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PREFACE 

In my thesis, a novel semantic smoothing method named Higher Order Smoothing (HOS) for 

the Na"ive Bayes algorithm is presented. HOS is built on a graph based data representation 

which allows semantics in higher-order paths to be exploited. This work was supported in part 

by The Scientific and Technological Research Council of Turkey (TÜBİTAK) grant number 

111E239. Points of view in this document are those of the authors and do not necessarily 

represent the official position or policies of the TÜBİTAK. 

Istanbul, January 2013 Mitat POYRAZ 
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ABSTRACT 

Text classification is the task of automatically sorting a set of documents into classes ( or 

categories) from a predefined set. This task is of great practical importance given the 

massive volume of online text available through the World Wide Web, Internet news 

feeds, electronic mail and corporate databases. Existing statistical text classification 

algorithms can be trained to accurately classify documents, given a sufficient set of labeled 

training examples. However, in real world applications, only a small amount of labeled 

data is available because expert labeling of large amounts of data is expensive. in this case, 

making an adequate estimation of the model parameters of a classifier is challenging. 

Underlying this issue is the traditional assumption in machine learning algorithms that 

instances are independent and identically distributed (IID). Semi-supervised learning (SSL) 

is the machine learning concept concerned with leveraging explicit as well as implicit link 

information within data to provide a richer data representation for model parameter 

estimation. 

it has been shown that Latent Semantic Indexing (LSI) takes advantage of implicit higher

order (or latent) structure in the association ofterms and documents. Higher-order relations 

in LSI capture "latent semantics". lnspired by this, a novel Bayesian frarnework for 

classifıcation named Higher Order Nai"ve Bayes (HONB), which can explicitly make use of 

these higher-order relations, has been introduced previously. in this thesis, a novel 

semantic smoothing rnethod named Higher Order Smoothing (HOS) for the Nai"ve Bayes 

algorithm is presented. HOS is built ona similar graph based data representation of HONB 

which allows semantics in higher-order paths to be exploited. Additionally, we take the 

concept one step further in HOS and exploited the relationships between instances of 

different classes in order to improve the parameter estimation when dealing with 

insufficient labeled data. As a result, we have not only been able to move beyond instance 

boundaries, but also class boundaries to exploit the latent information in higher-order 

paths. The results of experiments demonstrate the value of HOS on several benchmark 

datasets. 

Key Words: Nai"ve Bayes, Sernantic Srnoothing, Higher Order Na"ive Bayes, Higher Order 

Smoothing, Text Classification 
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ÖZET 

Metin sınıflandırma, bir dokümanlar kümesini daha önceden tanımlanan sınıflara ya da 

kategorilere otomatik olarak dahil etme işlemidir. Bu işlem, Web sayfalarında, Intemet 

haber kaynaklarında, e-posta iletilerinde ve kurumsal veri tabanlarında mevcut olan çok 

büyük miktardaki elektronik metin nedeniyle, giderek büyük önem kazanmaktadır. 

Halihazırdaki metin sınıflandırma algoritmaları, yeterli sayıda etiketli eğitim kümesi 

verildiği taktirde dokümanları doğru sınıflandırmak üzere eğitilebilir. Oysaki gerçek 

hayatta, büyük miktarda verilerin uzman kişilerce etiketlenmesi pahalı olduğundan çok az 

sayıda etiketli veri mevcuttur. Bu durumda, sınıflandırıcının model parametreleri ile ilgili 

uygun bir kestirim yapmak zordur. Bunun temelinde, makine öğrenimi algoritmalarının, 

veri içerisindeki örneklerin dağılımının bağımsız ve özdeş olduğunu varsayması yatar. Yarı 

öğreticiyle öğrenme kavramı, model parametre kestirimi için, veri içerisindeki hem açık 

hem de saklı ilişkilerden yararlanıp, onu daha zengin bir şekilde temsil etmeyle ilgilenir. 

Saklı Anlam Indeksleme'nin (LSI) dokümanların içerdiği terimler arasındaki yüksek 

dereceli ilişkileri kullanan bir teknik olduğu ortaya konulmuştur. LSI tekniğinde kullanılan 

yüksek dereceli ilişkilerden kasıt, terimler arasındaki gizli anlamsal yakınlıktır. Bu 

teknikten esinlenerek, Higher Order Nai"ve Bayes (HONB) adı verilen, metnin içerisindeki 

yüksek dereceli anlamsal ilişkileri kullanan, yeni bir metod literatürde yer almaktadır. Bu 

tezde Higher Order Smoothing (HOS) adı veri len, Nai"ve Bayes algoritması için yeni bir 

anlamsal yumuşatma metodu ortaya konmuştur. HOS metodu, HONB uygulama çatısında 

yer alan, metin içerisindeki yüksek dereceli anlamsal ilişkileri kullanmaya imkan veren 

grafik tabanlı veri gösterimine dayanmaktadır. Ayrıca HOS metodunda, aynı sınıfların 

örnekleri arasındaki ilişkilerden faydalanma noktasından bir adım öteye geçilerek, farklı 

sınıfların örnekleri arasındaki ilişkilerden de faydalanılmıştır. Bu sayede, etiketli veri 

kümesinin yetersiz olduğu durumlardaki parametre kestirimi geliştirilmiştir. Sonuç olarak, 

yüksek dereceli anlamsal bilgilerden faydalanmak için, sadece örnek sınırlarının ötesine 

geçmekle kalmayıp aynı zamanda sınıf sınırlarının da ötesine geçebiliyoruz. Farklı veri 

kümeleriye yapılan deneylerin sonuçları, HOS metodunun değerini kanıtlamaktadır. 

Anahtar Kelimeler: Nai"ve Bayes, Anlamsal Yumuşatma, Higher Order Na"ive Bayes, 

Higher Order Smoothing, Metin Sınıflandırma 
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1. INTRODUCTION 

1.1. Scope and objectives of the Thesis 

A well-known problem in real-world applications of machine leaming is that they require a 

large, often prohibitive, number of labeled training exarnples to leam accurately. However, 

often in practice, it is very expensive and time consuming to label large amounts of data as 

they require the efforts of skilled human annotators. In this case, making an adequate 

estimation of the model parameters of a classifier is challenging. Underlying this issue is 

the traditional assumption in machine learning algorithms that instances are independent 

and identically distributed (IID) (Taskar et.al, 2002). This assumption simplifies the 

underlying mathematics of statistical models and allows the classification of a single 

instance. However in real world datasets, instances and attributes are highly 

interconnected. Consequently, the IID approach does not fully make use of valuable 

information about relationships within a dataset (Getoor and Diehl, 2005). There are 

several studies which exploit explicit link information in order to overcome the 

shortcomings of IID approach (Chakrabarti et.al, 1998; Neville and lensen, 2000; Taskar 

et.al , 2002; Getoor and Diehl, 2005). However, the use of explicit links has a signifıcant 

drawback; in order to classify a single instance, an additional context needs to be provided. 

There is another approach which encounters this drawback, known as higher-order 

learning. It is a statistical relational leaming framework which allows supervised and 

unsupervised algorithms to leverage relationships between different instances of the same 

class (Edwards and Pottenger, 2011 ). This approach makes use of implicit link information 

(Ganiz et.al, 2006; Ganiz et.al, 2009; Ganiz et.al, 2011). Using implicit link information 

within data provides a richer data representation. It is difficult and usually expensive to 

obtain labeled data in real world applications. Using irnplicit links is known to be effective 

especially when we have limited labeled data. In one of these studies, a novel Bayesian 

frarnework for classification named Higher Order Nai"ve Bayes (HONB) has been 

introduced (Ganiz et.al, 2009; Ganiz et.al, 2011). HONB is built on a graph based data 

representation which leverages implicit higher-order links between attribute values across 

different instances (Ganiz et.al, 2009; Lytkin, 2009; Ganiz et.al, 2011). These implicit links 

are defined as higher-order paths. Attributes or features such as terms in documents of a 
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text collection are richly connected by higher order paths of this kind. HONB exploits this 

rich connectivity (Ganiz et.al , 2009). 

In this thesis, we follow the same practice of exploiting implicit link information by 

developing a novel semantic smoothing method for Naıve Bayes (NB). We call it Higher 

Order Smoothing (HOS). 

1.2. Methodology of the Thesis 

HOS is built on novel graph based <lata representation which is inspired from the <lata 

representation of HONB. However in HOS, we take the concept one step further and 

exploit the relationships between instances of different classes. This approach improves the 

parameter estimation in the face of sparse <lata conditions by reducing the sparsity. As a 

result, we move beyond instance boundaries and class boundaries as well to exploit the 

latent information in higher-order paths. 

We perform extensive experiments by varying the size of the training set in order to 

simulate real world settings and compare our algorithm with different smoothing methods 

and other algorithms. Our resul ts on several benchmark datasets show that HOS 

significantly boosts the performance of Na"ive Bayes (NB) and on some datasets it even 

outperforms Support Vector Machines (SVM). 
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2. LITERA TURE REVIEW 

Text classification is defined as the task of automatically assigning a document to one or 

more predefined classes (or categories), based on its content. Documents are usually 

represented with the Vector Space Model (VSM) (Salton et al., 1975), a model borrowed 

from Information Retrieval (IR). In this model, documents are represented as a vector 

where each dimension corresponds to a separate word in the corpus dictionary. Therefore, 

the document is represented as a matrix where each row is a document and each colurnn is 

a word. If a term occurs in the document then its value in the matrix is non-zero. In 

literature, several different ways of computing these values, also known as term weights, 

have been developed. 

Generally, a large number of words exist in even a moderately sized set of documents; for 

example, in one <lata set we use (WebKb4) 16,116 words exist in 4,199 documents. 

However, each document typically contains only a small number of words. Therefore 

document-term matrix is a high-dimensional, typically very sparse matrix with almost 99% 

of the matrix entries being zero. Several studies have shown that, with the increase of 

dimensionality, inference based on pairwise distances becomes increasingly difficult 

(Beyer et.al, 1998; Verleysen and François, 2005). Although VSM is widely used, most of 

the commonly used classification algorithms such as k-nearest neighbors (k-NN), Nai"ve 

Bayesian and Support Vector Machines (SVM) rely on pairwise distances, hence suffer 

from the curse of dimensionality (Bengio et.al,2006). In order to overcome this problem, 

several approaches exploiting the latent information in higher-order co-occurrence paths 

between features within datasets have been proposed (Ganiz et.al, 2009; Ganiz et.al, 2011). 

The underlying analogy of the concept 'higher-order' is that human do not necessarily use 

the same vocabulary when writing about the same topic. For example, in their study, 

Lemaire and Denhier (2006) found 131 occurrences of word "internet", 94 occurrences of 

word "web", but no co-occurrences at all, in a 24-million words French corpus from the 

daily newspaper Le Monde. Obviously it can be seen that these two words are strongly 

associated and this relationship can be brought to light if the two words co-occur with 

other words in the corpus. For instance, consider a document set containing noteworthy 

number of co-occurrences between the words "quantum" and "computer'', "computer" and 



"microprocessor". We could infer that there is a conceptual relationship beween the 

words "quantum" and "microprocessor", although they do not directly co-occur in any 

document. Relationships between "quantum" and "computer'', "computer" and 

"microprocessor" is called as a first-order co-occurrence. The conceptual relationship 

between "quantum" and "microprocessor" is called a second-order co-occurence which 

can be generalized to higher (3rd, 4th, 5th, ete) order co-occurrences. Many algorithms 

have been proposed in order to exploit higher-order occurences between words such as the 

Singular Value Decomposition (SVD) based Latent Semantic Indexing (LSI). 

At the very basic level , we are motivated by the LSI algorithm (Deerwester et.al, 1990), 

which is a widely used technique in text mining and IR. it has been shown that LSI takes 

advantage of implicit higher-order ( or latent) structure in the association of words and 

documents. Higher-order relations in LSI capture "latent semantics" (Li et.al , 2005). There 

are several disadvantages of using LSI in classification. it is a highly complex, 

unsupervised, black box algorithm. 

in their study, Kontostathis and Pottenger (2006) mathematically prove that LSI implicitly 

depends on higher-order co-occurrences. They also demonstrate empirically that higher

order co-occurrences play a key role in the effectiveness of systems based on LSI. Terms 

which are semantically similar lie closer to one another in the LSI vector space, so latent 

relationships among terms can be revealed. 

Titles: 
el: 
c2: 
c3 : 
c4: 
c5: 

ml : 
m2: 
m3: 
m4: 

Humanmachine interfacefor Lab ABC cornvuter applications 
A survey of user opinion of computer system response time 
The EPS user interface management system 
Systern and human system engineering testing of EPS 
Relation of user-perceived response time to error measurement 

The generation of random, binary, unordered trees 
The intersection waph of paths in trees 
Graph minors iV: Widths of trees and well-quasi-ordering 
Graph minors: A survey 

Figure 2. 1 Example document collection (Deerwester et al. , 1990) 
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tl t2 t3 t4 t5 t6 t7 t8 t9 tlO tl l tl2 
human(tl) x 1 1 o 2 o o 1 o o o o 

interface(t2) l x 1 1 1 o o 1 o o o o 
computer( t3) 1 l x 1 1 l 1 o l o o o 

user(t4) o 1 1 x 2 2 2 1 1 o o o 
system(t5) 2 1 1 2 x l 1 3 1 o o o 

response(t6) o o 1 2 1 x 2 o 1 o o o 
time(t7) o o 1 2 1 2 x o 1 o o o 
EPS(t8) 1 1 o 1 3 o o x o o o o 

survey(t9) o o 1 1 1 1 1 o x o 1 1 
trees(tlO) o o o o o o o o o x 2 1 

graph(tl 1) o o o o o o o o 1 2 x 2 
minors(t12} o o o o o o o o 1 1 2 x 

Figure 2. 2 Deerwester Term-to-Term Matrix (Kontostathis and Pottenger, 2006) 

tl t2 t3 t4 t5 t6 t7 t8 t9 tlO tl 1 tl2 
human(tl) x 0.54 0.56 0.94 1.69 0.58 0.58 0.84 0.32 

interface(t2) 0.54 x 0.52 0.87 1.50 0.55 0.55 0.73 0.35 
computer(t3 0.56 0.52 x 1.09 1.67 0.75 0.75 0.77 0.63 0.15 0.27 0.20 

user(t4) 0.94 0.87 1.09 x 2.79 1.25 1.25 1.28 1.04 0.23 0.42 0.31 
system(t5) 1.69 1.50 1.67 2.79 x 1.81 1.81 2.30 1.20 

response( t6) 0.58 0.55 0.75 1.25 1.81 x 0.89 0.80 0.82 0.38 0.56 0.41 
time(t7) 0.58 0.55 0.75 1.25 1.81 0.89 x 0.80 0.82 0.38 0.56 0.41 
EPS(t8) 0.84 0.73 0.77 1.28 2.30 0.80 0.80 x 0.46 

survey(t9) 0.32 0.35 0.63 1.04 1.20 0.82 0.82 0.46 x 0.88 1.17 0.85 
trees(tl O) 0.15 0.23 0.38 0.38 0.88 x 1.96 1.43 

graph(tl 1) 0.27 0.42 0.56 0.56 1.17 1.96 x 1.81 
minors(t12} 0.20 0.31 0.41 0.41 0.85 1.43 1.81 x 

Figure 2. 3 Deerwester Term-to-Term matrix (Kontostathis and Pottenger, 2006) 

Let' s consider a simple document collection given in Figure 2. 1 where document el has 

the words {human, interface} and c3 has {interface, user}. As can be seen from the co-

occurrence matrix in Figure 2.2, the terms "human" and "user" do not co-occur in this 

example collection. After applying LSI, however, the reduced representation co-occurrence 

matrix in Figure 2.3 has a non-zero entry for "human" and "user" thus implying a 

similarity between the two terms. This is an example of second-order co-occurrence; in 

other words, there is a second-order patlı between "human" in el and "user" in c3 through 

"interface" (common to both el and c3 ). This second-order patlı implicitly links c1 to c3 
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, violating the IID assumption. The results of experiments reported in (Kontostathis and 

Pottenger, 2006) show that there is a strong correlation between second-order terrn co

occurrence, the values produced by SVD algorithm used in LSI, and the perforrnance of 

LSI measured in terrns of F-measure , the harrnonic mean of precision and recall. As noted, 

the authors also provide a mathematical analysis which proves that LSI does in fact depend 

on higher-order term co-occurrence (Ganiz et.al, 2011). 

A second motivation stems from the studies in link mining which utilize explicit links 

(Getoor and Diehl, 2005). Several studies in this domain have shown that significant 

improvements can be achieved by classifying multiple instances collectively (Chakrabarti 

et.al, 1998; Neville and Jensen, 2000; Taskar et.al, 2002). However, use of explicit links 

requires an additional context for classification ofa single instance. This limitation restricts 

the applicability of these algorithms. There are also several studies which exploit implicit 

link information in order to improve the performance of machine learning models (Ganiz 

et.al, 2006; Ganiz et.al , 2009; Ganiz et.al, 2011). Using implicit link information within 

<lata provides a richer <lata representation and it is shown to be effective especially under 

the scarce training <lata conditions. In one of these a novel Bayesian framework for 

classifıcation named Higher Order Nai"ve Bayes (HONB) is introduced (Ganiz et.al, 2009; 

Ganjz et.al, 2011 ). 

HONB employs a graph based <lata representation and leverages co-occurrence relations 

between attribute values across different instances. These implicit links are named as 

higher-order paths. Attributes or features such as terms in documents of a text collection 

are richly connected by such higher-order paths. HONB exploits this rich connectivity 

(Ganiz et.al, 2009). Furthermore, this framework is generalized by developing a novel <lata 

driven space transforrnation that allows vector space classifiers to take advantage of 

relational dependencies captured by higher-order paths between features (Ganiz et.al, 

2009). This led to the development of Higher Order Support Vector Machines (HOSVM) 

algorithm. Higher-order learning which a statistical relational learning framework consists 

of several supervised and unsupervised machine leaming algorithms in which relationships 

between different instances are leveraged via higher order paths (Li et.al, 2005; Lytkin, 

2009; Edwards and Pottenger, 2011). 
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Figure 2. 4 Higher order co-occurrence (Kontostathis and Pottenger, 2006) 
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A higher order path is shown in Figure 2.4 (reproduced from (Kontostathis and Pottenger, 

2006)). This figure depicts three documents, Dl, D2 and D3, each containing two terms 

represented by the letters A , B , C and D . Below tlıe three documents tlıere is a higlıer

order path tlıat links term A witlı term D througlı B and C . This is a third-order patlı 

since three links, or ' ·lıops," connect A and D. Similarly, tlıere is a second order patlı 

between A and C througlı B . A co-occurs witlı B in document Dl , and B co-occurs 

witlı C in document D2 . Even if terms A and C never co-occur in any of the documents 

in a corpus, the regularity of these second order paths may reveal latent semantic 

relationship suclı as synonymy. As well as HONB, several studies in different areas of 

natural language processing have employed graplı based data representation for decades. 

These areas include, among otlıers, document clustering and text classification. 

Text classification is the task of assigning a document to appropriate classes or categories 

in a predefined set of categories. However, in tlıe real world, as the number of documents 

explosively increases, the number of categories reaches a significantly large number so it 

becomes much more difficult to browse and search tlıe categories. In order to solve this 

problem, categories are organized into a hierarchy like Open Directory Project (ODP) and 

tlıe Yahoo! directory. Hierarchical classifiers are widely used wlıen categories are 

organized in hierarchy; however, many data sets are not organized in hierarchical forms in 

real world. 
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To handle this problem, authors of the study (Gao et.al, 2005), propose a novel algorithm 

to automatically mine hierarchical taxonomy from the data set in order to take advantage of 

hierarchical classifier. In their approach, they model the relationship between categories, 

documents and terms by a tripartite graph and partition it using consistent bipartite spectral 

graph co-partitioning (CBSGC) algorithm. They use two bipartite graphs for representing 

relationships between categories-documents and documents-terms. As can be seen in 

Figure 2.5, a document is used asa bridge between these two bipartite graphs to generate a 

category-document- term tripartite graph. CBSGC is a recursive algorithm to partition the 

tripartite graph which terminates when subsets of the leaf nodes contains only one 

category. Their experirnents show that, CBSGC discover very reasonable hierarchical 

taxonomy and improves the classification accuracy on 20 Newsgroups dataset. 

Figure 2. 5 The category-document-term tripartite graph (Gao et.al, 2005) 

In another study, Mengle and Goharian (2010) intend to discover the relationships among 

document categories which are represented in the form ofa concept hierarchy. In their 

approach, they represent such relationships in a graph structure called Relationship-net 

shown in Figure 2.6, where categories are the vertices of this graph and edges are the 

relationship among them. In a category hierarchy, only the relationships among categories 

sharing the same parent are represented. Therefore, identifying relationships among non

sibling categories (categories with different parents) is limited. In Relationship-net, 

relationships between non-sibling categories as well as sibling categories are presented so 

authors identify more relationships than a hierarchical taxonomy does. To identify the 
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relationships among categories, a text classifier' s misclassification information is utilized. 

This approach relies on the fınding that categories which mostly are misclassified as each 

other indeed are relevant. They evaluate 20Newsgroup, ODP and SIGIR <lata sets in their 

experiments and results show that Relationship-net based on rnisclassification information 

statistically significantly outperforms the CBSCG approach. 

autos 

motorcycles 

windowsmic 

talkpoliticsguns 

( electonics ) 
talkpoliticsmideast 

chris~ 

Figure 2. 6 Relationship-net for the 20NG data set (Mengle and Goharian, 2010) 

Besides using graph structure in hierarchical taxonomy, several works employing graphs 

for clustering documents have been proposed. Clustering is the task of partitioning a set of 

objects into groups (or clusters) such that similar objects are in the same cluster while 

dissimilar objects are in different clusters. Homogeneous data clustering has been studied 

for years in the literature of machine learning and data rnining, however, heterogeneous 

data clustering has attracted more and more attention in recent years. Underlying this issue 

is that the sirnilarities among one type of objects sometimes can only be defined by the 

other type of objects especially when these objects are highly interrelated. For instance, 

documents and terms in a text corpus, reviewers and movies in movie recommender 

systems, are highly interrelated heterogeneous objects. in these examples, traditional 

clustering algorithms might not work very well. In order to avoid this problem, many 
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researchers started to extend traditional clustering algorithms and propose graph 

partitioning algorithms to co-cluster heterogeneous objects simultaneously (Dhillon, 2001; 

Zha et.al, 2001). 

In his study, Dhillon (2001) considers the problem of simultaneous co-clustering of 

documents and words. Most of the existing algorithms based on separate clustering, either 

documents or words but not sirnultaneously. Document clustering algorithms, cluster 

documents based upon their word distributions whereas word clustering algorithms uses 

words' co-occurrences in documents. Therefore, there is a dual relationship between 

document and word clustering as they both induce each other. This characterization is 

recursive because document clusters determine word clusters, which in tum determine 

(better) document clusters. In his approach, he represents a document collection as a 

bipartite graph shown in Figure 2. 7 and proposes an algorithm to sol ve this dual clustering 

problem. 

ds 

Figure 2. 7 A bipartite graph of document and words (Dhillon, 2001) 

It is obvious that, better word and document clustering can be achieved by partitioning the 

graph such that the crossing edges between partitions have minimum weight. Therefore, 

simultaneous clustering problem become a bipartite graph partitioning problem. His 

algorithm partitions documents and words simultaneously by finding minimum cut vertex 

partitions in this bipartite graph, and provides good global solution in practice. He uses 

popular Medline (1033 medical abstracts) , Cranfield (1400 aeronautical systems abstracts) 

and Cisi ( 1460 information retrieval abstracts) da ta sets in their experiments and his results 

verify that proposed co-clustering algorithm works well on real exarnples. 
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ln another study (Zha et.al, 2001 ), the authors also represent documents and terms as 

vertices in a bipartite graph, where edges of the graph are the co-occurrence of the term 

and document. In their approach, they propose a clustering method based on partitioning 

this bipartite graph. Unlike from (Dhillon, 2001), normalized sum of edge weights between 

unmatched pairs of vertices of the bipartite graph is minimized to partition the graph. They 

show that, by computing partial SVD of the associated edge weight matrix of the bipartite 

graph, an approximate solution to the minimization problem can be obtained. In their 

experiments they apply their technique successfully on document clustering. 

Clustering methods based on pair-wise similarity of data points, such as spectral clustering 

methods require finding eigenvectors of the similarity matrix. Therefore, even though these 

methods shown to be effective on a variety of tasks, they are prohibitively expensive when 

applying on large-scale text datasets. To tackle this problem, authors of the study (Frank 

and Cohen, 2010), represent a text data set as a bipartite graph in order to propose a fast 

method for clustering big text datasets. Documents and words correspond to vertices in the 

bipartite graph and the number of paths between two document vertices is used as a 

similarity measure. According to their results, even if proposed method runs much faster 

from previous methods, it works as well as them in clustering accuracy. 

As distinct from above studies clustering documents, authors of the study (Caimei et.al, 

2011), propose a novel clustering method called "Tripartite Clustering" which clusters a 

social tagging data set. Sets of users, resources and tags are elements of a social tagging 

system hence it is naturally based on a tripartite form. In their tripartite graph 

representation shown in Figure 2.8, each of these elements corresponds to vertices and a 

vertex is characterized by its link to the other two types of vertices. They compare 

Tripartite Clustering with K-means in their experiments and results show that, their method 

achieves equivalent or betler performances and produces more useful information. 
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Figure 2. 8 Example of the tripartite network of social tagging system (Caimei et.al, 2011) 

Although there are several works for co-clustering two types of heterogeneous objects 

( denoted by pair wise clustering) such as documents and terms, works for co-clustering 

more types of heterogeneous <lata ( denoted by higher-order clustering) is still very limited. 

In their study, Gao et.al (2005) work on co-clustering higher-order objects in which there is 

a central object connecting the other objects so as to form a star structure. According to 

them, this structure could be a very good abstract for real-world situations, such as co

clustering categories, documents and terms in text mining where the central object for the 

star is documents. Their premise for the star structure is that, they treat co-clustering 

categories, documents and terms problem as a union of multiple pair wise co-clustering 

problems with the constraint of the star structure. Therefore, they develop an algorithm 

based on semi-definite programming (SDP) for efficient computation of the clustering 

results. In their experiments on toy problems and real <lata, they verify the effectiveness of 

their proposed algorithm. 

Clustering algorithms are described as unsupervised machine learning algorithms because 

they are not provided with a labeled training set. On the other hand, Hussain and Bisson 

(201 O) propose a two-step approach for expanding the unsupervised X-Sim co-clustering 

algorithrn to deal with text classification task. In their approach, fırstly, they introduce a 

priori knowledge by introducing class labels into the training dataset while initializing X

Sim. Underlying concept of this is that X-Sirn algorithrn exploits higher-order sirnilarities 

within a <lata set hence adding class labels will force higher-order co-occurrences. 

Secondly, they introduce a method to reduce the similarity values of documents in different 
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classes. Therefore, the influence of higher-order co-occurrences between documents in 

different categories is promoted. According to their experiment results, the proposed 

approach which is an extension of the X-Sim co-clustering algorithm gain perforrnance 

equal or berter to both traditional and state-of-the-art algorithms like k-NN, supervised LSI 

and SVM. 

in another study, Radev (2004) proposes a tripartite updating method for a number 

classification task which is especially important in question answering systems. in his 

study, he defines a bipartite graph shown in Figure 2.9 where features are vertices and 

these vertices are connected with labeled and unlabeled examples. 

Figure 2. 9 Bipartite representation (Radev, 2004) 

in order to evaluate the perforrnance of proposed method, he compares tripartite updating 

with a weakly supervised classification algorithm based on graph representation, spectral 

partitioning. This algorithm is known as weakly supervised in the literature because it 

requires a small number of labeled examples. His experimental results show that, tripartite 

updating outperforrns spectral partitioning even though they both require minimal labeled 

<lata. The results also indicate that, both methods scale well to different ratios between the 

number of labeled training examples and the number of unlabeled examples. 
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The authors of study (Gharahmani and Lafferty, 2003) also use a weighted graph to 

introduce a new classifıcation method based on the Gaussian random field. Labeled and 

unlabeled instances are the vertices of this graph where edge weights represent the 

similarity between them. In order to identify the labeled node that is closest to a given 

unlabeled instance based on the graph topology, they apply belief propagation. They 

perform experiments on text and digit classification and promising results demonstrate 

that, proposed method has the potential to draw advantage from unlabeled data efficiently 

to improve classification accuracy. 

There are two commonly referred event models in Na'ive Bayes for text categorization; 

multivariate Bemoulli (MVNB) and multinomial models (MNB). The first one is also 

known as binary independence model. In this model presence and absence of the terms is 

represented respectively " 1" and " O". On the other hand in multinomial model is a unigram 

language model with integer term counts. Thus, each class can be defıned as a multinornial 

distribution. Multinornial model is actually a unigram language model (McCallum and 

Nigam, 1998). McCallum and Nigam (1998) compare multivariate Bemoulli and 

multinomial model on several different data sets. Their experimental results show that the 

multivariate Bemoulli event model represents berter performance at smaller vocabulary 

sizes, whereas the multinomial model generally performs well with large vocabulary sizes. 

Most of the studies about Nai"ve Bayes text classification employs multinomial model 

based on the recommendation of the well-known paper of McCallum and Nigam 

(McCallum and Nigam, 1998). However, there are some interesting studies using binary 

data. For instance, MNB is shown to perform berter with binary data in some cases such as 

spam detection (Schneider, 2004; Metsis et.al, 2006). In another study Kim et.al (2006), 

propose a multivariate Poisson Na'ive Bayes text classification model with weight

enhancing method to improve performances on rare categories. Their experiments show 

that, this model is a good altemative to traditional Na'ive Bayes classifier because it allows 

more reasonable parameter estimation when a low number of training documents is 

available. 

In general, NB parameter estimation drastically suffer from sparse data because it has so 

many parameters to estimate in text classification problems cıvııcı + ıcı) where ıvı denotes 
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the dictionary and ICI denotes the set of class labels (McCallum and Nigam, 1999). Most 

of the studies on NB text classification employ Laplace smoothing by default. There are a 

few studies that attempt to use different smoothing methods. For instance Juan and Ney 

(2002) use multinomial model with several different smoothing techniques which origin 

from statistical language modeling field and generally used with n-gram language models. 

These include absolute discounting with unigram backing-off and absolute discounting 

with unigram interpolation. They state that absolute discounting with unigram interpolation 

gives better results than Laplace smoothing. They alsa consider document length 

normalization. Peng et.al (2004), augment NB with n-grams and advanced smoothing 

methods from language modeling domain such as linear interpolation, absolute smoothing, 

Good-Turing Smoothing and Witten- Bell smoothing. 

in another study (Chen and Goodman, 1998), authors propose a semantic smoothing 

method based on the extraction of topic signatures. Topic signatures correspond to multi

word phrases such as n-grams or collocations that are extracted from the training corpus. 

After having topic signatures and multiword phrases they used them in semantic smoothing 

background collection model to smooth and map the topic signatures. They demonstrate 

that when the training data is small , the NB classifier with semantic smoothing 

outperforms better than NB with background smoothing (Jelinek-Mercer) and Laplace 

smoothing. 

SVM is a popular large margin classifier. This machine learning method aims to fınd a 

decision boundary that separates points into two classes thereby maximizing margin 

(Joachims, 1998). SVM projects data points into a higher dimensional space so that the 

data points become linearly separable by using kemel techniques. There are several kemels 

that can be used SVM algorithm. Linear kemel is known to perform well on text 

classification. We include SVM results in our experiments for comparison reasons. 
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3. METHODOLOGY 

3.1. Theoretical Background 

in this section we review the Na"ive Bayes event models and data representations. Although 

our method is not restricted to a particular application domain we focus on textual data. 

3.2. Nalve Bayes Event Models 

Na"ive Bayes is one of the most popular and commonly used machine leaming algorithms 

in text classification due to its easy implementation and low complexity. There are two 

generative event models that are cornmonly used with Na"ive Bayes (NB) for text 

classification. First and the less popular one is multivariate Bemoulli event model which is 

also known as binary independence NB model (MVNB). in this model, documents are 

considered as events and they are represented a vector of binary attributes indicating 

occurrence of terrns in the docurnent. Given a set of class labels C = {c1 , .... ,ek} and the 

corresponding training set D
1 

of docurnents representing classc
1

, for each j {1, .... , K}. 

The probability that a document in class c1 , will mention terrn wi . With this definition 

(Chakrabarti, 2002), 

(3.1) 

Conditional probabilitiesP(w; 1 cJ are estimated by 

(3.2) 

which is ratio of the number of docurnents that contain terrn wi, in class c
1

, to the total 

nurnber of docurnents in class c
1

. The constants in numerator and denominator in (3.2) are 

introduced according to Laplace's rule of succession in order to avoid zero-probability 
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terms (Ganiz et.al, 2009). Laplace smoothing adds a pseudo count to every word count. 

The main disadvantage of Laplace is to give too much probability mass to previously 

unseen events. 

Second NB event model is multinornial model (MNB) which can make use of term 

frequencies. Let term w; occur n(d, w;) timesin document d, which is said to have length 

f d = I n(d, w;). With this defınition 

(3 .3) 

Class conditional term probabilities are estimated using (3.4). 

(3.4) 

where IWI is vocabulary (total number ofwords) (Chakrabarti, 2002). 

Because of sparsity in training data, missing terms (unseen events) in the document can 

cause "zero probability problem" in NB. To eliminate this, we need to distribute some 

probability mass to unseen terms. This process is known as smoothing. The most common 

smoothing method in NB is Laplace smoothing. Formulas of the NB event modelsin (3.2) 

and (3.4) already included Laplace smoothing. In the next section, we provide details ofa 

more advanced smoothing method which perform well especially on MVNB. 

3.2.1. Jelinek-Mercer Smoothing 

In Jelinek-Mercer smoothing method, the maxımum estimate is interpolated with the 

smoothed lower-order distribution (Chen and Goodman, 1998). This is achieved by linear 
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combination of maximum likelihood estimate in (3 .5) with the collection model in (3.6) as 

shown in (3.7). In (3.6), iDi represents the whole training set, including the documents 

from all classes. 

iDi 

:Lw;(d) 
( 

1 
) 

dED · 

Pmı W; cj = --ı-~-j.,-ı- (3.5) 

(3.6) 

(3.7) 

3.2.2. Higher Order Data Representation 

Data representation we built on is initially used in (Ganiz et.al, 2011 ). In this study, it is 

indicated that defınition ofa higher-order patlı is similar to the one in graph theory, which 

states that given a non-empty graph G = (V,E) of the form V = {x0,Xp···· , xk}, 

patlı P where the number of edges in P is its length. 

A different approach is given in (Ganiz et.al, 2009) by using a bipartite graph. In this 

approach a bipartite graph G = ( (VD, Vıv ), E) is built from a set of D documents for a better 

representation. As it can be seen in Figure 3.1, in this graph, vertices in V0 correspond to 

documents and vertices in V w correspond to terms. 
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Figure 3. 1 Bipartite graplı representation of documents and terms 

"There is an edge (d, w) between two vertices wlıere d E VD and w E Vw iff word w 

occurs in document d . In this representation, a higlıer-order patlı in dataset D can be 

considered as a chain sub graplı of G. For example a chain w; - d1 - wk - dr - w1 whiclı is 

also denoted as ( w;, d" wk, d r, w;) is a second-order patlı since it spans througlı two 

different document vertices. Higher-order patlıs simultaneously capture term co-occurrences 

within documents as well as term sharing patterns across documents, and in doing so 

provide a muclı riclıer data representation than tlıe traditional feature vector form" (Ganiz 

et.al, 2009). 

3.2.3. Higher Order Na'ive Bayes 

Riclı relational information between terms and documents can be exploited by using higlıer

order patlıs. In Higher Order Na'ive Bayes (HONB) tlıis valuable information is integrated 

into multivariate Bernoulli Naıve Bayes algorithm (MNVB) by estimating parameters from 

higlıer-order patlıs instead of documents (Ganiz et.al, 2009). Formulation of parameter 

estimates are given in (3.8) and (3.9) whiclı are taken from (Ganiz et.al, 2009). 

(3.8) 



P(c_J = Kt/J(DJ) 
LtfJ(Dk) 
k = I 
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(3.9) 

The number of higher-order paths containing term w; given the set of documents that 

belongs c 1 is represented by rp( w;, D
1

) . On the other hand, r/J(D1 ) denote the total number 

of higher-order paths extracted from the documents of c1 . In (3.8) the Laplace smoothing 

is included in order to avoid zero probability problem for the terms that do not exist in c 
1 

. 

3.3. Higher Order Smoothing 

In this section we present a novel semantic smoothing method called Higher Order 

Smoothing (HOS) by following the same approach of exploiting implicit link information. 

HOS is built on a graph-based <lata representation from the previous algorithms in hjgher

order leaming framework such as HONB (Ganiz et.al, 2009; Garuz et.al, 2011). However, 

in HONB, higher-order paths are extracted in the context ofa class. Therefore we cannot 

exploit relations between terms and documents in different classes. 

in HOS we take the concept one step further and exploit the relationships between 

instances of different classes in order to improve the parameter estimation. As a result, we 

are not only moving beyond document boundaries but also class boundaries to exploit the 

latent semantic information in higher-order co-occurrence paths between terms (Poyraz 

et.al, 2012). We accomplish this by extracting higher-order paths from the whole training 

set including all classes of documents. Our aim is to reduce sparsity especially in the face 

of insufficient labeled <lata conditions. 

in order to do so, we first convert the nominal class attribute to a number of binary 

attributes each representing a class label. For instance, in WebKb4 dataset 'Class' attribute 

has the following set of values C = { course, faculty, proje et, stajf, studen~. We add these 

four class labels as new terms (i.e. colurnns to our document by term matrix). We call them 

"class labels". Each of these labels indicates if the given document belongs to a particular 

class or not. 
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After this transformation, we sliglıtly modify tlıe higlıer-order <lata representation by 

characterize a set of D documents as a tripartite graplı. In tlıis tripartite graplı 

G = ((Vw, Ve, Vv), E), vertices in VD correspond to documents, vertices in Vw correspond 

to terms, and finally vertices in Ve correspond to class terms or in otlıer words class labels. 

Figure 3.1 slıows suclı a tripartite graplı whiclı represents relationship between terms, class 

labels, and documents. Similarly, to previous higlıer-order <lata representation with bipartite 

graplı, a lıiglıer-order patlı in dataset D can be considered as a clıain sub graplı of G . 

However, we are interested in suclı clıain sub graplıs that start with a term vertex from Vw, 

spans througlı different document vertices in VD, and terminate witlı a class term vertex in 

Ve . w; -d, -wk -d, -c1 is suclı a clıain wlıich we denote by (w;, d , , wk ,d ,,c). This 

chain corresponds to a second-order patlı since it spans througlı two document vertices. 

Tlıese patlıs have potential to cross class boundaries and capture latent semantics. We 

enumerate higlıer-order patlıs between all tlıe terms in tlıe training set and tlıe class terms. 

Tlıese higlıer-order paths capture tlıe term co-occurrences within a class of documents as 

well as term relation pattems across classes. As a result, tlıey provide more dense <lata 

representation tlıan the traditional vector space. This is the basis of our smoothing 

algorithm. 

Let' s consider w1 -d1 -w2 -d2 -c1 whiclı is an example chain is in tlıe tripartite graplı 

given in Figure 3.2. This chain is indicated witlı red bold lines and it corresponds to a 

second-order patlı . in this example let' s assume that w1 never occurs in tlıe documents of c1• 

We still can estimate parameter value of w1 for c1 using suclı paths. This is achieved by 

intermediate terms suclı as w2 tlıat co-occurs witlı w1 (given w2 occurs in the documents of 

c1 ). As can be seen from the example, this new <lata representation and the new definition 

of higher-order paths allow us to calculate class conditional probabilities for some of the 

terms that do not occur in documents of a particular class. This framework serves as a 

semantic smoothing method for estimating model parameters of previously unseen terms 

given the fact that higher-order paths reveal latent semantics (Kontostathis and Pottenger, 

2006). 
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Figure 3. 2 Data representation for HO paths using tripartite graph (Poyraz et.al, 2012) 

Based on this representation and modified definition of higher-order paths we can 

formulate HOS. Let 8(w;,c) denote the number of higher-order paths that is between term 

w; and class label c J in the dataset D, and <l>(D) denote the total number of higher-order 

paths between all terms and all class terms in D . Please note that D represents all 

docurnents from all classes. This is one of the irnportant differences between the 

formulation of HONB and HOS. The parameter estimation equation of the proposed HOS 

is given in (3. 1 O). Although HOS has the potential to estirnate parameters for terms that do 

not occur in the documents ofa class but occurs in other classes in training data, there can 

be terms that occur only in test set. In order to avoid zero probability problems in these 

cases, we apply Laplace smoothing in (3.10). Class priors are calculated according to 

multivariate Bemoulli model using documents. 

(3.10) 

We recognize that different orders of paths may have different contribution to semantics 

and provide even richer data representation. Similar to the linear interpolation (a.k.a. 

Jelinek-Mercer) we can cornbine estimates calculated frorn different order of paths. In 

(3. 11) the linear combination of first-order paths Gust co-occurrences) with second-order 

paths is shown. We use this formulation in our experiments. We set fJ to 0.5 experimentally 

since for majority of our datasets and training set size percentages, 0.5 performs best. 
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P(wi 1 c1 ) = (1- /J)x Pfo (wi 1 c1 )+ /3 x ~0 (wi 1 c1 ) (3.11) 

The overall process of extracting second-order paths for HOS is described in Algorithm 1. 

It is based on the enumeration algorithm proposed in (Ganiz et.al, 2009) which is described 

in detail in (Lytkin, 2009). 

Algorithm 1 : Enumerating second-order paths for HOS 

Jnput : Boolean document-term data Matrix X = X~ 

Output: 0 2 matrix which stores the number of second-order paths in data Matrix X 

1. Initialize vector ı = (1 1
, •• • ,l" ), which will store class labels of given data matrix X 

2. for each row i in data matrix X 

2a. t =X'-1 
1 

3. Initialize class labels binary matrix C,6 = C,6 : which will represent each class value as 

binary where c is the number of classes in data matrix X 

4. for each row i in C,
6 

matrix 

4a. for each column c in c," matrix 

4b. if /; is equal to j 

4c. set C,6 (i,J) equal to 1 

5. Compute matrix X c16 = Xc16 ~+c by appending binary class valued matrix c," to data matrix 

x 

6. Compute first-order co-occurrence matrix o, = x c/b T x c/b 

7. Compute second-order co-occurrence matrix 0
2 

= 0
1
0

1 

8. for each row i in first-order co-occurrence matrix 0
1 

8a. for each column j in first-order co-occurrence matrix 0
1 
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8b. Compute scalar s, to eliminate paths 1 1 , d1 ,t1 .dı,t 3 , where both docurnent 

vertices ( d
1 

) are same 

s = 02(i,j)-(q (i,j)*(q (i,i)+ q (j,j))) 

8c. Update the element of second-order co-occurrence matrix, 0 2 (i, j) = 0 2 (i, j) + s 

9. Retum 0
2 

In algorithrn 1, first, class labels are removed from given Boolean document-term <lata 

matrix and stored in a vector. Then, using class labels vector, a binary class labels matrix 

which represents each class value as binary, is built. Afterwards, class labels removed <lata 

matrix and binary class labels matrix are combined. In this instance, we have a new matrix 

called class-binarized matrix X c16 which stores the input <lata matrix and its binary class 

values. We use X c16 to calculate the first and second order paths. First order paths matrix is 

calculated by multiplying X c16 by its transpose. Second order paths matrix is calculated by 

multiplying first order paths by itself. Finally, scalar s if computed in order to eliminate 

paths, where both docurnent vertices d1 are same and second order paths matrix is updated 

using this scalar value. 
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4. CONCLUSION 

4.1. Experiment Results 

In order to analyze the performance of our algorithm for text classification, we use three 

widely used benchmark datasets. First one is a variant of 20 Newsgroups 1 dataset. it is 

called 20News-l 8828 and it has fewer documents from the original 20 Newsgroup dataset 

since duplicates postings are removed. Additionally for each posting headers are deleted 

except "From" and "Subject" headers. Our second dataset is the WebKB2 dataset which 

includes web pages collected from computer science departments of different universities. 

There are seven categories which are student, faculty, staff, course, project, department and 

other. We use four class version of the WebKB dataset which is used in (McCallum and 

Nigam, 1998). This dataset is named as WebK.B4. Third dataset is 1150Haber dataset 

which consists of 1150 news articles in fi ve categories namely economy, magazine, health, 

politics and sport collected from Turkish online newspapers (Amasyalı and Beken, 2009). 

We particularly choose a dataset in different language in order to observe efficiency of 

higher-order algorithms in different languages. Similar to LSI, we expect higher-order 

paths based algorithms HONB and HOS to perform well on different languages without 

any need for tuning. More information about this data set and text classification on Turkish 

documents can be found in (Torunoğlu et.al, 2011 ). üne of the most important differences 

between WebKB4 and other two datasets is the class distribution. While 20News-18828 

and 1150Haber have almost equal number of docurnents per class, WebKB4 have highly 

skewed class distribution. For the statistics given in Table 4.1 , we apply no stemming or 

stop word filtering. We only filter infrequent terms whose document frequency is less than 

three. Descriptions of the datasets, under these conditions are given in Table 4. 1 including 

number of classes C\C\) , number of docurnents C\D\) and the vocabulary size C\V\) . 

1 http://people.csai l.mit.edu/people/j rennie/20Newsgroups 
2 http://www.cs.cmu.edu/- textleaming 



Table 4. 1 Descriptions of the datasets with no preprocessing 

DATA SET ıcı iDi 
20NEWS-l 8828 20 18,828 

.................................................................................................. -........................ ·-··-··--···-·· 

WEBKB4 4 4,199 

l 150HABER 5 1150 

ıvı 

50,570 

16,116 

11,038 
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As can be seen from Algorithm 1, complexity of the higher-order patlı enumeration 

algorithm is proportional to the number of terms. In order avoid wınecessary complexity 

and to finish experiments on time we reduce the dictionary size of all three datasets by 

applying stop word filtering and stemming using Snowball stemmer. Finally, dictionary 

sizes are fixed to 2,000 by selecting the most informative terms using Information Gain 

feature selection method. All of these preprocessing operations are widely applied in the 

literature and it has been known that they usually improve the performance of traditional 

vector space classifiers. For that reason, we are actually giving a considerable advantage to 

our baseline classifıer NB and SVM. Please note that HOS is expected to work well when 

the data is very sparse. In fact, these preprocessing operations reduce sparsity. As 

mentioned before we vary the training set size by using following percentages of the <lata 

for training and the rest for testing: 1 %, 5%, 10%, 30%, 50%, 70%, 80% and 90%. These 

percentages are indicated with "ts" prefıx to avoid confusion with accuracy percentages. 

We take class distributions into consideration while doing so. We run algorithms on 1 O 

random splits for each of the training set percentages and report average of these 1 O results 

augmented by standard deviations. While splitting data into training and test set, we 

employ stratified sampling. This approach is sirnilar to (McCallum and Nigam, 1998) and 

(Rennie et.al, 2003) where they use 80% of the data for training and 20% for test. 

Our dataset include term frequencies (tf). However, higher-order paths based classifiers 

HONB and HOS currently can only work with binary data. Therefore they convert term 

frequencies to binary values in order to enumerate higher-order paths. We use up to 

second-order paths based on the experiment results of previous studies (Ganiz et.al, 2009; 

Ganiz et.al, 2011). Since we use binary data, our baseline classifier is multivariate 

Bemoulli NB (MVNB) with Laplace smoothing. This is indicated as MVNB in the results. 
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We alsa employ more advanced smoothing method with MVNB which is Jelinek-Mercer 

(JM). Furthermore, we compare our results with HONB and state of the art text classifier 

SVM. We used linear kemel in SVM since it has been known to perform well in text 

classification. Additionally, we optimize sofi margin cost parameter C by using the set of 

{10-3 
, .••• ,1,101

, ••. ,103
} of possible values. We picked the smallest value of C which resulted 

in the highest accuracy. We observed that C value is usually 1 when the training data is 

small ( e.g. up to 10%) and it is usually 10-2 when training data increase ( e.g. after 10%) 

with the exception of 1150Haber which is our smallest dataset. In 1150Haber, best 

performing C value is 1 in all training set percentages except 90%. 

We use accuracy augmented by standard deviations as our primary evaluation metric. 

Tables show accuracies of algorithms. We only provide F-measure (Fl) and AUC values 

far 80% training data level due to length restrictions. However, we observe that they 

exhibit same pattems. We alsa provide statistical significance tests in several places by 

using Student's t-Test especially when accuracies of different algorithms are close to each 

other. We use a = 0.05 significance level and consider the difference is statistically 

significant if the probability associated with Student's t-Test is lower. 

Our experiments show that HOS demonstrate remarkable performance on 20 Newsgroups 

dataset. This can be seen in Table 4.2 and Figure 4. 1. HOS statistically significantly 

outperforms our baseline classifier MVNB (with Laplace smoothing) by a wide margin in 

all training set percentages. Moreover, HOS statistically significantly outperforms all other 

algorithms including NB with Jelinek-Mercer smoothing (MVNB+JM), HONB, and even 

SVM. 
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Table 4. 2 Accuracy and standard deviations of algorithms on 20 Newsgroups dataset 

TS MVNB MVNB+JM HOS HONB SVM 

1 24.77±2.49 48.01 ±1.37 42.92±3.61 44.09±2.04 32.65±1.75 
-------··-·····----········ ·······························-··· ······-·············· - ----

5 55.68±1.26 69.10±0.68 65 .81 ±1.57 64.65±0.92 56.16±1.11 
···············-····-··----··········· -----········-·········-················· ·····························-···-···------·-·········------·-·-···-··-·············-······· 

10 65.01±1.57 72.95±1.42 76.70±0.79 69.93±0.62 65 .15±0.61 
---------········ ··························-····--····-·--····-·······-----···················-·········-····· ······························--·········-··-···-··-···-·······--·············-············-····· 

30 72.83±0.74 75 .66±0.63 81.97±0.33 76.12±0.38 75 .99±0.61 
·················-···--······--·······-·············-----

50 75.11±0.58 76.64±0.68 83.06±0.29 78 .53±0.37 79.35±0.34 
-----····························· .. ········································- ························-··-········- ······ ···················-········ 

70 75 .65±0.64 76.81±0.67 83.33±0.54 79.92±0.34 81.53±0.32 _____ ................................................................................................ _ 

80 76.29±0.58 77.01±0.71 83.59±0.41 80.49±0.50 82.07±0.46 
-----·······················-·--··-·······-··--·--··-········ -----

90 76.2 1±1.18 76.50±1.02 83.26±0.84 80.11±0.65 82.38±1.15 

20 News-18828 
100 

80 ··•· .. • 

>-. 60 
u 

"' :; 
u 
u 

<( 40 

20 ··· + ·· · HOS 

--- HONB 
-- -svrvı 

o 
1 5 10 30 50 70 80 90 

Training Set Percentage 

Figure 4. 1 Accuracy ofHOS, HONB and SVM on 20News-18828 

Table 4.3 and Figure 4.2 show the performance of HOS on WebKB4 dataset. Although not 

as visible as 20 Newsgroups dataset, HOS still outperforms our baseline MVNB starting 

from 10% training set level. The performance differences are statistically significant. 
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Additionally, HOS statistically significantly outperforms MVNB with JM smoothing 

starting from 30% level. Interestingly, HONB performs slightly better than HOS on this 

dataset. On the other hand SVM is significantly the best performing algorithm. We 

attribute the better performance of HONB and especially SVM to the skewed class 

distribution of the dataset. This the main difference of WebKB dataset from our other 

datasets. 

Table 4. 3 Accuracy and standard deviations of algorithms on WebKB4 dataset 

TS MVNB MVNB+JM HOS HONB SVM 

44.48±1.03 69.96±3.15 30.08±6.56 70.58±3.80 60.57±1.82 
....................................... _________ . ___________ _ _ 

5 68.17±2.49 79.33±2.15 61.15±6.51 77.68±2.94 79.01 ±1.33 
.................................................................. - ----·--·· ·················-····-·············-·-·····-··-·····-···-------------------

10 74.46±1.36 80.76±1.54 77.71±2.33 80.83±1.35 83.48±1. 14 

30 81.53±1.05 83.02±0.92 85.24±0.75 86.83±0.58 89.43±0.55 

50 82.57±0.83 82.81±0.81 86.08±0.55 87.64±0.75 91.04±0.47 
·····························-···········-·············------ ......................... -.... ··-··--·········-·· .. ··-···---

70 83 .53±0.98 83.19±1.08 87.01±0.87 88 .53±0.75 91.69±0.72 
----- ································ 

80 83 .14±1.17 82.85±1.23 86.47±1.25 88 .79±0.85 91 .78±0.64 

90 84.17±2.10 83.41±1.61 87.01±1.20 88 .36±1.42 92.20±1.00 

WebKB4 
100~-~--------~----~----~ 

I 
/ 

60 I t 

20 ··· + ··· HOS 
- HONB 
--- SVM 

o ~~~----~---~----~---'---~ 
1 5 10 30 50 

Training Set Percentage 
70 80 90 
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Figure 4. 2 Accuracy ofHOS, HONB and SVM on WebKB4 

The performance ofHOS on l 150Haber dataset, which can be seen in Table 4.4 and Figure 

4.3, is somewhat similar to 20 Newsgroups. HOS statistically significantly outperforms 

baseline MVNB starting from 10% and MVNB with JM smoothing from 30% level. 

HONB and HOS show a very similar performance on this dataset with the exception of 

small training set sizes (i.e. up to 30%) where HONB performs better. After 30% the 

differences between accuracies of HONB and HOS are not statistically significant. Please 

note that this dataset is our smallest dataset and there is relatively less data to infer from 

especially for HOS. Additionally, HOS statistically significantly outperform SVM starting 

from 10% level. 

Table 4. 4 Accuracy and standard deviations of algorithms on 1150Haber dataset 

TS MVNB MVNB+JM HOS HONB SVM 

35 .70±7.64 48.40±5.04 32.09± 11 .1 30.32±12.7 38.92±3.03 
............................................................................... - .................................. _ .. _. ___________ ,, ................................................................................. .. 

5 65.06±12.6 81.01±6.95 67.00±11.9 88.25±0.93 67.47±4.24 

10 72.95±3.83 86.01 ±2.03 83.13±4.12 91.61 ±0.85 76.27±2.71 
........... - .. -··-····-·-.. ···-·····-········-···-··--------·-····-·······-·····-------- ----- - ··································-· ................................... . 

30 

50 

70 

80 

90 

87.64± 1.14 91.49±0.71 93.79±0.31 94.20±0.59 87.39±1.21 
- ---- ------···························································"············-·····""" 

88.73±0.65 91.10±0.63 94.42±0.42 94.73±0.57 89.55±1.12 
-----------······················ ········••><•• .. ······································-····· .. 

89.97±0.88 91.39±0.83 95.01±0.85 95.30±0.96 90.55±1.49 
--- --------··································-······· .................................. . 

89.70±2.40 90.83±2.50 94.96±1.84 95.91±1.60 91.91±2.39 
.................................... - ... ............................................. , .. ___________ ,, ........................................................ ................ .. ...... . 

90.78±2.73 91.48±2.42 94.35±2.14 95.22±1.75 90.78±1.93 
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Figure 4. 3 Accuracy of HOS, HONB and SVM on 1150Haber 
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In order to quantify the level of the performance improvement over other algorithms, we 

define the following performance gain for the accuracy. 

gainHos = PHos - Px 
Px 

(4. 1) 

where P Hos is the Higher Order Smoothing algorithm' s accuracy result and Px stands for 

the result of the other algorithms (MVNB, MVNB+JM, HONB, or SVM). We present 

performance improvements of HOS over other algorithms on Table 4.5, 4.6 and Table 4.7. 

Improvements are most visible in 20 Newsgroups dataset. In Table 4.5, we can see that 

HOS improves upon MVNB and SVM about 17% at 10% training set size (ts) level on 20 

Newsgroups dataset. We can observe improvements in all ts levels on this dataset. Table 

4.6 and 4.7 shows the improvements on WebKB4 and 1150haber datasets respectively. 
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Table 4. 5 Performance improvement of HOS over other methods on 20 Newsgroups 

TS 

10 

30 

50 

70 

MVNB 

17.98 

12.55 

10.58 

10.15 

MVNB+JM 

5.14 

8.34 

8.38 

8.49 

HONB SVM 

9.68 17.73 
------········-····-·-··-··-··---···--··········-

7.69 7.87 
------·- ··-··-·········-··-······-··········--

5.77 4.68 
------·-····-··· .. ·····-··-··-· .. ·-

4.27 2.21 
........................................ .. ........................................................................................ ,_ ..................................................... --.- .................. ------·· ·--"'' '"""'"'"""'" ' '"'""'"''""""" " " "'" ' 

80 9.57 

90 9.25 

8.54 3.85 

8.84 3.93 

1.85 

1.07 

Table 4. 6 Performance improvement of HOS over other methods on WebKB4 dataset 

TS MVNB MVNB+JM HONB SVM 

10 4.36 -3.78 -3.86 -6.91 

30 4.55 2.67 -1.83 -4.69 

50 4.25 3.95 -1.78 -5.45 
... ················ ········-········ ····································---·-··-····-·······--··-·-·--·······-··-·-··-······--·---·-------

70 4.17 4.59 -1.72 -5.10 

80 4.01 4.37 -2.61 -5.79 

90 3.37 4.32 -1.53 -5.63 

Table 4. 7 Performance improvement of HOS over other methods on 1150Haber dataset 

TS MVNB MVNB+JM HONB SVM 

10 13 .95 -3.35 -9.26 8.99 
·-------··-·- ............................................ ........ ···· ················ 

30 7.02 2.51 -0.44 7.32 
·-·-··-···-··--·----··--··-······- ·········-······-·-···-········ 

50 6.41 3.64 -0.33 5.44 ________ ........ 

70 5.60 3.96 -0.30 4.93 
····-·······-····--·-····--··--·· .. -·······- .. ---

80 5.86 4.55 -0.99 3.32 
.............................................................. 

90 3.93 3.14 -0.91 3.93 



33 

We present the results of more evaluation metrics at the 80% training set level. This 

percentage is cornmonly used in random trial experiments (McCallum and Nigam, 1998; 

Rennie et.al, 2003 ). Table 4.8 shows F-measure (F l) performance of algorithms at 80% 

training set level. Similar trend can also be seen in here. HOS outperforms baseline MVNB 

for all the datasets. Table 4.9 presents AUC values of the algorithms in this training set 

percentage level. Again, HOS outperforms baseline MVNB for all the datasets. üne 

interesting observation from this table is the results of algorithms on WebKB4 dataset. 

Although SVM is by far the best performing algorithm in this dataset in terms of accuracy, 

it has been outperformed by HOS in terms of AUC. 

Table 4. 8 F-measure performance of algorithms at 80% training set level 

ALGORITHM 20NEWS-18828 WEBKB4 1150HABER 

HONB 79.96 ± 0.75 88 .34 ± 0.97 95 .92 ± 1.60 ________ _ _ _ _ _____ .................................................................................................... --·---·- - -

HOS 83.02 ± O. 72 85.32 ± 1.74 94.95 ± 1.84 _ ________________ ............................................................................................... . 
MVNB 76.41 ± 0.59 82. 80 ± 1.23 89.79 ± 2.40 
---------- - - ----- ................................................................... -·-·-·----·---- ---------

MVNB+ JM 77.39 ± 0. 81 82.43± 1.31 90.96 ± 2.5 
-----------------······························································-······· .................................... ________ ·------

SVM 82.02 ± 0.4 7 90.81 ± 1.21 09 1.92 ± 2.39 

Table 4. 9 AUC performance of algorithms at 80% training set level 

ALGORITHM 20NEWS-18828 WEBKB4 1150HABER 

HONB 98.18 ± 0.07 97.58 ± 0.27 99.57 ± 0.24 
--- - --- ----------····················· .. ····································· .. ···············"'' '''' '''"''" '''' ' ''' '''''''' ''''' '''"- - --·----- --

HOS 98.57 ± 0.09 96.90 ± 0.46 99.56 ± 0.25 _________________ , ...................................................................................................................... ___ _ 
MVNB 97.67 ± 0.17 96.17 ± 0.51 99.25 ± 0.38 _ _ _______________ ...................................................................................................................... ______ ________ _ 
MVNB+JM 97.74 ± 0.19 

SVM 90.32 ± 0.25 

96.19±0.54 

93.41 ± 0.72 

99.43 ± 0.31 

94.95 ± 1.50 
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4.2. Discussion 

The use of higher-order paths for estimation of conditional term probabilities have been 

discussed in (Lytkin, 2009; Ganiz et.al, 2011). It is observed that highly discriminative 

terms exhibit much stronger influence on classification by HONB than by NB. 

Additionally, HONB tends to place more emphasis on the presence of terms in a document 

being classified (Ganiz et.al, 2011). Since HOS is based on higher-order paths, it enjoys 

some of these benefits. However, in HOS we are enumerating much fewer number of 

higher-order paths because paths need to end with a class label. Therefore, we have less 

data to extract pattems from . As a result, HONB has a higher performance on small 

training set sizes compare to HOS especially at 1 % and 5% levels. Yet, HOS quickly 

catches up about at 10% level and outperforms HONB especially in 20 Newsgroups 

dataset. This dataset has relatively large number of classes (having 20 classes compare to 

six classes in WebKB4, and five classes in 1150Haber). With 20 class labels, we can 

extract much stronger pattems from higher-order paths using HOS. It would be interesting 

to observe the performance of HOS on real world datasets with much larger number of 

categories. Results on 11 50haber dataset suggest that HONB and HOS may also perform 

well on different languages without additional tuning similar to LSI. This is an important 

advantage compare to the natural language processing based semantic methods such as 

(Zhou et.al, 2008). 

In terms oftraining time complexity, an o(n 2 (m + n)) algorithm is given in previous studies 

for obtaining counts of higher-order paths in a dataset with m instances and n dimensions 

(Lytkin, 2009; Ganiz et.al, 2009). In training phase, HONB forms a document by term 

matrix with dimensions (mxn) for each class, and use this algorithm to obtain counts of 

higher-order paths between all terms. Our approach which is given in Algorithm 1, 

suggests using the same principles; therefore, it has the same computational complexity. 

When we exarnine Algorithm 1 more closely, the computation of matrices 0 1 and 0 2 in 

steps 6 and 7, respectively, tak.es o(mn 2 +n3
) time. The loops in step 4 and 8, iterates over 

C,6 and 0 1 matrices, respectively, and takes o(n 2 )time. The computational complexity of 
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Algorithm 1 is dominated by computation matrices 0
1 

and 0
2

, therefore the complexity is 

o(mn 2 + 11
3

) 

However, given the fact that we have based our computations on a single document by 

term matrix and we have used the paths ending only with class labels, we are enumerating 

much fewer numbers of paths. So in practice, HOS runs faster than HONB. Both HOS and 

HONB share the low classification time complexity ofNaıve Bayes. 

4.3. Future Work 

it has been shown that LSI takes advantage of implicit higher-order ( or latent) structure in 

the association of terms and documents. Higher-order relations in LSI capture "latent 

semantics" (Kontostathis and Pottenger, 2006). Motivated by this, a novel Bayesian 

framework for classification named Higher Order Nai"ve Bayes (HONB) is introduced 

(Ganiz et.al, 2009; Ganiz et.al, 2011 ). HONB can explicitly make use of these higher-order 

relations in the context ofa class. 

We present a novel semantic smoothing method named Higher Order Smoothing (HOS) 

for Nai·ve Bayes algorithm. HOS is built ona novel graph based data representation which 

allows us to exploit semantic information in higher-order paths. HOS exploits the 

relationships between instances of different classes in order to improve the parameter 

estimation in the face of sparse data. As a result, we do not only move beyond instance 

boundaries but also class boundaries to exploit the latent information in higher-order co

occurrence paths. 

We have performed experiments on several benchmark datasets and compared HOS with 

several different classifiers. HOS significantly outperforms the baseline classifier (MVNB) 

in all datasets under different data conditions. Furthermore, it even outperforms SVM by a 

wide margin in the well-known 20 Newsgroups dataset. Our results demonstrate the value 

of HOS as a semantic smoothing algorithm. 

As future work, we are planning to perform more detailed analysis in order to understand 

the reasons for the improved performance of HOS. Additionally, we would like to get 

insights about under which conditions and what type of datasets HOS performs well. We 

are also planning to advance the current higher-order learning framework, which works on 
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binary <lata, so it can make use of term frequencies. Several studies emphasize the 

importance of different varieties of normalizations such as document-length normalization 

in improving Nalve Bayes performance (Rennie et.al, 2003; Eyheramendy et.al, 2003; 

Kolcz and Yih, 2007). Thus, we would like to analyze HOS by incorporating document 

length and weight normalization in the future. 
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