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ABSTRACT  Plasma concentrations of some micronutrients are altered in the setting of acute infectious or 

inflammatory stress. Previous studies have provided conflicting evidence concerning the extent and direction of 
changes in plasma zinc concentrations during the acute phase response. We carried out an observational cohort 

study in 689 children enrolled in a randomized trial of zinc supplementation during acute falciparum malaria in order 
to evaluate the relation between plasma zinc concentration  and the acute phase response. Plasma zinc was 

measured by atomic absorption spectrophotometry. On admission, 70% of all subjects had low plasma zinc (<9.2 
fLmol/L). Multivariate analysis of predictors of admission plasma zinc showed that admission C-reactive protein 

(CRP), parasite density, and study site were the most important predictors. Predictors of changes in plasma zinc 
from admission to 72 h included baseline CRP, change in CRP, treatment group, study site, and baseline zinc 

concentration. In children with acute malaria infection, baseline plasma zinc concentrations were very low and were 
inversely correlated with CRP (r � -0.24, P < 0.0001) and the degree of parasitemia (r � -0.19, P < 0.0001). Even 

when CRP and time were taken into account, zinc supplementation increased plasma zinc concentration from 
admission to 72 h. When available, plasma zinc concentrations should be interpreted with concurrent measures of 

the acute phase response such as CRP. In children whose age, diet, and/or nutritional status place them at risk of 
zinc deficiency, those with low plasma zinc levels should be supplemented with oral zinc and followed for clinical 

and/or biochemical response.    J. Nutr. 135: 802– 807, 2005. 

 
KEY WORDS:  ●    malaria ●    zinc ●    Plasmodium falciparum  ●    child  ●    acute phase response 
●    C-reactive protein 

 
The relation between plasma micronutrient concentrations 

and  the extent of the body’s   acute phase  response  is an 

important    factor in the design   and   conduct    of studies in the field 

of human   nutrition. Two  micronutrients for which  this relation 

has been of particular interest are vitamin A and zinc. Blood    

concentrations    of vitamin   A are depressed    during   the acute 

phase  response  (1–5), and it  is  debatable   whether these 

changes are related to vitamin A redistribution throughout the 
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body,    increased   exogenous     loss (6,7), and/or  increased  meta- 

bolic needs (8). Because clinical signs of vitamin A deficiency 

can  occur among   women   (9) and  children (5) with decreased 

retinol concentrations   and   elevated acute phase  response 

markers, it seems incorrect to ascribe these low blood levels to 

merely a physiologic  response   to infectious or inflammatory 

stress. 

Similar, although fewer, data have been  described  for the 

relation between    zinc  blood   concentrations    and   the acute 

phase  response.   Most   experimentally induced    infections in 

animals and  humans  show a decrease in plasma zinc concen- 

trations  (10), with more   severe   infections   leading   to  a  more 

significant decrease. Extensive experimental work has demon- 

strated that hepatic   metallothionein     is involved  in the re- 

sponse to stress. Metallothionein can be induced by infusion of 

dexamethasone or other glucocorticoids, endotoxin,  or cyto- 

kines (11–13). Increases  in  metallothionein and   metallothio- 
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nein mRNA are  correlated  with  increased     hepatic    zinc   and  a 

corresponding  reduction of circulating  zinc. 

Some animal models of infection, however, have shown an 

increase  in plasma  zinc  with infectious/inflammatory   stresses 

(14,15),    and the   results  of   clinical   studies    have    not    been 

consistent.  Plasma zinc concentration  was not significantly 

affected by common intercurrent infections  such  as diarrhea 

and respiratory tract infection in 3 community-based studies in 

preschool-   and   school-age   children (16). 

Acute     malaria infections,    especially   those  due   to  Plasmo- 
dium falciparum, are  notable     for  very   high    fevers   and  a severe 

acute  phase  protein response  (17,18). Previous  studies have 

linked   low  circulating  levels  of  vitamins    A and E  with  the 

acute phase response of malaria (19,20). However, the impact 

of the acute phase  response   on  blood  zinc concentrations in the 

setting of acute malaria has not been reported. Using data from 

a clinical trial of  zinc supplementation   in children with acute 

malaria (21), we sought to evaluate the relation between plasma 

zinc concentration  and  the acute phase response in subjects    

enrolled   in  this trial. In  addition,  we  were able to evaluate the 

response of blood zinc concentration to oral zinc 

supplementation. 

 
 

METHODS 
 

Study population.   As previously described   (21), the study  was  a 

multicenter, randomized,   double-blind,    placebo-controlled clinical 

trial of  supplemental zinc among  children  with uncomplicated   falci- 

parum   malaria.  Subject    enrollment   took  place   between    December 

1998 and May 2000 at the  following   sites:  Hospital  Delfina  Torres 

(Esmeraldas City,  Ecuador),   Komfo  Anokye   Teaching   Hospital (Ku- 

masi, Ghana),  Kisarawe  District Hospital  (Kisarawe,   Tanzania), 

Mpigi Health Center (Mpigi, Uganda), and Arthur Davison Children 

Hospital (Ndola, Zambia). Children between the ages of 6 and 60 mo 

who    presented     with   fever   (axillary  temperature    > 37.5°C)    and 

>2000/fLL asexual forms of P. falciparum in a thick blood smear were 

randomly     assigned     either zinc   (20 mg/d for  children      <12 mo and 40 

mg/d for  children aged  12–60 mo) or  placebo     for  the   first 3 d of the 

study. Clinical and parasitologic outcomes were noted at 3, 7, 14, and 

28 d. Exclusion criteria included hemoglobin < 70 g/L; severe malaria 

as  defined    by  the  presence     of any   of the  following:   cerebral  malaria, 
severe anemia, renal failure, pulmonary edema, hypoglycemia, shock, 

spontaneous    bleeding,   repeated  convulsions    (22); nonfalciparum     or 
mixed Plasmodium infections; concurrent severe infections (i.e., lower 

respiratory  infection,     acute    otitis  media,   pyelonephritis,  typhoid  fe- 

ver,   bloody    diarrhea,  meningitis,     or  measles);   severe  dehydration; 

malnutrition  as  defined   by  the  Wellcome criteria  (23) (i.e.,  maras- 

mus, kwashiorkor, or marasmic kwashiorkor); inability to tolerate oral 

medications or fluids;  chronic    illness  (including    tuberculosis,  AIDS, 

severe congenital  anomalies,   sickle  cell disease); and  prior participa- 

tion   in   this  trial. 

In accordance with  national    treatment   guidelines     at the  time   of 

the trial, chloroquine (10 mg/kg on d 0, 10 mg/kg on d 1, and 5 mg/kg 

on d 2) was given as first-line treatment for malaria. Treatment failure 

was  defined  as  the presence   of  axillary  temperature     > 37.5°C   and 

parasitemia > 25% of the baseline level at 72 h. Parasitologic failure 

was  defined   as  parasitemia  > 25% of the  baseline   level  with  resolu- 

tion  of  fever (i.e.,    temperature   <  37.5°C at   72  h). If    either a 

treatment or a parasitologic failure occurred, subjects were changed to 

a standard dose of either amodiaquine or sulfadoxine pyrimethamine 

as second-line   antimalarial therapy.  All subjects received standard 

medical care for any concurrent illnesses that were present at baseline 

or developed    during  the study.  This  included   appropriate antimicro- bial 

therapy  for acute  respiratory infections,    dysentery,   and  other treatable  

infections. 

Ethical   approval    of  the  study   was   obtained     from  the institutional 

Laboratory methods.    Blood     for  plasma  zinc  measurement   was 

taken on d 0 before the administration of the study drug and then at 

72 h  before    the   last  dose of zinc   or placebo  was given.   Samples   were 

obtained     just before   meals.    Venous   blood was drawn with zinc-free 

syringes and  placed  into heparinized zinc-free tubes.  Blood   was im- 

mediately centrifuged and plasma was transferred into zinc-free tubes 

with  a  plastic  zinc-free   pipet   and frozen   at  -20°C. Plasma  zinc was 

assayed  by  atomic  absorption   spectrophotometry   at the Pediatric 

Nutrition Laboratory at the University    of Colorado  Health Sciences 

Center  (24). Plasma  C-reactive   protein  (CRP)
4 

was  measured   via 

immunoturbidimetric assay (Roche    Diagnostics).   Due   to  logistical 

constraints, we analyzed plasma zinc and CRP concentrations from 3 

of the  5 sites  (Ghana,    Tanzania, and Zambia). 

Data analysis.   We used SAS software,  version   8.2 (SAS Insti- 

tute), for statistical analysis. Univariate correlates of baseline plasma 

zinc were compared   using Pearson  correlation coefficients.  Baseline 

characteristics were compared using logistic regression for categorical 

variables  using   PROC    LOGISTIC   and ANOVA for   continuous 

variables using   PROC ANOVA  allowing     for  adjustment     of  multiple 

comparisons,  using the Scheffé   test (25). Mantel-Haenszel relative 

risks for the  differences  in  zinc  deficiency    were  calculated  using 

PROC FREQ. 

Predictors  of baseline   plasma   zinc  were modeled  using a general- ized  

linear  model    using   PROC REG. Variables    eligible  for  inclusion into  

the model   were  admission    CRP, treatment  group,    site,  age in 

months,    anthropometric   measurements    (weight  for age  Z-score 

(WAZ), height   for  age   Z-score (HAZ), weight   for  height   Z-score 

(WHZ), mean upper arm circumference), treatment failure, presence 

of other illness,  parasitemia,  and  admission   temperature. Each  vari- able 

(or group in the case of indicator variables) was entered into the 

model sequentially and then removed, and the one with the largest F 
value was retained. This continued   until  all the  variables    with  a P 
value  < 0.05 were  retained  in   the  model.    At   this point,    2-way 

interaction terms were entered into the model using the same criteria. 

None of  the  2-way    interactions had  a P value < 0.05 to be  retained 

in  the  model. 

In  order to model   the predictors for change  in plasma zinc from 

admission    to 72 h,   we   used   a  regression   model    with  the  change  in 

plasma zinc from admission to 72 h as the baseline using PROC REG. 

We included   admission   plasma  zinc as one  of the predictors to 

account for the differences in plasma  zinc at baseline. The  details of this 

model  construction  were similar to those  described above. Vari- ables    

eligible    for  inclusion    into  the  model   were  admission     CRP, the 

change in CRP from admission to 72 h, treatment group, site, age in 

months, treatment  failure, presence    of other illness,  anthropometric 

measurements (WAZ, HAZ, WHZ, mean upper arm circumference), 

admission   parasitemia, admission   temperature, and change in para- 

sitemia  from  admission     to 72  h. 

All variables included   in the final models  were determined   to be 

independent    by assessing colinearity  with  the  Eigen    value   (25). 

 
RESULTS 

 

Baseline characteristics of the study groups showed compa- 

rable age  and    sex   distributions  among     the  3 sites  (Table  1). 

More   children   in  Tanzania    were  breastfed (OR 1.45,  95% CI 

1.05 to 2.0), used bednets (OR 12.6, 95% CI 8.3 to 19.2), and 

were  given   anti-malarial  medication    in  the 7 d before admis- 

sion (OR 2.22, 95% CI 1.58 to 3.13) than children in Ghana 

and  Zambia.   Nutritional status, including   weight,  height, and arm 

anthropometrics, was comparable among all sites, as were 

admission    temperature  and   the peak   temperature  in  the first 

24 h.   At   admission,     Tanzanian    subjects  had  lower CRP (P 
� 0.002), higher plasma   zinc  (P < 0.0001) and   lower hemo- 
globin  (P  < 0.0001) concentrations   than  subjects  in  Ghana 

and   Zambia.    Children    in  Ghana    had  lower levels of para- 

sitemia than  those in  Tanzania   and   Zambia   (P < 0.0001). 

review boards at each site and the Harvard School of Public Health.    

Written   informed   consent    was  obtained    from  the parent  or guardian 

of  each  subject. 

4  Abbreviations used: CRP, C-reactive protein; HAZ, height for age Z-score; 
WAZ, weight for age Z-score; WHZ, weight for height Z-score. 
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TABLE 1 

 

Baseline characteristics of subjects1 

 

Variable Tanzania (n � 221) Zambia (n � 260) Ghana (n � 208) All (n � 689) 

 
Gender (% male)                                115 (52)                                  140 (54)                                    108 (52)                                363 (53) 
Breastfeeding 106 (48)                                  109 (42)                                      73 (35)                                288 (42) 
Bednet use by child                           118 (53)                                    16 (6)                                        23 (11)                                157 (23) 
Prior antimalarial use 

in previous 7 d  89 (40) 63 (24) 46 (22) 198 (29) 
Age, mo   24.0 (12 to 36)  24.0 (13 to 39)  24.0 (14 to 40)  24.0 (13 to 38) 
WAZ -1.2 (-2 to -0.3) -1.4 (-2 to -0.6) -1.1 (-2 to -0.5) -1.2 (-2 to -0.5) 
HAZ -1.2 (-2 to -0.3) -1.5 (-2 to -0.6) -1.1 (-2 to -0.2) -1.2 (-2 to -0.4) 
WHZ -0.4 (-1 to .37) -0.5 (-1 to .07) -0.4 (-1 to .20) -0.4 (-1 to .21) 
Mid upper arm circumference, 

cm                                                  15.0 (14 to 16)                         15.0 (14 to 16)                          15.0 (14 to 16)                      15.0 (14 to 16) 
Axillary temperature, °C                    38.3 (38 to 39)                         39.1 (39 to 40)                          38.6 (38 to 39)                      38.7 (38 to 39) 
Parasitemia, (asexual forms of 

P. falciparum), n/fLL  44,000 (7,040 to 153,000) 46,680 (17,980 to 110,380) 12,200 (3,540 to 49,120) 34,400 (8,200 to 88,760) 
Parasitemia 0–9999  68 (31)  40 (15)  93 (45)  201 (29) 
Parasitemia 10,000–99,999    70 (32)  149 (57)  110 (53)  329 (48) 
Parasitemia > 100,000    83 (38)    71 (27)      5 (2)  159 (23) 
Hemoglobin, g/L     83 (76 to 92)    91 (81 to 100)    92 (81 to 100)    88 (79 to 100) 
Plasma zinc, fLmol/L 9.55 (7.96 to 11.48) 6.76 (5.51 to 8.11) 6.84 (5.20 to 9.64) 7.59 (5.97 to 9.64) 
Low plasma zinc2 (<9.2 

fLmol/L), n/total n 81/183 (44) 206/233 (88) 139/194 (72) 426/610 (70) 
Plasma CRP, mg/L 
Maximum 24-h axillary 

temperature, °C 

55 (30 to 100) 
 

38.7 (38 to 40) 

78 (43 to 130) 
 

39.3 (39 to 40) 

70 (32 to 110) 
 

39.0 (38 to 40) 

68 (35 to 120) 
 

39.1 (38 to 40) 

1 Values are n (%) or medians (interquartile range). 
2 For this variable the total n differs because of incomplete sampling collection and/or hemolysis. 

 
 

Plasma zinc and CRP concentrations changed significantly 

between   baseline and  72 h (Figs. 1 and 2) The   proportion of 

children with low plasma zinc (<9.2 fLmol/L) was 66% in the 

zinc group and  73% in  the placebo   group  (RR 0.91,  95% CI 
 

 
 

 
 

FIGURE 1    Box plots of plasma zinc at time 0 and 72 h by placebo 

and zinc groups. Values are illustrated by box plots with the box 

representing the 25th and 75th percentiles (ends of boxes). The upper 

and lower whiskers are drawn from the box to the most extreme point 

within 1.5 interquartile range. The median is represented by the hori- 

zontal line in the box. Outliers are represented by dots. The mean 

concentration of plasma zinc at 72 h differed from that at time 0 h for 

both placebo (P < 0.0001) and zinc groups (P < 0.0001). 

0.82 to 1.01) (70%  for  the   2 groups combined) on admission. 

The   proportion  of children  with low plasma  zinc  at 72 h 

decreased    to  30 and  41% in  the zinc  and   placebo   groups, 

respectively (RR 0.75,  95% CI 0.60  to  0.93). 

Baseline plasma zinc concentration was significantly asso- 

ciated with several factors, including age (Pearson r � -0.12, 

P  � 0.002),  WHZ (r  � 0.08, P < 0.05), parasite  density   (r 
 

 

 
 

FIGURE 2    Box plots of plasma CRP at time 0 and 72 h by placebo 

and zinc groups. See Figure 1 for box plot legend. The mean concen- 

tration of plasma CRP at 72 h differed from that at time 0 h for the 

placebo group (P � 0.0002), although the zinc group showed no 

difference between baseline and 72 h (P � 0.81). 
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�  -0.19, P  <  0.0001),  baseline   CRP  (r   �  -0.24, P 
<  0.0001), and    peak   body    temperature  in   the  first   24 h  (r 
� -0.16, P < 0.0001). 

Multivariate analysis of predictors of admission plasma zinc 

(Table 2) showed     that admission CRP, parasite  density,    and 
site were the most important predictors. Variables not selected 

for  inclusion    in  the  model    included    age,   breastfeeding   status, 
temperature, and   anthropometric  measures.   The  model shows 

that  for  every increment   in  CRP levels by  1.0 mg/L,    plasma 
zinc  was  1.0 fLmol/L lower. In  addition,   for  every   10,000 U 

increase   in   parasite density,    plasma   zinc   was   0.08 fLmol/L 
lower. Both   CRP and parasite  density   were,   therefore,  inde- 

pendently associated with plasma zinc concentration at admis- 
sion. 

Using linear  regression,    we examined  predictors   of change 
in  plasma   zinc  from  admission     to 72 h (Table 3) controlling 

for study site. Subjects who received zinc supplementation had 
on average   a  greater  increase    in   plasma    zinc   by   0.98 mmol/L 

compared to  those   who   received    placebo.      This   effect of  zinc 
supplementation    was   independent     of  both  time  and    CRP 

concentration.  The   change  in  CRP from  admission    to  72 h 
variable shows that CRP levels were negatively associated with 

plasma  zinc  concentrations.   This  negative  relation  between 
the 2 variables shows that as CRP declined, plasma zinc levels 

increased.   Parasitemia, change   in  parasitemia,    treatment   fail- 
ure,  the  presence    of  other illness,  anthropometric   measure- 

ments,     admission     temperature,   and    age   were   not   significant 
predictors of change in plasma zinc between baseline and 72 h. 

 

DISCUSSION 
 

In our cohort of 689 children with acute malaria, we found a 

very high incidence of low plasma zinc concentrations, with 

70% of subjects having plasma zinc < 9.18 fLmol/L (60 fLg/dL) 

on  admission, a  cutoff  commonly     used   to  denote   zinc  defi- 
ciency. We   also  found    significant correlations between evi- 

dence     of  illness  severity (CRP, parasite density,    and   body 
temperature) and   baseline  plasma  zinc  concentrations.    These 

correlations     were   relatively  low  but  in  the expected   direction 
(i.e., higher  CRP, parasite  density,    and   temperature  were  as- 

sociated   with lower  plasma   zinc).    Multivariate  modeling     con- 
firmed that CRP was a significant predictor of baseline plasma 

zinc concentration, in addition to the independent and signif- 
icant   effects of  parasite  density   and    study   site.  Changes    in 

plasma  zinc over 72 h  were  related to  study   site,  whether   zinc 
was administered, changes in CRP over time, and baseline zinc 

and CRP concentrations. Our  data   therefore  suggest    that  the 
finding  of low  plasma   zinc  on  admission  was largely  but not 

 
 

TABLE 2 
 

Multivariable linear regression of plasma zinc concentration 

(fLmol/L) at admission in plasma zinc and placebo groups 

Variable  Coefficient (95% CI) 

Intercept  11.29 (10.69, 11.89) 
Admission CRP, mg/L  -1.0 (-1.4, -0.5) 
Admission parasite density1  -0.08 (-0.11, -0.04) 
Site 

Ghana                                              -2.82 (-3.44, -2.19) 
Zambia                                             -2.52 (-3.19, -1.85) 
Tanzania                                                         —2 

 
1 In increments of 10,000 asexual forms of P. falciparum per micro- 

liter. 
2 Tanzania is reference site. 

TABLE 3 
 

Multivariable model for predicting change in plasma zinc 

concentrations in plasma zinc and placebo groups from 

admission to 72 h 

Variable  Coefficient (95% CI) 

Intercept  -12.98 (-14.39, -11.57) 
Treatment group 

Zinc                                                                  0.98 (0.46, 1.50) 
Placebo                                                                         — 

Admission plasma zinc, fLmol/L 0.87 (0.79, 0.96) 
Admission CRP, mg/L    1.2 (0.7, 1.7) 
Change in CRP from admission to 72 h, 

mg/L  -1.6 (-2.0, -1.2) 
Study site 

Ghana                                                              1.62 (0.95, 2.29) 
Zambia                                                            2.09 (1.39, 2.78) 
Tanzania                                                                       —1 

 
1 Tanzania is reference site. 

 

 
exclusively  due  to the acute  phase   response    of malaria infec- tion.  

In  addition,   the change    in  plasma  zinc  over  72 h  was 

associated    with  the  change     in   inflammation     (i.e., CRP)   over 

time   as  well  as  zinc   supplementation. 

Previous    studies  that examined the relation between zinc 

status and infectious illnesses generally concluded that despite a 

high incidence of acute infections among children in devel- 

oping  countries,  plasma zinc concentrations  were still reason- 

able indicators  of zinc  status. Infections   in these studies were 

variously defined   as clinically apparent   infections   such  as di- 

arrhea, dermatitis, and respiratory and other infections, as well 

as clinically silent infections   based   on  elevations in serum CRP 

and/or    white  blood    cell count. In 3 cross-sectional com- 

munity-based    studies among    ambulatory children in  poor 

countries,  mean   differences in plasma zinc concentration   be- 

tween  infected and   noninfected   children were 0 fLmol/L (0 

fLg/dL) in Zimbabwe,  0.6 to 0.8 fLmol/L (3.9 to 5.2 fLg/dL) in 

Peru, and  0.6 fLmol/L (3.9 fLg/dL) in Guatemala (16). 

These   findings  were noted   to be  in contrast with animal and 

adult  data  that showed   a significant reduction in plasma zinc  

with acute  inflammatory  stresses (10,26). Our  results, which  

are more  consistent   with this previous   literature, are likely due   

in  part to  the  severe   nature   of the acute phase response   seen  

in malaria, as opposed to that observed among children with 

more  mild  infectious illnesses. By  definition, subjects were 

only included in our study if they presented with fever and 

evidence of malaria parasitemia.    The CRP concen- tration  

(mean + SD) at  admission  was 71 + 2 mg/L   in  our cohort, 

which is substantially higher than that of other studies: 

9.8 + 17 mg/L   in  Peru (27), and 14 of  303 with  CRP > 50 

mg/L   in  Zimbabwe (28). Other  studies in  which  CRP was 

measured     to  evaluate  the  role of  the  acute   phase    response     in 
micronutrient     status  have   reported  concentrations   ranging 

from 3 to 12 mg/L in 90 children in Papua New Guinea (29), 
0.4 to 1.6 mg/L among preschool Indonesian children (5), and 

3 mg/L   in  pregnant Nepali   women    (9). 
Our findings extend recent data on plasma zinc concentra- 

tions   in   children   with  intercurrent  illnesses  by   specifically 
addressing     the  role of acute   malaria  in  affecting   this indicator 

of zinc nutritional status. Among children in Nepal presenting 
with  acute   diarrhea,  plasma   zinc   was   lower  in   children   with 

dysentery,  fever,  and   elevated CRP concentrations  (30).   In 
addition, hydration status, serum albumin, and the presence of 
hemolysis were also correlated with plasma zinc concentration. 
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Wieringa    et al.  (31) reported    that among  Indonesian  infants 

(mean age 10.1 mo), 15% had elevated concentrations of CRP 

(defined   as  >10 mg/L).    Plasma  zinc concentration  was 15.5 

+ 4.8 fLmol/L in  those  without evidence     of an   acute  phase 

response   versus 13.8 + 4.7 fLmol/L (90.3 + 30.8 fLg/dL) in 
those  with elevated  CRP (P  < 0.01). The   incidence     of low 

plasma  zinc  (defined   as  <10.7 fLmol/L) was  33.3% in  those 
with  elevated   CRP and 11% in   those  with  normal    CRP  and 

a-1-acid glycoprotein.   In  contrast,  our  study  showed   a  high 

prevalence of low plasma zinc (defined as <9.2 fLmol/L, a more 

strict  criterion)     of  70% at  baseline     and 30–41% at  72  h. 

In   children   living   in   malaria endemic      regions,    elevated 

CRP  concentrations      are   common.    In  rural    children    from 
Ghana, mean CRP concentrations were 7 to 8 mg/L (32). Hurt 

et al.  found   a  median   concentration of  6 mg/L  among >600 

rural Tanzanian children, with a median value of 23.6 mg/L in 

those with temperature > 37.4°C on presentation (33). They 

also found a correlation (r � 0.24, P < 0.0001) between CRP 

and malaria  parasite  density   on peripheral  blood   smear.   Only 

a few  studies  have   examined     the  relation  between     zinc   status 

and   malaria. Pregnant   Malawian   women    with a high preva- 

lence of malaria infection were found to have low plasma and 

hair zinc levels, but there was no relation between plasma zinc 

and CRP levels  (34). Malaria  prevalence    was  associated   with 

hair  but   not   plasma    zinc   in   this  cohort   (35). 

Plasma zinc concentrations are an imperfect measure of zinc 

nutritional status. Plasma   zinc  represents  only  a fraction of 

total body zinc, and alternative measures of zinc status such as 

platelet, lymphocyte, or tissue zinc are not well-suited for large 

field   trials  in  developing   countries (36). Measurement of  me- 

tallothionein    levels  is a potentially  more sensitive alternative to 

plasma    zinc   for the  assessment    of zinc  status. Metallothio- nein 

production is induced by available zinc (37,38). Marginal zinc 

intake in a small human study was associated with a 64% 

reduction in metallothionein mRNA concentrations, whereas 

there  was   no  change   in  plasma zinc levels  (39). Both human 

and   animal   studies  have   demonstrated    that production    of 

metallothionein mRNA and metallothionein     significantly in- 

creased after  dietary    zinc supplementation  (37,39,40). A zinc 

supplementation study showed that total RNA extracted from 

dried blood  spots exhibited a change  in MT mRNA compa- 

rable to that of purified monocytes and peripheral blood mono- 

nuclear   cells (41). Dried   blood   spot  collection  offers  the   ad- 

vantages of convenience    and   feasibility in   field sampling 

situations. Consequently, metallothionein  merits further in- 

vestigation   as a possible   alternative measure   of zinc  status in field  

studies. 

We have shown that among    children  with acute  malaria 

infection,  plasma  zinc  concentrations   are very low and   are 

inversely   correlated  with  CRP, as  well as  other  measures    of 

disease severity such as body temperature and parasite density 

in peripheral blood. Although part of the depression in plasma 

zinc concentration is likely related to the redistribution of zinc 

in the acute phase  response,   zinc supplementation  was effec- 

tive at improving this measure of zinc status, even when CRP 

and  time were taken into account.   Thus  children  with acute 

malaria and low plasma zinc concentrations may still be at risk 

of zinc  deficiency,    and   ascribing   this depression    solely to the 

acute phase response seems unwarranted. We suggest that low 

plasma  zinc  levels be  interpreted with concurrent    measures   of the 

acute  phase   response   such   as  CRP, when   available,  espe- 

cially among    children  with moderate   to severe  infectious  ill- 

nesses.   In  children  whose   age,  diet, and/or   nutritional status place   

them   at risk of zinc  deficiency,    those with low plasma zinc levels 

should be supplemented with oral zinc and followed for  the   

resolution     of  this  hypozincemia. 
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