Co., Poole, Dorset], 1 protease inhibitor 

cocktail tablet [Boerhinger Mannheim, Germany], in lml distilled sterile water) 

added. 0.5m1 glass beads were added to the yeast homogenate and the tubes vortexed 
for 1 min, before being transferred to a 0.5m1 tube. The bottom of the 0.5m1 tube was 

pierced, and placed within a 1.5m1 Eppendorf before a centrifugation step at 13,000g 

for 10s. 33µl sample buffer (5% SDS, 125mM Tris pH 6.8,8M urea, -0.02% 
bromophenol blue) was added to the crude yeast homogenate, and the crude extracts 
heated at 100°C for 5 min prior to SDS-PAGE electrophoresis. Typically, 10µl crude 

yeast extract was subjected to SDS-PAGE electrophoresis. 

2.2.8.2. SDS-PAGE electrophoresis 
SDS polyacrylamide gels were cast and run using the Bio-Rad Mini Protean 

II gel electrophoresis system (Hemel Hempstead, Hertfordshire) according to the 

manufacturers instructions. 

2.2.8.3. Western Blot Analysis 

Proteins separated by SDS-PAGE electrophoresis were transferred to Hybond 

ECL nitrocellulose membrane (Amersham Pharmacia Biotech, Little Chalfont, 

Buckinghamshire) using a Semi-Phor Transfer Dry Blotting Unit (Hoefer Scientific 

Instruments, San Francisco, CA). Once transfer was complete the membrane was 

placed into TBS (100mM Tris, 150mM NaCl) containing 4% Marvel (non-fat dried 

milk) for 30 min with gentle shaking. The membrane was washed twice in TTBS 

(TBS containing 0.3 % Tween20 (v/v)). The primary antibody was added to the 

membrane at the appropriate dilution (antibody specific) in blocking solution (TBS 

containing 2% marvel, 0.3 % Tween20), and left for Ih with gentle shaking. The 

membrane was washed for 3x5 min in TTBS. The secondary antibody was added 

to the membrane at a 1: 10000 dilution in TTBS and left for Ih with gentle shaking. 
The membrane was washed for 3x 15 min in TTBS. Proteins were detected using 
the ECLTM Western Blotting Detection Reagents (Amersham Pharmacia Biotech, 
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Little Chalfont, Buckinghamshire), which were used in accordance with the 

manufacturers instructions. 

2.2.8.4. Silver staining of SDS-PAGE gels 
Silver staining of SDS-PAGE gels was performed using the Silver Stain Plus 

Kit purchased from Bio-Rad (Hemel Hempstead, Hertfordshire) according to the 

manufacturers instructions. 

2.2.9. Detection of IacZ (ß-galactosidase) activity 

Liquid ß-galactosidase assays of Sz. pombe cultures were performed using a 

method modified from Dohlman et al. (1995). 

Sz. pombe M cells were cultured to a density of-5x105 cells/ml in DMM and 
500µ1 aliquots transferred to 2m1 Safe-Lock Eppendorf tubes containing 5µl P-factor 

pheromone (diluted in HPLC-grade methanol). Tubes were incubated at 29°C for 

16h on a rotating wheel, following which 50µ1 were transferred to 750µl Z+-buffer 

containing 2.25mM o-nitrophenyl-D-galactoside (ONPG; purchased from Sigma 

Chemical Co., Poole, Dorset) and incubated on a rotating wheel at 29°C for a further 

90 min. Reactions were halted by addition of 250µl 2M Na2CO3, and ß-galactosidase 

activity calculated as the ratio of ONPG product formed (Optical Density at 420nm) 

to assayed cells (determined using a Coulter Channelyser) using the formula 

OD420/106 assayed cells. 

Z+-buffer; 0.1M NaPO4 (pH7.0) 

10mM KCl 

1mM MgSO4 

50mM ß-mercaptoethanol 

0.5% (v/v) chloroform 
0.005% (w/v) SDS 

2.25mM ONPG 
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2.2.10. Detection of Ura4 (orotidine 5'-monophosphate decarboxylase) activity 

Orotidine 5'-monophosphate decarboxylase (Ura4) activity was detected 

using plate-based viability assays (Grimm et al., 1988). Cells possessing Ura4 

activity were selected on AA selective agar plates lacking uracil. Cells without Ura4 

activity were selected using AA selective agar plates containing uracil and 5- 

fluoroorotic acid (5-FOA; purchased from Toronto Research Chemicals Inc., 

Ontario, Canada). 5-FOA is converted into a toxic compound by Ura4 (Grimm et al., 
1988). 

2.2.11. Hydroxylamine Mutagenesis of Double Stranded DNA 

Plasmid DNA was treated with hydroxylamine using a method modified from 

Busby et al. (1982). 

20µg plasmid DNA was incubated in 500µ1 hydroxylamine solution (1M 

NH2OH, 50mM Na2P2O7, pH7.0,100mM NaCl, 2mM EDTA) at 75°C for 2h. DNA 

was precipitated with potassium acetate and propan-2-ol on ice for 30 min, and 

recovered by centrifugation (13,000g at room temperature for 30 min). 
Hydroxylamine-treated DNA was purified by LMP gel electrophoresis and the 

GeneClean II kit supplied by Anachem (Luton, Bedfordshire), followed by standard 

phenol/ethanol DNA precipitation (Sambrook et al., 1989). 
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2.3. Generation of DNA Constructs and Yeast strains 

2.3.1. Generation of Sz. pombe ura4 constructs 

Figure 5 shows the construction of the irpl:: ura4ts integration construct. The 

ura4u cassette was inserted between the 5' and 3' irpl non-coding regions as a 

BamHI fragment. Digestion of this construct with PstI and XbaI liberates a linear 

integration fragment. Figure 6 shows the construction of the prkl:: ura4+ integration 

cassette. The ura4+ cassette was cloned between the prkl 5' and 3' non-coding 

regions as a BamHI cassette. Liberation of the integration fragment was achieved by 

digestion of the construct with PvuII. The construction of the ura4 expression 

constructs is illustrated in Figure 7. The ura4+ and ura4`s open reading frames 

(ORFs) were amplified and cloned into the BamHI restriction site of the Sz. pombe 

pREP3X and pREP81X expression vectors (Maundrell, 1990). These expression 

vectors contain the nmtl promoter upstream of the multi-cloning site. Lower 

expression levels are achieved with pREP81X as a result of a mutated nmtl 

promoter. Expression constructs were digested with appropriate restriction enzymes 

to ensure the correct orientation of the ura4 ORFs for translation (ATG immediately 

downstream of the nmtl promoter). 

2.3.2. Generation of RGS expression constructs 

Figures 8-14 show the construction of RGS protein expression constructs. 
Typically, RGS open reading frames were amplified and cloned into the BamHI site 

of pKS. The ORFs were then sequenced and sub-cloned into the BamHI site of 

pREP3X. The human Rgs3 ORF and the Sz. pombe rgsl C-terminus were directly 

cloned into the EcoRV site of a pREP3X derivative. Restriction digests of the 

expression constructs confirmed correct orientation of the ORFs for translation. 

2.3.3. Generation of human RGS1 and human RGS4 integration constructs 

Figure 15 and Figure 16 show the construction of human Rgsl and human 

Rgs4 integration constructs. The human Rgsl and Rgs4 ORFs were amplified using 

oligonucleotide primers containing Sz. pombe rgsl 5' and 3' non-coding sequences. 
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Amplified fragments were cloned into a construct containing additional rgsl 5' and 
3' non-coding sequences to generate integration constructs in which the human Rgsl 

and Rgs4 ORFs exactly replace the Sz. pombe rgsl ORF within the rgsl 5' and 3' 

non-coding regions. Restriction of the integration constructs with Spel and Ndel 

liberate linear fragments for homologous integration. 

2.3.4. Generation of RGS site-directed mutant constructs 

Figure 17 and Figure 18 show the creation of two site-directed rgsl 

mutations. Figure 19 shows the creation of a human Rgs4 site-directed mutation. 
Site-directed RGS mutants were amplified using divergent oligonucleotide 

primers that introduced a specific nucleotide at the desired position in the RGS ORF. 

A construct containing the rgsl ORF flanked by its 5' and 3' non-coding regions was 

used as the template for creation of the Sz. pombe rgsl site-directed mutants. The 

human Rgs4 integration construct described in Figure 16 was used as the template 

for creating the human Rgs4 site-directed mutant (Figure 19). The resulting 
fragments were circularised to create constructs in which the mutant RGS ORF was 
flanked with rgsl 5' and 3' non-coding regions. Restriction with SpeI and Ndel 

liberated linear fragments for homologous integration. 

All constructs were sequenced to ensure no mutations had been introduced 

during the amplification and cloning steps. 
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Irpl5'UTR irpl irp13'UTR 

3' AAGGAAAGTATTTATTTTTCCTAGGGG5' 

J0498 

ura4`S cassette cloned between the irpl 
5' and 3' non-coding regions as a 
BamHI fragment 

5'GGGGATCCTTTTTTTT000TAATCCG3' 

J0499 

BamHI BamHI 

ura4" 

irpi 5'UTR I ura4" I irpi 3'UTR 

pKS-irpl:: ura4ts 

Figure 5. Generation of an irpl:: ura4" disruption construct 
The irpl 5' and 3' non-coding regions were amplified using J0498 and J0499, which 
contain terminal BamHI sites. The ura4`s cassette amplified from JY395 genomic DNA 
was cloned between the irpl 5' and 3' non-coding regions in pKS as a BamHI fragment. 
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prk15' UT R prkl prk13' UT R 

3' CCCATCCCAGAGTAAAGTCGcctaggggg 5' 5' gggggatccATCAACCTATTCATTATCC 3' 

J0490 

ura4` BamHI cassette cloned between 
the prk15' and 3' non-coding regions 

J0491 

BamHI BamHI 

ura4+ 

I prk15' UT RI ura4` I prk13' UT RI 

pKS prkl:: ura4+ 

Figure 6. Generation of a prkl:: ura( disruption construct 
J0490 and J0491 were used to amplify the prkl 5' and 3' non-coding regions in pKS. 
Both primers contain terminal BamHI sites. The ura4+ cassette was cloned between the 
prk15' and 3' non-coding regions in pKS as a BamHI fragment. 

55 



ura4 
ORF 

gggggatccaccATGGATGCTAGAGTATTTC GAGTCGTAATTTTTTTCTGcctaggggg 

\/ 

J01056 J01057 

Sz. pombe ura4+ and ura4' ORFs 
amplified using Pwo DNA 
polymerase 

BamHI BamHI 

ura4 
RF 

BamHI fragment cloned into pKS vector and 
sub-cloned into BamHI-digested pREP3X 
and pREP81X 

Xhol BamHI 
nmtl / EcoRl 

PREP 

BamHI BamHI 

mnmy ura4°RF --º 

pREP-ura4°RF 

Figure 7. Creation of the urar and ura4" expression constructs 

J01056 and J01057 were used to amplify the Sz. pombe ura4 open reading frame from 
using Pwo DNA polymerase. J01056 and J01057 contain terminal BamHI sites to 
facilitate cloning. J01056 contains the sequence CCACC to potentially increase the 
efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case letters indicate primer 
sequence not found in the ura4 ORF. 
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Human Rgsl 

5' ggggatccaccATGCCAGGAATGTTCTTCTCTGC 3' 3' CGTCCGATTATCGGATTTCACTcctagggg 5' 

J0910 

BamHI fragment amplified from 
lymphoblastoma cDNA library using 
Pwo DNA polymerase 

BamHI BamHI 

HuRgsl 

BamHI fragment cloned 
sub-cloned into BamHI-< 

Figure S. Creation of the human RGS1 expression construct 

J0911 

Xhol BamHI 

nmtl / EcoRl 

pREP3X 

J0910 and J0911 were used to amplify the human Rgsl open reading frame from a 
lymphoblastoma cDNA library using Pwo DNA polymerase. J0910 and J0911 contain 
terminal BamHI sites to facilitate cloning. The amplified fragment was digested with 
BamHI and cloned into the BamHI site of pKS. J0910 contains the sequence CCACC to 

potentially increase the efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case 
letters indicate primer sequence not found in the human Rgsl open reading frame. The 
human Rgsl ORF was cloned into the BamHI restriction site of pKS, sequenced, and sub- 
cloned into the BamHI restriction site of pREP3X. 
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Human Rgs2 

5' ggggatccaccATGCAAAGTGCTATGTTCTTGGC 3' 3' GGTGTCTCGGAGTACGATGTACTcctagggg 5' 

J0912 

BamHI fragment amplified from 
lymphoblastoma cDNA library using 
Pwo DNA polymerase 

J0913 

BamHI BamHI 

HuRgs2 XhoI BamHI 

nmtl / EcoRI 

BamHI fragment cloned into pKS vector and 
sub-cloned into BamHI-digested pREP3X pREP3X 

BamHI BamHI 

nmil HuRgs2 -º 

pREP3X- huRgs2 

Figure 9. Creation of the human RGS2 expression construct 

J0912 and J0913 were used to amplify the human Rgs2 open reading frame from a 
lymphoblastoma cDNA library using Pwo DNA polymerase. J0912 and J0913 contain 
terminal BamHI sites to facilitate cloning. J0912 contains the sequence CCACC to 
potentially increase the efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case 
letters indicate primer sequence not found in the human Rgs2 open reading frame. The 
human Rgs2 ORF was cloned into the BamHI restriction site of pKS, sequenced, and sub- 
cloned into the BamHI restriction site of pREP3X. 
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Human Rgs3 

5' ggggatccaccATGTTTGAGACGGAGGCAGATG 3' 3' CTTCTACTCAGGGGGCGAAATCcctagggg 5' 

J0914 

BamHI fragment amplified from 
lymphoblastoma cDNA library using Pwo 
DNA polymerase and phosphorylated 

HuRgs3 XhoI 

nmtl t 

J0915 

Phosphorylated fragment cloned into 
EcoRV-digested pREP3X 

nmtl °° ° HuRgs3 -º 

pREP3X- huRgs3 

Figure 10. Creation of the human RGS3 expression construct 

EcoRV 

pREP3X 

J0914 and J0915 were used to amplify the human Rgs3 open reading frame from a 
lymphoblastoma cDNA library using Pwo DNA polymerase. J0914 contains the sequence 
CCACC to potentially increase the efficiency of translation (Kozak, 1984; Kozak, 1986). 
Lower case letters indicate primer sequence not found in the human Rgs3 open reading 
frame. The amplified fragment was phosphorylated and cloned into the EcoRV site of the 
expression vector pREP3X. 
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I Human Rgs4 

5' ggggatccaccATGTGCAAAGGGCTTGCAGGTC 3' 3' GACCAGGGAGTCACACGGATTcctagggg 5' 

J0917 

BamHI fragment amplified from 
lymphoblastoma cDNA library using 
Pwo DNA polymerase 

BamHI BamHI 

HuRgs4 

nmtl 

BamHI fragment cloned into pKS vector and 
sub-cloned into BamHI-digested pREP3X 

BamHI BamHI 

nmtl IHuRgs4 -º 

pREP3X- huRgs4 

Figure 11. Creation of the human RGS4 expression construct 

J0918 

Xhol BamHI 

Tý-ý , EcoRI 

pREP3X 

J0917 and J0918 were used to amplify the human Rgs4 open reading frame from a 
lymphoblastoma cDNA library using Pwo DNA polymerase. J0917 and J0918 contain 
terminal BamHI sites to facilitate cloning. J0917 contains the sequence CCACC to 
potentially increase the efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case 
letters indicate primer sequence not found in the human Rgs4 open reading frame. The 
human Rgs4 ORF was cloned into the BamHI restriction site of pKS, sequenced, and sub- 
cloned into the BamHI restriction site of pREP3X. 
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Human Rgs9-2 

"I 

ý17ý 

5' gggggatccaccATGACGATCCGACACCAAGGCCAGCAG 3' 3' CGCCTTCCCTTCCGCCCGACTCGTcctaggggg 5' 

J01016 

BamHl fragment amplified from 
lymphoblastoma cDNA library using 
Pwo DNA polymerase 

J01017 

BamHI BamHI 

HuRgs9-2 

BamHI fragment cloned into pKS vector and 
sub-cloned into BamHI-digested pREP3X 

Xhol BamHI 

nmtl / EcoRI 

pREP3X 

BamHI BamHI 

,` nmrl HuRgs9-2 -º 

pREP3X- huRgs9-2 

Figure 12. Creation of the human RGS9-2 expression construct 

J01016 and J01017 were used to amplify the human Rgs9-2 open reading frame from a 
pKS-Rgs9-2 construct (Rahman et al., 1999). JO1016 and JO1017 contain terminal BamHI 
sites to facilitate cloning. J01016 contains the sequence CCACC to potentially increase the 
efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case letters indicate primer 
sequence not found in the human Rgs9-2 open reading frame. The human Rgs9-2 ORF was 
cloned into the BamHI restriction site of pKS, sequenced, and sub-cloned into the BamHI 
restriction site of pREP3X. 
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Murine Rgs2 

5' ggggatccaccATGCAAAGTGCTATGTTCTTGGC 3' 3' GGTGTCTCGGAGTACGATGTACTcctagggg 5' 

J0912 J0913 

BamHI fragment amplified from 
lymphoblastoma cDNA library using 
Pwo DNA polymerase 

BamHI BamHI 

MuRgs2 
Xhol BamHI 

nmtl / EcoRI 

BamHI fragment cloned into pKS vector and pREP3X 
sub-cloned into BamHI-digested pREP3X 

BamHI BamHI 

nmtl MuRgs2 -º 

pREP3X- muRgs2 

Figure 13. Creation of the murine RGS2 expression construct 

J0912 and J0913 were used to amplify the murine Rgs2 open reading frame from a pKS- 
muRgs2 construct (Chen et al., 1997). J0912 and J0913 contain terminal BamHI sites to 
facilitate cloning. J0912 contains the sequence CCACC to potentially increase the 
efficiency of translation (Kozak, 1984; Kozak, 1986). Lower case letters indicate primer 
sequence not found in the murine Rgs2 open reading frame. The murine Rgs2 ORF was 
cloned into the BamHI restriction site of pKS, sequenced, and sub-cloned into the BamHI 
restriction site of pREP3X. 
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RGS domain 

5' ggggatatcaccATGGAAACTGTTGCTAGCGATTTG 3' CTTACCCCCCGAGCCATAAATTACtatagggg 5' 

J0923 J060 

C-terminal rgsl fragment amplified 
from pKS-rgsl construct using Pwo 
DNA polymerase and phosphorylated 

I PgSI C-terminus 
ECORV 

XhoI BamHI 

nmtl Ec 

Phosphorylated fragment cloned into 
EcoRV-digested pREP3X vector 

pREP3X 

- terminus 
nmrt"'' rgsl 

pREP3X- szRgs1 c'cerminu0 

Figure 14. Creation of the Sz. pombe Rgsl C-terminus expression construct 

J0923 and J0600 were used to amplify the C-terminus of the Sz. pombe rgsl open 
reading frame from a pKS-rgsl construct using Pwo DNA polymerase. J0923 initiates at 
an initiating at nucleotide position +820 relative to the rgsl initiator codon (this 
corresponds to an internal Met residue at residue 274 in the szRgslp primary sequence) 
and contains the sequence CCACC to potentially increase the efficiency of translation 
(Kozak, 1984; Kozak, 1986). Lower case letters indicate primer sequence not found in 
the rgsl open reading frame. The amplified fragment was phosphorylated and cloned into 
the EcoRV site of the expression vector pREP3X. 
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J01267 J01268 
3' GTGTTAAGAAAACAAGTA5' 5' ATATTTCTTATTTGCATTATT3' 

Sz. pombe rQs1 ORF 

rgs15' UTR 
PKS-rgsl 

rgsl 3' UTR 

J01119 J01120 

Human Rgs1 ORF 

rgs15' UTR rgsl 3' UTR 

pKS-rgsl:: Rgsl 

Figure 15. Creation of the human RGS1 integration construct 

JO 1119 and JO 1120 were used to amplify the human Rgsl ORF flanked with Sz. pombe 
rgsl 5' and 3' non-coding regions. This fragment was cloned into a fragment amplified 
with J01267 and J01268, which provided additional Sz. pombe rgsl 5' and 3' non-coding 
regions. 
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J01267 
3' GTGTTAAGAAAACAAGTA5' 
-11 

rgsl 
rgs15' UTR 

pKS-rgsl 

J01268 
5' ATATTTCTTATTTGCATTATT3' 

rgsl 3' UTR 

J01121 

Human RRs4 ORF 

rgs1 rgs15' UTR 3' UTR 
pKS-rgsl:: Rgs4 

Figure 16. Creation of the human RGS4 integration construct 

JO1121 and JO1122 were used to amplify the human Rgs4 ORF flanked with Sz. pombe 
rgsl 5' and 3' non-coding regions. This fragment was cloned into a fragment amplified 
with J01267 and J01268, which provided additional Sz. pombe rgsl 5' and 3' non-coding 
regions. 
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J01248 J01247 
3' CAAATCGATACGTTTCCCAT5' 5'TTTCCTATTTTTTGACTG3' 

1 rgsl ORF 1 

rgs15' UTR rgs13' UTR 

pKS-rgsl 

Figure 17. Creation of the Sz. pombe Rgsl"30541le integration construct 

The oligonucleotide primers J01247 and J01248 were used in conjunction with a DNA 
template containing the rgsl ORF flanked by its 5' and 3' non-coding regions to generate 
the G-)A mutation at nucleotide +913 in the Sz. pombe rgsl ORF, relative to the initiator 

codon. JO1248 introduces an adenine nucleotide at position 913 in the resulting rgsl ORF 
(replacing guanine in the wild-type rgsl ORF). The fragment was amplified with Pwo 
DNA polymerase and circularised. 
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J01250 J01249 
3' CAAAAGATGTTGTATTGCCTGC 5' 5' TAATTCTCAAGCCGAGCTTTAC 3' 

1 rgsl ORF 1 

rgs15' UTR rgsl 3' UTR 

pKS-rgsl 

Figure 18. Creation of the Sz. pombe Rgs1H'si»-)Ara integration construct 

The oligonucleotide primers J01249 and J01250 were used in conjunction with a DNA 
template containing the rgsl ORF flanked by its 5' and 3' non-coding regions to generate 
the A-iG mutation at nucleotide position +512 in the Sz. pombe rgsl ORF relative to the 
initiator codon. J01250 introduces a guanine nucleotide at position 512 in the resulting 
rgsl ORF (replacing adenine in the wild-type rgsl ORF). The fragment was amplified with 
Pwo DNA polymerase and circularised. 
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J01434 J01433 
3' CCTCACGTTTCTATAC5' 5' GAACATCGGCTAGGTTTCC3' 

1 HuRgs4 ORF 1 

rgs15' UTR rgs13' UTR 

pKS-rgsl:: Rgs4 

Figure 19. Creation of the Human RGS4LY°204a, integration construct 

The oligonucleotides J01433 and J01434 were used to incorporate a guanine nucleotide 
at position 58 in the human Rgs4 integration construct. J01433 introduces a guanine 
nucleotide at nucleotide position 58 in the resulting Rgs4 ORF (replacing adenine in the 
wild-type Rgs4 ORF). The fragment was amplified with Pwo DNA polymerase and 
circularised. 
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Chapter 3. Isolation of a temperature-sensitive Ura4 marker 

69 



3.1. Introduction 

The study of gene function in the fission yeast Sz. pombe is commonly 

undertaken by the disruption of genes, in which the target gene is replaced by a 

selectable marker via homologous recombination. This is achieved by flanking the 

marker gene to be integrated with appropriate Sz. pombe genomic sequences. The 

marker gene is then introduced into the recipient genome as a result of homologous 

integration. While non-homologous recombination is rarely observed when 

constructs bear appropriate flanking regions (Grimm et al., 1988; Keeney and Boeke, 

1994), the transformed DNA can sometimes be maintained extra-chromosomally. 
One commonly used auxotrophic marker in Sz. pombe is the ura4 gene that 

encodes orotidine-5'-monophosphate decarboxylase (Bach, 1987), an enzyme 
involved in the pyrimidine biosynthetic pathway. Ura4 has a number of advantages 

over other Sz. pombe markers, including the availability of compounds for negative 

selection (i. e. loss of Ura4p function). One such compound is 5-fluoroorotic acid (5- 

FOA, [Boeke et al., 1984]), a fluoropyrimidine analogue that is lethal to cells 

expressing a functional ura4 gene. Following gene disruption with ura4, the marker 

may be subsequently replaced with another gene of choice. 5-FOA can thus be used 

to select for the loss of the ura4 marker. 

3.1.1. Sz. pombe ura4-D18 deletion mutants enable directed integration of the 

ura4 cassette 

One drawback to certain Sz. pombe auxotrophic markers is the residue of 
homologous sequences within the recipient isolates. In this sense, ura4 has an 

immense advantage in that the Sz. pombe deletion mutant ura4-D18 (Grimm et al., 

1988) possesses no homologous ura4 cassette sequences within its genome. Thus, in 

strains possessing the ura4-D18 deletion (which have had a 1.8kb Hin(IIII fragment 

encompassing the ura4 coding region and 5' and 3' non-coding regions deleted), 

integration is targeted by virtue of the sequences flanking the ura4 cassette. The 

combination of Sz. pombe strains with the ura4-D18 deletion and integration 

constructs carrying the ura4 cassette makes this a frequently used marker. 
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The limiting number of selective markers available for Sz. pombe places 

restrictions upon experimental designs, and so it was envisaged that a temperature- 

sensitive version of the Ura4p marker might aid and simplify multiple, sequential 
integration events within a single strain. For example, if an isolate has gene A 

disrupted with the temperature-sensitive ura4 cassette, gene B could be then be 

disrupted by a wild-type ura4 cassette, and integrants identified by their ability to 

grow at the restrictive temperature in the absence of uracil. The development of this 

alternative Sz. pombe marker would enable sequential gene disruptions and/or 

replacements to be carried out with the minimum of intermediate procedures. 

3.2. Generation of an ura4`$ cassette 

Prior to the commencement of this work, a construct was made in the Davey 

laboratory for the disruption of the krpl gene. The krpl gene encodes a dibasic 

endopeptidase required for cell viability in Sz. pombe (Davey et al., 1994). From this 

construct, successful attempts were made to isolate a temperature-sensitive version 

of Krplp (Ladds et al., 2000). In the krpl disruption construct an ura4 cassette is 

cloned into a SnaBI restriction site in the 3' non-coding region of krpl (Figure 20), 

creating the krpl>ura4 disruption construct. 
The krpl>ura4 disruption construct was used as a template to isolate a 

temperature-sensitive ura4 allele. A 3kb fragment containing the ura4 cassette 

flanked either side by approximately 600bp from the krpl gene was amplified from 

the krpl>ura4 construct using the oligonucleotide primers J065 and J066 and Taq 

DNA polymerase. The sense primer J065 contains 17 bases complementary to the 

krpl open reading frame initiating at nucleotide position +1035 relative to the krpl 

initiator codon. The antisense primer J066 contains 17 bases complementary to the 

krpl 3' non-coding region initiating at nucleotide position +2695 relative to the krpl 

initiator codon. The conditions used for the PCR amplification of the krpl>ura4 

construct introduces errors at a rate of approximately 0.1% (Section 2.2.2.4). 
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ura4+ cassette cloned into SnaB 1 site 
downstream of krpl open reading frame 

krp1 -i ura4+ 

--7 J066 J0496 
J065JO61 

PCR amplification of krpl>ura4 
construct using J065 and J066 with 
Tay DNA polymerase. Conditions 
used introduce errors at rate of - 
0.1%. PolyA tails were removed by 
performing a round of PCR using 
Pwo DNA polymerase after the Taq 
PCR steps. 

uru4+ EiiLJii 
JY383 was transformed with the Tay polymerase-amplified 
krpl>ura4 construct generating the yeast strain JY395 

Figure 20. Generation of a krpl>ura4 disruption construct 

The ura4 cassette was cloned into a SnaBI site in the 3' non-coding region of krpl. JY383 
(mat]-P, leul -32, ura4-D18) was transformed with a DNA fragment containing the ura4 
cassette flanked either side by -600bp of the krpl allele (amplified with Taq DNA 
polymerase under conditions that introduce errors at a rate of approximately 0.1 %). 
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The amplification mixture was used to transform directly JY383 (mat]-P, leul-32, 

ura4-D18). Transformants were plated onto AA plates lacking uracil and incubated 

at 23°C. Transformants were then replicated onto AA plates containing or lacking 

uracil and incubated at 37°C to identify which transformants exhibited a temperature- 

sensitive phenotype. 
The uracil-dependency of one strain (JY395) appeared to be temperature- 

sensitive. At 37°C, this strain was able to grow on AA plates containing uracil but 

unable to grow on AA plates lacking uracil. A fragment containing the ura4 cassette 

was amplified from JY395 genomic DNA, using the oligonucleotide primers J061 

and J0496 and Pwo DNA polymerase (Figure 21). The sense primer J061 contains 
17 bases complementary to the krpl open reading frame initiating at nucleotide 

position +1484 relative to the krpl initiator codon. The antisense primer J0496 

contains 28 bases complementary to the krpl 3' non-coding region initiating at 

nucleotide position +2966 relative to the krpl initiator codon. 

3.2.1. A single point mutation generates a temperature-sensitive Ura4p 

The krpl>ura4 construct amplified with the oligonucleotide primers J061 

and J0496 from JY395 genomic DNA was cloned into the PvuII site of pKS and 

sequenced by the dideoxynucleotide method. The region corresponding to the ura4 
795bp open reading frame (ORF) had a single point mutation at nucleotide position 

+782 relative to the ura4 initiator codon. This T-to-C substitution results in a leucine 

to proline substitution at amino acid residue 261 in the primary sequence of Ura4up. 

In order to verify that the temperature-sensitive phenotype was due to the 

Leu261 -Pro mutation, and not due to fortuitous mutations elsewhere in the host 

chromosome, JY383 was re-transformed with the krpl>ura4`S construct. 

Transformants exhibiting a temperature-sensitive requirement for uracil had 

undergone successful homologous integration at the krpl locus, as confirmed by 

PCR analysis and Southern blot analysis (carried out in collaboration with Dr. Kevin 

Davis) (Figure 22). 
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krpl uru4 

J061 J0496 

PCR amplification of the krpl>ura4 

construct from JY395 genomic DNA 

using J061 and J0496 in conjunction 
with Pwo DNA polymerase. Amplified 

products were cloned into the cloning 
vector pKS 

ura44 

The ura4 cassette was sequenced by 
the dideoxynucleotide method 

CAG CAA AGA CTT TCT CAG CAT 

GTC GTT TCT GAA AGA GTC GTA 
Position 
within 258 Gin Gin Arg Leu Ser Gin His 264 

Ura4p 
A T-to-C mutation 

CAG CAA AGA CCT TCT CAG CAT at nucleotide +782 

GTC GTT TCT GGA AGA GTC GTA in the ura4 ORF 
Position changes Leu261 to 
within 258 Gin Gin Arg Pro Ser Gin His 264 Pro in the ura4" 
Ura4p cassette. 

Figure 21. The urae ORF possesses a mutation at nucleotide 782 that results in 

a leucine-to-proline substitution at amino acid residue 261 in Ura4p 

The ura4 cassette amplified from JY395 genomic DNA (a strain exhibiting 
temperature-sensitive uracil-dependency) was cloned into pBluescript and 
sequenced. A mutation at nucleotide +782 in the ura4 open reading frame results in a 
leucine-to-proline substitution at residue 261 in the primary sequence of Ura4`Sp. The 

ura4`s cassette is identical to the wild-type ura4 cassette except for the T-to-C 

mutation at nucleotide +782 in the ura4 open reading frame (relative to the initiator 

codon). 
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HindIII Barn! -!! 
3.1kb - 

krph 

3.6kb 

ura4+--* 

4 
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4kb 
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HindIII 

3.6kb 

3.1 kb 

Figure 22. Disruption of the krpl locus with the ura4 cassette 

Genomic DNA was prepared from a krpl+ strain (JY383) and a krpl:: uru4 strain (JY395) 
and digested with HindlIl. Restricted DNA was separated on a 1% agarose gel, blotted 
onto a nitrocellulose filter and probed with a 1kb HindlIl/BamHI DNA fragment from the 
krpl locus (indicated above). The wild-type krp1+ allele gives a band of 3.1kb, while the 
krpl>ura4 allele gives a band of 3.6kb. 
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The substitution of leucine for proline in the primary amino acid sequence of Ura4p 

can be expected to have profound effects upon the secondary and tertiary structures 

of Ura4p. Proline is unique in that it is covalently bound to the nitrogen atom of the 

polypeptide backbone, and as a result, has no amide hydrogen for use as a donor in 

hydrogen bonding or in resonance stabilization of the peptide bond of which it is 

part. The peptide bond preceding a proline residue is more likely to adopt a cis- 

configuration due to constraints on rotation about the N-C°` bond of the polypeptide 
backbone. 

3.3. Disruption of irpl with the ura4`s cassette in a ura4-D18 strain 

3.3.1. Generation of the irpl:: ura4ts disruption construct 

In order to demonstrate the value of ura4u for gene disruption, a construct 

was prepared to disrupt the irpl gene in JY383 (mat]-P, leul-32, ura4-D18) with the 

ura4'' cassette described in Section 3.2 (Figure 23). Irplp (insulinase-related 

protease) is a member of the insulin-degrading family of proteases and loss of irpl 

has no apparent effect on normal cell behaviour (Hughes and Davey, 1997). 

The 5' non-coding region of irpl was amplified from JY383 genomic DNA 

using the oligonucleotide primers J0497 and J0498 (Figure 23). The sense primer 
J0497 contains 18 bases complementary to the irpl 5' non-coding region, initiating 

at nucleotide position -1228 relative to the irpl initiator codon. The anti-sense primer 
J0498 contains 27 bases complementary to the region immediately upstream of the 

irpl initiator codon and includes a terminal BamHI site. The irpl 5' non-coding 

region was cloned between the PstI and BamHI restriction sites of pKS. 

The 3' non-coding region of irpl was amplified using the oligonucleotide 

primers J0499 and J0500. The sense primer J0499 contains 26 bases 

complementary to the irp13' non-coding region immediately downstream of the irp] 

stop codon, initiating at position +2911 relative to the irpl initiator codon. J0499 

also includes a terminal BamHI site. The antisense primer J0500 contains 18 bases 

complementary to the irp] 3' non-coding region initiating at nucleotide position 
+4281 relative to the irp] initiator codon. 
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. 10497 J0498 J0499 J0500 
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irp] 5' and 3' flanking regions as 
a BamHI fragment 

Pstl BaniHI BumHI Xbal 

JY383 transformed with the irpl:: ura4" disruption 
construct liberated by digestion with Pstland Xbal 

Figure 23. Generation of an irpl:: ura4L' disruption construct 

The ura4`ti cassette amplified from JY395 genomic DNA was cloned between the irpl 5' 
and 3' non-coding regions in pBluescript as a BamHI fragment. JY383 was transformed 
with the irpl:: ura415 disruption construct liberated by digestion with Pstl and XbaI. 
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The irpl 3' non-coding region was cloned between the BamHI and XbaI sites 

of the pKS construct containing the irpl 5' non-coding region to create a construct in 

which the irpl 5' and 3' non-coding regions are separated by a BamHl restriction 

site. The ura4`s cassette was liberated from the krp>ura4t' construct by digestion with 

BamHI, and the resulting fragment cloned into the BamHI site separating the irpl 5' 

and 3' non-coding regions to create the irpl:: ura4' disruption construct. 

3.3.2. Disruption of irpl with the ura4t' cassette 

The irpl:: ura4' disruption fragment was liberated by digestion with PstI and 

XbaI. JY383 (matl-P, leul-32, ura4-D18) was transformed with the irpl:: ura4' 

disruption fragment and plated onto AA plates lacking uracil at 29°C. Transformants 

were replicated to AA plates containing or lacking uracil at 37°C. Approximately 

10% (five of 52 tested) of the transformants capable of growth on uracil-deficient 

plates had a temperature-sensitive requirement for uracil, and Southern blot analysis 

confirmed that each of these resulted from a single homologous recombination event 

at the irpl locus. 90% of the transformants capable of growth on AA plates lacking 

uracil did not exhibit a temperature-sensitive requirement for uracil, and stability 

assays suggested that in many of these isolates the ura4" gene was maintained as a 

plasmid. 

3.3.3. Southern blot analysis confirming irpl disruption with ura4ts 

Southern blot analysis confirmed that the ura4" cassette had integrated 

correctly and exclusively at the irpl locus in JY383, generating the strain JY543 

(ura4-D18, irp1:: ura4") (Figure 24). 
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Figure 24. Southern blot analysis confirming irpl disruption with ura4h 

Genomic DNA was prepared from JY383 (irpl+) and JY543 (irpl:: uru4"), and the DNA 
digested with C1a1. Digested DNA was separated on a 1% agarose gel, blotted onto a 
nitrocellulose filter, and probed with an irpl 3' fragment. A band of 5690bp indicated 
homologous recombination had occurred at the irpl locus. A band of 2640bp indicated an 
undisrupted irpl locus. JY383 and JY543 genomic DNA was also digested with Ps1I and 
probed with an ura4 ORF fragment. A band of 5370bp indicated homologous integration 
of the uru4`s cassette at the irpl locus. 
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3.3.4. Growth characteristics for irpl:: urat and irpl:: ura4ts strains 

Growth characteristics were determined for an irpl:: ura4+ strain, JY497 

(ura4-D18, irpl:: ura4+), previously created in the laboratory, and the irpl:: ura4" 

strain JY543 (ura4-D18, irpl:: ura4u) when shifted from 29°C to 37°C. 

Growth characteristics of JY497 (irpl:: ura4+) and JY543 (irpl:: urar) were 
determined in minimal media containing alanine and leucine in the presence or 

absence of uracil when shifted from 29°C to 37°C. Briefly, 50ml medium were 
inoculated at a cell density of 2x105 cells/ml, and cells were incubated in a shaking 
incubator at 29°C. Once strains reached a density of 1x106 cells/ml, cultures were 

shifted quickly to a 37°C shaking water bath to minimize the time taken to shift 

temperatures (control experiments indicated that media took less than 10 min to 

reach 37°C). Cell counts were determined at various time-points post-shift using a 
Coulter Channelyser. 

Neither strain exhibited a lag in cell division upon the shift to 37°C (Figure 

25), and both JY497 (irp1:: ura4+) and JY543 (irpl:: ura4`S) cells retained the typical 

wild-type Sz. pombe barrel-like morphology throughout the experiment (determined 

by microscopic observation, not shown). JY543 cells were slightly larger than JY497 

cells at 37°C (JY543 had a median cell volume of 108µm3 compared to 96µm3 for 

JY497). The median cell volume is the volume that divides the distribution of cells 
into two equal groups, such that 50% of the cells are larger than the median volume, 

and is a useful measure of cell size in a non-synchronous culture. 
From Figure 25, it can be seen that when shifted to 37°C, JY497 (irp1:: ura4+) 

had comparable doubling times (2h) in the absence and presence of uracil. The 

doubling time of 4h seen for JY543 (irpl:: ura4`s) was slower than that of JY497 

(irpl:: ura4+) at 37°C. This is likely due to the reduced activity of Ura4up in JY543 

once intracellular stores of uracil had been depleted. The absence of uracil in the 

medium did not adversely affect the doubling time of JY543 in the first 8h following 

the shift to 37°C. 
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Figure 25. Growth characteristics of irpl:: urar and irpl:: ura4`" strains at 37°C 

Growth characteristics of JY497 (irpl:: ura4') and JY543 (irp1:: ura4) when shifted from 
29°C to 37°C were determined in minimal media containing alanine and leucine in the 
presence or absence of uracil. JY497 (irpl:: ura4+) has a generation time of 2h in the 
absence and presence of uracil. JY543 (irp1:: ura4) has a generation time of 4h in the 
absence and presence of uracil for the first 8h following the shift to 37°C. JY543 growth in 
the absence of uracil slows between 8h and 24h compared to JY543 growth in the presence 
of uracil. 
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JY543 (ura4-D18, irpl:: ura4u) was isolated as a consequence of its 

temperature-sensitive requirement for uracil when plated on AA plates lacking uracil 

at 37°C. However, in liquid culture, the temperature-sensitive uracil requirement of 
JY543 was not immediately apparent. In the first 8h following the cultures being 

shifted to 37°C, JY543 exhibited the same doubling time regardless of the presence 

or absence of uracil in the medium. This is not altogether unexpected however, as 

previous to the temperature shift, JY543 cells may have expressed sufficient levels of 

Ura4`sp to generate an intracellular pool of uracil sufficient to sustain growth in the 

first 8h of the growth assay. Thus it would be expected that the restrictive 

temperature would only be seen to adversely affect growth at later time-points. This 

can be seen in Figure 25, as by 24h the cell density of JY543 grown in the presence 

of uracil was double that of JY543 grown in the absence of uracil. It is possible that 

inoculating JY543 cells grown in uracil-deficient medium at 37°C into fresh uracil- 

deficient medium at 37°C would demonstrate the long-term detrimental effect of this 

restrictive temperature upon the growth of JY543 in liquid medium. 

To determine the viability of JY497 (irp1:: ura4+) and JY543 (irp1:: ura4") 

on solid media, 1x105 cells were plated on AA plates lacking uracil and incubated at 

either 23°C or 37°C. JY497 was capable of forming colonies at both temperatures, 

while JY543 was only capable of growth at 23°C (Figure 26). No growth was 

observed for JY543 at 37°C. 
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Figure 26. JY543 is incapable of growth on AA plates lacking uracil at 37°C 

JY497 (irpl:: ura4`) and JY543 (irpl:: ura4") were cultured overnight in AA medium 
lacking uracil, and x106 cells plated on AA medium lacking uracil. Plates were incubated 
at 23°C or 37°C for 3d. JY497 was capable of forming colonies at both 23°C and 37°C, 
while JY543 formed colonies at 23°C but not 37°C. 
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3.4. Disruption of prkl with the ura4+ cassette in the irpl:: ura4`s strain 

One aim of creating a temperature-sensitive ura4 allele was to enable 

sequential gene disruptions to be carried out. Disruption of the irpl gene with the 

ura4t' cassette in JY543 (ura4-D18, irpl:: urae) caused the strain to exhibit a 

temperature-sensitive requirement for uracil when plated on uracil-deficient medium 

at 37°C. The next stage of the investigation was to use the wild-type ura4 cassette to 

disrupt another gene, prkl, in a strain already possessing a single genomic copy of 

the ura4` cassette (JY543). 

Prklp (protein kinase) is the Sz. pombe homologue of the Saccharomyces 

cerevisiae UME5p protein kinase (Watson and Davey, 1998) that is involved in 

regulating gene transcription in response to a variety of stimuli. Disruption of prkl 

has been shown to have little effect on cell behaviour other than increasing the 

tendency of cells to flocculate (Watson and Davey, 1998). 

3.4.1. Generation of the prkl:: ura( disruption construct 

A construct containing the prkl 5' and 3' non-coding regions had previously 

been constructed in the Davey laboratory by Dr. Peter Watson. A construct 

containing the prkl ORF flanked by its 5' and 3' non-coding region was used as a 

template to generate a construct in which the prkl 5' and 3' non-coding regions are 

separated by a BamHI site. The antisense primer J0491 includes 28 bases 

complementary to the 5' non-coding region immediately upstream of the prkl 

initiator codon and a terminal BamHI site. The sense primer J0490 includes 29 bases 

complementary to the 3' non-coding immediately downstream of the prkl stop 

codon and a terminal BamHI site. The amplified fragment was circularised to 

generate a construct containing the prkl 5' and 3' non-coding regions separated by a 

BamHI site. The ura4+ cassette was introduced between the prkl non-coding regions 

as a BamHI fragment (Figure 27). 
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Figure 27. Generation of a prkl:: ura't disruption construct 

The ura4+ cassette was cloned between the prk] 5' and 3' non-coding regions in 
pBluescript as a BamHI fragment. JY383 was transformed with the prkl:: ura4+ disruption 
construct liberated by digestion with PvuII. 
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3.4.2. Disruption of prkl with the wild-type ura4' cassette in JY543 (irp1:: ura4`g) 

JY543 (ura4-D18, irp1:: ura4") was transformed with a linear PvuII fragment 

containing the prkl:: ura4+ disruption construct. Transformants were plated on uracil- 
deficient AA plates and incubated at 37°C for 3d. Plating transformants at 37°C was 

carried out to prevent the growth of any JY543 cells in which the prkl:: ura4+ 

construct had not successfully integrated at the prkl locus. Transformants were 

screened for integration of the ura4+ cassette at the prkl locus using oligonucleotide 

primers specific for the prkl 5' non-coding region and the ura4+ cassette. Southern 

blot analysis was carried out for isolates in which integration of the ura4+ cassette at 

the prkl locus had been confirmed by PCR. 

Southern blot analysis confirmed that the wild-type ura4+ cassette had 

integrated correctly and exclusively at the prkl locus in JY543 (Figure 28), 

generating JY606 (ura4-D18, irpl:: ura4`ý, prkl:: ura4+). 
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Figure 28. Disruption of prkl with ura4+in the irpl:: ura4`s strain 

Genomic DNA from JY383 (irp1+, prk1+), JY543 (irp1:: ura4", prk1+) and JY606 
(irpl:: ura4`s, prkl:: uru4+) was digested with Hindill. Digested DNA was separated on a 
1% agarose gel, blotted onto a nitrocellulose filter, and probed with a prkl 3' fragment. 
The presence of the ura4- cassette at the prkl locus was indicated by a band of 5580bp, 
demonstrating homologous recombination had occurred at the prkl locus. In the absence of 
homologous integration occurring a band of 1720bp indicated an undisrupted prkl locus. 
Genomic DNA from JY383, JY543 and JY606 was also digested with Pstl and probed 
with an ura4 open reading frame fragment. Homologous integration of the ura4' cassette 
was indicated by a band of 2890bp (a band of 5370bp results from the integration of uru4") 
while the undisrupted prkl locus gave no band of 2890bp (a band of 5370bp results from 
the integration of the ura4" cassette). 
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3.5. Uracil requirement of ura4+ and ura4ts strains 

The temperature-dependent uracil requirement of the following strains were 
determined: 

JY383 (ura4-D18, irpl +, prkl +), 

JY497 (ura4-D18, irpl:: ura4+, prkl +), 

JY543 (ura4-D18, irpl:: ura4", prkl +), 

JY606 (ura4-D18, irpl:: ura4", prkl:: ura4+). 
Patches of cells were plated onto selective plates and incubated at 23°C or 

37°C. Briefly, a small colony was suspended in 20µl water, and 2µl spotted onto an 

AA plate containing or lacking uracil. Plates were incubated at 23°C or 37°C (Figure 

29). 

JY497 and JY606 contain a genomic copy of the wild-type ura4 cassette and 

grew on AA plates in the absence of uracil at both 23°C and 37°C. JY383 lacks a 

genomic copy of ura4 and grew on AA plates containing uracil at 37°C, but did not 

grow on AA plates lacking uracil at either 23°C or 37°C. This confirmed that the 

absence of an Ura4p function did not enable sustained growth on AA plates lacking 

uracil at either temperature. 

JY543 was capable of growth on AA plates lacking uracil at 23°C and AA 

plates containing uracil at 37°C. JY543 was however incapable of sustained growth 

on AA plates lacking uracil at 37°C. Thus, at 37°C the activity of the temperature- 

sensitive ura4' expressed from a single genomic copy appeared to be too low to 

enable sustained growth on solid AA media lacking uracil. 

JY383 and JY543 appeared to undergo mitotic growth for a limited number 

of divisions under conditions expected to inhibit growth (seen as a faint discs of 

growth in Figure 29). This can be explained by the build-up of an intracellular pool 

of uracil prior to cells being plated onto selective plates. 
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Figure 29. Viability of strains expressing Ura4+p and Ura4tsp at 23"C and 37°C 

The viability of JY383 (irp1+, prk1+), JY497 (irpl:: ura4+, prkl'), JY543 (irpl:: ura4", 
prkl+) and JY606 (irpl:: ura4`S, prkl:: ura4+) at 23°C and 37°C was determined on AA 

plates containing or lacking uracil. The absence of Ura4 activity in JY383 prevented 
growth on AA plates lacking uracil at both 23°C and 37°C. Disruption of the irpi gene 
with the ura4+ cassette in JY497 enabled growth in the absence of uracil at 23°C and 37°C. 
The irpl gene in JY543 is disrupted with the ura4" cassette, and this prevented JY543 
growth on AA plates lacking uracil at 37°C while enabling growth on AA plates lacking 
uracil at 23°C. Expression of the wild-type Ura4p in JY606 enabled growth on uracil- 
deficient AA plates at both 23°C and 37°C. 
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JY543 (irp1:: ura4`) showed a temperature-sensitive requirement for uracil 

when grown on solid media. This probably indicates that Ura4`, p exhibits decreased 

activity at 37°C compared to that at 23°C, as a consequence of a leucine-to-proline 

substitution at amino acid residue 261. On solid media lacking uracil, the reduced 
Ura4up activity at 37°C was insufficient to enable sustained growth of JY543. 

3.6. Overexpression of Ura4+p and Ura4tsp 

It appeared that in single copy there was insufficient Ura4up activity to 

enable growth on solid media lacking uracil at 37°C. In liquid media lacking uracil, 
JY543 (irp1:: ura4s) was initially capable of growth following a shift to the 

restrictive temperature of 37°C. To further characterise Ura4sp activity, the ura4+ 

and uraP ORFs were cloned into repressible Sz. pombe expression vectors to 

determine the growth characteristics of JY383 (ura4-D18) expressing the wild-type 
Ura4p and the temperature-sensitive Ura4up. 

3.6.1. The Sz. pombe pREP expression vectors 

The pREP expression vector series (Maundrell, 1993) includes thiamine- 

repressible nmtl promoter TATA-box mutants that enable the expression level of a 

protein to be determined by the choice of construct and presence or absence of 

thiamine in the growth media. The pREP3X vector possesses the full-strength nmtl 

promoter, whilst the pREP81X vector (possessing a mutated TATA-box within the 

nmtl promoter) results in lower levels of expression (Basi et al., 1993). Expression 

from both vectors can be repressed by the addition of thiamine in growth media. 
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3.6.2. Growth characteristics of JY383 transformed with pREP-ura4 constructs 

The ura4+ and uru4" open reading frames were cloned into pREP3X and 

pREP81X downstream of the nmtl promoter (Figure 30). The sense primer J01056 

contains 31 bases complementary to the ura4 ORF initiating at nucleotide position 

+1 relative to the ura4 initiator codon and contains a terminal BumHI site. The 

antisense primer J01057 contains 28 bases complementary to the ura4 ORF 

initiating at nucleotide position +803 relative to the ura4 initiator codon, and 

contains a terminal BumHI site. The amplified fragments were restricted with BamHl 

and cloned into the BumHl site of pREP3X and pREP81 X. 

JY383 (ura4-D18) was transformed with the ura4 expression constructs, and 

transformants were plated on AA plates lacking leucine (to select for cells 

transformed with the expression constructs) and incubated at 23°C. 

J01056 J01057 

ura4 ORF 

BumHI BamH I 

F ýý ura4 ORF 

nmtl 
pREP 

Figure 30 Cloning the ura4 ORFs into the Sz. pombe pREP vectors 

The wild-type and temperature-sensitive ura4 ORFs were amplified using the primers 
J01056 and J01057, which contain terminal BamHl sites. The ura4' and ura4" ORF 
BamHl fragments were cloned into the BamHI site of pREP3X and pREP81 X. 
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Growth characteristics of JY383 transformed with pREP3x-ura4+, pREP3x- 

ura4`s, pREP81x-ura4+ and pREP81X-ura4" were determined in minimal media 

containing adenine (lacking uracil and leucine) in the presence or absence of 

thiamine at 29°C or 37°C. 50ml medium was inoculated at a cell density of 2x105 

cells/ml, and cells were cultured in a shaking incubator at 29°C. Once strains reached 

a cell density of approximately lx106 cells/ml, cultures were either left at 29°C or 

transferred to a 37°C shaking water bath (control experiments indicated media took 

less than 10 min to reach 37°C). Cell density was monitored using a Coulter 

Channelyser. 

Figure 31 shows the effects of temperature and thiamine upon the mitotic 

growth of JY383 (ura4-D18) cells transformed with pREP3X-ura4+ (JY1108). At 

29°C the generation time of JY1108 increased from 2V2h in the absence of thiamine 

to 6h in the presence of thiamine, indicating repression of Ura4p expression from the 

nmtl promoter. In the absence of thiamine, the shift from 29°C to 37°C resulted in a 
lag in mitotic growth, possibly as a consequence of the metabolic burden of 

expressing heat-shock proteins. Following the temperature shift, growth resumed 

after approximately 6h, after which time JY1 108 exhibited a generation time of 3h. 

The presence of thiamine had a greater detrimental effect upon growth at 37°C than 

at 29°C, halting mitotic growth. The slower generation time of JY1108 cultured at 

29°C in the presence of thiamine indicates that reduced intracellular Ura4p activity 

retarded growth at 29°C, as a consequence of lower Ura4+p expression levels 

(resulting from repression of nmtl promoter activity). At 37°C the reduced level of 

Ura4+p expression as a result of thiamine repression was insufficient to sustain 

growth. 
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Figure 31. Growth characteristics of JY383 transformed with pREP3X-ura4+ 
Growth characteristics of JY383 transformed with pREP3x-ura4+ (JY1108) were 
determined in minimal medium containing adenine (lacking uracil and leucine) in the 
presence or absence of thiamine at both 29°C and 37°C. The addition of thiamine slowed 
growth at both 29°C and 37°C. JY1108 exhibited a lag in mitotic growth when shifted to 
37°C in both the presence and absence of thiamine. Growth was not resumed when 
thiamine was present in the medium at 37°C. At 29°C JY1108 had a generation time of 
2.5h in the absence of thiamine and 6h in the presence of thiamine. At 37°C a generation 
time of 4h was observed in the absence of thiamine and 24h in the presence of thiamine. 
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JY1109 (pREP81X-ura4+) exhibited very slow generation times under all 

conditions, ranging from 7h in the absence of thiamine at 29°C to 16h in the presence 

of thiamine at 37°C (Figure 32). The presence of thiamine slowed growth at both 

29°C and 37°C. The low level of Ura4+p expression from pREP81X is illustrated in 

this experiment, as even in the absence of thiamine the generation time of JY1109 

was much slower than that seen for JY1 108 (pREP3X-ura4+) at 29°C (7h compared 
to 2.5h). The repressive effect of thiamine upon Ura4p expression from pREP81X is 

indicated by the reduced generation times of JY1109 at both 29°C and 37°C in the 

presence of thiamine. The use of pREP8IX to direct Ura4p expression indicates that 

a reduced level of intracellular Ura4 activity can have a detrimental effect upon the 

generation time of JY383. 

Figure 33 shows the effects of temperature and thiamine upon the growth of 
JY383 cells transformed with pREP3X-ura4`' (JY1110). The shortest generation 

time (3 V2h) was achieved at 29°C in the absence of thiamine. In the presence of 

thiamine at 29°C the generation time of JY1110 increased to approximately 6h. Upon 

the shift to 37°C, JY1110 exhibited a lag in mitotic growth. At 37°C in the absence 

of thiamine JY1110 growth resumed after approximately 8h (with a generation time 

of approximately 7h). In the presence of thiamine at 37°C JY1110 did not resume 

growth within 24h, and the cells remained at a density of approximately 1x106 

cells/ml. 
When Ura4`' was expressed from pREP3X in JY1110, cells exhibited slower 

generation times at 29°C in the absence of thiamine compared to JY1108, in which 

the wild-type Ura4+p is expressed from pREP3X. This indicates that when expressed 
from pREP3X the activity of Ura4"p is reduced compared to that of the wild-type 
Ura4 protein, and as a result JYI110 (pREP3X-ura4`) cells exhibited slower 

generation times than JY1108 (pREP3X-ura4+). 
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Figure 32. Growth characteristics of JY383 transformed with pREP81X-ura4` 
Growth characteristics of JY383 transformed with pREP81X-ura44 (JY1109) were 
determined in minimal medium containing adenine (lacking uracil and leucine) in the 
presence or absence of thiamine at both 29°C and 37°C. JY1109 exhibited slow generation 
times under all conditions. The presence of thiamine in media further slowed JY1109 
growth. JY1109 had a generation time of 7h in the presence and absence of thiamine. At 
37°C JY1109 had a generation time of 12h in the absence of thiamine and 16h in the 
presence of thiamine. 
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Figure 33. Growth characteristics of JY383 transformed with pREP3X-ura4" 
Growth characteristics of JY383 transformed with pREP3X-ura4u (JY1110) were 
observed in minimal medium containing adenine (lacking uracil and leucine) in the 
presence or absence of thiamine at both 29°C and 37°C. At 29°C JY1110 had a doubling 
time of 3%2h in the absence of thiamine and 6h in the presence of thiamine. At 37°C, 
JY1110 exhibited a lag in mitotic growth, which was not resumed in the presence of 
thiamine. In the absence of thiamine at 37°C JYI 110 exhibited a doubling time of 7h. 
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JY383 transformed with the pREP81X-ura4' expression construct (JYI 111) 

was incapable of growth at either 23°C or 37°C, regardless of the presence or 

absence of thiamine. This indicates that the low Ura4p expression level directed by 

pREP81X reduced Ura4 activity to a level that was insufficient to support growth. 
The fact that JY1109 (pREP81X-ura4+) was capable of growth at 29°C (albeit with 

a slow generation time of 7h) supports the hypothesis that Ura4'p exhibits a lower 

level of Ura4 activity compared to wild-type Ura4p. 

In the presence of uracil, all strains were capable of growth (data not shown) 

and exhibited similar generation times at 29°C (3.5h) and 37°C (2.5h). 

3.6.3. Colony formation of JY383 transformed with pREP-ura4 constructs 

To further investigate the activity of Ura4`sp, the ability of JY383 

transformed with ura4+ and ura4`s expression constructs to form colonies on 

selective plates lacking uracil was determined. Briefly, cells were inoculated in 

minimal medium lacking uracil and leucine. The absence of leucine selects for 

transformed cells, and the absence of uracil ensures that growth is only achieved by 

cells with a sufficient level of intracellular Ura4 activity. Strains were cultured at 
23°C overnight, and 1x 105 cells were plated onto selective plates (containing or 
lacking thiamine). Plates were incubated at 23°C or 29°C to determine whether 
increased temperature affects the activity of Ura4tsp. 

High expression levels of Ura4+p (expressed from the pREP3X expression 

vector) enabled JY1108 growth at both 23°C and 29°C in the presence and absence 

of thiamine (Figure 34). At low Ura4+p expression levels (when Ura4+p expression 
levels were directed by the pREP81X nmtl promoter), some JY1109 growth was 

observed at 29°C, but this was visibly less than that seen for pREP3X-driven Ura4+p 

expression at 29°C. No growth was observed for JY1109 at 23°C. At 29°C, 

expression levels of Ura4+p in JY1109 were further reduced by the presence of 
thiamine, as indicated by smaller colony sizes. 

Expression of Ura4`sp from the pREP3X expression construct (JY1110) 

enabled growth at both 23°C and 29°C, but only in the absence of thiamine. 
Presumably the presence of thiamine repressed the expression of Ura4'p from the 

pREP3X expression construct to a level that was insufficient to sustain growth at 
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both temperatures. Expression of Ura4sp from pREP81X in JY1111 (resulting in 

lower levels of expression compared to the pREP3X vector) did not enable growth at 
23°C or 29°C, regardless of the presence or absence of thiamine. This indicates that 

when expressed from pREP81X the level of Ura4"p expression was insufficient to 

sustain JY383 growth regardless of the presence or absence of thiamine. 

These results reflect the different expression levels achieved with the pREP 

expression vectors, and illustrate how different levels of Ura4p activity can be 

qualitatively determined. The results indicate that at 23°C, thiamine repression of 

ura4u expression from pREP3X in JY383 reduced intracellular Ura4 activity to a 
level incapable of sustaining growth. Thiamine repression of wild-type Ura4+p 

expression at 23°C slowed growth of JY383, but there was still sufficient Ura4 

activity to sustain growth. The results demonstrate that Ura4lsp retains some activity 

at 29°C, but that the protein must be overexpressed for this to be sufficient to support 

cell growth. 
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Figure 34. Ura4"p exhibits reduced activity compared to the wild-type Ura4p 

JY 1 108 (pREP3x-uru4'), JY 1 109 (pREP81 x-uru4), JY 11 10 (pREP3x-uru4") and JY 1111 
(pREP8lx-uru4") were plated onto AA plates lacking uracil and leucine and either 
containing or lacking thiamine. Strains were plated at 23°C or 29°C. The repressive effects 
of thiamine upon growth were more pronounced for the JYI110 (pREP3x-ui(j4") than 
JY 1 108 (pREP3x-ura4+), and JY 11l1 (pREP81 x-ur(j4") was incapable for forming 
colonies under any of the conditions. The results indicate that reduced Ura4 activity is 
reflected in a reduced capacity to form colonies, and that Ura4''p exhibits reduced activity 
compared to wild-type Ura4p. 
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3.7. Summary 

A PCR-based random mutagenesis approach was used to isolate a 
temperature-sensitive Sz. pombe Ura4p protein. A single point mutation at nucleotide 

782 in the open reading frame results in a leucine to proline substitution at residue 
261 in the primary sequence of Ura4p. 

The wild-type Ura4p supports growth at 37°C in the absence of uracil. When 

expressed from a single genomic copy, the reduced Ura4 activity of the ura4`S allele 

prevented the sustained growth of strains on media lacking uracil at 37°C, while 

supporting growth at 23°C. The reduced activity of Ura4`sp was demonstrated when 

the Ura4up open reading frame was expressed from multicopy thiamine-repressible 

Sz. pombe expression vectors. These results reinforce the hypothesis that Ura4`Sp 

exhibits reduced activity relative to wild-type Ura4+p, and that increased 

temperatures reduce Ura4up activity. 
This chapter illustrates how the ura4u cassette can be used to carry out 

multiple, sequential gene disruptions. The ura4`' cassette can be used to disrupt a 

gene of choice by selecting for homologous integrants (genel:: ura4`s) that can grow 

at low temperatures but are incapable of growth at high temperatures. The wild-type 

ura4 cassette can then be used to disrupt a second gene of choice in the genel:: ura4`s 

strain by selecting for transformants at the restrictive temperature. The Ura4"p 

marker simplifies discrimination between homologous integration events and 

maintenance of the ura4u gene on multi-copy, autonomously replicating plasmids, as 

multiple copies of the ura4' allele enable growth at high temperatures, whereas a 

single copy does not. 
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Chapter 4. Expression of mammalian 

RGS proteins in Sz. pombe reporter strains 
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Section I: Expression of RGS proteins 

4.1. Introduction 

The prototype member of the RGS (Regulators of G protein Signalling) 

family of proteins, SST2, was isolated during a genetic screen of Saccharomyces 

cerevisiae mutants hypersensitive to pheromone stimulation (Chan and Otte, 1982a; 

1982b). Following isolation of S. cerevisiae SST2p, proteins in higher eukaryotes 

were identified that interact with or regulate G proteins and share sequence similarity 

with SST2. Such SST2 homologues are now known as RGS proteins. The budding 

yeast has since been used as a model system to assess the ability of heterogeneous 

RGS proteins to blunt the pheromone response pathway. The ability of human 

RGS 1, RGS2, RGS3, RGS4, and GAIP to act as GAPs in the budding yeast has been 

shown for S. cerevisiae strains lacking SST2p (Druey et al., 1996). The expression of 

these human RGS proteins partially complemented the pheromone-hypersensitive 

phenotype of an OSST2 strain. 
The Sz. pombe pheromone communication pathway also presents a useful 

tool for the investigation of G protein-coupled signalling pathways. At present only 

one Ga, -RGS pair has been identified in Sz, pombe (Watson et al., 1999; Pereira and 

Jones, 2001), and it is involved in the regulation of the pheromone communication 

pathway. In Sz. pombe the activated Ga, subunit propagates the pheromone signal to 

downstream second messengers. Two cognate Ga-RGS pairs have been identified in 

S. cerevisiae (Dohlman et al., 1996; Versele et al., 1999), and while they provide 

non-overlapping functions in S. cerevisiae, it is possible that heterogeneous 

signalling proteins expressed in this yeast may affect both G protein-coupled 

signalling pathways to varying extents. Another difference between the two yeasts 

lies in the subunit responsible for propagating the pheromone signal downstream of 

the G protein. In S. cerevisiae the Gpy subunit is primarily responsible for activating 
downstream effectors (Nakayama et al., 1988; Blinder et al., 1989; Whiteway et al., 

1989). The affinity of RGS proteins for the Ga, subunits of the two yeasts may also 
differ, and as a consequence, Sz. pombe may offer a more suitable model system for 

studying the activity of specific RGS proteins, as well as different components 

comprising G protein-coupled signalling pathways. 
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4.2.1. Sz. pombe sxa2:: lacZ reporter strains 

Dr. Kevin Davis and Dr. Mark Didmon constructed Sz. pombe reporter 

strains in the Davey laboratory to aide the investigation of signalling through the Sz. 

pombe pheromone communication pathway. In these strains, the reporter proteins 
bacterial ß-galactosidase (LacZ) and Sz. pombe orotidine-5'-monophosphate 
decarboxylase (Ura4) are utilised. The expression of these reporter proteins is 

directed by the promoter of a tightly regulated pheromone-inducible gene, sxa2, 

which encodes a serine carboxypeptidase (Imai and Yamamoto, 1994; Ladds et al., 
1996). Expression of the sxa2 gene product is induced upon signalling through the 

pheromone communication pathway in Sz. pombe M cells, and aids desensitisation to 

pheromone stimulation by degrading extracellular P-factor pheromone. Cells lacking 

the Sxa2p function are hypersensitive to P-factor pheromone, as they are unable to 

degrade extracellular pheromone. Transcription of sxa2 is strongly induced within 2h 

of P-factor stimulation of nitrogen-starved cells (Imai and Yamamoto, 1994), and is 

tightly repressed after the response (Imai and Yamamoto, 1994; Davey and Nielsen, 

1994). Increasing the amount of P-factor causes sxa2 to be induced more strongly, 

with the consequence that sxa2 promoter activity can be modulated according to the 

pheromone concentration to which cells are exposed. 
Additional genetic alterations are present in the reporter strains to aid the 

investigation of the pheromone signal transduction pathway. In wild-type Sz. pombe 

cells, mating processes are repressed in rich medium via a cAMP pathway, as a 

result of inhibition of the activity of a transcription factor, Stel lp. The activity of 
Ste lIp is required for the induction of nitrogen-starvation responsive genes 

(Sugimoto et al., 1991). Mating and sporulation processes are only induced upon 

nitrogen starvation, as a consequence of a decrease in the intracellular cAMP level 

(Maeda et al., 1990). The reduction in intracellular cAMP concentration upon 

starvation can be mimicked by disruption of the cyrl gene, encoding adenylate 

cyclase (mutants defective in cyrl have no detectable cAMP [Maeda et al., 1990; 

Kawamukai et al., 1991]). Disruption of cyrl relieves the repression of mating 

processes normally present in wild-type cells cultured in rich medium, and enables 
Sz. pombe M cells to respond to P-factor stimulation even in the presence of nutrients 
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(Imai and Yamamoto, 1994; Davey and Nielsen, 1994). Disruption of the cyrl gene 

ensures that the reporter strains do not need to be starved of nutrients before they can 
become responsive to pheromone. 

Mating type in wild-type Sz. pombe cells is determined by the information 

carried at the mat] locus. The matt and mat3 loci store P and M cell mating type 
information respectively, but this is not expressed. Wild-type Sz. pombe 

spontaneously switch mating type as a result of transposition of mating type 
information from the silent mat2 and mat3 loci to the active mat] locus (Kelly et al., 
1988). Disruption of the matt and mat3 loci in the Sz. pombe reporter strains ensures 

cells do not switch mating type, and the reporter strains are thus mating type stable. 
In the Sz. pombe sxa2:: lacZ reporter strains the bacterial lacZ ORF (encoding 

ß-galactosidase) replaces that of sxa2, and LacZ is expressed as a result of signalling 

through the pheromone communication pathway. The Sz. pombe biosynthetic gene 

ura4 encodes orotidine-5'-monophosphate decarboxylase (Grimm et al., 1988), 

which is required for growth in the absence of uracil in growth media. In the Sz. 

pombe sxa2:: ura4 reporter strains, the ura4 ORF replaces that of sxa2, and cells can 

only grow on media lacking uracil as a result of pheromone signalling. 

4.2.2. The Sz. pombe Rgsl protein is a desensitisation factor in the pheromone 

communication pathway 

The Sz. pombe Rgs1 protein (szRgslp) was first identified as a hypothetical 

ORF showing sequence similarity to proteins classified as RGS proteins (Tesmer et 

al., 1997; Watson et al., 1999). Disruption of rgsl in Sz. pombe M cells has been 

investigated using the Sz. pombe sxa2:: lacZ reporter strains by Watson et al. (1999), 

in which the lacZ ORF is driven by sxa2 promoter activity. Disruption of rgsl 

resulted in hypersensitivity to pheromone, with induction of LacZ expression 

occurring at a considerably lower pheromone concentration than in cells containing 
the endogenous rgsl gene (Section 4.2.4). Cells lacking rgsl also exhibited an 
increased level of pheromone-independent LacZ expression. 
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4.2.3. P-factor induces ß-galactosidase expression in the rgs1+ LacZ reporter 

strain 

The LacZ reporter strain, JY544 (rgsl+, sxa2:: lacZ), possesses the genomic 

copy of the Sz. pombe rgsl gene. The LacZ ORF replaces that of sxa2, causing LacZ 

expression to come under the control of the pheromone-inducible sxa2 promoter. 
Consequently, pheromone-induced sxa2 promoter activity results in lacZ expression, 

which can be monitored by the use of chromogenic substrates. The pheromone- 

independent and pheromone-dependent ß-galactosidase activity of the rgsl+ 

sxa2:: lacZreporter strain (JY544) is shown in Figure 35. 

The rgs1+ LacZ reporter strain had a low pheromone-independent level of 

LacZ activity, indicating that there was a low level of signal transduction through the 

pheromone signalling pathway in the absence of extracellular P-factor. LacZ activity 

remained at the same low level up to IOOU/ml P-factor, at which point LacZ 

expression was induced. The expression of lacZ was further increased at 1000U/ml 

P-factor, at which the maximum level of LacZ activity was achieved. 
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Figure 35. sxa2:: IacZ locus induction in response to P-factor pheromone stimulation 

The rgs1+ sxa2:: lacZ reporter strain, JY544, was assayed for ß-galactosidase activity 
following exposure to a range of P-factor pheromone concentrations. Cells were cultured 
to a density of 5x105 cells/ml in DMM medium prior to exposure to pheromone for 16h. 
LacZ activity was calculated as the ratio of o-nitrophenol product formed (OD420) to cell 
number. Data shown is the mean of three assays; y-axis error bars represent standard 
deviation. 
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4.2.4. Disruption of rgsl increases sensitivity to P-factor pheromone 

Previously in the Davey laboratory, the rgsl locus in JY544 (rgs1+, 

sxa2:: lacZ) was disrupted with the ura4 cassette by Dr. Peter Watson, creating the 

rgsl' sxa2:: lacZ reporter strain JY629. In JY629 the rgsl ORF is replaced with the 

ura4 cassette. 
Figure 36 shows the ß-galactosidase activities of the rgsl+ (JY544) and rgsl' 

(JY629) LacZ reporter strains when stimulated with a range of P-factor 

concentrations. Disruption of the rgsl gene in the rgsl+ LacZ reporter strain 
increased the level of pheromone-independent LacZ activity approximately 5-fold 

compared to that of the rgsl+ reporter strain, reflecting a greater level of pheromone- 
independent signalling through the pheromone communication pathway. Sz. pombe 
Rgslp was expressed constitutively, as pheromone-independent LacZ expression 

was increased following the disruption of the rgsl gene. This is possibly to prevent 

signalling through the pheromone communication pathway in the absence of 

extracellular P-factor as a consequence of spontaneous dissociation of GDP from Ga 

subunits. 
The rgsl" reporter strain also had greater sensitivity to P-factor compared to 

the rgs1+ strain, as LacZ activity was induced at a 100-fold lower concentration of P- 

factor. Induction of LacZ activity in the rgsl+ LacZ reporter strain was only seen at 
100U/ml P-factor compared to 1 U/ml P factor for the rgsl' strain. 

The ß-galactosidase activity of the rgsl+ strain was greater than that of the 

rgsl' strain at 1000U/ml P-factor. This indicates that when stimulated with 
1000U/ml P-factor there was a greater degree of signalling through the pheromone 

communication pathway in the rgsl+ reporter strain compared to the rgsl' reporter 

strain. The reason for this is unknown at present. 
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Figure 36. Disruption of rgsl increases sensitivity and response to P-factor 
pheromone 

The rgs1+ (JY544) and rgsl" (JY629) sxa2:: IacZ reporter strains were assayed for (3- 
galactosidase activity following exposure to a range of P-factor pheromone 
concentrations. Reporter strains were cultured to a density of 5x105 cells/ml in DMM 
medium prior to exposure to pheromone for 16h. LacZ activity was calculated as the ratio 
of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean of three 
assays; y-axis error bars represent standard deviation. 
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One possible explanation for the crossing over of the rgs1+ and rgsl' ß- 

galactosidase traces at 1000U/ml P-factor, is that at high levels of P-factor 

stimulation the presence of szRgslp in the rgs1+ LacZ reporter strain may increase 

the proportion of GDP-bound Ga subunits available for re-activation in the cell 

compared to that in the rgsl' LacZ reporter strain. The absence of szRgs lp in the 

rgsl' LacZ reporter strain has the consequence that GTP bound to Ga subunits can 

only be hydrolysed as a result of the slow intrinsic GTPase activity of the Ga subunit. 
As a consequence, a proportion of the GTP-bound Ga, subunits within the cell are 

slowly undergoing hydrolysis, and as a result are possibly inactive and refractory to 

receptor-stimulated re-activation. The GAP activity of szRgs 1p in the rgs1+ LacZ 

reporter strain would increase the intrinsic GTPase activity of the Ga subunits, and as 

a consequence, may increase the proportion of GDP-bound Ga subunits available for 

activation compared that in the rgsl' LacZ reporter strain. This phenomenon of RGS 

proteins increasing GTPase cycle kinetics has been observed in mammalian systems. 
RGS3, RGS4 and RGS8 caused an acceleration of the kinetics of activation of G 

protein-coupled inwardly-activating K+ channels without compromising current 

amplitudes (Doupnik et al., 1997; Bünnemann and Hosey, 1998). 

It can be seen from Figure 36 that the absence of the negatively regulating 

szRgslp in the rgsl' sxa2:: lacZ Sz. pombe reporter stain increased pheromone- 
independent LacZ activity as well as increasing sensitivity and response to P-factor 

pheromone stimulation up to 100U/ml P-factor. 

4.2.5. Expression of szRgslp in the sxa2:: lacZ reporter strains reduced 

sensitivity to P-factor pheromone 

The ORF for Sz. pombe Rgsl was previously cloned into the Sz. pombe 

expression vector pREP3X by Dr. Peter Watson in the Davey laboratory (generating 

the szRgslp expression construct JD1013). JD1013 contains the rgsl ORF cloned 
immediately downstream of the repressible nmtl promoter in pREP3X. To 

investigate whether expressing szRgs1p from the pREP3X expression vector could 

affect LacZ expression in the rgsl + and rgsl " LacZ reporter strains, JD 1013 was 
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introduced into the rgsl+ and rgsl' LacZ reporter strains, and transformants selected 

on AA plates lacking leucine. 

Figure 37 shows the ß-galactosidase activity of JY544 (rgs1+) containing the 

empty pREP3X vector (JY744), JY629 (rgsl) transformed with the empty pREP3X 

vector (JY762), JY544 transformed with the szRgs1p expression construct (JY746) 

and JY629 transformed with szRgslp expression construct (JY764). 

The rgsl' LacZ reporter strain containing the empty expression vector 
(JY762) had an increased level of pheromone-independent LacZ activity relative to 

the rgs1+ strain containing the empty expression vector (JY744), and exhibited 
increased sensitivity and response to pheromone up to 100U/ml P-factor. The 

response profiles of the rgs1+ and rgsl' sxa2:: lacZ reporter strains transformed with 
the empty pREP3X vector resembled that seen for the strains lacking the empty 

vector (Figure 36), although the LacZ activity levels were lower at all P-factor 

concentrations. This is possibly due to the burden of replicating the multi-copy 

vector in the transformed strains. 
Expression of szRgslp (achieved via expression from pREP3X) in the rgst 

strain (JY746) reduced pheromone-dependent LacZ activity at all P-factor 

concentrations investigated, compared to the vector alone (JY744). The expression 

of szRgslp from pREP3X did not completely repress pheromone-independent sxa2 
induction in the rgs1+ reporter strain. Expression of szRgslp in the rgsl" reporter 

strain (JY764) reduced pheromone-independent LacZ activity to below the level seen 
for the rgsl " strain containing vector alone. Pheromone-dependent LacZ activity in 

the rgsl' reporter strain was also reduced up to 1000 U/ml P-factor. Thus, expression 

of szRgslp from a multicopy expression vector rescued the hypersensitive phenotype 

of the rgsl' LacZ reporter strain. 
These results indicate that expression of szRgslp in the rgs1+ LacZ reporter 

strain did not decrease the level of pheromone-independent LacZ activity compared 
to a strain containing a single genomic copy of szRgslp (JY744), but was capable of 

successfully reducing pheromone-dependent LacZ activity in this strain up to 
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Figure 37. Expression of Rgslp decreases sensitivity and response to P-factor 
pheromone in the rgsl' and rgsl" LacZ reporter strains 

The rgs1+ (JY744) and rgs]" (JY762) LacZ reporter strains expressing Sz. pombe Rgslp 
(JY746 and JY764 respectively) were assayed for ß-galactosidase activity following 
exposure to a range of P-factor pheromone concentrations. Strains were cultured to a 
density of 5x105 cells/ml in DMM medium prior to exposure to pheromone for 16h. LacZ 
activity was calculated as the ratio of o-nitrophenol product formed (OD420) to cell 
number. Data shown is the mean of three assays; y-axis error bars represent standard 
deviation. 
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1000U/ml P-factor. Expression of szRgslp in the rgsl' strain was capable of 

reducing both pheromone-independent and pheromone-dependent LacZ activity. The 

data presented in Figure 37 indicate that increased GAP activity towards Gpal (the 

Sz. pombe G« subunit), achieved via an expression construct, was capable of down- 

regulating signalling through the pheromone communication pathway, and could be 

assessed via measurement of LacZ activity within the LacZ reporter strains. Thus, 

the Sz. pombe sxa2:: lacZ reporter strains present us with a relatively simple model 

system for investigating signalling through the pheromone communication pathway, 

and the effects of regulatory proteins acting upon this G protein-coupled signal 

transduction pathway. 

4.3. Expression of mammalian RGS proteins in the Sz. pombe LacZ reporter 

strains 

To investigate the effects of expressing mammalian RGS proteins upon LacZ 

activity in the parental sxa2:: lacZ reporter strains, several mammalian RGS open 

reading frames were cloned into the Sz. pombe expression vector pREP3X, and the 

rgsl+ and rgsl' sxa2:: lacZ reporter strains transformed with the resulting expression 

constructs. The effects of expressing these mammalian RGS proteins upon 

pheromone-independent and pheromone-dependent ß-galactosidase activities in the 

rgsl+ and rgsl' LacZ reporter strains were determined using the ß-galactosidase 

assay described in Chapter 2. 

4.3.1. Expression of human RGS1 in the rgs1+ and rgsl' LacZ reporter strains 

Human RGS1 (huRGSlp) was originally identified through screens for B- 

lymphocyte-specific genes in chronic lymphocytic leukaemia cells (RGS 1 mRNA is 

elevated in chronic lymphocytic leukaemia [Hong et al., 1993]). RGS 1 expression is 

specific to B-lymphocytes and is induced by mitogenic stimuli (Newton et al., 1993; 

Moratz et al., 2000). 

The human Rgsl 591bp ORF was amplified from a lymphoblastoma cDNA 

plasmid library (a gift from AstraZeneca Pharmaceuticals, UK) using the 

oligonucleotide primers J0910 and J0911. The sense primer J0910 includes 23 
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bases complementary to the human Rgsl ORF 5' terminus and contains a terminal 

BamHI site to facilitate cloning. The antisense primer J0911 contains 22 bases 

complementary to the human Rgsl ORF 3' terminus and a terminal BamHI site. The 

amplified fragment was restricted with BamHI and cloned into the BamHI restriction 

site of pKS. The human Rgsl ORF BamHI fragment was then sequenced, and sub- 

cloned into the BamHI restriction site of pREP3X. The rgs1+ and rgsl' sxa2:: lacZ 

reporter strains were transformed with the huRGSlp expression construct, and 
transformants were selected on AA plates lacking leucine. 

The parental LacZ reporter strains JY744 (rgsl+, pREP3X) and JY762 (rgsl-, 

pREP3X) exhibited the expected response profiles (Figure 38). The rgsl- LacZ 

reporter strain exhibited an increased level of pheromone-independent LacZ activity, 

and increased sensitivity to pheromone compared to the rgsl + LacZ reporter strain. 
Expression of huRGSlp in the rgs1+ strain (JY756) reduced pheromone- 

dependent LacZ activity to a level comparable to that of the pheromone-independent 
level of LacZ activity in the rgsl+ LacZ reporter strain up to 100U/ml P-factor 

(Figure 38). Expression of huRGSlp in the rgs1+ LacZ reporter strain also reduced 

pheromone-dependent LacZ activity to a greater degree compared to that seen for the 

expression of Sz. pombe Rgslp from the pREP3X vector at 100U/ml and 1000U/ml 

P-factor. 

Expression of huRGS 1p in the rgsl' reporter strain (JY774) reduced both 

pheromone-independent and pheromone-dependent LacZ activity. This reduction in 

pheromone-independent and pheromone-dependent LacZ activity was greater than 

that seen for expression of szRgslp from the pREP3X vector in the rgsl' LacZ 

reporter strain. 
These results suggest that when expressed from a multicopy expression 

vector, huRGSlp successfully rescued the increased sensitivity and response of the 

rgsl' reporter strain to pheromone, and had a greater ability to reduce both 

pheromone-independent and pheromone-dependent LacZ activity in the rgsl + and 

rgsl' reporter strains compared to szRgs 1p when expressed from the same multicopy 

expression vector. This is possibly a consequence of greater expression levels, or 
huRGS 1p may have greater GAP activity towards Gpa 1p compared to szRgs 1 p. 
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Figure 38. Expression of human RGSIp decreases sensitivity and response to P- 
factor pheromone in the rgs1+ and rgsl' LacZ reporter strains 

The rgsl' and rgsl- LacZ reporter strains expressing huRGSlp (JY756 and JY774 
respectively) were assayed for ß-galactosidase activity following exposure to a range of 
P-factor pheromone concentrations. Strains were cultured to a density of 5x 105 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as 
the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean 
of three assays; y-axis error bars represent standard deviation. 
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Human RGS 1 has been shown to reduce pheromone sensitivity in S. 

cerevisiae OSST2 mutants (Druey et al., 1996) and has also been shown to inhibit 

MAPK activation in mammalian cells (Druey et al., 1996). Human RGS 1 is a G; a, 
and Gyc, GAP and a potential G12a, effector antagonist (Moratz et al., 2000), and in 

mammalian cells the activity of RGS 1 is regulated by its expression being restricted 
to B-lymphocytes. 

4.3.2. Expression of human RGS2 in the rgs1+ and rgsl' LacZ reporter strains 

RGS2 was isolated as a result of induced expression of its corresponding 

mRNA in cycloheximide-treated blood mononuclear cells (Siderovski et al., 1994). 

The human Rgs2 636bp ORF was amplified from a lymphoblastoma cDNA 

plasmid library (a gift from AstraZeneca Pharmaceuticals, UK) using the 

oligonucleotide primers J0912 and J0913. The sense primer J0912 includes 23 

bases complementary to the human Rgs2 ORF 5' terminus and a terminal BamHI 

site. The anti-sense primer J0913 includes 23 bases complementary to the human 

Rgs2 ORF 3' terminus and a terminal BamHI site to facilitate cloning. The amplified 

product was digested with BamHI and cloned into the BamHI restriction site of pKS. 
The human Rgs2 BamHI fragment was sequenced and sub-cloned into BamHl site of 

the expression vector pREP3X. The rgsl+ and rgsl' sxa2:: lacZ reporter strains were 

transformed with the huRGS2p expression construct, and transformants selected on 

AA plates lacking leucine. 

Expression of huRGS2p from pREP3X in the rgsl+ reporter strain (JY758) 

reduced neither pheromone-independent LacZ activity nor pheromone-dependent 
LacZ activity up to 1000 U/ml P-factor (Figure 39). However, expression of the 

huRGS2p protein in the rgsl" reporter strain (JY776) reduced both pheromone- 
independent and pheromone-dependent LacZ activity (up to 100U/ml P-factor) to a 

greater degree than szRgslp, though to a lesser degree than that seen for huRGSlp 

(Figure 38). 
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Figure 39. Expression of human RGS2p decreases sensitivity and response to P-factor 
pheromone in the rgsl" LacZ reporter strain but not the rgs1+ LacZ reporter strain 

The rgsl' and rgsl- LacZ reporter strains expressing huRGS2p (JY758 and JY776 

respectively) were assayed for ß-galactosidase activity following exposure to a range of P- 
factor pheromone concentrations. Strains were cultured to a density of 5x105 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as 
the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean 
of three assays; y-axis error bars represent standard deviation. 
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These results indicate that the expression of huRGS2p was incapable of 

reducing pheromone-independent and pheromone-dependent LacZ activity in the 

rgs1+ reporter strain, but reduced pheromone-independent and pheromone-dependent 
LacZ activity (up to 1000U/ml P-factor) in the rgsl' LacZ reporter strain, albeit to a 
lesser extent than that seen for huRGSlp. This could be explained if huRGS2p had a 

low affinity for the Sz. pombe Ga subunit, resulting in its GAP activity only being 

observed in the absence of endogenous szRgs1p. 
Human RGS2 has been shown to reduce pheromone sensitivity in S. 

cerevisiae OSST2 mutants (Druey et al., 1996) and to inhibit MAPK activation in 

mammalian cells. Work done by other groups suggests that huRGS2p is a more 

potent GAP towards Gaq than Ga; subunits (Heximer et al., 1997; Song et al., 1999), 

and this may be the reason for reduced ability of human RGS2 to reduce signalling 

through the pheromone communication pathway in Sz. pombe compared to 

huRGSlp. In mammalian cells the Gq specificity of RGS2 may be a means of 

regulating its activity. Low levels of RGS2 expression may be sufficient to attenuate 

Gay-coupled signalling pathways without affecting Gai-mediated responses, whereas 

higher levels of expression could attenuate both types of signalling pathway. 

4.3.2.1. Human RGS2p is expressed in Sz. pombe rgsl' LacZ reporter strain 

It is possible to predict that the observed reduction in RGS activity of huRGS2p 

compared to huRGS lp could be due to the inefficient expression of huRGS2p, as 

opposed to a reduction in its ability to modulate the pheromone communication 

pathway. To determine whether huRGS2p was expressed from pREP3X in the Sz. 

pombe rgsl' LacZ reporter strain, Western blot analysis was carried out. 

Crude extracts were prepared (Section 2.2.10.1. ) for the rgsl' LacZ reporter 

strain transformed with the empty pREP3X vector (JY762), the rgsl' LacZ reporter 

strain expressing szRgslp from pREP3X (JY764) and the rgsl' LacZ reporter strain 

expressing huRGS2p from pREP3X (JY776). Yeast extracts were subjected to 

electrophoresis in a gel containing 12.5% (w/v) acrylamide. Proteins were 

transferred onto a nitocellulose filter and allowed to react with rabbit anti-RGS2 

antibody. Immunoreactive bands were visualised with goat anti-rabbit antibody 
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coupled to horseradish peroxidase, and an ECL Western blotting system was used to 

stain the bands before exposure to x-ray films (Section 2.2.10. ). 

A band of approximately 35kD can be seen in all lanes (Figure 40). The 

greater intensity of the band in Lane I was a result of the overloading of crude yeast 

extract (determined by Silver staining, not shown). The identity of the 35kD band is 

at present unknown. A band of approximately 28kD can be seen in Lane 3 (rgsl', 

pREP3X-Rgs2). As the 28kD band seen in Lane 3 was only expressed in JY776 (the 

rgsl' sxa2:: lacZ reporter strain transformed with the pREP3X-huRGS2p expression 

construct), it is reasonable to assume that this band represents huRGS2p. Human 

RGS2 has a published size of 24.4kD (Siderovski et al., 1994). This increase in size 
is possibly due to covalent modification of huRGS2p in Sz. pombe. A number of 
RGS proteins are palmitoylated in mammalian cells (Srinivasa et al., 1998a; DeVries 

et al., 1995), and while palmitoylation has not been reported for huRGS2p, it may 

represent a mechanism of regulating huRGS2p activity. RGS2 is phosphorylated by 

protein kinase C (PKC) in mammalian cells (Cunningham et al., 2001), resulting in a 

reduction in RGS activity. 

These results indicate that huRGS2p was expressed in the rgsl' LacZ reporter 

strain from the pREP3X vector. This suggests that the reduced capacity of huRGS2p 

to inhibit expression of 1acZ (Figure 39) compared to huRGS1p (Figure 38), may 

result from reduced GAP activity of huRGS2p against the Sz. pombe Ga, subunit 

(Gpalp). This is possibly due to its Ga, subunit specificity (RGS2 has reported to 

preferentially regulate Gay [Heximer et al., 1999]). It also appears that human RGS2 

may be covalently modified in Sz. pombe. 
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Figure 40. Human RGS2 is expressed from pREP3X in the Sz. pombe rgsl" LacZ 

reporter strain 

Crude extracts were prepared from the rgsl' LacZ reporter JY762 (Lane 1), the rgsl- LacZ 

reporter expressing szRgsl. JY764 (Lane 2), and the rgsl- LacZ reporter expressing 
huRGS2p, JY776 (Lane 3). A 35kD band can be seen in all lanes, while a band of 28kD is 

only present in Lane 3. Extracts were subjected to electrophoresis, blotted onto a 
nitocellulose filter, and allowed to react with rabbit anti-RGS2 antibody. Immunoreactive 
bands were visualised with goat anti-rabbit antibody coupled to horseradish peroxidase, and 
an ECL Western blotting system was used to stain the bands before exposure to x-ray film. 
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4.3.3. Expression of murine RGS2 in the rgs1+ and rgsl" LacZ reporter strain 
It has been shown that the expression of some human RGS proteins from 

expression constructs was capable of negatively modulating the pheromone 

signalling pathway in Sz. pombe. It was therefore of interest to determine whether a 

non-human mammalian RGS protein could also act as a Gpal GAP in the Sz. pombe 
LacZ reporter strains, and murine RGS2 was chosen for investigation. Murine RGS2 

shares 95% overall identity with human RGS2, and has been shown to be involved in 

the regulation of T cell activation, anxiety and male aggression in mice (Oliveira- 

dos-Santos et al., 2000). 

The murine Rgs2 ORF was amplified from a pKS-murineRGS2 construct (a 

gift from Sheng-Cai Lin [Chen et al., 1997]) using the oligonucleotide primers 
J0912 and J0913. The sense primer J0912 includes 23 bases complementary to the 

murine Rgs2 ORF 5' terminus and a terminal BamHI site. The anti-sense primer 

J0913 includes 23 bases complementary to the murine Rgs2 ORF 3' terminus and a 

terminal BamHI site to facilitate cloning. The amplified product was cloned into the 

BamHI restriction site of pKS, sequenced and sub-cloned into the BamHI site of 

pREP3X. The rgsl+ and rgsl' sxa2:: lacZ reporter strains were transformed with the 

resulting expression construct, and transformants selected on AA plates lacking 

leucine. 

Expression of muRGS2p in the rgsl+ reporter strain (JY929) reduced 

pheromone-independent and pheromone-dependent LacZ activity up to 1000U/ml P- 

factor, but did not reduce pheromone-dependent LacZ activity at I000U/ml P-factor 

to the level seen for expression of szRgsIp (Figure 41). 

Expression of muRGS2p reduced both pheromone-independent and 

pheromone-dependent LacZ activity up to 1000U/ml P-factor in the rgsl' reporter 

strain, and appeared to have a greater reductive effect upon pheromone-dependent 

and pheromone-independent LacZ activity compared to expression of szRgslp. 
JY764 (rgsl', pREP3X-szRgslp) exhibited lower LacZ activity levels compared to 
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Figure 41. Expression of murine RGS2p decreases sensitivity and response to P- 
factor pheromone in the rgsl+ and rgsl' LacZ reporter strains 

The rgsl' and rgsl- LacZ reporter strains expressing muRGS2p (JY929 and JY936 

respectively) were assayed for ß-galactosidase activity following exposure to a range of P- 
factor pheromone concentrations. Strains were cultured to a density of 5x105 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as 
the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean 
of three assays; y-axis error bars represent standard deviation. 
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the same strain in Figure 38 and Figure 39, and this may possibly result from 

variability between experiments. 
These results indicate that muRGS2p was capable of negatively regulating 

the Sz. pombe pheromone communication pathway, reinforcing the suitability of the 

LacZ reporter strains for the investigation of mammalian RGS protein activity upon 
G protein signalling pathways. 

4.3.4. Expression of human RGS3 in the rgs1+ and rgsl+LacZ reporter strains 

The screening of a B-cell cDNA library with an oligonucleotide probe 

corresponding to sequences conserved between RGS 1 and RGS2 led to the 

identification of RGS3 (Druey et al., 1996). It has been reported there are two major 
RGS3 transcripts present in multiple tissues (Chatterjee et al., 1997; Dulin et al., 
2000; Mittman et al., 2001). 

The human Rgs3 1560bp ORF was amplified from a lymphoblastoma cDNA 

plasmid library (a gift from AstraZeneca Pharmaceuticals, UK) using the 

oligonucleotide primers J0914 and J0915. The sense primer J0914 includes 22 

bases complementary to the human RGS3 ORF 5' terminus. The antisense primer 
J0915 includes 22 bases complementary to the human Rgs3 ORF 3' terminus. The 

product was cloned into the EcoRV restriction site of a pREP3X derivative and 

sequenced. The rgs1+ and rgsl" sxa2:: lacZ reporter strains were transformed with the 

huRGS3p expression construct, and transformants were selected on AA plates 
lacking leucine. 

Expression of huRGS3p in the rgs1+ reporter strain (JY971) reduced neither 

pheromone-independent LacZ activity nor pheromone-dependent LacZ activity up to 

100U/ml P-factor (Figure 42). HuRGS3p was capable of down-regulating LacZ 

expression at 1000U/ml P-factor in the rgs1+ LacZ reporter strain, but to a lesser 

extent than that seen for huRGSlp (Figure 38). Expression of huRGS3p in the rgsl' 

reporter strain (JY972) did not appear to have any reductive effect upon pheromone- 
independent or pheromone-dependent LacZ activity (up to 1000U/ml P-factor), and 

the JY972 LacZ response profile resembled that of the rgsl' LacZ reporter strain 
(JY762). 
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Figure 42. Expression of human RGS3p does not reduce sensitivity or response to P- 
factor pheromone in the rgsl+ or rgsl" LacZ reporter strains 

The rgsl+ and rgsl" LacZ reporter strains expressing huRGS3p (JY971 and JY972 

respectively) were assayed for ß-galactosidase activity following exposure to a range of P- 
factor pheromone concentrations. Strains were cultured to a density of 5x 105 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as 
the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean 
of three assays; y-axis error bars represent standard deviation. 
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The fact that the expression of huRGS3p did not appear capable of reducing 
LacZ activity in the LacZ reporter strains indicates that this RGS protein was either 

not expressed in the reporter strains, or it was incapable of exerting RGS activity 

upon the Sz. pombe Gc, subunit, Gpal. 

Human RGS3 has been shown to reduce pheromone sensitivity in S. 

cerevisiae L SST2 mutants (Druey et al., 1996), and has been shown to inhibit MAPK 

activation in mammalian cells (Druey et al., 1996; Dulin et al., 1999). 

4.3.5. Expression of human RGS4 in the rgsl+ and rgsl' LacZ reporter strains 

RGS4 was identified by the screening of rat cDNAs, that when expressed in a 
S. cerevisiae SST2 mutant, could stimulate recovery from pheromone-induced 

growth arrest, and partially block pheromone-induced gene transcription (Druey et 

al., 1996). Human RGS4 displays 97% amino acid identity with rat RGS4, and most 

structural and biochemical information is known about this RGS protein. 

The human Rgs4 ORF (618bp) was amplified from a lymphoblastoma cDNA 

plasmid library (a gift from AstraZeneca Pharmaceuticals, UK) using the 

oligonucleotide primers J0917 and J0918. The sense primer J0917 includes 22 

bases complementary to the human Rgs4 ORF 5' terminus and a terminal BamHI 

site. The anti-sense primer J0918 include 21 bases complementary to the human 

Rgs4 ORF 3' terminus and a terminal BamHI site. The amplified product was cloned 
into the BamHI site in pKS, sequenced, and sub-cloned into the BamHI site of 

pREP3X. The rgsl+ and rgsl' sxa2:: lacZ reporter strains were transformed with the 

resulting huRGS4p expression construct, and transformants were selected on AA 

plates lacking leucine . 
Expression of huRGS4p from the pREP3X vector in the rgsl+ reporter strain 

(JY760) did not completely inhibit pheromone-independent LacZ activity, but 

reduced pheromone-dependent LacZ activity above IOU/ml P-factor in this strain 
(Figure 43). HuRGS4p appeared capable of reducing pheromone-independent and 

pheromone-dependent LacZ activity in the rgs1+ reporter strain to a greater degree 

than that seen for szRgs lp expressed from the pREP vector. However, due to the 

variability observed between strains and experiments, this may not be significant. 
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Figure 43. Expression of human RGS4p decreases sensitivity and response to P-factor 
in the rgs1+ and rgsl" LacZ reporter strains 

The rgsl+ and rgsl- LacZ reporter strains expressing huRGS4p (JY760 and JY778 

respectively) were assayed for ß-galactosidase activity following exposure to a range of P- 
factor pheromone concentrations. Strains were cultured to a density of 5xl05 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as the 
ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean of 
three assays; y-axis error bars represent standard deviation. 
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High levels of huRGS4p in the rgsl' reporter strain (JY778) reduced both 

pheromone-independent and pheromone-dependent LacZ activity up to 1000U/ml P- 

factor, and appeared to exert a greater reductive effect upon pheromone-independent 

and pheromone-dependent LacZ activity up to 1000U/ml P-factor when compared to 

the expression of szRgslp in the rgsl' reporter strain. This is possibly due to 

variability between strains and/or experiments. 
These results indicate that high expression levels of huRGS4p in the rgsl+ 

and rgsl' reporter strains were capable of reducing pheromone-independent LacZ 

activity and sensitivity to pheromone stimulation in the rgs1+ and rgsl' reporter 

strains, and appeared to have a greater efficacy in reducing both pheromone- 

independent and pheromone-dependent LacZ activity in the rgsl+ and rgsl' reporter 

strains when compared to expression of szRgsIp. 

Expression of human RGS4 has been shown to reduce pheromone sensitivity 

in S. cerevisiae ASS72 mutants (Druey et al., 1996). RGS4 was the most successful 

(followed by RGS 1 and an RGS3 truncated variant, RGS3 and RGS2). Druey et al. 

(1996) also showed that RGS4 inhibits MAPK activation in mammalian cells. RGS4 

has also been shown to complement an RGS2 mutant in S. cerevisiae (Versele et al., 

1999). RGS4 is a relatively promiscuous RGS protein, displaying little preference for 

different Ga,; and Gaq subunits (Diverse-Pierluissi et al., 1999; Cavalli et al., 2000; 

Rogers et al., 2001). 

4.3.5.1. Human RGS4 is expressed in Sz. pombe LacZ reporter strains 

Crude extracts were prepared (Section 2.2.10.1. ) from the rgsl" LacZ reporter 

strain transformed with the empty pREP3X vector (JY762) and the rgsF LacZ 

reporter strain expressing huRGS4p from pREP3X (JY778). Yeast extracts were 

subjected to electrophoresis in a gel containing 12.5% (w/v) acrylamide. Proteins 

were transferred onto nitocellulose filters and allowed to react with rabbit anti-RGS4 

antibody. Immunoreactive bands were visualised with goat anti-rabbit antibody 

coupled to horseradish peroxidase and an ECL Western blotting system was used to 

stain the bands before exposure to x-ray films (See Section 2.2.10. ). 

A band of approximately 28kD can be seen in Lane 2 of Figure 44 (rgsl', 

pREP3X-RGS4). This band was not seen in Lane I. Human RGS4 has a 
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Figure 44. Human RGS4 is expressed from pREP3X in the Sz, pombe rgsl" LacZ 

reporter strain 

Crude yeast extracts were prepared from the rgsl - LacZ reporter, JY762, (Lane l) and the 
rgsl" LacZ reporter overexpressing huRGS4p, JY778 (Lane2). Extracts were subjected to 
electrophoresis, blotted onto a nitocellulose filter, and allowed to react with rabbit anti- 
RGS4 antibody. Immunoreactive bands were visualised with goat anti-rabbit antibody 
coupled to horseradish peroxidase, and an ECL Western blotting system was used to stain 
the bands before exposure to x-ray film. A band of 28kD can be seen in Lane 2. 
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published size of 24.2kD (Berman et al., 1996), which is smaller than the band seen 
in Lane 2. As for huRGS2p expressed in the rgsl' LacZ reporter strain, the apparent 
larger size of huRGS4p when expressed in Sz. pombe is possibly due to covalent 

modification of the protein. RGS4 is palmitoylated in mammalian cells, with Cys-2 

and Cys-12 likely sites (Srinivasa et al., 1998a). These results suggest that huRGS4p 

was successfully expressed in the rgsl' LacZ reporter strain when expressed from the 

pREP3X expression vector. The 35kD band observed in Figure 40 was not visualised 

with the rabbit anti-RGS4 antibody. 

4.3.6. Expression of human RGS9-2 in the rgs1+ and rgsl' LacZ reporter strains 

Major transcripts of the RGS9 gene are alternatively spliced into a retina- 

specific transcript (RGS9-1) and a brain-specific transcript (RGS9-2). RGS9-2 is a 

striatal enriched alternatively spliced product of the RGS9 gene. The RGS9-2 protein 
is 191 residues longer than the retinal form, and has a unique 3' non-coding region 

(Rahman et al., 1999; Zhang et al., 1999). Alternative splicing has also been 

observed for other RGS proteins (Snow et al., 1998; Chatterjee and Fisher 2000). 

The human Rgs9-2 2031 bp ORF was amplified from a pKS-Rgs9-2 construct 
(a gift from Stephen Gold, Rahman et al., 1999) using the oligonucleotide primers 
JO1016 and JO1017. The sense primer JO1016 contains 27 bases complementary to 

the human Rgs9-2 5' terminus and a terminal BamHI site. The anti-sense primer 

JO 1017 includes 24 bases complementary to the human Rgs9-2 ORF 3' terminus and 

a terminal BamHI site. The amplified product was cloned into the BamHI site of 

pKS, sequenced, and sub-cloned into the BamHI site of pREP3X. The rgs1+ and 

rgsl" sxa2:: lacZ reporter strains were transformed with the huRGS9-2p expression 

construct, and transformants selected on AA plates lacking leucine. 

Expression of human pRGS9-2 in the rgs1+ reporter strain (JY93 1) did not 

exert a reductive effect upon pheromone-independent LacZ activity (Figure 45). It 

was however capable of exerting a reductive effect upon pheromone-dependent LacZ 

activity at 100U/ml and 1000U/ml P-factor. 
High expression levels of huRGS9-2p in the rgsl' reporter strain reduced 

pheromone-independent LacZ activity, but to a smaller degree than that seen for 

expression of Sz. pombe Rgs l p. This reduction did not reach the low pheromone- 
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Figure 45. Expression of human RGS9-2p decreases sensitivity and response to P- 
factor pheromone in the rgsl+ and rgsl' LacZ reporter strains 

The rgsl' and rgsl- LacZ reporter strains expressing huRGS9-2p (JY931 and JY938 
respectively) were assayed for (3-galactosidase activity following exposure to a range of P- 
factor pheromone concentrations. Strains were cultured to a density of 5x] 05 cells/ml in 
DMM medium prior to exposure to pheromone for 16h. LacZ activity was calculated as 
the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean 
of three assays; y-axis error bars represent standard deviation. 
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independent LacZ activity of the rgsl+ reporter strain. Expression of huRGS9-2p 

reduced pheromone-dependent LacZ activity in the rgsl' reporter strain up to 
1000U/ml P-factor, to a similar degree as Sz. pombe Rgslp. 

RGS9-2 is specifically expressed in the striatum, where it is involved in the 
desensitisation of Ga; /Gao-coupled µ-opioid receptors (Rahman et al., 1999; 

Granneman et al., 1998). This Ga subunit specificity is possibly the basis behind the 

reduced ability of huRGS9-2p to modulate signalling through the Sz. pombe 

pheromone communication pathway compared to, for example, huRGSlp and 
huRGS4p. 

4.3.7. Expression of Sz. pombe Rgsl C-terminus in the rgs1+ and rgsl' LacZ 

reporter strains 

RGS proteins fall into two major size classes - those that encode the RGS 

box flanked by short N- and C-termini, and those which have the potential to encode 

additional information. The Sz. pombe Rgs I protein falls into the latter category. In 

the rgsl ORF approximately 1kb of additional sequence lies upstream of its RGS 

domain-coding region. It was therefore of interest to determine whether expression 

of the C-terminus alone (incorporating the RGS domain without the additional 
information encoded at the rgsl N-terminus) could modulate signal transduction 

through the pheromone signalling pathway in the LacZ reporter strains. The RGS 

domain of RGS 16 has been shown to be functional in vitro, but the flanking regions 

are required for activity in vivo (Chen and Lin, 1998). The szRgslp C-terminus 

product initiates at an internal methionine residue at residue 274 in the full-length 

szRgs 1 p. 
The Sz. pombe Rgsl C-terminal RGS domain (627bp) was amplified from 

JD912 (containing the full-length Sz. pombe rgsl ORF cloned into pKS) using the 

oligonucleotide primers J0923 and J0600 (Figure 46). The sense primer J0923 

contains 24 bases complementary to the rgsl ORF initiating at nucleotide position 
+820 relative to the rgsl initiator codon (this corresponds to an internal Met residue 
at residue 274 in the szRgs lp primary sequence). The anti-sense primer J0600 
includes 22 bases complementary to the Sz. pombe rgsl 3' terminus initiating at 
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nucleotide position +1448 relative to the rgsl initiator codon and contains a terminal 

EcoRV site. The 627bp product was cloned into the EcoRV restriction site of a 

pREP3X derivative and sequenced. The rgs1+ and rgsl- sxu2:: lucZ reporter strains 

were transformed with the resulting expression construct, and transformants were 

selected on AA plates lacking leucine. 

Expression of the Sz. pombe Rgsl C-terminus in the rgsl+ reporter strain 

(JY750) did not reduce pheromone-independent LacZ activity (Figure 47). A small 

reduction in LacZ activity at 1000U/ml P-factor was seen when the Sz. pombe Rgs I 

C-terminus was expressed in the rgs 1+ reporter strain, although this reductive effect 

was not as great as the reductive effect seen for the full length szRgslp. 

Expression of the Sz. pombe Rgsl C-terminus in the rgsl - reporter strain 

(JY768) reduced pheromone-independent LacZ activity and pheromone-dependent 

LacZ activity up to IOU/ml P-factor to a similar degree as that seen for the full- 

length szRgslp. However, while the Sz. pombe Rgsl C-terminus reduced LacZ 

activity in the rgs l- reporter strain at 1000/ml P factor to a small degree, it did not 

appear to be as effective as the full-length szRgslp in reducing LacZ activity in the 

rgsl- reporter strain stimulated with 1000/ml or 1000U/ml P-factor. 

J0923 
ýJ0600 

ATG ATG TAA 

rgsl 
I 

rgsl C-terminus encodes 
the RGS domain 

Figure 46. Amplification of the Sz. pombe rgsl C-terminus 

The C-terminal 627bp of Sz. pombe rgsl were amplified with the oligonucleotides J0923 

and J0600. J0923 initiates at an ATG codon encoding an internal Met residue at amino 
acid position 274 in the full-length szRgslp 
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Figure 47. Expression of Sz. pombe Rgslp C-terminus decreases sensitivity and 
response to P-factor pheromone at low pheromone concentrations 

The rgsl+and rgsl" LacZ reporter strains expressing the szRgslp C terminus (JY750 and 
JY768 respectively) were assayed for (3-galactosidase activity following exposure to a 
range P factor pheromone concentrations. Strains were cultured to a density of 5x105 
cells/ml in DMM medium prior to exposure to pheromone for 16h. LacZ activity was 
calculated as the ratio of o-nitrophenol product formed (OD420) to cell number. Data 
shown is the mean of three assays; y-axis error bars represent standard deviation. 
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These results suggest that while the Rgsl C-terminus retained some ability to 

reduce LacZ activity in the rgs1+ and rgsl" LacZ reporter strains, this ability was 

similar to that of the full-length szRgslp only at low levels of signalling through the 

pheromone communication pathway, indicating that the N-terminus of szRgs1p is 

required for full RGS activity. 

Section II: Expression of human RGS1 and human RGS4 in the Sz. pombe LacZ 

reporter strain from single copy 

4.4.1. Introduction 

The disadvantage of using multicopy expression vectors to direct the 

expression of RGS proteins is that they can result in variable expression levels. In the 

search for RGS mutants with increased GAP activity, a different approach was 
therefore required. I decided that the integration of a single copy of a human RGS 

ORF at the rgsl locus would result in reproducible levels of expression. This would 
be important for future mutational studies, as the variable copy number and 

expression levels of pREP expression vectors could potentially lead to ambiguous 

results in the search for RGS proteins with altered activities. 
Human RGS 1 and human RGS4 were chosen to continue with their 

characterisation, as these two human RGS proteins had the greatest ability to reduce 
LacZ activity when expressed in the Sz. pombe rgs1+ and rgsl' LacZ reporter strains 
from a multicopy expression vector (Section 4.3). 

Integration cassettes were constructed and introduced into the rgsl' LacZ 

reporter strain genome, so that the human Rgsl ORF or human Rgs4 ORF exactly 

replaced the genomic rgsl ORF. Correct integration of the human Rgsl and human 

Rgs4 ORFs result in the expression of these human RGS proteins being under the 

direction of the rgsl promoter, and consequently expression should be induced as a 

result of signalling through the pheromone communication pathway. This integration 

strategy made use of the fact that the loss of Ura4p activity from the rgsl' LacZ 

reporter strain (the ura4 cassette replaces the rgsl ORF in this reporter strain) could 
be positively selected for with the use of 5-FOA in selective plates. 
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4.4.2. Integration of the human Rgsl ORF in the rgsl'sxa2:: 1acZ reporter strain 

Briefly, the human Rgsl open reading frame was cloned between the Sz. 

pombe rgsl 5' and 3' non-coding regions by Dr. Stuart Allen in the laboratory. The 
human Rgsl ORF was amplified using the oligonucleotides JO1119 and JO1120 
from the pKS-huRGS 1 construct described in Section 2.3. The sense primer JO 1119 

contains 54 bases complementary to the Sz. pombe rgsl 5' non-coding region 
(nucleotide positions -53 to -1 relative to the rgsl initiator codon) followed by 23 
bases complementary to the first N-terminal 23 bases of the human Rgsl ORF 

sequence (positions +1 to +23 relative to the human Rgsl initiator codon). The 

antisense primer JO 1120 contains 21 bases complementary to the C-terminal human 

Rgsl ORF sequence (positions +588 to +568 relative to the human Rgsl initiator 

codon) followed by 61 bases complementary to the Sz. pombe rgsl 3' non-coding 

region (nucleotide positions +1504 to +1444 relative to the rgsl initiator codon). 
JO1119 and JO 1120 amplify a fragment containing the human Rgsl ORF flanked 

with Sz. pombe 5' and 3' non-coding sequences. 
The fragment amplified by JO1119 and JO 1120 was cloned into a construct 

generated to provide additional Sz. pombe rgsl 5' and 3' non-coding sequences to 

aid homologous integration. The sense primer J01268 contains 21 bases 

complementary to the Sz. pombe rgsl 3' non-coding region, initiating at nucleotide 

position +1505 relative to the rgsl initiator codon. The antisense primer J01267 

contains 18 bases complementary to the Sz. pombe rgsl 5' non-coding region 
initiating at nucleotide position -58 relative to the rgsl initiator codon. JO1267 and 
J01268 were used in conjunction with a construct containing the Sz. pombe rgsl 5' 

and 3' non-coding regions (JD1394) to generate a linear DNA fragment with which 
the human Rgsl ORF fragment amplified by JO1119 and JO 1120 could be ligated, 

so that the human Rgsl ORF was situated between the Sz. pombe rgs15' and 3' non- 

coding regions (Figure 48). 
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Figure 48. Creation of the human RGSI integration construct 

JO1119 and JO1120 were used to amplify the human Rgsl ORF flanked with Sz. pombe 
rgsl 5' and 3' non-coding regions. This fragment was cloned into a fragment amplified 
with J01267 and J01268, which provided additional Sz. pombe rgsl 5' and 3' non-coding 
regions. 

The rgsl- sxa2:: IacZ reporter strain JY629 was transformed with the human 

Rgsl ORF integration fragment (liberated via Spel/Ndel restriction from the 

rgsl:: Rgsl integration construct). Cells were cultured in YEALU medium until they 

reached stationary phase (approximately 48h) to enable recovery of cells and 

exhaustion of intracellular uracil stores. Cells were plated onto AA plates containing 

5-FOA and uracil, and incubated for 5d at 29°C. 5-FOA selects for the absence of 

Ura4 activity, as Ura4 converts it into a compound toxic to Sz. pombe. In the rgsi 

sxa2:: 1acZ reporter strain the presence of the ura4 cassette at the rgsl locus results in 

Ura4 expression, with the consequence that cells are unable to grow on media 

containing 5-FOA. Thus, replacing the ura4 cassette at the rgsl locus with the 

human Rgsl ORF enables cells to grow on media containing 5-FOA in the absence 

of pheromone signalling. Transformants were patched onto AA plates containing 5- 

FOA and uracil, and screened via PCR amplification for the presence of the human 

Rgsl ORF at the rgsl locus. This was carried out using oligonucleotide primers 

complementary to the Sz. pombe 5' non-coding region and the human Rgsl ORF. 

Genomic DNA was prepared for strains positive by PCR, and the DNA 

digested with EcoRl. Digested DNA was separated on a 1% agarose gel, blotted onto 

a nitrocellulose filter, and probed with a DNA fragment amplified from the rgsl 5' 

sequence (Figure 49). One strain confirmed by Southern blot analysis was chosen to 

determine its pheromone-independent and pheromone-dependent (3-galactosidase 

activity (JY1193). 
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Figure 49. Southern blot confirming integration of human Rgsl ORF at the rgsl locus 
in the rgsl- sxa2:: IacZ reporter strain 

Genomic DNA was prepared for JY629 (rgsl", sxa2:: lucZ) and JY1193 (rgsl:: Rgsl, 
sxa2:: IacZ), and the DNA digested with EcoRI. Integration of the human Rgsl ORF at the 
rgsl locus is indicated by a band of 2722bp, whilst non-integration of the Rgsl ORF is 
indicated by a band of 6148bp. 
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4.4.3. ß-galactosidase activity of the rgsl:: Rgs1 LacZ reporter strain 

JY1193 (rgsl:: Rgs1, sza2:: lacZ) exhibited comparable pheromone- 
independent ß-galactosidase activity to the rgsl+ LacZ reporter (JY544) (Figure 50). 

JY1193 also exhibited comparable pheromone-dependent ß-galactosidase activity to 

JY544 up to IOU/ml P-factor. At 100U/ml and 1000U/ml P-factor the expression of 
huRGSlp from a single genomic copy did not reduce LacZ expression to a similar 
degree as szRgslp, although pheromone-dependent LacZ activity of the rgsl:: Rgs1 

strain is less than that of the rgs1 LacZ reporter strain at 100U/ml P-factor. 

The results suggest that the presence of a single copy of the human Rgsl 

ORF at the rgsl locus in the rgsl" LacZ reporter strain was capable of reducing 

sensitivity and response to P-factor up to 1OU/ml to a level seen for the rgsl+ LacZ 

reporter strain, which contains a single copy of the endogenous rgsl ORF. However, 

a single copy of the human Rgsl ORF did not seem capable of reducing sensitivity or 

response to P-factor above a concentration of 1OU/ml to the level seen for the rgsl' 
LacZ reporter strain. It is possible that at low P-factor concentrations the RGS 

activity of huRGS 1p towards the Sz. pombe Ga subunit was sufficient to inhibit 

pheromone signalling to a comparable degree as szRgslp. At high P-factor 

concentrations, the number of GTP-bound Ga subunits may have increased to such a 
level that huRGSlp activity was insufficient to inhibit the pheromone signalling 

pathway to the same degree as szRgslp. This may have been due to lower affinity of 
huRgslp for the Sz. pombe Ga subunit compared to szRgslp. 
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Figure 50. Integration of human Rgsl ORF at Sz. pombe rgsl locus decreases 
sensitivity and response to P-factor pheromone at low P-factor concentrations 

The rgsl' (JY544), rgsl- (JY629) and RgsI (JY1193; human Rgsl ORF replaces that of 
Sz" pombe rgsl) LacZ reporter strains were assayed for P-galactosidase activity following 
exposure to a range of P-factor pheromone concentrations. Strains were cultured to a 
density of 5x105 cells/ml in DMM medium prior to exposure to pheromone for 16h. LacZ 
activity was calculated as the ratio of o-nitrophenol product formed (OD420) to cell number. 
Data shown is the mean of three assays; y-axis error bars represent standard deviation. 
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4.4.4. Integration of the Rgs4 ORF in the rgsl' LacZ reporter strain 

In order to generate an rgsl:: Rgs4 integration construct the human Rgs4 open 

reading frame was cloned into Sz. pombe rgsl 5' and 3' non-coding regions. The 

human Rgs4 ORF was amplified using the oligonucleotides JO1121 and JO1122 

from the pKS-Rgs4 construct described in Section 4.3.4. The sense primer JO1121 

contains 57 bases complementary to the Sz. pombe rgsl 5' non-coding region 
(initiating at position -57 relative to the rgsl initiator codon) followed by 23 bases 

complementary to the first N-terminal 23 bases of the human Rgs4 ORF. The 

antisense primer J01122 contains 61 bases complementary to the Sz. pombe rgsl 3' 

non-coding region (initiating at position +1504 relative to the rgsl initiator codon) 
followed by 23 bases complementary to the C-terminal 3' human Rgs4 ORF 

sequence. J01121 and J01122 were used to amplify a fragment containing the 

human Rgs4 ORF flanked with Sz. pombe 5' and 3' non-coding sequences. 

The fragment amplified by JO1121 and JO1122 was cloned into a construct 

generated to provide additional Sz. pombe rgsl 5' and 3' non-coding sequences to 

aid homologous integration. The sense primer J01268 contains 21 bases 

complementary to the Sz. pombe rgsl 3' non-coding region, initiating at nucleotide 

position +1505 relative to the rgsl initiator codon. The antisense primer J01267 

contains 18 bases complementary to the Sz. pombe rgsl 5' non-coding region 
initiating at nucleotide position -58 relative to the rgsl initiator codon. 

J01267 and J01268 were used in conjunction with a construct containing the 

Sz. pombe rgsl 5' and 3' non-coding regions (JD1394) to generate a linear DNA 

fragment with which the rgsl:: Rgs4 fragment amplified by JO1121 and JO1122 

could be ligated, so that the human Rgs4 ORF is situated flush between the Sz. 

pombe rgs15' and 3' non-coding regions (Figure 51). 

The rgsT sxa2:: lacZ reporter strain JY629 was transformed with the human 

Rgs4 ORF integration fragment liberated via SpeI/Ndel restriction from the 

rgsl:: Rgs4 integration construct. Cells were cultured in YEALU medium until they 

reached stationary phase (approximately 48h), plated onto AA plates containing 5- 

139 



Spei J01267 J01121 J0222 ! Q1268 

ýJLJ 

szRgsl 5' UTR szRgsl 3' UTR 

Figure 51. Creation of the human RGS4 integration construct 

JO1121 and JO1122 were used to amplify the human Rgs4 ORF flanked with Sz. pombe 
rgsl 5' and 3' non-coding regions. This fragment was cloned into a fragment amplified 
with J01267 and J01268, which provided additional Sz. pomhe rgsl 5' and 3' non-coding 
regions. 

FOA and uracil, and incubated for 5d at 29°C. Colonies were patched onto AA plates 

containing 5-FOA and uracil, and screened via PCR amplification for the presence of 
the human Rgs4 ORF at the rgsl locus. This was carried out using oligonucleotide 

primers complementary to the Sz. pombe rgsl 5' non-coding region and the human 

Rgs4 ORF. 

Genomic DNA was prepared for strains positive by PCR, and the DNA 

digested with EcoRl. Digested DNA was separated on a I% agarose gel, blotted onto 

a nitrocellulose filter, and probed with a fragment amplified from the rgsl 5' non- 

coding region (Figure 52). One strain confirmed by Southern blot analysis was 

chosen to characterise its pheromone-independent and pheromone-dependent 

galactosidase activity (JY 1153). 
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Figure 52. Southern blot confirming integration of human Rgs4 ORF at the rgsl locus 
in the rgsl" sxa2:: IacZ reporter strain 

Genomic DNA was prepared for JY629 (rgsl-, sxa2:: lacZ) and JYI 153 (rgsl:: Rgs4, 

sxa2:: lacZ), and the DNA digested with EcoRl. Integration of the Rgs4 ORF at the rgsl 
locus is indicated by a band of 2794bp, whilst non-integration of the Rgsl ORF is 
indicated by a band of 6148bp. 
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4.4.5. ß-galactosidase activity of the rgsl:: Rgs4 LacZ reporter strain 

Once confirmed by Southern blot, the pheromone-independent and 

pheromone-dependent ß-galactosidase activity of the rgsl:: Rgs4 sxa2:: lacZ strain 
(JY1153) in response to P-factor stimulation was determined (Figure 53). 

The presence of a single copy of the human Rgs4 ORF at the Sz. pombe rgsl 
locus in the rgsl' LacZ reporter strain slightly reduced LacZ activity compared the 

rgsl- LacZ reporter strain (this was possibly due to strain and experiment variation), 
but the level of signalling in the RGS4 integrant was not reduced to that of the rgsl+ 
LacZ reporter strain. The rgsl:: Rgs4 LacZ reporter strain had an increased 

pheromone-independent LacZ activity and increased sensitivity and response to P- 

factor stimulation compared to the rgs1+ LacZ reporter strain. These results suggest 
that the presence of a single copy of the human Rgs4 ORF at the rgsl locus was not 

capable of rescuing the hypersensitive phenotype of the rgsl' LacZ reporter strain. 
This could have been due to the Ga, subunit specificity of human RGS4, or due to 

reduced expression of RGS4 compared to that of szRgslp in the rgs1+ LacZ reporter 

strain. RGS4 successfully reduced LacZ expression in the rgs1+ and rgsl' LacZ 

reporter strains when expressed from a multicopy expression vector (Section 4.3.4). 

If huRGS4p had a lower affinity for the Sz. pombe Ga subunit compared to 

endogenous szRgslp, it may have been unable to reduce signalling through the 

pheromone communication pathway when expressed from a single genomic copy. 
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Figure 53. Integration of human Rgs4 ORF at the rgsl locus does not decreases 
sensitivity and response to P-factor pheromone at low pheromone concentrations 

The rgs1 (JY544), rgsl- (JY629) and Rgs4+ (JY1153; human Rgs4 ORF replaces that of 
Sz. pombe rgsl) LacZ reporter strains were assayed for ß-galactosidase activity following 
exposure to a range of P-factor pheromone concentrations. Strains were cultured to a 
density of 5x105 cells/ml in DMM medium prior to exposure to pheromone for 16h. LacZ 
activity was calculated as the ratio of o-nitrophenol product formed (0D420) to cell 
number. Data shown is the mean of three assays; y-axis error bars represent standard 
deviation. 
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4.4.6. Growth characteristics of rgsl:: Rgs4 LacZ reporter strain 

The rgsl:: Rgs4 LacZ reporter strain does not contain the ura4 gene within its 

genome, unlike the rgsl" LacZ reporter strain, and it is possible that a reduced 

growth rate resulting from the absence of the ura4 gene in the rgsl:: Rgs4 LacZ 

reporter strain could affect the determination of its ß-galactosidase activity when 

compared to that of the rgsl' LacZ reporter strain. To determine whether these two 

reporter strains exhibited different growth rates (which could influence the 

calculation of ß-galactosidase activities), their generation times in AA media 

containing uracil were determined. 

Growth characteristics of the rgsl' and rgsl:: Rgs4 strains were determined in 

AA media containing alanine, leucine and uracil at 29°C. Briefly, 50m1 medium were 

inoculated with cells to obtain a cell density of 2x105 cells/ml, and cells were 

incubated in a shaking incubator at 29°C. Once strains reached a density of 

approximately 1x106 cells/ml cell counts were determined hourly via a Coulter 

Channelyser. 

As can be seen from Figure 54, the rgsl' sxa2:: IacZ reporter strain JY629 

(ura4) had a slightly faster doubling time (4h) compared to the rgsl:: Rgs4, 

sxa2:: lacZ reporter strain JY1153 (ura4") (4Y2h). As the generation times of the two 

strains did not differ greatly, it is unlikely that the absence of the ura4 gene in the 

rgsl:: Rgs4 LacZ reporter strain affected the determination of its ß-galactosidase 

activity. 
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Figure 54. The rgsr LacZ reporter strain exhibits a faster generation time than the 
rgsl:: Rgs4 LacZ reporter strain 
Growth characteristics of the rgsl' (JY629) and rgsl:: Rgs4 (JY1153) LacZ reporter strains 
were observed in AA media containing alanine, leucine and uracil at 29°C. 50m1 medium 
were inoculated with 2x10' cells/ml, and cells were cultured in a shaking incubator at 29°C. 
JY629 had a generation time of 4h, while JY1153 had a slightly longer generation time of 
4%2h. 
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4.4.7. Expression of human RGS4 from single copy 

It is possible that the increased sensitivity and response to pheromone 

observed for the rgsl:: Rgs4 LacZ reporter strain compared to the rgs1+ LacZ reporter 

strain was due to a reduced level of huRGS4p expression compared to that of 

szRgslp in the rgs1+ LacZ reporter strain. 
To determine whether huRGS4p was expressed in the rgsl:: rgs4 sxa2:: lacZ 

strain, Western blot analysis was carried out. Crude yeast extracts were prepared for 

JY762 (rgsl' sxa2:: lacZ pREP3X), JY778 (rgsl' sxa2:: lacZ pREP3X-Rgs4), JY629 

(rgsl', sxa2:: lacZ) and JY1153 (rgsl:: Rgs4, sxa2:: lacZ). A separate isolate of 

JY1153 stimulated with 1000U/ml P-factor for 16h, to determine whether this would 
increase huRGS4p expression levels. 

From Figure 55 it can be seen that a band of approximately 28kD in size was 

present in Lane 2 (rgsl', sxa2:: lacZ, pREP3X-Rgs4). This band was not seen in Lane 

1, which represents the rgsl' LacZ reporter strain transformed with the empty 

pREP3X expression vector. A band of 28kD was also seen in Lane 4 (rgsl:: Rgs4, 

sxa2:: lacZ), which indicates that human RGS4 is expressed when the human Rgs4 

ORF was present as a single genomic copy. Stimulation of the rgsl:: Rgs4 LacZ 

reporter strain with 1000U/ml P-factor for 16hr did not appear to up-regulate human 

RGS4 expression. The presence of the 28kD band in Lane 4 and its absence in Lane 

5 was due to overloading of crude extract in Lane 4 (determined by silver staining, 

not shown). 
As seen for expression of huRGS4p from a multicopy expression vector 

(Figure 44), the protein visualised in Figure 55 was larger than the published size of 

the human RGS4 protein. This is possibly due to covalent modification of the RGS4 

protein in Sz. pombe. RGS4 is palmitoylated, with Cys-2 and Cys-12 the likely sites 

of palmitoylation (Srinivasa et al., 1998a). Mutation of cysteine residues within the 

N-terminal domain does not affect plasma membrane localisation in yeast or its 

ability to inhibit signalling (Srinivasa et al., 1998a). Plasma localisation is required 
for RGS4 function, and so features of its N-terminal 
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Figure 55. Human RGS4 is expressed in the S; poinhe rgsl:: rgs4 LacZ reporter 
strain 

Crude yeast extracts were prepared From the rgsl- LacZ reporter strain transformed with 
pREP3X (Lane 1), the rgsl- LacZ reporter strain overexpressing human RGS4 (Lane 2), 
the rgsl" LacZ reporter strain (Lane 3) and the Rgs4' LacZ reporter strain (Lane 4). A 
separate isolate of the Rgs4+ LacZ reporter strain (Lane 5) was incubated with l000Uhnl 
P-factor for I6h prior to extract preparation. Extracts were subjected to electrophoresis, 
blotted onto a nitocellulose filter, and allowed to react with rabbit anti-RGS4 antibody. 
Immunoreactive bands were visualised with goat anti-rabbit antibody coupled to 
horseradish peroxidase, and an ECL Western blotting system was used to stain the bands 
before exposure to x-ray film. A 28kD band can be seen in Lane 2 (rgs/", pRE: P3X- 
huRGS4) and Lane 4 (rgsl:: Rgs4, sxu2:: lucZ). 
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domain other than palmitoylation are responsible for the plasma membrane 

association of RGS4 and its ability to inhibit pheromone response in yeast. 

4.5. The sxa2:: ura4 reporter strain 

In the sxa2:: ura4 reporter strains the ura4 ORF replaces the sxa2 ORF at the 

sxa2 locus, and as a result Ura4 expression is directed by the pheromone-regulated 

sxa2 promoter. Induction of sxa2 by P-factor stimulation results in Ura4 expression, 

which can be detected by cell viability on media lacking uracil. The advantage of this 

reporter strain is that inhibition of the pheromone communication pathway can be 

detected by the use of the compound 5-FOA. 5-FOA is converted into a toxic 

compound by Ura4, and inhibition of the pheromone signalling pathway in 

sxa2:: ura4 reporter strains enables cells to grow in the presence of 5-FOA. Plates 

containing 5-FOA and a range of P-factor concentrations can be used to qualitatively 

determine the degree of pathway inhibition. P-factor stimulation induces sxa2 

induction in a dose-dependent manner: the greater the P-factor concentration, the 

greater the induction of sxa2, and the greater the Ura4 expression. The ability of 

sxa2:: ura4 reporter strains to grow at high P-factor concentrations in the presence of 

5-FOA indicates inhibition of the pheromone communication pathway. 

4.5.1. Integration of the human Rgsl ORF in the sxa2:: ura4 reporter strain 

The rgsl:: Rgs1 integration construct described in section 4.4.2 was used to 

replace the endogenous rgsl ORF with that of human Rgsl in an rgsl:: ura4, 

sxa2:: ura4 reporter strain. The rgsl:: ura4, sxa2:: ura4 reporter strain JY727 was 

transformed with the rgsl:: Rgs1 integration fragment, liberated via SpeI/NdeI 

restriction. In JY727 the rgsl ORF is disrupted with the ura4 cassette at an internal 

BamHI site. Cells were cultured in YEALU medium until they reached stationary 

phase (approximately 48h) to enable recovery of cells and exhaustion of intracellular 

uracil stores. Cells were plated onto AA plates containing 5-FOA and uracil and 
incubated for 5d at 29°C. Transformants were patched onto AA plates containing 5- 

FOA and uracil, and screened via PCR amplification for the presence of the human 

Rgsl ORF at the Sz. pombe rgsl locus using oligonucleotide primers specific for the 
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rgsl 5' non-coding region and the human Rgsl ORF. Strains positive by PCR were 

analysed by Southern blot. Genomic DNA was digested with EcoRI and the digested 

DNA separated on a 1% agarose gel, blotted onto a nitrocellulose filter, and probed 

with a fragment amplified from the rgsl 5' non-coding region (Figure 56). One 

correct isolate (JY1194) was chosen to determine pheromone-independent and 

pheromone-dependent Ura4 expression. 
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Figure 56. Southern blot confirming integration of the human Rgsl ORF at the rgsl 
locus in the sxa2:: ura4 reporter strain 

Genomic DNA of JY727 (rgsl>ura4, sxa2:: ura4) and JYl 194 (rgsl:: Rgs1, sxa2:: ura4) 
were digested with EcoRl. Correct integration of the human RgsI ORF at the rgsl locus is 
indicated by a band of 2722bp, whilst non-integration of the human Rgsl ORF is indicated 
by a band of 7594bp. 
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4.5.2. The rgsl:: Rgsl sxa2:: ura4 reporter strain is viable on AA plates 

containing 5-FOA and uracil up to IU/ml P-factor 

The rgs1+ sxa2:: ura4 reporter strain JY603 (rgsl+, sxa2:: ura4) and JY1194 

(rgsl:: Rgs1, sxa2:: ura4) were cultured overnight in AA media lacking uracil and 
5x104 cells plated onto AA plates containing 5-FOA, uracil, and a range of P-factor 

concentrations. Plates were incubated for 3d at 29°C. 

The rgsl+ sxa2:: ura4 reporter strain (JY603) was capable of growth up to 
1U/ml P-factor (Figure 57). Integration of the human Rgsl ORF at the rgsl locus 

appeared to reduce signalling to a similar degree to that seen for the rgsl+ Ura4 

reporter strain up to l U/ml P-factor. The rgs1' sxa2:: ura4 reporter strain is incapable 

of growth on AA plates containing 5-FOA and uracil in the absence or presence of 

pheromone, due to the increased pheromone-independent level of signalling and 
increased sensitivity to pheromone compared to the rgsl+ Ura4 reporter strain. The 

rgsl:: Rgsl Ura4 reporter strain does not present us with information concerning the 

degree of pathway inhibition, but indicates the P-factor concentration at which 

pheromone signalling in this strain resulted in sufficient Ura4 expression to prevent 

growth on 5-FOA plates. 
These results corroborate those seen for the rgsl:: Rgs1 sxa2:: lacZ reporter 

strain (Figure 50). Expression of huRGSlp from a single genomic copy was capable 

of negatively regulating the pheromone communication pathway at low levels of P- 

factor (up to l OU/ml P-factor in the LacZ reporter strain and up to 1 U/ml P-factor in 

the Ura4 reporter strain), but not at high levels of P-factor. The rgsl+ sxa2:: ura4 

reporter strain, JY603, was also capable of colony formation on 5-FOA plates up to 

1 OU/ml P-factor. 
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Figure 57. I he r'. 1:: Re It ra4 reporter strain displays similar sensitisith to P- 
factor compared to the rgsl' Ura4 reporter strain when cultured on AA plates 
containing 5-FOA and uracil 

JY603 (iisI*, cx, 12:: uru4) and JYI 194 (rg. vJ:: RgsI, s. ru2: auru4) were plated onto AA 

plates containing 5-FOA and uracil and a range of P-factor concentrations. Plates were 
incubated for 3d at 29°C. JY603 and JY1194 were able to form colonies up to IU'ml P- 
factor. 
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4.5.3. Integration of human Rgs4 ORF in the rgsl'sxa2:: ura4 reporter strain 

The construct described in section 4.4.4 was used to generate an integration 

construct designed to replace the endogenous rgsl ORF with that of human Rgs4 in 

the rgsl' sxa2:: ura4 reporter strain (JY727). The rgsl:: Rgs4 integration fragment 

was liberated via Spel/Ndel restriction, and transformed into the rgsl>ura4, 

sxa2:: ura4 reporter strain JY727. Cells were cultured in YEALU medium until 

stationary phase was reached (approximately 48h) to enable recovery of cells and 

exhaustion of intracellular uracil stores. Cells were plated onto AA plates containing 

5-FOA and uracil and incubated for 5d at 29°C. Colonies were then patched onto AA 

plates containing 5-FOA and uracil. It was not possible to isolate rgsl:: Rgs4 

transformants which contained the human Rgs4 ORF at the rgsl locus by PCR 

screening. 
The inability to isolate rgsl:: Rgs4, sxa2:: ura4 transformants was probably 

due to increased pheromone-independent sxa2 activity, which was observed in the 

rgsl:: Rgs4, sxa2:: lacZ reporter strain (Figure 53). 
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4.6. Summary 

Disruption of the rgsl gene in the Sz. pombe LacZ reporter strain increased 

the pheromone-independent level of LacZ activity, and increased sensitivity and 

response to pheromone. This hypersensitive response to pheromone was rescued by 

expressing szRgslp from a multicopy expression plasmid. 
Expression of heterologous RGS proteins from expression constructs in the 

LacZ reporter strains negatively regulated the Sz. pombe pheromone communication 

pathway to varying extents. This variability of RGS activity was probably due to the 

Ga subunit specificity of specific RGS proteins. Out of the mammalian RGS proteins 

investigated, expression of huRGSlp and huRGS4p in the LacZ reporter strains had 

the greatest reductive effect upon signalling through the pheromone communication 

pathway. The data presented in Chapter 4 indicate that the activity of mammalian 

RGS proteins can be easily studied using the Sz. pombe LacZ reporter strains. 

However, the fact that heterogeneous RGS proteins can function in the Sz. pombe 

system, which is not physically relevant, means that conclusions about RGS function 

and regulation based solely upon data obtained from the reporter strains should be 

viewed with some caution. The ability of mammalian RGS proteins to function as 

GAPs in the Sz. pombe system illustrates the promiscuity of RGS proteins for 

different Ga, subunits. 

It appears that huRGS2p and huRGS4p could be covalently modified in Sz. 

pombe, and while palmitoylation has been observed for RGS4 (Srinivasa et al., 
1998a), there is at present no evidence for the palmitoylation of huRGS2p. 
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Chapter 5. The search for gain-of-function RGS mutants 
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5.1. Introduction 

The resolution of the crystal structure of rat RGS4 complexed with AIF4 - 

activated G; a, i (Tesmer et al., 1997) provided significant structural information 

concerning the mechanism of RGS4 action and important residues within the RGS4 

RGS domain. This study also confirmed the primary mechanism of RGS4 action 

upon the activated G; a, i subunit consisting of the stabilisation of the switch regions of 

Gial that undergo considerable conformational change during the GTPase cycle. The 

mechanism of RGS4 GAP activity has been further confirmed by other investigators 

(Berman et al., 1996; Moy et al., 1999; Sowa et al., 2001). Numerous mutational 

studies have further characterised RGS4 activity and identified inactive RGS4 

mutants, RGS4 mutants with decreased GAP activity and dominant-negative mutants 

(Natochin et al., 1998; Druey and Kehrl, 1997; Srinivasa et al., 1998b). At present 

there has been no report of a mammalian RGS protein with increased GAP activity 

towards Ga subunits. A dominant gain-of-function SST2 (an S. cerevisiae RGS 

protein) mutant has been reported (Dohlman et al., 1995). However, the mutation 

conferring the hyperactivated phenotype resides in the non-conserved domain of 

SST2. 

As I had previously determined that certain human RGS proteins (huRGSlp 

and huRGS4p) were capable of down-regulating the Sz. pombe pheromone signalling 

pathway when expressed from an expression vector, I considered the possibility of 
identifying huRGS4p gain-of-function mutants via random mutagenesis of the 

human Rgs4 ORF via hydroxylamine treatment followed by the screening of mutants 

in the rgsl" sxa2:: ura4 Sz. pombe reporter strain. This approach would require 
integration of the human Rgs4 ORF into the Sz. pombe genome, to ensure increased 

RGS activity within cells was not a result of indiscriminate expression from the 

expression vector (described in Section 4.5.1. ). This mutagenic strategy had 

previously been utilised by Dr. Peter Watson in the Davey laboratory to isolate 

potential szRgslp gain-of-function mutants, and I decided to use this approach in the 

isolation huRGS4p gain-of-function mutants. 
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5.2. Generation of potential Sz. pombe Rgsl GOF mutants 

5.2.1. Introduction 

Prior to the mutagenesis of the human Rgs4 ORF, Dr. Peter Watson 

undertook research in the Davey laboratory to isolate szRgslp gain-of-function 

mutants. The Sz. pombe rgsl ORF was mutagenised via hydroxylamine treatment, 

and two potential gain-of-function mutations were identified in the rgsl ORF. The 

two mutations identified (A512-->G and G913-A) resulted in a Histidine to 

Arginine substitution at amino acid residue 171 (A5124G) and a Valine to 

Isoleucine substitution at amino acid residue 305 (G913-) A) in the Sz. pombe Rgslp 

primary amino acid sequence. I recreated these mutations via site-directed PCR 

amplification to determine their effect upon szRgs1p activity in the sxa2:: lacZ and 

sxa2:: ura4 Sz. pombe reporter strains. 
The sxa2:: lacZ reporter strain has been described in Section 4.2.1. The 

sxa2:: ura4 reporter strain was described in Section 4.5.1. Briefly, in the Sz. pombe 

reporter strains the expression of a reporter protein (LacZ or Sz. pombe Ura4) is 

directed by the activity of the strictly-regulated, pheromone-dependent sxa2 

promoter. Signalling through the pheromone communication pathway following 

pheromone stimulation results in induction of sxa2 promoter activity, and subsequent 

expression of the reporter protein. p-galactosidase activity can be assayed through 

the use of chromogenic substrates in liquid assays, and Ura4 activity can be assessed 
by determining strain viability on selective media plates. 

5.2.2. Amplification of Sz. pombe Rgsl gain-of-function site-directed mutations 

For the Histidine to Arginine substitution at residue 171 in szRgslp, the 

oligonucleotide primers J01249 and J01250 (Figure 58) were used in conjunction 

with a DNA construct (JD1394) containing the rgsl ORF flanked by its 5' and 3' 

non-coding regions (previously constructed by Dr. Peter Watson). The sense primer 
J01249 contains 22 bases complementary to the rgsl ORF initiating at nucleotide 

position +513 relative to the rgsl initiator codon. The antisense primer J01250 

contains 21 bases complementary to the rgsl ORF initiating at nucleotide position 
+512 relative to the rgsl initiator codon, and introduces a guanine nucleotide at 
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nucleotide position +512 in the resulting rgsl ORF (replacing adenine in the wild- 

type rgsl ORF). Subsequent ligation circularised the amplified fragment, creating 

the A-3G mutation at nucleotide position +512 in the rgsl ORF. Nucleotide 

substitution was confirmed by sequencing. 
For the Valine to Isoleucine substitution at amino acid residue 305 in 

szRgslp the oligonucleotide primers J01247 and J01248 were used with a DNA 

construct (JD1394) containing the rgsl ORF flanked by its 5' and 3' non-coding 

regions (Figure 59). The sense primer JO1247 contains 18 bases complementary to 

the rgsl ORF initiating at nucleotide position +914 relative to the rgsl initiator 

codon. The antisense primer JO1248 contains 20 bases complementary to the rgsl 
ORF initiating at nucleotide position +913 relative to the rgsl initiator codon, and 
introduces an adenine nucleotide at nucleotide position 913 in the resulting rgsl 
ORF (replacing guanine in the wild-type rgsl ORF). Subsequent ligation circularised 

the amplified fragment, creating the G4 A mutation at nucleotide +913 in the rgsl 

ORF. Nucleotide substitution was confirmed by sequencing. 
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Generation of the Rgs1H'sl7l4`rg site-directed mutation 

4- 3'caaagatgttgtattgcctgc5'JO1250 

AAC GGA CAT AAT TCT CAA GCC 

TTG CCT GTA TTA AGA GTT CGG 

J01249 5' taattctcaagccgagctttac 3' -º 
Position 169 Asn Gly His Asn Ser Gln Ala 176 
within 

szRgslp 

AAC GGA CGT AAT TCT CAA GCC 

TTG CCT GCA TTA AGA GTT CGG 
Position 169 Asn Gly Arg Asn Ser Gln Ala 176 
within 

szRgslp 

Figure 58. Recreation of the Sz. pombe Rgs1HU174"'g site-directed mutant 
The oligonucleotide primers JO1249 and JO1250 were used in conjunction with a DNA 
template containing the rgsl ORF flanked by its 5' and 3' non-coding regions to generate 
the A-G mutation at nucleotide position +512 in the Sz. pombe rgsl ORF (relative to the 
initiator codon). J01250 introduces a guanine nucleotide at position 512 in the resulting 
rgsl ORF (replacing adenine in the wild-type rgsl ORF). 
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Generation of the Rgslvauos. *ne site-directed mutation 

4- 3' caaatcgatacgtttcccat 5' J01248 

AAG GGT GTT TCC TAT TTT TTG 

TTC CCA CAA AGG ATA AAA AAC 

J01247 5' tttcctattttttgactg 3' -º 
Position 

303 Lys Gly Val Ser Tyr Phe Leu 309 
within 

szRgslp 

AAG GGT ATT TCC TAT TTT TTG 

TTC CCA TAA AGG ATA AAA AAC 

Position 
within 303 Lys Gly Ile Ser Tyr Phe Leu 309 

szRgslp 

Figure 59. Recreation of the Sz. pombe Rgslvauo54ne site-directed mutant 
The oligonucleotide primers JO1247 and J01248 were used in conjunction with a DNA 
template containing the rgsl ORF flanked by its 5' and 3' non-coding regions to generate 
the G-)A mutation at nucleotide +913 in the Sz. pombe rgsl ORF (relative to the initiator 
codon). JO1248 introduces an adenine nucleotide at position 913 in the resulting rgsl ORF 
(replacing guanine in the wild-type rgsl ORF). 
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5.2.3. Integration of rgs1H'sl714A'*g and rgslvai3054IIe ORFs at the rgsl locus in the 

rgsF sxa2:: lacZ reporter strain 

To determine whether the mutations described above conferred increased 

RGS activity upon szRgslp, the mutant rgsl ORFs were integrated at the rgsl locus 

in the rgsl" LacZ reporter strain. The site-directed PCR amplification of the two 

mutant rgsl ORFs described in Section 5.2.2 created constructs in which the 

rgsJH'sl7i4Arg and rgs1 '&305411e ORFs are flanked with the rgsl 5' and 3' non-coding 

regions. Integration fragments for the two mutant rgsl ORFs were liberated via 
SpeIINdel restriction, and the rgsF LacZ reporter strain JY629 transformed with the 

integration fragments. Cells were grown to stationary phase in YEALU medium 
(approximately 48h), plated onto AA plates containing 5-FOA and uracil, and 
incubated for 5d at 29°C. Transformants were patched onto AA plates containing 5- 

FOA and uracil, and screened via PCR amplification using oligonucleotides specific 
for the rgsl 5' non-coding region and the rgsl ORF for the presence of the mutated 

Sz. pombe rgsl ORF at the rgsl locus. 

Genomic DNA was prepared for strains positive by PCR, and the DNA 

digested with HindIIl. Digested DNA was separated on a 1% agarose gel, blotted 

onto a nitrocellulose filter, and probed with a fragment amplified from the rgsl 5' 

non-coding region (Figure 60). Correct isolates were chosen for determination of ß- 

galactosidase activity following P-factor stimulation (JY1190 [Rgs1H's17I-) 'g] and 
JY 1189 [Rgs 1 va13054IIe]). 
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Figure 60. Southern blot analysis confirming integration of rgslHis171_)"rI and 

rgsIVaI3054Il` ORFs at the rgsl locus in the rgs]- sxa2:: IacZ reporter strain 

Genomic DNA was prepared for JY629, JY1190 and JYI 189, and the DNA digested with 
HindIII. Digested DNA was subjected to Southern blot analysis. Correct integration of the 

rgSjHis17I4Ar' and rgSIVal305411e ORFs is indicated by bands of 2652bp. Non-integration of 
the mutant rgsl ORFs is indicated a band of 2980bp (indicating the presence of the urn4 

cassette). 
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5.2.4. ß-galactosidase activity of the Rgs1li'sl7l->"rg and Rgslva1305->ue LacZ 

reporter strains 

Once confirmed by Southern blot analysis, the ß-galactosidase activity of 
JY1190 (Rgs1Hisl7l-)A`g) and JY1 189 (Rgslva13o54iie) was determined following 

stimulation with a range of P-factor concentrations (Figures 61 and 62). 

Integration of the rgs1H's»1->Arg ORF at the rgsl locus in the rgsl' LacZ 

reporter strain reduced pheromone-independent LacZ activity down to the level seen 
for the rgsl+ LacZ reporter strain JY544 (Figure 61). The Rgs1His171-ý^`B protein also 

appeared capable of reducing pheromone-dependent LacZ activity down to those 

levels seen for the rgs1+ LacZ reporter strain, up to 100U/ml P-factor. Thus, the 

Rgs1H's171->'"g LacZ reporter strain exhibited a similar response profile to the rgs1+ 
LacZ reporter strain upon P-factor stimulation. These results indicate that in the Sz. 

pombe LacZ reporter strain the Sz. pombe Rgs1HisI7l4A"g mutation did not exhibit a 

phenotype consistent with the mutation conferring increased RGS activity compared 

to wild-type Sz. pombe Rgslp. The His171-Arg mutation did not appear to 

adversely affect szRgslp activity. The Hisl7l residue lies outside the predicted RGS 

domain of szRgslp. 
Integration of the rgsl va1305411c ORF at the rgsl locus in the rgsl' LacZ 

reporter strain (JY1 189) reduced pheromone-independent LacZ activity down to the 

level seen for the rgs1+ LacZ reporter strain JY544 (Figure 62), as seen for the 

Rgs1' 171-> "g mutation. The Rgslva13os. )ue mutant protein also appeared capable of 

reducing pheromone-dependent LacZ activity down to similar levels seen for the 

rgs1+ LacZ reporter strain, up to 100U/ml P factor. As with the Rgs1"'s1714A`8 

mutation, the Rgslva1305-*ne mutation did not appear to adversely affect szRgslp 

activity. The Va1305 residue lies outside the predicted RGS domain of szRgslp. 

These results indicate that in the Sz. pombe LacZ reporter strain the 

Rgs I MS171 4ft and Rgs 1 Va13O5- 1Ie mutations did not exhibit a phenotype consistent 

with the mutations conferring increased RGS activity compared to the wild-type Sz. 

pombe Rgslp. 
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Figure 61. The rgsJHis1714Arg LacZ reporter strain exhibits similar pheromone 
independent and pheromone dependent ß-galactosidase activity as the rgs1+ LacZ 

reporter strain 

The rgsl' (JY544), rgsF (JY629) and rgsl'1's'71 (JY1190) LacZ reporter strains were 
assayed for ß-galactosidase activity following exposure to a range of P-factor pheromone 
concentrations. Reporter strains were cultured to a density of 5x105 cells/ml in DMM 

medium prior to exposure to pheromone for 16h. LacZ activity was calculated as the ratio 
of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean of three 
assays; y-axis error bars represent standard deviation. 
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Figure 62. The rgsls°30540e LacZ reporter strain exhibits similar pheromone 
independent and pheromone dependent (3-galactosidase activity as the rgsl+ LacZ 
reporter strain 

The rgsl+ (JY544), rgsl- (JY629) and rgs/va13054ue (JY1189) LacZ reporter strains were 
assayed for P-galactosidase activity following exposure to a range of P-factor pheromone 
concentrations. Reporter strains were cultured to a density of 5x105 cells/ml in DMM 
medium prior to exposure to pheromone for 16h. LacZ activity was calculated as the ratio 
of o-nitrophenol product formed (OD420) to cell number. Data shown is the mean of three 
assays; y-axis error bars represent standard deviation. 
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5.2.5. Integration of rgS1111s1714 
I 
A'9 and rgSIVA130541le ORFs at the rgs] locus in the 

sxa2:: ura4 reporter strain 

As the two Sz. pombe Rgslp mutants were originally isolated from a screen 

using the rgsl- sxa2:: ura4 reporter strain, the re-created mutant rgsl ORFs were 
integrated at the rgs] locus in the sxa2:: ura4 reporter strain. In the rgsl* sxa2:: ura4 
reporter strain the ORF for the reporter protein Ura4 is placed under the direction of 
the =2 promoter (as is the LacZ ORF in the sxa2:: IacZ reporter strains). As a 

consequence, Ura4 expression is only induced as a result of signalling through the 

pheromone communication pathway. 
The rgSj:: rgSjHiS1714Ar9 and rgSj:: rgS1va1305411C integration fragments 

described in Section 6.2.3 were introduced into the rgsl:: ura4 sxa2:: ura4 reporter 

strain JY727 (in this sxa2:: ura4 reporter strain the rgs] ORF is disrupted with the 

ura4 cassette at an internal BamHI site). Cells were grown to stationary phase in 

YEALU medium (approximately 48h), plated onto AA plates containing uracil, 5- 

FOA and IOOU/znI Mactor and incubated for 5d at 290C. Colonies were patched 

onto AA plates containing uracil, 5-FOA and 100U/ml Mactor. 5-FOA selects for 

the absence of Ura4 activity. The absence of RGS activity in the sxa2:: ura4 reporter 

strain JY727 results in an increased level of pheromone-independent signal 

transduction through the pheromone signalling pathway, inducing Ura4 expression to 

such a level that cells are unable to grow on growth media containing 5-FOA. Any 

genetic change that results in reduced signalling though the pathway will enable cells 

to grow on media containing 5-FOA and Mactor pheromone (the greater the 

reduction in signalling through the pathway the greater the Mactor concentration on 

which cells can grow). The transformants were plated onto 100U/ml Mactor, as at 

this concentration the presence of the wild-tYPe szRgslp is incapable of inhibiting 

signalling to a sufficient degree to suppress Ura4 expression from the =2 locus. 

Thus at 100U/ml Mactor, presumably only those strains in which there is a much 

reduced level of signalling will be viable. This could theoretically be achieved by the 

presence of a gain-offunction RGS protein. 
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Transformants were screened via PCR amplification using oligonucleotides 

complementary to the rgsl 5' non-coding region and the rgsl ORF downstream of 

the ura4 cassette for the presence of the Sz. pombe rgsl ORF at the rgsl locus. 

Genomic DNA was prepared for strains positive by PCR, and the DNA 

digested with HindIII. Digested DNA was separated on a 1% agarose gel, blotted 

onto a nitrocellulose filter, and probed with a fragment amplified from the rgsl 5' 

non-coding region (Figure 63). Correct isolates were chosen for characterisation of 
Ura4 expression on AA plates containing 5-FOA, uracil and P-factor pheromone 
(JY1192 [Rgs1HiSI7I. A`s] and JY1191 [Rgslvaf305 le]). 

5.2.6. RgsjIfisI7I4Ar9 and Rgs lVaI30541le sxa2:: ura4 reporter strains are viable on 

AA plates containing 5-FOA up to 100OU/ml P-factor 

JY1192 (RgSlHis17I, Ag ) and JY 1191 (Rgs 1 Va1305411e) were cultured overnight 

in AA media lacking uracil and 5xI 04 cells plated onto AA plates containing uracil 

and 5-FOA and a range of Mactor concentrations. Plates were incubated for 3d at 

29'C. 

From Figure 64 it can be seen that both the presence of the Hisl7l->Arg 

(JY1192) and the Va130541le (JY1191) szRgslp mutations in the Sz. pombe 

sxa2:: ura4 reporter strain enabled the strains to grow on 5-FOA plates containing 

uracil in the presence of up to 1000U/ml Mactor. The rgsl" sxa2:: ura4 reporter 

strain was incapable of growth on AA plates containing 5-FOA and uracil regardless 

of the presence or absence of Mactor pheromone. This was due to increased 

pheromone-independent and pheromone-dependent signalling through the 

pheromone communication pathway compared to the rgsl+ sxa2:: ura4 reporter 

strain, which was only capable of growth on AA plates containing 5-FOA and uracil 

up to I U/ml Mactor. 

Despite the fact that in the sxa2:: IacZ reporter strain the two Sz. pombe Rgs Ip 

mutants Rgs lHi, 171 "4'9 and Rgs 1 Va130511" did not display phenotypes consistent with 

the mutations conferring increased RGS activity compared to the wild-type Rgsl 

protein, these mutations did appear to enable the sxa2:: ura4 reporter strain to grow in 

the presence of 5-FOA at Mactor concentrations greater than that enabled by the 

wild-type szRgs Ip (I 000U/ml Mactor compared to I U/ml Mactor). One reason for 
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this anomaly could be the timescales involved in the two different assays. In the ß- 

galactosidase assay, LacZ activity was determined after 16h of pheromone 

stimulation. In the 5-FOA viability assay, strain viability was assessed after 3d of 

pheromone stimulation. The longer timescale of the viability assay potentially 
introduces greater physiological complexity, as a result of an increased number of 

cell doublings. 
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Figure 63. Southern blot analysis confirming integration of rgs IHiSI71-)ArI and 
rgS, Va13"'41Ie ORFs at the rgs] locus in the rgsl- sxa2:: ura4 reporter strain 

Genomic DNA was prepared for JY727, JYI 192 and JYl 191, and the DNA Hindill- 
restricted and subjected to Southern blot analysis. A band of 2652bp indicated the correct 
integration of the mutant rgsl ORFs at the rg. vl locus. Non-integration of the mutant rgsl 
ORF was indicated by a band of 4462bp. 
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Figure 64. Rgs 1 Hi. %171-*Arg and Rgsl VvI305411c sxa2:: ura4 reporter strains are capable of 
growth on AA plates containing 5-FOA, uracil and 100OU/ml P-factor 

JY603 (rgsl+ [A]), JYI 192 (Rgs 1 His] 714Arg [Bj) and JY 1191 (Rgs I VaI305411e [C]) were 
cultured overnight in AA media lacking uracil and 5x 104 cells plated onto AA plates 
containing uracil and 5-FOA and a range of P-factor concentrations. Plates were incubated 
for 3d at 29T. JY603 fon-ned colonies up to IU P-factor/ml. JY 1192 and JY 1191 were 
capable of forming colonies in the presence of up to I 00OU/ml Mactor. 
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5.3. Mutagenesis of human RGS4 

Both huRGS1p and huRGS4p have been shown to be capable of negatively 

regulating the pheromone communication pathway in Sz. pombe when expressed 
from multicopy expression vectors (Chapter 4). The extent of huRGS 1p and 
huRGS4p RGS activity upon this G protein signalling pathway depends upon the 

level of expression (and thus RGS activity) within the cell. When expressed from an 

expression vector, huRGSlp and huRGS4p appeared to modulate the pheromone 

signalling pathway to a comparable degree when compared to expression of Sz. 

pombe Rgslp from the same vector. However, when expressed from single copy in a 

rgsl' LacZ reporter strain, huRGSlp appeared capable of reducing signalling only at 
low P-factor concentrations (up to IU/ml P-factor), and huRGS4p only appeared to 

lower the level of signalling through the pheromone communication pathway to a 

small degree compared to the rgsl' LacZ reporter strain. The decreased ability of 
huRGSlp and huRGS4p to inhibit signalling through the pheromone communication 

pathway compared to that of szRgslp was likely due to their lower affinities for the 

Sz. pombe G. subunit, Gpa1. 

At present no gain-of-function mutations have been identified for human 

RGS proteins. It was decided to initially concentrate on human RGS4 for 

mutagenesis, as structural analyses of RGS proteins have centred on this RGS 

protein. The rgsl' sxa2:: ura4 reporter strain was chosen as a host strain to screen for 

RGS4 gain-of-function mutants, as in conjunction with the viability-based assay 

using 5-FOA, thousands of isolates could be screened. 

5.3.1. Mutagenesis of the rgsl:: Rgs4 integration construct 

The rgsl:: Rgs4+ integration construct, comprised of the human Rgs4 ORF 

flanked with Sz. pombe rgs] 5' and 3' non-coding regions (Section 4.4.4), was 

treated with hydroxylamine (Section 2.2.11) and the DNA purified. DH5 E. coli 

were then transformed with the purified hydroxylamine-treated rgsl:: Rgs4* 

construct. Approximately 45,000 bacterial colonies were combined to create a library 

of hydroxylamine-treated rgsl:: Rgs4* constructs. The rgsl:: Rgs4* integration 

fragment was liberated from the hydroxylamine-treated integration construct via 
NdeIlSpel restriction, and the rgsI'sxa2:: ura4 reporter strain (JY727) transformed 
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with the rgsl:: Rgs4* integration construct (Figure 65). Cells were grown to 

stationary phase in YEALU medium (approximately 48h), plated onto AA plates 

containing uracil, 5-FOA and 100U/ml Mactor, and grown for 5d at 290C. The 

reasoning behind the use of l00U/ml P-factor in selective plates was to identify 

transformants in which there was a significant inhibition of the pheromone signal 

transduction pathway compared to the rgsl+ and rgsl' reporter strains. One way this 

could be achieved is though increased RGS activity, as a result of gain-of-function 

mutations in the human Rgs4 ORF. Transformants were patched onto AA plates 

containing uracil, 5-FOA and 100U/nil Mactor and the morphology of the cells 

observed microscopically. 
The rgsI'sxa2:: ura4 reporter strain was incapable of growth on AA media 

containing 5-FOA due to its increased level of pheromone-independent signalling 

through the pheromone signal transduction pathway relative to the rgsl+ sxa2:: ura4 

reporter strain. As it had been shown that integration of the human Rgs4 ORF at the 

rgs] locus in the rgsl- LacZ reporter strain did not appear to reduce the high level of 

pheromone-independent sxa2 promoter activity seen for the rgsl' LacZ reporter 

strain, it was envisaged that strains capable of growth on 5-FOA plates containing P- 

factor may have the potential for expressing a mutated, hyper-activated form of 

huRGS4p. 
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Figure 65. Illydroxylarnine treatment of human Rg. 4 ORF and its subsequent 
integration at the Sz. Pombe rgsl locus in file rg. vIxva2:: ura4 reporter Arain 

The rg. 0:: Rg. %4 integration construct %%as licated with hydroxylanunc. and a hactcrial 
library of the hydroxylamine-trcatcd rg. v/:: Rgv4 integration construct created. The 
rg. v1:: Rg. v4 integration construct was liberated from the hydroxylaminc-Ircated imcgration 
construct via N(li, l/. S`/)(, [ restriction, and the rgs/* vx, 12:: uru4 reporter strain transformed 
with the rg, %-1:: Rg. v4 integration fragment. Cells were grown to log phase in YFALU 
medium. plaicd onto AA plates containing uracil, 540A and 10011 ml 11 factor. 
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5.3.2. Screening for rgsl:: Rgs4* sxa2:: ura4+ LacZ reporter strains 

As I was hoping to isolate huRGS4p gain-of-function mutants, it was 

anticipated that for those transformants in which the pheromone signalling pathway 
had been inhibited (as a result of increased RGS activity) there would be reduced 

sensitivity to pheromone stimulation. One morphological response to pheromone 

stimulation is the formation of shmoos (cells appear elongated as a result of 

unidirectional growth toward extracellular pheromone). Initially I microscopically 

studied transformants to determine which did not appear to shmoo when grown on 5- 

FOA plates in the presence of Mactor. 42 out of the 85 transformants (-50%) that 

were able to grow on 5-FOA plates containing 100U/ml Mactor did not appear to 

shmoo in response to Mactor pheromone stimulation. Those isolates that did not 

shmoo often had a more 'bulbous' morphology compared to the Sz. pombe wild-type 

morphology in the absence of pheromone. 
Isolates that did not exhibit a morphological response to Mactor were then 

screened for the presence of the human Rgs4 ORF at the rgsl locus using the 

oligonucleotides J0930 and J0931. The sense primer J0930 contains 18 bases 

complementary to the rgs] 5' non-coding region (initiating at nucleotide position - 
811 relative to the rgs] initiator codon). The antisense primer J0931 contains 18 

bases complementary to the rgs] 3' non-coding region (initiating at nucleotide 

position +1888 relative to the rgs] initiator codon). J0930 and J0931 amplify the 

rgs] 5' and 3' non-coding regions, and any intervening sequence. Isolates in which 

the human Rgs4 ORF had integrated at the rgs] locus gave a band of approximately 
1.8kb, whereas isolates in which the human Rgs4 ORF had failed to integrate at the 

rgs] locus gave a band of approximately 3kb, indicating the presence of the ura4 

cassette at the rgs] locus (Figure 66). 32 of the 42 isolates (-75%) that did not 

shmoo in response to Mactor stimulation appeared to contain the human Rgs4 ORF 

at the rgsl locus, as determined by PCR amplification. 
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Figure 66. Screening for rgsl:: Rgs4, sxa2:: ura4 transformants 

Transformants were microscopically observed to deten-nine which did not exhibit the 
typical morphological response to Mactor. These isolates were then screened for the 
presence of the human Rg. 4 ORF at the rgs/ locus using the oligonucleotides J0930 and 
J0931. A band of 1.8kb indicated successful integration of the rgvl:: Rg. v4 construct at the 
rgs] locus. Non-integration of the rgsI:: Rgs4 construct was indicated by a band of 
approximately 3kb. The J0930/JO931 fragments amplified from the rgsI:: Rgs4* strains 
were cloned into the Pvull site of pKS and sequenced. 
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5.3.3. Recovery of human Rgs4 ORFs from rgsl:: Rgs4* LacZ reporter strains 

Genomic DNA was prepared from strains containing the human Rgs4 ORF at 

the rgsl locus identified from the screening procedure described in Section 5.3.2. 

The Rgs4 ORF and flanking rgsl 5' and 3' non-coding regions were amplified using 

the oligonucleotides J0930 and J0931. The amplified rgsl:: Rgs4 fragments were 

cloned into the PvuII site of pKS and sequenced either manually (via the 

dideoxynucleotide method) or via the departmental automated sequencing system. 

5.3.4. Sequencing of human Rgs4* ORFs 

25 out of 32 (78%) separate human Rgs4 ORFs were sequenced (time 

restraints prevented the sequencing of all isolates), and three separate mutations were 

identified. 

Two silent mutations were identified in the human Rgs4 ORF (C333->T and 
C504-)T), with no resulting change in the huRGS4p primary sequence (Figure 67). 

The third mutation occurred at the nucleotide position 58 (A-) G) in the human Rgs4 

ORF and results in a Lysine to Glutamate substitution at amino acid residue 20 in the 

primary sequence of huRGS4p (Figure 68). 

The mutation identified at residue 20 in the RGS4 primary amino acid 

sequence is not in the conserved RGS domain of the protein, and no mutational 

analysis has as yet been carried out for this lysine residue. However, the N-terminal 

domain of RGS4 has been reported to confer receptor-selective inhibition of G 

protein signalling (Zeng et al., 1998), and it is possible that the Lysine to Glutamate 

substitution at residue 20 could effect receptor selectivity. The N-terminus of RGS4 

is essential for high potency inhibition of G protein-coupled signalling, and 

contributes significantly to RGS4 interaction with the receptor-Ga, protein complex 

(Zeng et al., 1998). 
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Silent mutations generated in the Rgs4 ORF 

AGT CCC AAG GCC AAA AAG ATC 

TCA GGG TTC CGG TTT TTC TAG 
Position 
within 108 Ser Pro Lys Ala Lys Lys Ile 114 

huRGS4p 4 

AGT CCC AAG GCT AAA AAG ATC 

TCA GGG TTC CGA TTT TTC TAG 

108 Ser Pro Lys Ala Lys Lys Ile 114 

TAC CGC CGC TTC CTC AAG TCT 

ATG GCG GCG AAG GAG TTC AGA 
Position 165 Tyr Arg Arg Phe Leu Lys Ser 171 
within 

h RGS4 u p 

TAC CGC CGC TTT CTC AAG TCT 

ATG GCG GCG AAA GAG TTC AGA 

165 Tyr Arg Arg Phe Leu Lys Ser 171 

Figure 67. Silent mutations identified In the Rgs4 ORF resulting from hydroxylamine 
treatment of the rgsl:: Rgs4 Integration construct. 
The rgsl:: Rgs4* fragments amplified from the rgsl:: Rgs4* sxa2:: ura4 strains were cloned 
into the Pvull site of pKS and sequenced. Two mutations identified in the human Rgs4 
ORF were silent (C3334T and C5044T), with no resulting change in protein primary 
sequence. 
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Amplification of huRGS4Lys2°'Gi° site-directed mutation 

* JO1434 3' cctcacgttttctatac 5' 

GAT ATG AAA CAT CGG CTA GGT 

CTA TAC TTT GTA GCC GAT CCA 

JO 1433 5' gaacatcggctaggtttcc 3'--lo. 
Position 18 Asp Met Lys His Arg Leu Gly 24 
within 

huRGS4p 

GAT ATG GAA CAT CGG CTA GGT 
CTA TAC CTT GTA GCC GAT CCA 

Position 18 Asp Met Glu His Arg Leu Gly 24 
within 

huRGS4p 

Figure 68. A584G mutation Identified In the Rgs4 ORF resulting from 
hydroxylamine treatment of the rgsl:: Rgs4 Integration construct. 
The rgsl:: Rgs4* fragments amplified from the rgsl:: Rgs4* sxa2:: ura4 strains were cloned 
into thePvulI site of pKS and sequenced. A mutation at nucleotide position 58 in the Rgs4 
ORF replaces an adenine nucleotide with guanine. This results in a Lysine to Glutamate 
substitution at amino acid residue 20 in the human RGS4 primary sequence. Site-directed 
amplification using the primers J01433 and J01434 recreates the A584G mutation in the 
Rgs4 ORF. 
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5.3.5. Recreation of human Rgs4Lys204G]u mutation 

The Lys20-->Glu mutation identified in Section 5.3.4 was re-created using the 

oligonucleotides J01433 and J01434 (Figure 68) in conjunction with the rgsl:: Rgs4 
integration construct described in Chapter 4. The sense primer J01433 contains 19 
bases complementary to the human Rgs4 ORF initiating at nucleotide position +58 

relative to the Rgs4 initiator codon, and introduces a guanine nucleotide at nucleotide 

position 58 in the resulting Rgs4 ORF (replacing adenine in the wild-type Rgs4 
ORF). The antisense primer J01434 contains 18 bases complementary to the human 

Rgs4 ORF initiating at nucleotide position +57 relative to the Rgs4 initiator codon. 
These primers re-create the A--)G mutation at nucleotide position 58 in the Rgs4 

ORF that results in the Lysine to Glutamate substitution at amino acid residue 20 in 

the huRGS4p primary sequence. Subsequent ligation circularised the amplifled 
fragment, creating the G4A mutation at nucleotide +58 in the Rgs4 ORF. The 

substitution was confirmed by sequencing. 

5.3.6. Integration of Rgs4Lys2O Iu at the rgsl locus in the rgsl' LacZ reporter 

strain 

Site-directed PCR amplification of the mutant Rgs4 ORF created a construct 
in which the Rgs4 Lys20-*Glu ORF is flanked with Sz. pombe rgs] 5' and 3' non-coding 

regions. The rgsl' sxa2:: IacZ reporter strain JY629 was transformed with the 

rgsl:: Rgs4 Lys20-)Glu integration fragment liberated via SpellNdel restriction of the 

rgsl:: Rgs4 Lys204GIu integration construct. Cells were cultured to stationary phase in 

YEALU medium (approximately 48h), plated onto AA plates containing 5-FOA and 

uracil and incubated for 5d at 29'C. Colonies were patched onto AA plates 

containing 5-FOA and uracil, and screened via PCR amplification using 

oligonucleotides complementary to the rgs] 5' non-coding region, the Rgs4 ORF and 

the rgs] 3' non-coding region for the presence of the Rgs4 Lys204GIu ORF at the rgsl 
locus (Figure 69). One sxa2:: IacZ strain identified as possessing an integrated 
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Figure 69. PCR amplification confirming the integration of Rgs4 Lys20->Gl,, ORF at the 
rgsl locus in the rgsl- LacZ reporter strain 
The rgs]-, s. ra2:: IacZ reporter strain JY629 was transformed with the rgsl:: Rg. v4 Lys204G]u 
integration fragment liberated via SpelINdel restriction from the rgsl:: Rgs4 Lys20461u 
integration construct. Transformants were screened via PCR amplification for the presence 
of the Rg. 4 LY9204GIu ORF at the rgs] locus using oligonucleotides complementary to the 
rgsl 5' non-coding region (J0930), the Rg. 4 ORF (JO1015) and the rgs] 3' non-coding 
region (J093 1). 
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Rgs4 Lys204GIu ORF at the rgs] locus (JYI 195) was chosen to assess pheromone- 
independent and pheromone-dependent P-galactosidase activity. 

5.3.7. P-galactosidase activity of the human RGS4 Lys204GIu integrant 
Lys204GI, The P-galactosidase activity of JY 1195 (rgsl:: Rgs4 , sxa2:: IacZ) was 

determined following stimulation with a range of Mactor concentrations. The rgsl+, 

rgsl' and rgsl:: Rgs4+ LacZ reporter strains were included in the assay to determine 

whether the RGS4 Lys204GIu mutant displayed a phenotype consistent with the 

Lys20->Arg mutation conferring a huRGS4p gain-of-function phenotype ( Figure 

70). 

Integration of the human Rgs4 Lys20-)Glu mutant ORF in the rgsl' LacZ reporter 

strain (JY 1195) reduced the pheromone-independent level of LacZ activity compared 
to the rgsl:: Rgs4+ LacZ reporter strain (JYI 153) and the rgsl' LacZ reporter strain 
(JY629). However, pheromone-independent LacZ activity was greater in JYI 195 

than that seen for the rgsl+ LacZ reporter strain (JY544). Above 10 U/ml Mactor 

LacZ activity of the mutant RGS4 strain was increased compared to that seen for the 

rgsl+, rgsl' and Rgs4+ LacZ reporter strains. 
The data presented in Figure 70. suggest that that the Lys20-)Glu mutation 

in huRGS4p reduced pheromone-independent LacZ activity to a greater degree than 
the wild type huRGS4p, but did not appear to reduce pheromone-dependent LacZ 

activity compared to wild type huRGS4p, and indeed above IOU/ml Mactor the 
Rgs4 Lys2040' LacZ reporter strain exhibited greater LacZ activity. This suggests that 

the Lys20->Glu mutation did not increase the RGS activity of huRGS4p compared 
to the wild-type huRGS4p. This is anomalous with the fact that the mutation was 
present in a strain capable of growth in the presence of 5-FOA when stimulated with 
100U/ml Mactor. As with the szRgslp mutants described in Section 5.2.4., these 

results could be explained by the timescales of the assays. In the P-galactosidase 

assay, LacZ activity was determined after 16h of pheromone stimulation. In the 5- 

FOA viability assay, cells were stimulated for 3d. As well as pheromone 

communication, other physiological systems, such as cell growth and differentiation, 

may complicate the conclusions that can be reached. 
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Figure 70. The Rgs4 Lys2OIA" LacZ reporter strain exhibits reduced pheromone- 
independent P-galactosidase activity compared to the Rgs4, LacZ reporter strain but 
increased pheromone-dependent P-galactosidase activity above IOU/ml P-factor 

The rgsl* (JY544). rgs] (JY629), Rgs4+ (JYI 153) and Rgs4' ys20-, Arg (JY 1196) LacZ 

reporter strains were assayed for P-galactosidase acdvity following exposure to a range of 
P-factor pheromone concentrations. Reporter strains were cultured to a density of 5x 105 
cells/ml in DMM medium prior to exposure to pheromone for 16h. UcZ activity was 
calculated as the ratio of o-nitrophenol product formed (OD420) to cell number. Data shown 
is the mean of three assays, y-axis error bars represent standard deviation. 
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5.4. Summary 

Chapter 5 describes the creation of two szRgslp mutants, and the isolation of 

a huRGS4p mutant, that enabled the Ura4 reporter strain to grow at P-factor 

concentrations above that enabled by the wild-type szRgs I p. 
The use of a sxa2:: ura4 reporter strain to screen for proteins that inhibit the 

pheromone communication pathway has been described, and represents a simple tool 

to screen thousands of colonies. This system could also be used to isolate dominant- 

negative proteins, which interfere with the GAP activity of wild-type RGS proteins. 
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Chapter 6. Discussion 
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6.1. Overview 

Within this thesis I have described the generation of a temperature-sensitive 

Sz. pombe Ura4p marker (Chapter 3), which expands the currently limited number of 

markers available for the genetic manipulation of Sz. pombe. The ura4ts cassette 
described can be used to carry out multiple gene disruptions, and presents greater 

scope when sequential gene disruptions are desired in conjunction with the selection 

of plasmid-borne markers. 
Within Chapter 4,1 describe the use of Sz. pombe LacZ reporter strains to 

assess the ability of mammalian RGS proteins to rescue the hypersensitive phenotype 

of the rgsl' LacZ reporter strain. The ability of the C-terminal RGS domain of Sz. 

pombe was also investigated for its ability to negatively regulate the pheromone 

signalling pathway. The human Rgs] and human Rgs4 ORFs were integrated at the 

rgs] locus in the rgsl' LacZ and Ura4 reporter strains to determine whether they 

could rescue the hypersensitive phenotype when expressed from single copy. 

The generation of RGS mutants is described in Chapter S. Two site-directed 

szRgslp mutants were created following the isolation of potential gain-of-function 

szRgslp mutants previously in the Davey laboratory. The mutagenesis of human 

RGS4 via hydroxylarnine treatment to isolate a gain-offunction huRGS4p mutant is 

also described, which resulted in a single missense mutation being identified. 

6.2. A temperature-sensitive Sz. pombe Ura4p marker has been created 

The Sz. pombe ura4 gene encodes a biosynthetic gene required for growth in 

the absence of extracellular uracil. Ura4p has. number of advantages over other Sz. 

pombe markers, including the availability of compounds for negative selection, for 

example 5-FOA (Boeke et al., 1984), a fluoropyrimidine analogue that is lethal to 

cells expressing a functional ura4 gene. 

The Sz. pombe ura4 cassette was integrated downstream of a cloned copy of 

the Sz. pombe krp] ORF. This construct was then used as a template for mutagenic 

PCR using Taq DNA polymerase and a modified PCR buffer. Integration of the 

amplified krpl>ura4 fragment into a ura4-D]8 strain resulted in some of the 
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transformants exhibiting a temperature-sensitive Ura4p phenotype. The ura4 ORF in 

one of these strains was found to contain a T-to-C mutation at nucleotide position 
+782 (relative to the ura4 initiator codon). This mutation results in a leucine to 

proline substitution at residue 261 in the primary sequence of Ura4p. Recreation of 
the T-to-C mutation at position +782 in the ura4 ORF confirmed that this mutation 
was responsible for the temperature-sensitive phenotype of Ura4p. 

6.2.1. The ura4"' cassette aids sequential gene disruptions 

To demonstrate the use of the ura4s cassette in gene disruption strategies, the 

irpl gene of Sz. pombe was disrupted with an irp1:: ura4t' disruption construct, and 
transformants screened on medium lacking uracil at 23*C. Homologous integrants 

were unable to grow on plates lacking uracil at 37'C. The prk] gene of the 

irp]:: ura4's strain was subsequently disrupted with the wild-type ura4 cassette, and 
transformants isolated on medium lacking uracil at 37'C. 

One drawback of Sz. pombe as an experimental organism is the limited 

availability of selectable markers, and while some markers used for the selection of 

genetic manipulations in S. cerevisiae are capable of rescuing auxotrophic Sz. pombe 

strains when carried on multicopy plasmids, they are often incapable of 

complementing an auxotroph when in single copy (the URA3 gene of 9 cerevisiae 
fails to rescue a Sz. pombe ura4 auxotroph). The restricted availability of Sz. pombe 

markers limits the number of sequential disruptions that can be carried out within a 

strain. Some markers have been developed that enable a gene to be disrupted by a 

marker, with the ensuing excision of the marker leaving behind a "scar" within the 

chromosome (Waddell and Jenkins, 1995; Alani et al, 1987). It was envisaged that 

the temperature-sensitive ura4 cassette would aid sequential integration events in a 

single strain, limiting the number of intermediate steps. 

The ura4' cassette also aids discrimination between homologous integration 

events and the presence of the ura4" cassette on autonomously replicating plasmids, 

enabling efficient screening of transformants. The presence of multiple copies of the 

ura4" cassette enables growth at restrictive temperatures, while the integration of a 

single genomic copy only enables growth at the permissive temperature. Thus, 

replicating transformants to plates lacking uracil at 37'C can screen out 
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transformants in which the ura4t' cassette is borne on autonomouslY replicating 

plasmids. 

6.3. Expression of mammalian RGS proteins in ST, pombe 

It has been well established that mammalian RGS proteins can inhibit the 

pheromone response in S. cerevisiae (Druey et al., 1996; Chen et al., 1997), and it 

was thus of interest to determine whether mammalian RGS proteins would also be 

capable of negatively regulating the Sz. pombe pheromone communication pathway. 
In order to investigate the activity of mammalian RGS proteins upon the Sz. pombe 

pheromone communication pathway, mammalian RGS proteins were expressed in 

reporter strains in which the expression of reporter proteins (LacZ and Ura4p) were 
directed by the activity of the pheromone-regulated sxa2 promoter. 

6.3.1. Sz. pombe reporter systems have been created 

Sz. pombe reporter strains were created by Kevin Davis and Mark Didmon in 

the laboratory to aid investigation of the pheromone signal transduction cascade. In 

these strains the open reading frames of the reporter proteins LacZ and Ura4 were 

integrated immediately downstream of the sxa2 promoter. Expression of sxa2 in M 

cells is tightly regulated by P-factor stimulation, with sxa2 activity only detectable 

following pheromone stimulation. Expression of sxa2 is dose-dependent, with 

greater P-factor concentrations resulting in greater sxa2 expression. Thus, in the Sz. 

pombe reporter strains, pheromone stimulation results in lacZ or ura4 expression, 

which can be qualitatively or quantitatively measured, and reflects the level of 

signalling through the pheromone communication pathway. 

6.3.2. Disruption of Sz. pombe Rgslp increased sensitivity and response in a 

LacZ reporter strains 

The Sz. pombe RGS protein, szRgslp, was first reported by Tesmer et al. 
(1997) as a hypothetical RGS ORF. This protein has been characterised by Watson et 

al. (1999) and Pereira and Jones (2001), and acts as a GTPase-activating protein for 
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the Sz. pombe G,, subunit, Gpalp. Both groups reported that loss of szRgslp 

increased signalling through the pheromone communication pathway, and resulted in 

the loss of mating ability. 
Data presented in this thesis confirm that a LacZ reporter strain lacking the 

rgs] gene (rgsl) exhibited increased sensitivity and response to pheromone (Chapter 

4). Expression of szRgslp from a multicopy expression vector rescued the 

hypersensitive phenotype of the rgsl"LacZ reporter strain. 
At high levels of Mactor (1000U/ml) the rgsl+ LacZ reporter strain 

possessed greater lacZ activity compared to the rgs]" LacZ reporter strain (reflecting 

a greater level of signalling). This was in contrast to LacZ activities observed at 

lower Mactor concentrations, as the rgsl' LacZ reporter strain exhibited increased 

sensitivity and response to Mactor. This could reflect the ability of RGS proteins to 

increase the kinetics of the G protein activation and inactivation cycle, as observed 

by other groups (Doupnik et al., 1997). This consequence of RGS proteins is thought 

to result from faster rates of deactivation, and the fact that receptor/G protein 

complexes are kept as functional units at the plasma membrane by RGS proteins. 

The absence of an RGS protein has the consequence that G proteins are inactivated 

slowly as a consequence of their intrinsic GTPase activity. The ability of RGS 

proteins to accelerate the rate of GTP hydrolysis may thus result in a greater 

concentration of inactive G proteins in G protein/receptor complexes at the plasma 

membrane that are available for re-activation. 

6.3.3. Mammalian RGS proteins rescue the hypersensitive phenotype of the 

rgsl' LacZ reporter strain 

It had been observed that expression of szRgslp within an rgsl' LacZ 

reporter strain rescued the hypersensitive phenotype, and the ability of several 

mammalian RGS proteins to negatively regulate the pheromone signalling pathway 

of the rgsl+ and rgsl'LacZ reporter strains was investigated. 

Human RGS1 and human RGS4 displayed the greatest ability to inhibit the 

pheromone communication pathway in rgsl+ and rgsl' LacZ reporter strains, to 

similar degrees as szRgslp. Human RGS2, human RGS3, human RGS9-2 and 
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murine RGS2 complemented the rgsl+ and rgsl' LacZ reporter strains to lesser, 

varying degrees. 

The most obvious reason for differential activity of mammalian RGS proteins 
upon the pheromone communication pathway is G subunit specificity. HuRGS4p 

has been reported to act as a GAP for numerous G subunits, both in vitro and in 

vivo, while human RGS2 displays a preference for G,, q over G,, i subunits (Heximer et 

al., 1997). It is thus likely that the different abilities of the RGS proteins to 

negatively regulate the Sz. pombe pheromone signalling pathway reflects their 

affinity for the Sz. pombe G,, subunit, Gpalp. The fact that heterogeneous RGS 

proteins can function as GAPs for the Sz. pombe G,,, subunit reflects their 

promiscuity for G,, subunits. The ability of mammalian RGS proteins to act as GAPs 

in Sz. pombe also means that caution should be taken when extrapolating the results 
to eukaryotic systems. 

To further characterize mammalian RGS protein activity in Sz. pombe, it 

would be interesting to investigate their localization, for example using proteins 

tagged with the green fluorescent protein (GFP). It is possible that some of the RGS 

proteins investigated did not display significant GAP activity, as a result of mis- 
localisation. 

6.3.4. Human RGS2 and human RGS4 are expressed in the Sz. poinbe rgsl' 
LacZ reporter strain and may be covalently modified 

Expression of huRGS2p did not result in as great a reduction in LacZ activity 
in the LacZ reporter strains as that seen for huRGS4p, and it is possible that this 

could have been due to a lower expression level compared to that of huRGS4p. 

Western blot analysis was therefore carried out to determine whether huRGS2p and 
huRGS4p were expressed in the rgs]'LacZ reporter strain. For both RGS proteins a 
band approximately 4kD larger than the reported size was visualised. These bands 

were only seen for the rgsl' LacZ reporter strain transformed with the huRGS2p or 
huRGS4p expression constructs. These results indicate the huRGS2p and huRGS4p 

are expressed in Sz. pombe from the pREP3X expression vector, and that the proteins 
may be covalently modified in Sz. pombe. Palmitoylation of huRGS4p has been 
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reported (Srinivasa et al., 1998a), and huRGS2p contains an N-terminal cysteine ring 
that may represent a target site for palmitoylation. Palmitoylation of G,, subunits has 

been reported to contribute to plasma membrane localisation (Degtyarev et al., 
1994), and this may hold true for RGS proteins. To determine whether huRGS2p and 
huRGS4p are palmitoylated in Sz. pombe, the covalent attachment of radiolabelled 
palmitate molecules to huRGS2p and huRGS4p could be monitored following 
isotopic labelling of the cellular palmitoyl-CoA pool. Palmitoyl-Co-A is the 

metabolic intermediate in palmitoylation reactions. Phosphorylation of RGS proteins 
may also play a role in regulating their localisation and/or activity, as potential 
phosphorylation sites have been identified in several RGS proteins, including GAIP 

(DeVries et al., 1996; Fischer et al., 2000). HuRGS2p has been reported to be 

phosphorylated by protein kinase C (Cunningham et al., 200 1). 

The anti-RGS2p antibody also bound to a 35kD protein that was present in all 

strains analysed (rgsl', rgsl' pREP3X-szRgslp, rgs]" pREP3X-huRGS2p). The 
identity of this band is at present unknown, and N-terminal sequencing of the protein 

could be carried out to ascertain its identity. The band is too small for it to be the Sz. 

pombe RGS protein, szRgslp (55.4kD), and no other RGS proteins have been 

isolated in Sz. pombe at the time of writing. 

6.3.5. The N-terminal domain of Sz. pombe Rgsl is required for full RGS 

activity 

It has been reported by a number of groups that the RGS domain of several 
RGS proteins are active in vitro, but do not function in vivo (for example RGS16, 
Chen and Lin, 1998). It was therefore decided to investigate whether the C-terminal 
RGS domain of szRgs Ip would also prove to be inactive in Sz. pombe LacZ reporter 
strains. Expression of the RGS domain of szRgslp reduced LacZ activity of the 

rgsl+ and rgsl' LacZ reporter strains at low pheromone concentrations, but at high 

pheromone concentrations, the szRgslp RGS domain was not as successful as the 
full-length szRgslp in reducing LacZ activity. This indicates that N-terminus of 
szRgslp is required for full GAP activity in szRgslp. 
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The N-terminus of szRgslp contains additional signalling motifs, including a 
DEP domain and a novel Fungal-DR domain (Pereira and Jones, 2001) that may be 

required for full szRgs Ip activity. 

6.4. Integration of human Rgsl and human Rgs4 ORFs into Sz. pombe reporter 

strains 

Out of the mammalian RGS proteins investigated, huRGS Ip and huRGS4p 

exhibited the greatest ability to reduce LacZ activity in the LacZ reporter strains, and 
it was decided to integrate the human Rgs] and human Rgs4 ORFs at the rgs] locus 

in the rgsl' LacZ and Ura4 reporter strains. This enabled the determination of the 

ability of the two human RGS proteins to negatively regulate the pheromone 

communication when expressed from a single genomic copy. This was important, as 

multi-copy expression vectors can give rise to indiscriminate expression levels. 

The Rgs] and Rgs4 ORFs were flanked with Sz. pombe rgsl 5' and 3' non- 

coding regions, and the rgsl' LacZ reporter strain transformed with the resulting 
integration constructs. The presence of rgs] 5' and 3' non-coding regions enabled 
homologous integration of the human RGS ORFs to be directed by the flanking rgs] 

sequences, resulting in the integration of the ORFs at the rgs] locus, exactly 

replacing the rgs] ORF. This resulted in the expression of the human Rgsl and 
human Rgs4 ORFs being directed by the Sz. pombe rgs] promoter. 

6.4.1. Human RGSI reduced pheromone signalling at low pheromone 

concentrations when expressed from single copy 

Expression of huRGSIp from single copy rescued the hypersensitive 

phenotype of the rgsl* LacZ reporter strain at low pheromone concentrations. The 

ability of huRGS Ip to negatively regulate the pheromone communication pathway at 
low signalling levels was also observed when huRGSIp was expressed from single 

copy in the Ura4 reporter strain. This indicates that at low levels of signalling 
through the pheromone communication pathway huRGSIp had sufficient GAP 

activity towards the Sz. pombe G subunit to inhibit signalling, but at high 
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pheromone concentrations, the affinity of huRGSIp for the G,, subunit was 
insufficient to inhibit signalling to the level seen for szRgs I p. 

6.4.2. Human RGS4 did not reduce pheromone signalling when expressed from 

single copy 

Expression of huRGS4p from single copy did not rescue the hypersensitive 

phenotype of the rgsl' LacZ reporter strain. I was unable to isolate rgsl:: Rgs4 
integrants in the rgsl' Ura4 reporter strain, and this was probably a consequence of 
high levels of pheromone-independent signalling through the pheromone signal 
transduction pathway. Thus, when expressed from a multicoPy vector, RGS4 is 

capable of rescuing the rgsl' hypersensitive phenotype, but is unable to when 

expressed from a single genomic copy. These results indicate that huRGS4p has 

lower affinity for the Sz. pombe G,, subunit than huRGS I p. 

6.5 Mutagenesis of RGS proteins 

Mutagenesis of proteins enables investigators to determine how amino acid 
residues contribute to protein activity. The mutagenesis of RGS proteins has resulted 
in the isolation of dominant-negative RGS proteins, RGS proteins with diminished or 

no GAP activity towards G. subunits (Srinivasa et al., 1998b; Druey and Kerhl, 

1997). No gain-of-function mammalian RGS proteins have yet been identified. A 

gain-of-function SST2 protein (a S. cerevisiae RGS protein) has been isolated, but 

the mutation conferring the gain-of-function phenotype lies outside of the conserved 
RGS domain. 

6.5.1. Creation of Sz. pombe Rgsl gain-of-function mutants 

Two potential szRgslp gain-of-function mutants were isolated by Peter 

Watson in the Davey laboratory using a hydroxylarnine mutagenesis approach. The 

rgsl ORF was mutagenised via hydroxylamine treatment, and the mutated rgs] ORF 

re-introduced into the Sz. pombe rgsl' Ura4 reporter strain. Transformants were 
screened on selective plates that identified isolates with potentially reduced 
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signalling through the pheromone communication pathway. Sequencing of 

transformants revealed two mutations that potentially increased the GAP activity of 

the mutant szRgsl proteins. The first mutation resulted in a histidine to arginine 

substitution at residue 171, and the second resulted in a valine to isoleucine 

substitution at residue 305. Both of these residues lie outside the C-terminal RGS 

domain in szRgs I p. 
The two potential gain-of-function mutations were re-created via site-directed 

mutagenesis, and the mutant rgs] ORFs re-introduced into the rgsl* LacZ and Ura4 

reporter strains. The mutant proteins did not exhibit a gain-of-function phenotype in 

the LacZ reporter strain, but enabled the Ura4 reporter strain to grow on FOA plates 
in the presence of 1000-fold higher Mactor concentrations than the wild-type 

szRgslp. This anomaly can be explained by the time-scales of the assays used to 

monitor signalling through the pheromone communication pathway. The longer 

timescale of the Ura4 viability assay (3 d) compared to the LacZ assay (I 6h) means 

that results obtained with the Ura4 reporter strain may more truly reflect the activity 

of the szRgslp mutants upon the pheromone signalling cascade. 

6.5.2. Mutagenesis of human RGS4 

The huRGS4p integration cassette contains the human Rgs4 ORF flanked 

with Sz. pombe rgs] 5' and 3' non-coding regions. This construct was mutagenised 

via hydroxylamine treatment, and a plasmid library prepared. The rgsl:: Rgs4 

integration fragment was liberated from this plasmid library and introduced into the 

rgsl' Ura4 reporter strain. Transformants were screened on selective plates that 

prevented the growth of the rgs]" Ura4 reporter strain, but would enable growth of 

strains in which the pheromone communication pathway had been inhibited to a 

sufficient degree to allow growth on 5-FOA-suPplemented growth media containing 
I OOU/ml Mactor. Transformants were screened for the presence of the human Rgs4 

ORF at the rgs] locus, and the Rgs4 ORFs sequenced. 
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6.5.3. A single missense mutation in huRGS4p was identified 

A single missense mutation was identified that resulted in a lysine to 

glutamate substitution at residue 20 in the primary sequence of huRGS4p. 

Integration of the mutant Rgs4 ORF at the rgsl locus in the LacZ reporter strain did 

not reduce LacZ activity appreciably compared to the wild-type huRGS4p integrant, 

but considering the results obtained with the szRgslp gain-of-function mutants, the 

possibility of the lysine to glutarnate mutation conferring a gain-of-function 

phenotype should not be ruled out. The lysine residue does not lie within the 

conserved RGS domain of huRGS4p, but rather within the non-conserved N- 

terminus. The N-terminus of huRGS4p has been reported to be important for 

membrane targeting (Srinivasa et al., 1998a; Bernstein et al., 2000) and receptor 

selectivity (Zeng et al., 1998), and it is possible that this mutation increases the 

affinity of huRGS4p for the Sz. pombe G subunit and/or Mactor receptor. 

6.6. Summary 

The ability of human RGS proteins to function on the Sz. pombe pheromone 

communication pathway means that this system can be used as a model to assess 

signalling proteins involved in G protein-coupled signal transduction pathways. This 

is not limited to RGS proteins, and could involve receptors, G proteins and down- 

stream effector proteins, enabling whole signalling pathways to be reconstituted in 

the Sz. pombe reporter strains. The RGS mutants described in this thesis are currently 
being investigated for their ability to negatively regulate G protein-coupled 
signalling in human tissue culture (Allen and Davey, personal communication). 
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8.1. Oligonucleotide primers 

8.1.1. Oligonucleotide primers for PCR amplification 

Upper case letters represent sequences homologous to genomic sequence. 
Lower case letters represent non-homologous sequence. 
Restriction sites are underlined. 

Direction Position 

Primer (5' to Y) relative relative 

to ORF to ORF 

Generation of the krpl>ura4 fragment 

J065 TTGCCAGTGAACGACCG Sense 1035 to1051 

J066 GTITCGAGATGACTCCG Antisense 2695 to 2679 

Amplification of the krpl>ura4 fragment 

J061GTTAATAAATCATTCGG Sense 1484 to 1500 

J0496 gggcagCTGTAAGTTCACAGCTTCT Antisense 2966 to 2945 

GCC 

Generation of the irpl:: ura4t*' integration 

construct 
J0497 AAACGCGTATCCCAGCGC 

J0498 GGGGATCCTI=ATTTATGAAA 

GGAA 

J0499 GGGGATCCTTTT=CCCTAATCCG 

J0500 TCAATGATTCGTAAGTCC 

Sense -1228 to -1211 
Antisense -I to -27 

Sense 2911 to 2936 

Antisense 4821 to 4804 
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Generation of the prkl:: ura4+ integration 

construct 
J0490 ggggjzqtccGCTGAAATGAGACCC 

TACCC 

J0491 gggggatccATCAACCTATTCATTA 
TCC 

Sense 1060 to 1080 

Antisense -I to - 19 

Amphrication of the ura4 ORF 

J01056 gggggatccaccATGGATGCTAGAGTA Sense I to 19 

TTTC 

J01057 gggiz2atccGTCTTT=AATGCTGAG Antisense 803 to 784 

Amplification of human Rgsl ORF 

J0910 ggRizatccaccATGCCAGGAATGTTCTTC 
TCTGC 

J0911 ggggLtccTCACTTTAGGCTATTAGC 
CTGC 

Amplification of human Rgs2 ORF 

J0912 ggggatecaccATGCAAAGTGCTATGTTC 
TTGGC 

J0913 ggggatccTCATGTAGCATGAGGCTC 
TGTGG 

Amplifieation of murine Rgs2 ORF 

Sense 1 to 23 

Antisense 591 to 570 

Sense 1 to 23 

Antisense 636 to 614 

J0912 ggjzRatccaccATGCAAAGTGCTATGTT Sense I to 23 

CTTGGC 

J0913 ggjzgatccTCATGTAGCATGAGGCTCT Antisense 636 to 614 

GTGG 
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Amplification of human Rgs3 ORF 

J0914 ggggqtccaccATGTTTGAGACGGAGGCA Sense I to 22 

GATG 

J0915 ggggqtccCTAAAGCGGGGGACTCATC Antisense 1560 to 1539 

TTC 

Amplirication of human Rgs4 ORF 

J0917 ggizizatccaccATGTGCAAAGGGCTTGC 
AGGTC 

J0918 gggggtecTTAGGCACACTGAGGGAC 
CAG 

Amplirication of human Rgs9-2 ORF 

J01016 gggggatecaccATGACGATCCGACACC 
AAGGCCAGCAG 

J01017 gggggltccTGCTCAGCCCGCCTTCCCT 
TCCGC 

Amplification of Sz. pombe rgs] C-terminus 

J0923 ggggatatcaccATGGAAACTGTTGCTA 
GCGATTTG 

30600 ggggatatCATTAAATACCGAGCCCCCC 
ATTC 

Sense I to 22 

Antisense 618 to 598 

Sense I to 27 

Antisense 2031 to 2008 

Sense 820 to 843 

Antisense 1448 to 1425 

Amplification of human Rgsl ORF flanked 

with rgs] 5' and 31 non-coding sequences 

J01119 CACTTTATTATTTATGATAAAAGGC Sense 

TACAAATTCGTAAAAGTAAGAATC 

AGCTTTGGatgccaggaatgttcttctctgc 

-57 to -1 (rgsl) 

I to 12 (Rgsl) 

J01120 GTACAAAAACAAGAGGAACTGCT Antisense 1504 to 1444 

AATGAATGATTTAAAACACGATT (rgsl) 
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GTTTTCTATGCATTactttaggctattag 

cctgcag 

Amplification of human Rgs4 ORF flanked 

with rgs] 5' and 3' non-coding sequences 

J01121 CACTTTATTATTTATGATAAAA 

GGCTACAAATTCGTAAAAGTA 

AGAATCAGCTTGatgtgcaaagggctt 

gcaggtctg 

J01122GTACAAAAACAAGAGGAACT 

GCTAATGAATGATTTAAAACAC 

GATTGTTTTCTATGCATTAggcacact 

gagggaccaggg 

588 to 568 

(Rgsl) 

Sense -57 to -1 (rgsl) 

I to 24 (Rgs4) 

Antisense 1504 to 1444 

(rgs]) 

618 to 596 

(Rgs4) 

Amplification of Sz. pombe rgs] 5' and 3' non- 

coding regions 
J01267 ATGAACAAAAGAATTGTG Antisense -58 to -75 

J01268 ATATTTCTTATTTGCATTATT Sense 1505 to 1522 

Amplification of Sz. pombe rgs] A5124G site- 

directed mutation 
J01249TAATTCTCAAGCCGAGCTTTAC Sense 513 to 534 

J01250 CGTCCGTTATGTTGTAGAAAC Antisense 512 to 492 

Amplification of Sz. pombe rgs] G913-)A site- 

directed mutation 
J01247 TTTCCTATT=GACTG Sense 914 to 931 

J01248 TACCCTTTGCATAGCTAAAC Antisense 913 to 894 
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Screening for Rgs4 ORF at rgsl Iocus 

J0930 GTCTCCAGGAGTGCTGGG 

J0931 ATGAGGGTTAGTTCAGTG 

J01015 CCAGCCCACATTCATGAC 

Sense -8 11 to -794 
(rgsl) 

Antisense 1888 to 1871 

(rgs 1) 

Antisense 220 to 203 

(Rgs4) 

Amplification of human Rgs4 A584G site- 
directed mutation 
J01433 GAACATCGGCTAGGTTTCC Sense 58 to 76 

J01434 CATATC=GCACTCC Antisense 57 to 41 

8.2. Oligonucleotide primers for sequencing 

Sequencing human Rgsl ORF 

J0910 ggggatccaccATGCCAGGAATGTTCTTC 
TCTGC 

J0911 ggggatccTCACTTTAGGCTATTAGCCT 
GC 

Sequencing human Rgs2 ORF 

J0912 ggggatccaccATGCAAAGTGCTATGTTC 
TTGGC 

J0913 ggggatccTCATGTAGCATGAGGCTCTG 
TGG 

Sense I to 23 

Antisense 591 to 570 

Sense I to 23 

Antisense 636 to 614 
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Sequencing human Rgs3 ORF 

J0914 ggggatccaccATGTTTGAGACGGAGGCA Sense I to 22 

GATG 

J0915 ggggatccCTAAAGCGGGGGACTCATCT Sense 1560 to 1539 

TC 

J01002 CTTCCACCCAACAAGGAC Sense 127 to 144 

J01003 GCCTCCTAGCCAGGTCTC Sense 414 to 431 

J01004 GCGCAGTGAGGCCAAGCG Sense 690 to 707 

J01005 AGGACACAGGAAGATGAG Sense 966 to 983 

J01006 AGTGAGGAGAATCTGGAG Sense 1249 to 1266 

J01007 GTTGACCTCCTTGCATGC Antisense 1380 to 1363 

J01008 TCCAGGGGACTCATTCCG Antisense 1101 to 1084 

J01009 GGCTCCTGCAGCAGGCTG Antisense 815 to 798 

JOIOIO CGGACCTCAGGGATCACG Antisense 542 to 525 

J01011 GGTGGCACATCCTTGCTG Antisense 260 to 243 

Sequencing human Rgs4 ORF 

J0917 ggggatccaccATGTGCAAAGGGCTTG 
CAGGTC 

J0918 ggggatccTTAGGCACACTGAGGGAC 
CAG 

J01012 TCTGATTCCTGTGAACAC 

J01013 TGGATTCTTGCACCAGGG 

J01014 TCGAGACTTGAGGAAGCG 

J01015 CCAGCCCACATTCATGAC 

Sense I to 22 

Antisense 618 to 598 

Sense 88 to 105 

Sense 386 to 403 

Antisense 516 to 499 

Antisense 220 to 203 
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Sequencing human Rgs9-2 ORF 

J01016 gggggatccaccATGACGATCCGACACC Sense I to 27 

AAGGCCAGCAG 

J01017 gggggatccTGCTCAGCCCGCCTTCCCT Antisense 2031 to 2008 

TCCGC 

J01018 TGGAGGCACAGAACCTGG Sense 203 to 220 

J01019 GCGCTGGACTGCCAGGAG Sense 535 to 552 

J01020 GATGCGAGTGGAGAGATG Sense 870 to 887 

J01021 AAGGATTCTTACGCACGC Sense 1192 to 1209 

J01022 AGGAAGCCCTTTGCTTCC Sense 1501 to 1518 

J01023 ACACGGGAAGGTGCAGCC Sense 1806 to 1823 

J01024 GAGTCCATCAGGCAGGTC Antisense 1934 to 1917 

J01025 CTGTTCTCAGTGACTGAG Antisense 1661 to 1644 

J01026 CTCTTCTTCTTCCAGCTG Antisense 1359 to 1342 

J01027 CTGATCGCCGTACTTCAG Antisense 1020 to 1003 

J01028 TTGGTAATACATGATCTC Antisense 690 to 673 

J01029 TTCCGCTTCGCTAGATAG Antisense 386 to 369 

J01030 AGCACGTCACCTCCTGTC Antisense 167 to 150 

Sequencing Sz. pombe rgsl ORF 

J0603 GCAACGGAAATTCAATAG 

J0604 TAAATGTTTATGTAATAC 

J0605 AAACCCTCTTCTGGTACC 

J0606 TGGACTAAAAATGTCTCC 

J0607 TTCCCAGTGATCTTTATG 

Sense 62 to 79 

Sense 363 to 380 

Sense 678 to 695 

Sense 955 to 972 

Sense 1262 to 1279 
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J0608 TACGGCTGTTTGCGCCTC 

J0609 ATAGGTTTGTAGATTCGG 

J0610 GCTATGTCAATGCCAAAC 

J0611 GTAACCTTTCCTTGTAAG 

J0612 ATCGTCGAGAAGAGCTCC 

Antisense 1380 to 1363 

Antisense 1071 to 1054 

Antisense 776 to 759 

Antisense 477 to 460 

Antisense 176 to 159 

Sequencing Sz. pombe rgs] 5' non-coding region 

J0930 GTCTCCAGGAGTGCTGGG Sense -811 to -794 

J01267 ATGAACAAAAGAATTGTG Antisense -58 to -75 

Sequencing Sz. pomhe rgsl 31 non-coding region 

J01268 ATATTTCTTATTTGCATTATT Sense 1505 to 1522 

J0931 ATGAGGGTTAGTTCAGTG Antisense 1888 to 1871 
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