
 Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, Ohrid 26-29.09.2009 

 Published by the Society for ETAI of Republic of Macedonia, Skopje, 2009  

131 

 

An Efficient Algorithm for 3D Rectangular Box Packing  
 

M.Zahid Gürbüz *, Selim Akyokuş**, İbrahim Emiroğlu***, Aysun Güran**** 


*Yıldız Technical University, İstanbul, 34210 TR(Tel: 505-483-4699; e-mail: zgurbuz@dogus.edu.tr). 

**DogusUniversity, İstanbul, 34722 TR (e-mail:sakyokus@dogus.edu.tr) 

***Yıldız Technical University, İstanbul, 34210 TR(Tel: 212-383-4599; e-mail: emir@yildiz.edu.tr).  

****Yıldız Technical University, İstanbul, 34210 TR(Tel: 536-947-3275; e-mail: adogrusoz@dogus.edu.tr). 

 

Abstract: Getting highest occupancy rate of capacity of a container is very important for the companies, 
which deals in shipping or has shipping as a part of their main activities. They have to fit 3D boxes in 

container with optimum or nearest to optimum placement in order to ship more products with a minimum 

cost.  The problem of fitting the boxes which is different from or the same to each other into a big 

container in optimum level, is called 3-dimensional packing problem. In this problem, the main objective 
is to minimize used container volume or wasted container space. This provides the reduction of costs in 

shipments with the use minimum number of containers. Copyright © 2009 Authors & ETAI Society  

Keywords: Packaging, optimization problems, three-dimensional packing, combinatorial problem, 

transportation. 



1. INTRODUCTION 

The best utilization of capacity of a vehicle reduces the 
number of vehicles used in a shipment. This is very important 

for companies especially deal in transportation and/or 

exporting. In order to transport more packages with less 

number of vehicles, boxes should be packed optimally or 

near optimally. So, this helps to reduce the transportation 
costs. The problem of packing all boxes into a container is 

called 3D packing problem. The 3D packing problem is very 

complicated. If number of boxes increases, the complexity of 

the problem increases with nondeterministic polynomial time 

George and Robinson (1980). Therefore, the packing problem 

is a type of NP-Hard problem.  

For the solution method of 3D packing problem, many 
different methods are suggested by George and Robinson 

(1980), NGoi et.al. (1994), Eley (2002) and  Pisinger (2002). 

Data structures methods (Brunetta and Gre’goire (2005)), 

some meta-heuristic methods like genetic algorithm (Gehring 

and Borthfeldt (1997)), simulated annealing (Lai and Chan 

(1996)), some heuristic methods (Fareo at.al. (1999))  and 

some other efficient algorithms (faina(1999) and Mal et.al. 

(2005)) is suggested to solve this problem.  

3D packing problem is usually solved using optimization and 

heuristics methods. Some studies assume an unlimited 

capacity for a container and try to solve 3D packing problem 

with similar or different sized boxes from each other 
(Martello et.al. (1997)).  Some researchers consider other 

measures such as shipment of boxes that are more profitable 

than others boxes. In this case, the more profitable boxes 

have a priority to be placed into containers (Fareo et.al. 

(1999)). Some researchers also accept one of dimensions 

unlimited and the others fixed (Fareo et.al (1999)). In this 

paper, we assume an unlimited height for a container. The 

width and depth of the container is computed by considering 

the size of boxes to be placed.  

In this paper, we propose a new heuristic algorithm to solve 
3D packing problem.   This is organized as follows: Section 2 

gives a mathematical model of the problem. 

2. PROPOSED ALGORITHM 

In this section, we first define the inputs and outputs for the 
algorithm with our assumptions and then describe the 

proposed algorithm. The algorithm is called Largest Area 

First-Fit (LAFF) minimizing height. The algorithm places the 

boxes with largest surface area first by minimizing height 
from the bottom of the container. 

1.1 Inputs for LAFF Algorithm 

The first input is the number of different sized boxes denoted 
it by N. The second input is the dimensions for each type of 

different sized boxes. We denote this input parameter with 

four values (an, bn, cn, kn) where an is width, bn is depth, cn 

is height and kn is the number of boxes for a given size.  

Depending upon how you view a box, each dimension can be 

considered as width, height or depth. If you assume bn as 

width, other dimensions an and cn can be accepted as height 

or depth as well. Because, the box is three dimensional and it 
can be rotated and be viewed from different perspectives. The 

following lists the input parameters of the proposed 

algorithm: 

Number of different sized Boxes ..... : N 

Width of nth box ............................. : an 

Depth of nth box ............................. : bn 

Height of nth box ............................ : cn 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dogus University Institutional Repository

https://core.ac.uk/display/47258676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, Ohrid 26-29.09.2009 

 Published by the Society for ETAI of Republic of Macedonia, Skopje, 2009 
 

132 

 

 

Number of nth box........................... : kn 

1.2 Outputs for LAFF Algorithm  

After execution of LAFF algorithm, the program produces 
the following outputs: 

O1: The volume of container 

O2: The used space (The volume of all boxes placed) 

O3: The wasted space 
O4: The running time 

The output of the running time is expressed in order of 

milliseconds. 

1.3 How the LAFF Algorithm works 

As mentioned before, 3D packing problem is combinatorial 
problem with NP-hard complexity. That means the optimum 

results for the solution of the problem can be found by trying 

all combinations of possible different solutions. However, if 

the number of boxes increases, the number of iterations will 

increase so much that it cannot be solved in polynomial time 

on even fastest computer that is available with the current 

technology. Under some basic assumptions and constraints, 
these kinds of problems can be solved by heuristic algorithms 

that provide solution near to optimum.  

The proposed algorithm is called Largest Area First-Fit 
(LAFF) minimizing height. It uses a heuristics that places the 

boxes with largest surface area first by minimizing height 

from the bottom of the container. The algorithm works as 

follows: 

First of all, the width and depth of the container must be 
determined.  Given a set of different sized boxes, we compute 

the width and depth of the container by finding the longest 

two edges of given boxes. The width and depth of the 

container is determined at the beginning of the algorithm and 

it remains fixed throughout execution of the algorithm. We 

assume the height is unlimited. The height increases as the 

algorithm runs. 

That is, the width (ak) and depth (bk) of the container is 
determined by selecting the first and second longest edge of 

given boxes (ai, bi and ci). The longest edge is taken as width 

(ak) and second longest edge is taken as depth (bk). So, ak 

and bk never changes.  

After determining the values of width and depth of container, 
the given boxes can be placed into the container. In this 

algorithm, two types of placement methods are used. The first 

placement method allocates a space for a box that increases 

the height of the container. The second placement method 

allocates space for the remaining boxes if there is a box fits in 
the available space around the placed box without 

overflowing the height of the placed box. 

In the first placement method, the boxes with the largest 

surface area are determined and the selected boxes are 
searched to find a box that has minimum height out of all 

selected boxes. Then, the box with minimum height is placed 

in the container. The largest surface of the selected box 

should be parallel to the bottom of the container (Fig. 1). 

 

Fig. 1 First type of placement method 

In the second placement method, the algorithm tries to 
allocate space for the remaining boxes around the box that is 

placed with the first method. That is, If some space remains 

around the placed box as in Fig. 1, the algorithm tries to fill 

that space with the second type of placement method. In this 

method, given that the placed box has dimensions ai, bi and 

ci on a level, then the container will have two empty spaces 

around the placed box with dimensions  ((ak-ai), bk, ci) and 

(ak, (bk-bi), ci). So, if there is any box fitting in these empty 

spaces, that can be one or more, we place the box which has 

the maximum volume out of fitting boxes as shown in Fig. 2.  
This iteration continues until there are no boxes or no boxes 

can fit into those spaces.  

In the second placement method, if there is no space around 

the placed box, then the algorithm continues with the first 
type of placement method, consequently. 

 

 

Fig. 2 Second type of placement method. 

Whenever there are boxes that are not placed yet, the 

algorithm goes on with the first type of placement method 

and so on until all boxes are placed. At the end of the 
algorithm, a possible solution as shown in Fig. 3 is produced. 

 

 

Placed Box 

Container 

 

Container 

Placed 

Box 



 Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, Ohrid 26-29.09.2009 

 Published by the Society for ETAI of Republic of Macedonia, Skopje, 2009 
 

133 

 

 

 

Fig. 3 A possible solution of the Algorithm. 

1.4 The LAFF Algorithm 

The main steps of the LAFF algorithm are summarized 

below: 

Step1:  Input box dimensions and numbers. 

N: number of unique boxes. 

Step2:  Determine the width(ak) and depth(bk) of  

 The container. 

ak : First longest edge of all boxes.  

bk : Second longest edge of all boxes. 

ck : 0 (zero). 

Step3:  Chose the box which has the widest surface area. If 
there is more than one, chose the box which has minimum 

height. Place this box (ith) on the largest surface parallel to 

the base of container.  

Step3.1: Determine the height of container and decrement the 
number of ith box. 

 ck=ck+ ci 

 ki=ki-1 

Step3.2: if the number of Boxes is zero then terminate. 

 
p

pk 0

  

Step 3.3: if the space (ak-ai)=0 and (bk-bi)=0 then go to Step 
3. Otherwise, chose the box which fits into this space. If there 

is no box that fits into this space, go to Step 3. If there is 

more than one box that fits into this space, chose the box 

which has the biggest volume. It called jth box. 

Step3.3.1: Determine the dimension of the space. 

 as = ak–ai –aj  ve bs = max(bk–bi, bk–bj ) 

 or 

as = max(ak–ai, ak–aj )  and bs = bk–bi–bj   

Step3.3.2: Decrement number of ith box. 

kj=kj-1 

Step3.3.3: if the number of Boxes is zero then terminate. 
Otherwise, go to step 3.3. 

 
p

pk 0

 

3. COMPLEXITY OF LAFF ALGORITHM 

If we denote n as the number of all boxes to be placed into 
the container and k as types of different sized boxes, the 

worst-case running time of the algorithm is expressed below: 

  

  where k is constant.  

Therefore, the complexity of the algorithm is   

4. COMPUTATIONAL EXPERIMENTS 

We tested the program with several numbers of boxes with 
different sizes in order to see practical performance of the 

algorithm. The program generates random boxes with 

different sizes as an input and then places the boxes into the 

container. Table 1 shows the results of experiments. The first 

column (A) is the number of different types of boxes. The 
second column (B) is the total number of boxes. The third 

column (C) is the volume of all placed boxes. The forth 

column (D) is the volume of constructed container. Finally, 

the last column (E) shows the percentage amount of the 

wasted space. The algorithm tries to place boxes in a best 

way. The amount of the wasted space is considerably low. As 

it can be seen from the table, when the types of boxes 

increase, the wasted space will also increase. Because, it is 

more difficult to place the different sized boxes into the 

container than that of the same sized boxes. 

Table 1. Sample box placement results 

Number of 

Different 

Boxes 

 

(A) 

Total 

Number 

of  

Boxes 

(B) 

Volume 

of 

placed 

Boxes 

(C) 

Volume of 

Container 

 

 

(D) 

Waste 

(%) 

 

 

(E) 

1 10 8400 8400 0 

1 20 12480 12480 0 

2 5 2547 2610 2,41 

2 10 6252 6480 3,52 

2 15 25554 25920 1,41 

2 20 49032 49320 0,58 

5 5 3910 5100 23,3 

5 10 11359 13680 16,97 

5 20 22596 25840 12,55 

10 10 13419 19200 30,11 

10 20 21694 27740 21,80 

10 30 12854 16800 23,49 

 

The program is coded with C programming language. The 
coded program is run in a computer on with the following 

configuration: Intel Core Duo 1.73 GHZ CPU 1536 MB 

Ram. The Program executes very fast. The execution time of 

all experiments is below 16 milliseconds. We also tested the 

 

Container 

 



 Applied Automatic Systems: Proceedings of Selected AAS 2009 Papers, Ohrid 26-29.09.2009 

 Published by the Society for ETAI of Republic of Macedonia, Skopje, 2009 
 

134 

 

 

program with 10000 boxes with 20 different sizes. In this 

case, the program execution time is about 380 milliseconds. 

5. CONCLUSION 

The 3D packing problem is a well-known NP hard problem, 
which is too complex to be solved exactly in polynomial 

time. This paper presents a heuristic algorithm for the 3D 

packing problem. The proposed algorithm uses a heuristics 

strategy that places the boxes with largest surface area first 

by minimizing height from the bottom of the container. This 

algorithm assumes that the height of the container is 

unlimited and there is no restriction on the orientation of 

boxes, that is, all boxes can be rotated around any of the three 

dimensions. 

 Several conclusions can be drawn from the proposed 
heuristic algorithm and experiments. The proposed algorithm 

is an efficient algorithm which is the running time in the 

order of . The amount of wasted space is also in 
acceptable ranges.  

As a future work, other parameters such as weight of boxes, 
the distribution of the weight in a container, the use of 

multiple containers, the order of shipment of boxes can be 

considered to develop new algorithms. 

6. REFERENCES 

L., Brunetta, P., Gre’goire (2005), “A general purpose 

algorithm for three-dimensional packing.” INFORMS 
Journal on Computing, vol.17, pp. 328-338 

M. Eley (2002), “Solving container loading problems by 

block arrangement.” European Journal of Operational 

Research, 141 (2), 393-409. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

L., Faina (1999), “A global optimization algorithm for the 

three-dimensional packing problem”, European Journal 

of Operational Research, 126, 340-354.  

O., Fareo, D., Pisinger, M., Zachriasen (1999), Guided Local 

Search for the Three-dimensional Bin Packing Problem. 

Technical Report 99-13, Dept. of Computer Science, 

University of Copenhagen, Copenhagen, DK.  

H., Gehring, A., Bortfeldt (1997), “A genetic algorithm for 

solving the container loading problem.” International 

Transactions in Operational Research, 4 (5/6), pp. 401-

418.  
J. A. George and D.F. Robinson (1980), “A heuristic for 

packing boxes into a container.” Computer and 

Operations Research, 7 (3), 147-156.  

K. K. Lai, J.W.M., Chan (1996), “Developing a Simulated 

Annealing Algorithm for the cutting stock problem.” 

Computers and Industrial Engineering, 32 (1), 115-127.  

Y. Mal, X., Hong, S., Dong, C.K., Cheng (2005), “3D CBL: 

An Efficient Algorithm for General 3-Dimensional 

Packing Problems.” Midwest Symp. on Circuits and 

Systems,pp. 1079-1082 

S. Martello, D., Pisinger, D., Vigo (1997), “Three 
dimensional bin packing problem”, Technical Report 

DEIS-OR-97-6, Bologna University. 

B. K. A. NGoi, M. L. Tay, and E. S. Chua (1994), “Applying 

spatial representation techniques to the container packing 

problem.” International Journal of Production Research, 

32 (1), 111-123.  

D. Pisinger (2002), “Heuristics for the container loading 

problem.” European Journal of Operational Research, 

141 (2), 382-392.  

 


