

THE AGA KHAN UNIVERSITY

eCommons@AKU

Department of Pathology and Laboratory Medicine

Medical College, Pakistan

December 1993

Interaoperative frozen section consultation: an analysis of accuracy in a teaching hospital.

Farrukh Aijaz Aga Khan University

Suhail Muzaffar Aga Khan University

Akbar Shah Hussainy Aga Khan University

Shahid Pervez Aga Khan University, shahid.pervez@aku.edu

Sheema H. Hasan Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/ pakistan_fhs_mc_pathol_microbiol

Part of the <u>Health Services Research Commons</u>, <u>Investigative Techniques Commons</u>, and the <u>Pathology Commons</u>

Recommended Citation

Aijaz, F., Muzaffar, S., Hussainy, A. S., Pervez, S., Hasan, S. H., Sheikh, H. (1993). Interaoperative frozen section consultation: an analysis of accuracy in a teaching hospital. *Journal of Pakistan Medical Association*, 43(12), 253-255. **Available at:** http://ecommons.aku.edu/pakistan_fhs_mc_pathol_microbiol/313

Authors

Farrukh Aijaz, Suhail Muzaffar, Akbar Shah Hussainy, Shahid Pervez, Sheema H. Hasan, and Hizbullah Sheikh

Lntraoperative Frozen Section Consultation: An Analysis of Accuracy in a Teaching Hospital

Pages with reference to book, From 253 To 255 Farrukh Aijaz, Suhail Muzaffar, Akbar Shah Hussainy, Shahid Pervez, Sheema H. Hasan, Hizbullah Sheikh (Department of Pathology, The Aga Khan University Hospital, Karachi.)

Abstract

This Is a retrospective quality assurance study of all frozen sections done at The Aga Khan University Hospital during a six year period (1986 to 1991). There were 1,031 frozen sections out of a cumulative total of 42,985 surgical specimens (2.39%). Nine hundred and seventy-six (94.66%) were concordant. In 92(8.9%) fresh specimens were brought from other hospitals of Karachi, in 37 cases (3.58%) the diagnosis was deferred till the evaluation of permanent paraffin sections and 18 (1,74%) were discordant with 7 (0.67%) false positive and 11(1,06%) false negative. Among the discordant cases, 9 were attributed to misinterpretation, 7 due to sampling errors and 2 due to technical reasons. Some of these errors might have been avoided, but appear to be an Irreducible minimum (J PMA 43:253, 1993).

Introduction

The interpretation of frozen section is perhaps the most stressful and high risk task performed by a histopathologist and after some initial pessimism and reluctance¹, this procedure is now firmly entrenched as an indispensable tool in the management of operating room patients. Accuracy rates for this technique are well published in western literature²⁻⁶ and few reports have also originated from the third world countries⁷. The correlation of intra-operative frozen section diagnosis with paraffin section is a standard quality assurance and control mechanism in a histopathology laboratory⁸. Very few institutions in Pakistan provide frozen section services on a regular basis and to the best of our knowledge, comprehensive data regarding the accuracy of this technique in Pakistan are non-existent. We report an audit of all frozen sections done at our laboratory in a six year period from the beginning of 1986 till the end of 1991.

Materials and Method

All cases were retrieved from the files of the Surgical Pathology Department of Aga Khan University Hospital, Karachi. This institute is a 400 bed teaching hospital which also functions as a major referral centre for Southern Pakistan. During the six year period, a total of 1031 frozen section cases were received out of 42,985 routine surgical specimens. Breast, thyroid, lymph nodes and gastrointestinal tract were the common organ systems requiring frozen sections. All frozen section specimens were initially aamined by staff pathologists who also selected appropriate tissue for freezing. The cryostat used was Tissue Tek II (Miles Laboratories). Specimens were frozen in optimal cutting temperature solution (OCT) up to -20°C in cryostat. 4-5 um thick sections were cut The cryostat is provided with an anti-roll plate, however, some technologists were more comfortable in not using it. The sections were stained by H&E method. Frozen section diagnosis was. directly reported by the staff pathologist by telephone to the operating rooms. After the completion of frozen section diagnosis was recorded and processed for paraffin embedding. The initial frozen section diagnosis was recorded and became part of the final surgical pathology report. All frozen section diagnoses were compared with the final diagnosis rendered after evaluation of paraffin embedded sections. Any discrepancy was

noted and all cases which were discordant as regards the benign versus malignant were reviewed. The review process included the re-examination of all slides with categorization of the reasons for discordance in three categories, i.e., interpretative errors, sampling errors (gross and microscopic) and technical errors. Patient charts and notes were available in most cases for review to determine any harm resulting from a discordant diagnosis. Records for one discordant case from a city hospital was not available for review. Deferred cases were the ones on which the consultant pathologist, at the time of frozen section preferred not to give a conclusive diagnosis. In most cases, the pathologist conveyed to the surgeon his or her inability in reaching a definite diagnosis as regards to benign versus malignant. Appropriateness of deferral was not evaluated.

Results

Of 1031 cases of frozen sections requested 92 (8.9%) were fresh specimen brought from other hospitals of Karachi. Breast was the commonest tissue requiring frozen section followed by gastrointestinal tract, lymph nodes and thyroid tissue (Table I).

Organs	No.	%
Breast	221	21.4
G.I. tract	166	16.1
Lymph node	158	15.3
Thyroid	118	11.4
Others	368	35.7

Table I. Organwise distribution of frozen section of cases.

In 976 cases (94.66%) the frozen section diagnosis was concordant and in 18 (1.74%) discordant with final diagnosis on permanent paraffin embedded sections. In 37 cases (3.58%) no diagnosis was rendered at the time of frozen section. Seven cases were false positive (malignant on frozen section, benign on permanent sections) and 11 cases were false negative (benign on frozen section, malignant on permanent sections).

Discussion

Frozen section is a reliable and now a routine method for rapid and instant diagnosis. In simplest terms the only indication for a frozen section is to make a therapeutic and management decision during surgery⁹. These indications can be stratified in the order of increasing difficulty in diagnosis as follows^{3,5}:

- 1. Identification and verification of unknown tissue
- 2. Tissue adequacy for further diagnostic study
- 3. Extent of tumour spread and margin assessment
- 4. Detection of lymph node metastasis
- 5. New diagnosis of an unknown process

The surgeon and pathologist should be aware of the potential pitfalls and limitations of this procedure and both should accept certain responsibilities so that the patients can gain maximum benefit. From the

pathology perspective comparison of diagnosis rendered at the time of frozen section to that of permanent sections is of utmost importance. This quality control and assurance mechanism is now routine in all histopathology laboratories providing frozen section services⁸. Our figures for concordant, deferred and discordant diagnosis are comparable with other published series (Table II).

	FS (n)	FS rate %	FS deferred %	FS discordant %
Rogers at al, 19872	1,414	4.70	3.70	1.50
Sawady et al, 19883	482	-	2.90	2.90
Oneson et al, 1989 ⁴ CAP O-Probe study.	1,000	8.40	6.10	3.70
1991	52,464	5.60	4.20	1.70
AKUH study, 1993	1,031	2.39	3.58	1.74

Table II. Comparison with other studies.

More recently, upper limits of acceptable discordant and deferred rates of 3% and 10% are recommended⁸. Half of our discordant results were due to interpretation (Table III).

Specimen	Frozen section Paraffin section		Reason	
	diagnosis	diagnosis		
Margin for	Sq. cell Ca	Ben. m	Interpretation	
Skin tumour		and an a set		
Parotid	Benign	Adenoid cystic Ca	Interpretation	
Lymph node	Benign	Metastatic	Sampling	
		adenocarcinoma		
Lymph node	Benign	Metastatic	Sampling	
		adenocarcinoma		
Retroperitoneum	Benign	Non-Hodgkin's	Interpretation	
Panimas	Renion	Adenocarcinoma	Sampling	
Breast	Benim (fat	Infiltrating	Intermetation	
DICAN	necrosis)	ductal Ca	mapresation	
Through	Benim	Papillary Ca	Sampling	
Liver	Adenocarcinoma	Bile duct	Technical	
AATCA	Accilocatentonia	adenoma	. common	
Thyroid	Focus of	Benien	Interpretation	
,	papillary Ca	Second .		
Breast	Benign	Intraductal Ca	Sampling	
Maxillary margin of	Malignant	Benign	Technical	
malignant tumour		-		
Thyroid	Papillary Ca	Benign	Interpretation	
Gall bladder	Benign	Adenocarcinoma	Interpretation	
Lymph node	Metastatic sq.	Nodal	Interpretation	
	Ca	angiomatosis	5 () (1 (1 ())	
Lymph node	Metastatic Ca	Benign	Interpretation	
Oral mucosal margin	Benign	Sq cell Ca	Sampling	
Breast	Benign	Infiltrating	Sampling	
	-	ductal Ca		

Table III. Discordant diagnosis.

Interpretative errors however, are extremely difficult to evaluate retrospectively. In some cases, technical reasons such as thick sections, folded sections, air drying and staining were partially responsible. In others, inadequate history and lack of communication between surgeons and pathologist resulted in erroneous interpretation. Nevertheless, we categorized interpretative errors as such where other factors were minor in nature. Some interpretative errors are bound to occur in the stressful situation of frozen section diagnosis and these usually involve cases that are difficult to diagnose even under ideal circumstances. Constraints of time may not allow performance and evaluation of deeper sections and consultation with colleagues. Any pathologist can make these mistakes and inexperienced pathologists may tend to err more than experienced pathologists. Sampling was also a major reason for

discordance. Sampling errors could occur at the time of initial gross evaluation of the specimen if unrepresentative sections were selected for freezing. Sampling errors could also occur at the microscopic level if pertinent pathology appears on the deeper sectioning of the paraffin embedded block. These errors can be minimized by meticulous gross examination, careful selection of representative material and deeper sectioning when appropriate. No serious consequences were noted in these discordant cases after careful review of the patient charts. One case from an outside hospital was not available for review. In Pakistan, frozen section services are exceptions rather than routine and consequently reliable figures of accuracy of this technique to the best of our knowledge are nonexistent There is, on the other hand a definite need and demand for this service in the community and this is reflected by a continual Increase in the frozen sections done on the specimens brought from other city hospitals of Karachi to our laboratory. It is our feeling that the present breed of pathology trainees are not adequately exposed to this procedure and this will significantly affect the practice of surgery and pathology in future. This &ct should be given needed importance by the organizations that oversee the training and conduct examinations in histopathology.

References

1. Breuer, M.L Frozen section biopsy at operation. Am.J.Clin.Pathol., 1938;8:153-69.

2. Roger, C., Klan, E.C and Chandrasoma, P. Accuracy of frozen section diagnosis in a teaching boapital. Arch. Patbol Lab. Med., 1987;111:514-17.

3. Sawady, J., Berner, JJ. and Siegler, RE. Accuracyof and reasons for frozen sections: a correlative, retrospectivestudy. Hum.Pathol., 1988;19:1019-23.

4. Oneson, RH., Minke, J.A. and Silverberg. S.G. Intraoperative pathologicconsultation: an auditof 1,000 recent consecutive cases. AmJ.Surg. Pathol., 1989;13:237-43.

5. Zarbo, R.J., Hoffman, 0.0. and Howanitz, P.J. Interinstitutional comparison of frozen section consultation. Arch. Pathol. Lab. Med., 1991;115:1187-94.

6. Dankwa, E.K. and Davies, J.D. Frozen section diagnosis: an audit J.Clin.Pathol., 1985;38:1235-40.7. Dalal, B.I., Malik, AK. and Datta, B.N. Frozensection disgnosis: a review of 1051 cases. Indian.J. Cancer, 1979;16:59-65.

 Rosai, J., Bonfuglio, TA, Corson, J.M. et at Recommendations on quality control and qualitysssurancein surgical pathology and autopay pathology. Mod. Pathol., 1992;5:567 68.
Ackerman, LV. andRamirez, G.A. The indicationsformal limitations of frozen section diagnosis. Br.J. Surg., 1959;46:336-50.