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sBsη
(′) vertices are studied and the relevant couplings are calculated
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to-leading order corrections. In the analysis, both the quark and gluon components of the η and η′

mesons and the axial anomaly corrected higher twist distributions are included.
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I. INTRODUCTION

During last years the investigation of spectroscopy,
electromagnetic, weak and strong decay channels of
heavy mesons, computation of their numerous transition
form factors, strong couplings with different hadrons be-
came one of the rapidly growing branches of the hadronic
physics. The progress in understanding of the nature
of such mesons, including bottom(charm)-strange ones
was achieved from both the experimental and theoretical
sides.

Thus, experimental measurements of hadronic pro-
cesses and extraction of parameters of bottom(charm)-
strange mesons were performed by different collabora-
tions [1–6]. Theoretical calculations of parameters re-
lated to these mesons were fulfilled applying various non-
perturbative approaches and schemes, such as the lattice
QCD calculations [7], the QCD and three-point sum rule
methods (for instance, see [8–15]), and different quark
models [16, 17]. By this way, masses, strong couplings
and form factors of some bottom(charm)-strange mesons
were obtained.

Studies of the vertices consisting of interacting
bottom(charm)-strange and light mesons have also at-
tracted considerable interest. In fact, the strong cou-
plings determined by the vertices D∗

sDsη
(′) and B∗

sBsη
(′)

have been recently calculated in Ref.[12], where the three-
point sum rule approach has been used. The present work
is devoted to the analysis of these vertices, but within the
context of the QCD light-cone sum rule (LCSR) method
[18]. The latter provides more elaborated theoretical
tools to perform detailed analysis of the aforementioned
problems. Indeed, the light-cone sum rule method in-
vokes such quantities of the eta mesons as their distri-
bution amplitudes (DAs) of different twists and partonic
contents. This allows one to take into account the quark-
gluon structure of particles in more clear form than other
approaches.

It should be noted that the η−η′ system of light pseu-
doscalar mesons accumulate important properties of the
particle phenomenology, like mixing of the SU(3) flavor
group singlet η1 and octet η8 states to form the physical
mesons, the problem of axial U(1) anomaly and its im-

pact on the relevant distribution amplitudes of the eta
mesons. To this list of features one should add also the
complicated quark-gluon structure of the η and η′ mesons
and subtleties in treatment of their gluon components
that contribute to exclusive processes, the vertices under
consideration being sample ones, at the next-to leading
order (NLO) of the perturbative QCD. These features of
the η− η′ system, as well as new experimental data trig-
gered numerous theoretical works devoted to the analysis
of the mesons’ mixing problems and computations of var-
ious exclusive processes to extract some constraints on
the parameters of their distributions amplitudes includ-
ing the two-gluon ones [19–31]. The aim of this work is
to study the bottom(charm)-strange meson strong cou-
plings and consider the vertices D∗

sDsη
(′) and B∗

sBsη
(′)

by including into analysis gluon component of the η and
η′ mesons. The computation of a gluonic contribution to
such strong couplings is a new issue that is considered in
the present study.
This paper is structured in the following manner. In

section II, we present rather comprehensive information
on the quark-gluon structure of the η and η′ mesons and
details of their leading and higher twist distribution am-
plitudes. Existing singlet-octet and quark-flavor mixing
schemes of the η−η′ system, their advantages and draw-
backs are briefly outlined. In section III, the light-cone
sum rules for the strong couplings are derived. Here, the
mesons’ leading and higher-twist DAs up to twist-four
are utilized. In this section, we calculate the NLO correc-
tions to the leading-twist term, and include into the light-
cone sum rules also contributions appearing due to gluon
component of the eta mesons. In section IV we perform
numerical computations to find the values of the corre-
sponding strong couplings. In this section we make also
our brief conclusions. In Appendix A the QCD two-point
sum rule expressions to determine some of parameters in
higher twist DAs of the η − η′ system are collected.
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II. MIXING SCHEMES AND DISTRIBUTION

AMPLITUDES OF η, η′ MESONS

Computation of the strong couplings D∗

sDsη
(′) and

B∗

sBsη
(′), and relevant matrix elements within the frame-

work of QCD LCSR method requires knowledge of the
η and η′ mesons’ distribution amplitudes. In this work
we use the mixing scheme for the eta mesons’ DAs elabo-
rated in Ref. [31] and relevant expressions presented there
by adding the necessary formulas for the three-particle

twist-3 DAs Φ
(s)
3M (α).

Below we concentrate mainly on the s-quark distri-
butions, because only s valence quarks from the heavy

D
(∗)
s and B

(∗)
s mesons contribute to quark-antiquark and

quark-gluon-antiquark DAs of the eta mesons. Neverthe-
less, when necessary, we provide some information also
on q-components of the corresponding DAs.
Hence we define two-particle DAs for the s-quark flavor

as

〈M(q) | s(x)γµγ5s(0) | 0〉

= −iqµF (s)
M

∫ 1

0

dueiqxuφ
(s)
M (u, µ) (1)

where M(q) is the η(q) or η′(q) meson state. In this

expression φ
(s)
M (u) is the leading twist, i.e. twist-2 DA of

the M(q) meson. For brevity, in the matrix element, the
gauge link is not shown explicitly. The normalization is
chosen such that

∫ 1

0

du φ
(s)
M (u, µ) = 1. (2)

The similar distribution amplitudes can be defined for
q = u, d-quarks as well, with evident replacement s→ q
in Eqs. (1) and (2). Then assuming exact isospin symme-
try and denoting mq = (mu +md)/2 we can determine

the couplings F
(u)
M = F

(d)
M , F

(s)
M as the matrix elements

〈0|J (i)
µ5 |M(q)〉 = if

(i)
M qµ , i = q, s , (3)

of flavor-diagonal axial vector currents J i
µ5

J
(q)
µ5 =

1√
2

[
ūγµγ5u+ d̄γµγ5d

]
, J

(s)
µ5 = s̄γµγ5s . (4)

The couplings F
(u)
M , F

(d)
M and F

(s)
M are connected with

f
(i)
M ones by means of the following simple expressions:

F
(u)
M = F

(d)
M =

f
(q)
M√
2
, F

(s)
M = f

(s)
M .

This definition of the distributions corresponds to the
quark-flavor (QF) basis introduced to describe mixing
in the η-η′ system. In QF basis mixing of the q and s
states forms the physical η and η′ mesons. Alternatively,
one can determine DAs of the eta mesons starting from

the singlet-octet (SO) basis of the SU(3) flavor group.

To this end, one introduces the SU(3) flavor-singlet J
(1)
µ5

and octet J
(8)
µ5 currents

J
(1)
µ5 =

1√
3

[
ūγµγ5u+ d̄γµγ5d+ s̄γµγ5s

]
,

J
(8)
µ5 =

1√
6

[
ūγµγ5u+ d̄γµγ5d− 2s̄γµγ5s

]
, (5)

and defines the corresponding matrix elements as

〈0|J (i)
µ5 |M(q)〉 = if

(i)
M qµ , i = 1, 8 . (6)

The eta mesons quark-flavor and singlet-octet combina-
tion of the distributions are connected with each other
as,

(
f
(8)
M φ

(8)
M (u, µ)

f
(1)
M φ

(1)
M (u, µ)

)
= U(ϕ0)

(
f
(q)
M φ

(q)
M (u, µ)

f
(s)
M φ

(s)
M (u, µ)

)
. (7)

Here

U(ϕ0) =

(
cosϕ0 − sinϕ0

sinϕ0 cosϕ0

)
=





√
1
3 −

√
2
3√

2
3

√
1
3



 (8)

with ϕ0 = arctan(
√
2).

In the singlet-octet basis, the scale dependence of the
DAs is considerably simpler than in the QF approach. In
fact, SO couplings and DAs do not mix with each other

via renormalization. Moreover, the octet coupling f
(8)
M

is scale-independent, whereas the singlet coupling f
(1)
M

evolves due to the U(1) anomaly [32]:

f
(1)
M (µ) = f

(1)
M (µ0)

{
1 +

2nf

πβ0

[
αs(µ)− αs(µ0)

]}
, (9)

where nf is the number of light quark flavors.
This basis is also preferable for solution of the evolu-

tion equations. Thus, the quark-antiquark DAs in the
singlet-octet basis can be expanded in terms of Gegen-

bauer polynomials C
3/2
n (2u − 1) that are eigenfunctions

of the one-loop flavor-nonsinglet evolution equation:

φ
(1,8)
M (u, µ) = 6uū

[
1+

∑

n=2,4,...

a
(1,8)
n,M (µ)C3/2

n (2u−1)
]
. (10)

The sum in Eq. (10) runs over polynomials of even di-
mension n = 2, 4, . . . implying that the quark-antiquark
DAs are symmetric functions under the interchange of
the quark momenta

φ
(1,8)
M (u, µ) = φ

(1,8)
M (ū, µ) . (11)

Another twist-2 DA of the η − η′ system is connected
with its two-gluon component. This distribution can be
defined as non-local matrix element

〈M(p)|Gµν(x)G̃
µν (0) | 0〉 =

=
CF

2
√
3
f
(1)
M (qx)2

∫ 1

0

du eiqxuφ
(g)
M (u, µ) , (12)
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where Gµν = Ga
µνλ

a/2 with tr[λaλb] = 2δab. The

dual gluon field strength tensor defined as G̃µν =
(1/2)ǫµναβG

αβ , and CF = 4/3.
The gluon DA is antisymmetric

φ
(g)
M (u, µ) = −φ(g)M (ū, µ) (13)

and can be expanded in a series of Gegenbauer polyno-

mials C
5/2
n−1(2u− 1) of odd dimension

φ
(g)
M (u, µ) = 30u2ū2

∑

n=2,4,...

a
(g)
n,M (µ)C

5/2
n−1(2u− 1) . (14)

It should be emphasized that the octet components of the
eta mesons’ DAs are renormalized multiplicatively to the
leading-order and mix with the gluon components only
at the next-to-leading-order, whereas the singlet compo-
nents mix with gluon ones already in the LO (see Ap-
pendix B in Ref. [31] for details). The values of the

parameters a
(1,8,g)
n,M at a certain scale µ0 determine all

nonperturbative information on the DAs.
In the exact SU(3) flavor symmetry limit η = η8, and

η′ is a flavor–singlet, η′ = η1. In this limit f
(q)
η = fπ

with fπ = 131 MeV being equal the pion decay constant.
However, it is known empirically that the SU(3)-breaking
corrections are large and , as a result, the relation of
physical η, η′ mesons to the basic octet and singlet states
becomes complicated and involves two different mixing
angles, see, e.g., a discussion in Ref. [19].
To avoid these problems and reduce a number of free

parameters necessary to treat the η − η′ system, a new
mixing scheme (FKS) was proposed [19]. It is used the
QF basis and founded on the observation that vector
mesons ω and φ are to a very good approximation pure
ūu+ d̄d and s̄s states and the same is true also for tensor
mesons. The smallness of mixing corresponds to the OZI
rule that is phenomenologically very successful. There-
fore, if the axial U(1) anomaly is the only effect that
makes the situation in pseudoscalar channel different, it
is natural to suggest that the physical states are related
to the flavor ones by an orthogonal transformation

(
|η〉
|η′〉

)
= U(ϕ)

(
|ηq〉
|ηs〉

)
, U(ϕ) =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

(15)

The assumption on the state mixing implies that the
same mixing pattern applies to the decay constants and
to the wave functions, as well. In other words

(
f
(q)
η f

(s)
η

f
(q)
η′ f

(s)
η′

)
=U(ϕ)

(
fq 0
0 fs

)
, (16)

and
(
f
(q)
η φ

(q)
η f

(s)
η φ

(s)
η

f
(q)
η′ φ

(q)
η′ f

(s)
η′ φ

(s)
η′

)
= U(ϕ)

(
fqφq 0
0 fsφs

)
, (17)

are held with the same mixing angle ϕ.
This conjecture allows one to reduce four DAs of phys-

ical states η, η′ to the two DAs, φq(u, µ) and φs(u, µ) of
the flavor states:

φ(q)η (u) = φ
(q)
η′ (u) = φq(u) ,

φ(s)η (u) = φ
(s)
η′ (u) = φs(u) . (18)

The singlet and octet DAs is this scheme are given by
(
f
(8)
η φ

(8)
η f

(1)
η φ

(1)
η

f
(8)
η′ φ

(8)
η′ f

(1)
η′ φ

(1)
η′

)
=U(ϕ)

(
fqφq 0
0 fsφs

)
UT (ϕ0) (19)

and the same relation is valid for the couplings f
(i)
M and

the couplings multiplied by the parameters f
(i)
M a

(i)
n,M . The

couplings fq and fs, as well as mixing angle ϕ in the
quark-flavor scheme have been determined in Ref. [19]
from the fit to the experimental data

fq =(1.07± 0.02)fπ ,

fs =(1.34± 0.06)fπ ,

ϕ =39.3◦ ± 1.0◦. (20)

It is worth noting that the flavor-singlet and flavor-octet
couplings have different scale dependence, and Eq. (19)
cannot hold at all scales. It is natural to assume that the
scheme refers to a low renormalization scale µ0 ∼ 1 GeV
and the DAs at higher scales are obtained by the QCD
evolution.
Then for the gluon DA we assume that

〈ηq|Gµν(x)G̃
µν (0) | 0〉 = 〈ηs|Gµν(x)G̃

µν (0) | 0〉

and as a result get:

φ(g)η (u) = φ
(g)
η′ (u). (21)

We define two-particle twist-3 DAs for the strange
quarks in the following way

2ms〈M(q) | s(x)iγ5s(0) | 0〉 =
∫ 1

0

dueiqxuφ
(s)p
3M (u) (22)

and

2ms〈M(q) | s(x)σµνγ5s(0) | 0〉

=
i

6
(qµxν − qνxµ)

∫ 1

0

dueiqxuφ
(s)σ
3M (u) (23)

with the normalization
∫ 1

0

du φ
(s)p
3M (u) =

∫ 1

0

du φ
(s)σ
3M (u) = h

(s)
M . (24)

Here [22, 31]

h
(s)
M = m2

Mf
(s)
M −AM ,

AM = 〈0|αs

4π
Ga

µνG̃
a,µν |M(p)〉 , (25)
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that follows from the anomaly relation

∂µJ
(s)
µ5 = 2mss̄iγ5s+

αs

4π
Ga

µνG̃
a,µν .

Twist-3 DAs for the light q = u or d quark can be de-
fined by similar expressions with substitutions s→ q, e.g.

H
(q)
M = m2

MF
(q)
M −AM , where

H
(u)
M = H

(d)
M =

h
(q)
M√
2
. (26)

Writing the normalization of the twist-3 DAs in this form
(see Eqs. (22)-(25)) we follow Refs. [22, 25, 31]. Note
that this definition formally remains correct in the chiral
ms → 0 limit. As mentioned above, in this case η and
η′ are purely flavor-octet and flavor-singlet, respectively,
so that η becomes massless and η′ remains massive due
to the axial anomaly [33, 34]. Equation (25) is then sat-
isfied trivially for η, because all three terms vanish, and
for η′ the cancelation of the two terms on the r.h.s. im-
plies the well-known relation for the η′ mass in terms of
the anomaly matrix element. The ratio hs/ms (and the
similar ratios for light quarks) remains finite so that the
contribution of twist-three DAs to correlation functions
remains finite in the case that they enter the coefficients
without a quark mass factor. For further discussion and
examples we refer to the work [25].
We assume that at low scales the FKS mixing scheme

is valid for all quantities and distributions, and introduce
two new parameters hq and hs [22]

(
h
(q)
η , h

(s)
η

h
(q)
η′ , h

(s)
η′

)
= U(ϕ)

(
hq, 0
0, hs

)
(27)

with numerical values (in GeV3)

hq = 0.0016± 0.004 , hs = 0.087± 0.006 . (28)

Within the FKS scheme, we can rewrite four DAs

φ
(q,s)p
3M in terms of two functions φp3s(u) and φ

p
3q(u). The

same argumentation is valid for the distribution am-

plitudes φ
(q,s)σ
3M , as well. Let us note that for calcula-

tion of the strong couplings of interest we need only s-
components of the DAs. Therefore, we get:

φ
(s)p
3η′ (u) = φp3s(u) cosϕ , φ

(s)p
3η (u) = −φp3s(u) sinϕ ,

φ
(s)σ
3η′ (u) = φσ3s(u) cosϕ , φ

(s)σ
3η (u) = −φσ3s(u) sinϕ ,

(29)

where

φp3s(u) = hs + 60msf3sC
1/2
2 (2u− 1),

φσ3s(u) = 6ūu
[
hs + 10msf3sC

3/2
2 (2u− 1)

]
. (30)

The coupling f3s is defined as

〈0|s̄σnξγ5gGnξs|ηs(p)〉 = 2i(pz)2f3s,

and we assume that

f
(s)
3η′ = f3s cosϕ , f

(s)
3η = −f3s sinϕ. (31)

For the coupling f3s, as an estimate, we adopt a value of
the similar parameter obtained for the pion. The latter
at the scale µ0 = 1 GeV is equal to

f3s(µ0) ≃ f3π(µ0) = (0.0045± 0.0015) GeV2.

The scale dependence of f3s(µ) is determined by formula

f3s(µ) =

[
αs(µ)

αs(µ0)

]55/9β0

f3s(µ0). (32)

Here some comments are in order. Let us explain our
choice of the parameters in the higher-twist DAs. First of
all, there is not any information on flavor-singlet contri-
butions to these parameters. Moreover, computation of
these parameters using the QCD sum rule method by tak-
ing into account only quark contents of η and η′ mesons
lead to numerical values that are very close to parameters
of the pion DAs. In fact, calculations of the parameters

f3s and δ
2(s)
M presented in Appendix A illustrate correct-

ness of such choice. Therefore, in what follows we will
use parameters from the pion DAs keeping in mind that
the approximation accepted here does not encompass the
flavor-singlet effects.
The eta mesons’ three-particle twist-3 DAs are defined

in accordance with Ref. [35]

〈M(q) | s(x)gGµν(vx)σαβγ5s(0) | 0〉 =
if

(s)
3M [qα (qµgνβ − qνgµβ)− (α ↔ β)]

×
∫
Dαeiqx(α1+vα3)Φ

(s)
3M (α), (33)

where

∫
Dα =

∫ 1

0

dα1dα2dα3δ
(
1−

∑
αi

)
.

The expansion of the function Φ
(s)
3M (α) in the conformal

spin leads to the known expression

Φ
(s)
3M (α) = 360α1α2α

2
3

[
1 +

1

7
ω3s (7α3 − 3)

]
, (34)

with

ω3s(µ0) ≃ ω3π(µ0) = (−1.5± 0.7) GeV2, (35)

and

(f3sω3s) (µ) =

[
αs(µ)

αs(µ0)

]104/9β0

(f3sω3s) (µ0).

Finally, we will need the DAs of twist-4 that are rather
numerous. First of all, there are four two-particle twist-4
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distribution amplitudes of the η − η′ system stemming
from the matrix element

〈M(q) | s(x)γµγ5s(0) | 0〉 = −iqµF (s)
M

×
∫ 1

0

dueiqxu
[
φ
(s)
M (u) +

x2

16
φ
(s)
4M (u)

]

−ixµ
qx
F

(s)
M

∫ 1

0

dueiqxuψ
(s)
4M (u). (36)

Another three-particle twist-4 distributions are given by
the expressions:

〈M(q) | s(x)γµγ5gsGαβ(vx)s(0) | 0〉 =

F
(s)
M

qµ
qx

(qαxβ − qβxα)

∫
Dαeiqx(α1+vα3)Φ

(s)
4M (α)

+F
(s)
M

[
qβ

(
gαµ − xαqµ

qx

)
− qα

(
gβµ − xβqµ

qx

)]

×
∫

Dαeiqx(α1+vα3)Ψ
(s)
4M (α), (37)

and

〈M(q) | s(x)γµγ5gsG̃αβ(vx)s(0) | 0〉 =

F
(s)
M

qµ
qx

(qαxβ − qβxα)

∫
Dαeiqx(α1+vα3)Φ̃

(s)
4M (α)

+F
(s)
M

[
qβ

(
gαµ − xαqµ

qx

)
− qα

(
gβµ − xβqµ

qx

)]

×
∫

Dαeiqx(α1+vα3)Ψ̃
(s)
4M (α). (38)

The distribution amplitudes Φ
(s)
4M and Ψ

(s)
4M can be

expanded in orthogonal polynomials that correspond to
contributions of increasing spin in the conformal expan-
sion. Taking into account contributions of the lowest and
the next-to-lowest spin one finds [31, 35–37]

Φ
(s)
4M (α) = 120α1α2α3

[
φ
(s)
1,M (α1 − α2)

]
,

Φ̃
(s)
4M (α) = 120α1α2α3

[
φ̃
(s)
0,M + φ̃

(s)
2,M (3α3 − 1)

]
,

Ψ̃
(s)
4M (α) = −30α2

3

{
ψ
(s)
0,M (1− α3)

+ ψ
(s)
1,M

[
α3(1−α3)− 6α1α2

]

+ ψ
(s)
2,M

[
α3(1−α3)−

3

2
(α2

1 + α2
2)
]}
,

Ψ
(s)
4M (α) = −30α2

3(α1 − α2)
{
ψ
(s)
0,M + ψ

(s)
1,Mα3

+
1

2
ψ
(s)
2,M (5α3 − 3)

}
. (39)

The coefficients φ
(s)
kM , ψ

(s)
kM are related by QCD equations

of motion (EOM) [31]. From these EOM one obtains

φ̃
(s)
0M = ψ

(s)
0M = −1

3
δ
2(s)
M , (40)

and

φ̃
(s)
2M =

21

8
δ
2(s)
M ω

(s)
4M ,

φ
(s)
1M =

21

8

[
δ
2(s)
M ω

(s)
4M +

2

45
m2

M

(
1− 18

7
a
(s)
2M

)]
,

ψ
(s)
1M =

7

4

[
δ
2(s)
M ω

(s)
4M+

1

45
m2

M

(
1− 18

7
a
(s)
2M

)
+4ms

f
(s)
3M

f
(s)
M

]
,

ψ
(s)
2M =

7

4

[
2δ

2(s)
M ω

(s)
4M− 1

45
m2

M

(
1− 18

7
a
(s)
2M

)
−4ms

f
(s)
3M

f
(s)
M

]
.

(41)

Here the parameter δ
2(s)
M is defined as

〈0|s̄γρigG̃ρµs|M(p)〉 = pµf
(s)
M δ

2(s)
M .

Its value at µ0 is chosen equal to

δ
2(s)
M (µ0) ≃ δ2π(µ0) = (0.18± 0.06) GeV2, (42)

and evolution is given by the formula

δ
2(s)
M (µ) =

[
αs(µ)

αs(µ0)

]10/β0

δ
2(s)
M (µ0).

We set the parameter ω
(s)
4M (µ0) equal to ω4π(µ0):

ω
(s)
4M (µ0) ≃ ω4π(µ0) = (0.2± 0.1) GeV2, (43)

with

(
δ
2(s)
M ω

(s)
4M

)
(µ) =

[
αs(µ)

αs(µ0)

]32/9β0 (
δ
2(s)
M ω

(s)
4M

)
(µ0).

The DAs φ
(s)
4M (u) and ψ

(s)
4M (u) can be calculated in

terms of the three-particle DAs of twist four and the DAs
of lower twist. As a result, one obtains the expressions

for the two-particle DAs ψ
(s)
4M (u) and ψ

(s)
4M (u) that can

be separated in “genuine” twist-four contributions and
meson mass corrections as

ψ
(s)
4M (u) = ψ

(s)twist
4M (u) +m2

Mψ
(s)mass
4M (u) (44)

with

ψ
(s)twist
4M (u) =

20

3
δ
2(s)
M C

1/2
2 (2u− 1) + 30ms

f
(s)
3M

f
(s)
M

×
(1
2
− 10uū+ 35u2ū2

)
,

ψ
(s)mass
4M (u) =

17

12
− 19uū+

105

2
u2ū2

+ a
(s)
2,M

(3
2
− 54uū+ 225u2ū2

)
(45)

and similarly

φ
(s)
4M (u) = φ

(s)twist
4M (u) +m2

Mφ
(s)mass
4M (u) , (46)
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where

φ
(s)twist
4M (u) =

200

3
δ
2(s)
M u2ū2 + 21δ

2(s)
M ω

(s)
4M

{
uū(2+13uū)

+ 2
[
u3(10− 15u+ 6u2) lnu+ (u↔ ū)

]}

+ 20ms
f
(s)
3M

f
(s)
M

uū
[
12− 63uū+ 14u2ū2

]
,

φ
(s)mass
4M (u) = uū

[88
15

+
39

5
uū+ 14u2ū2

]

− a
(s)
2,Muū

[24
5

− 54

5
uū+ 180u2ū2

]

+
(28
15

− 24

5
a
(s)
2,M

)[
u3(10− 15u+ 6u2) lnu

+ (u↔ ū)
]
. (47)

These expressions complete the list of the distribution
amplitudes that are necessary for analyzing the strong
vertices D∗

sDsη
(′) and B∗

sBsη
(′) with twist-4 accuracy.

It is worth noting that we have chosen parameters of
the higher-twist DAs in order to obey pattern of the state
mixing accepted for the η − η′ system. In fact, it is not
difficult to see that relations in Eq. (17) are true for DAs

φ
(3)p
3M (u), φ

(3)σ
3M (u) and f

(s)
3MΦ

(s)
3M (α), as well. This formula

are fulfilled approximately for twist-4 DAs F
(s)
M φ

(s)
4M (u)

and F
(s)
M ψ

(s)
4M (u). The main sources of deviation from Eq.

(17) are terms ∼ m2
M in twist-4 DAs that, nevertheless,

numerically have rather small effects on final results.

III. THE LCSR FOR STRONG COUPLINGS

In the context of the QCD sum rules on the light-
cone heavy-heavy-light meson strong couplings were ana-
lyzed already in Refs. [38–40], where the vertices D∗Dπ,
B∗Bπ, as well as vertices with ρ-meson were considered.
In the present work we calculate within the QCD LCSR
method the strong couplings that correspond to the ver-
tices D∗

sDsη
(′) and B∗

sBsη
(′). Below we concentrate on

the couplings gB∗

sBsM : results for gD∗

sDsM can be eas-
ily obtained from relevant expressions by replacements
b→ c, B0

s → D−

s and B0∗
s → D∗−

s .

A. Leading order results

In calculation of the leading order contribution to the
LCSR we use technical tools and methods elaborated in
the original paper [38]. We start from the correlation
function

Fµ(p, q) = i

∫
d4xeipx〈M(q) | T {s(x)γµb(x) ,

b(0)iγ5s(0)
}
| 0〉. (48)

It is well known that this correlator can be calculated
in both hadronic and quark-gluon degrees of freedom.

p+ q p

q

(a)

p+ q p

q

(b)

FIG. 1: Leading order diagrams contributing to the correla-
tion function. Thick lines correspond to a heavy quark. Di-
agram (a) describes quark-antiquark contributions of various
twists to the correlator, whereas (b) is contribution coming
from three-particle components of the meson distribution am-
plitude.

Within the QCD LCSR method obtained by this way ex-
pressions should be matched in order to find the couplings
gB∗

sBsη and gB∗

sBsη′ , and extract numerical estimates for
them. In terms of hadronic quantities, the aforemen-
tioned correlation functions are given by the expression

Fh
µ (p, q) =

gB∗

sBsMm
2
Bs
mB∗

s
fBs

fB∗

s

mb

(
p2 −m2

B∗

s

) [
(p+ q)2 −m2

Bs

]

×
[
qµ +

1

2

(
1−

m2
Bs

+m2
M

m2
B∗

s

)
pµ

]
,

where we have defined the couplings gB∗

sBsM and decay
constants fBs

, fB∗

s
by means of the following matrix el-

ements:

〈B∗0
s (p)M(q) | B0

s (p+ q)〉 = −gB∗

sBsMqµǫ
µ,

〈Bs | biγ5s | 0〉 =
m2

Bs
fBs

mb
,

〈0 | sγµb | B∗

s 〉 = mB∗

s
fB∗

s
ǫµ. (49)

The correlation function depends on the invariants p2,
(p+ q)2, and can be written as a sum of invariant ampli-
tudes

Fµ(p, q) = F (p2, (p+ q)2)qµ + F̃ (p2, (p+ q)2)pµ.

For our purposes it is enough to consider the function
F (p2, (p+ q)2).
Computation of the amplitude F (p2, (p+ q)2) in terms

of the hadronic quantities leads to expression that con-
tains contribution of the ground state, and a contribution
of the higher resonances and continuum states with rel-
evant quantum numbers in a form of double dispersion
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integral

Fh(p2, (p+ q)2) =
gB∗

sBsMm
2
Bs
mB∗

s
fBs

fB∗

s

mb

(
p2 −m2

B∗

s

) [
(p+ q)

2 −m2
Bs

]

+

∫
ds1ds2ρ

h(s1, s2)

(s1 − p2)[s2 − (p+ q)2]
+ . . . (50)

Here the dots stand for single dispersion integrals that, in
general, should be included to make the expression finite.
Having considered p2 and (p+q)2 as independent vari-

ables and applied the Borel transformation we find

BM2
1
BM2

2
Fh(p2, (p+ q)2) =

gB∗

sBsMm
2
Bs
mB∗

s
fBs

fB∗

s

mb

×e−
m2

B∗
s

M2
1

−

m2
B∗

s

M2
2 +

∫
ds1ds2e

−
s1
M2

1

−
s2
M2

2 ρh(s1, s2). (51)

In order to obtain sum rules expression for the strong
couplings, the double Borel transformation should be ap-
plied to the same invariant amplitude, but now calculated
using the quark-gluon degrees of freedom. To this end,
one needs to employ the general expression for the corre-
lation function Eq. (48) and compute it by substituting
the light-cone expansion for the b-quark propagator

〈 0 | T {b(x)b(0)} | 0〉 =
∫

d4k

(2π)4i
e−ikx /k +mb

m2
b − k2

−igs
∫

d4k

(2π)4
e−ikx

∫ 1

0

dv

[
1

2

/k +mb

(m2
b − k2)

2G
µν (vx)σµν

+
/k +mb

m2
b − k2

vxµG
µν (vx) γν

]
, (52)

and expressing remaining non-local matrix elements in
terms of distribution amplitudes of the eta mesons. The
diagrams corresponding to the free b-quark propagator,
and to the one-gluon field components in the expansion
Eq. (52) are depicted in Fig. 1(a) and Fig. 1(b), respec-
tively.
Technical details of similar calculations can be found in

Ref. [38]. Therefore, we do not concentrate here on these
procedures and provide below only final results. Thus,
for the contribution arising from the diagram (a) we find

F (a)(p2, (p+ q)2) =

∫ 1

0

du

∆(p, q, u)

{
mbF

(s)
M

[
φ
(s)
M (u)

− m2
Muu

∆(p, q, u)
φ
(s)
M (u) +

1

∆(p, q, u)

(
2uG

(s)
4M (u)

−m
2
bφ

(s)
4M (u)

2∆(p, q, u)

)]
+
φ
(s)p
3M (u)

2ms
u+

φ
(s)σ
3M (u)

6ms

+
φ
(s)σ
3M (u)

12ms

m2
b + p2

∆(p, q, u)

}
. (53)

In this expression we have introduced the short-hand no-
tation for the denominator of the free b-quark propagator

(see first term in Eq. (52))

∆(p, q, u) = m2
b − (1 − u)p2 − u(p+ q)2

and also defined the new function G
(s)
4M (u)

G
(s)
4M (u) = −

∫ u

0

ψ
(s)
4M (v)dv.

The meson mass correction∼ m2
M in Eq. (53) comes from

the expansion of the leading order twist-2 term.
Computations with one-gluon field components in the

b-quark propagator lead to the following result:

F (b)(p2, (p+ q)2) =

∫ 1

0

dv

∫
Dα

×





4f

(s)
3MΦ

(s)
3M (α)vpq

[
m2

b − (p+ q (α1 + vα3))
2
]2

+F
(s)
M mb

2Ψ
(s)
4M (α) − Φ

(s)
4M (α) + 2Ψ̃

(s)
4M (α)− Φ̃

(s)
4M (α)

[
m2

b − (p+ q (α1 + vα3))
2
]2





(54)

Now, having applied the formula for the double Borel
transformation

BM2
1
BM2

2

(l − 1)!

[m2
b − (1− u)p2 − u(p+ q)2]

l

=
(
M2
)2−l

e−m2
b/M

2

δ(u − u0),

with

u0 =
M2

1

M2
1 +M2

2

, M2 =
M2

1M
2
2

M2
1 +M2

2

,

it is not difficult to find a desired expression for the Borel
transformation of the invariant amplitude in terms of the
quark-gluon degrees of freedom.
By this manner we obtain

BM2
1
BM2

2
FQCD(p2, (p+ q)2) = e−m2

b/M
2

×M2

{
mbF

(s)
M φ

(s)
M (u0)

(
1− m2

Mu0u0
M2

)

+
φ
(s)p
3M (u0)

2ms
u0 +

φ
(s)σ
3M (u0)

6ms
+

1

12ms
u0
dφ

(s)σ
3M (u0)

du

+
m2

bφ
(s)σ
3M (u0)

6msM2
+

2F
(s)
M mb

M2
u0G4(u0)−

F
(s)
M m3

b

4M4
φ
(s)
4M (u0)

+2f
(s)
3MI

3(s)
M (u0) + F

(s)
M mb

I
4(s)
M (u0)

M2

}
, (55)

In Eq. (55) the new functions

I
3(s)
M (u0) =

∫ u0

0

dα1

[
Φ

(s)
3M (α1, 1− u0, u0 − α1)

u0 − α1

−
∫ 1−α1

u0−α1

dα3
Φ

(s)
3M (α1, 1− α1 − α3, α3)

α2
3

]
, (56)
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and

I
4(s)
M (u0) =

∫ u0

0

dα1

∫ 1−α1

u0−α1

dα3

α3

[
2Ψ

(s)
4M (α)− Φ

(s)
4M (α)

+2Ψ̃
(s)
4M(α)− Φ̃

(s)
4M (α)

]
(57)

are introduced.
The Eq. (55) is the required Borel transformed ex-

pression for the function FQCD(p2, (p+ q)2) given in the
quark-gluon degrees of freedom. In order to derive the
light-cone sum rule formulas for the couplings gB∗

sBsη

and gB∗

sBsη′ one should equate Borel transformations of

F h(p2, (p+q)2) as in Eq. (51) and FQCD(p2, (p+q)2) writ-
ten down in Eq. (55). Then the only unknown term is a
contribution of higher resonances and continuum states
represented in Eq. (51) as the integral with double spec-
tral density ρh(s1, s2). To solve this problem, in accor-
dance with the main idea of the sum rule methods, we
suggest that above a some threshold in the (s1, s2) plane
the double spectral density ρh(s1, s2) can be replaced
by ρQCD(s1, s2). Then the continuum subtraction can
be performed in accordance with the procedure devel-
oped in Refs. [18, 38, 41]. It is based on the observation
that double spectral density in the leading contributions,
i.e. in ones that are proportional to the positive powers
of the Borel parameter M2, is concentrated (or can be
expanded) near the diagonal s1 = s2. In this case for
the continuum subtraction the simple expressions can be
derived, which are not sensitive to the shape of the du-
ality region [18, 38, 41]. The general formula in the case
M2

1 =M2
2 = 2M2 and u0 = 1/2 reads

M2ne−
m2

b
M2 → 1

Γ(n)

∫ s0

m2
b

dse−
s

M2
(
s−m2

b

)n−1
, n ≥ 1.

(58)
For terms ∼M2 it leads to the simple prescription

M2e−m2
b/M

2 →M2
(
e−m2

b/M
2 − e−s0/M

2
)
, (59)

adopted in our work, as well.
For the higher-twist terms, which are proportional to

zeroth or to the negative powers of M2, on the one
hand, continuum subtraction is not expected to have
a large effect, and, on the other hand, it is not known
how to perform it in theoretically clean way. The dif-
ficulty here is that the quark-hadron duality is not ex-
pected to work point-wise in the two-dimensional plane
(s1, s2), but, at best, after integration over the line
s1 + s2 = const (see, for example Refs. [42, 43]). For
this reason a naive subtraction using the ”square” du-
ality region s1 < s0, s2 < s0 does not have the strong
theoretical basis. The spectral densities corresponding to
the higher-twist terms under consideration are not con-
centrated near the diagonal s1 = s2, as a result, the re-
quired continuum subtractions take rather complicated
forms. Because the higher-twist spectral densities de-
crease with s1 and s2 fast enough and an impact of the
subtracted terms on the final result is not significant, in

a standard technique of the LCSRs of this type one does
not perform continuum subtractions in these terms at all
[38]. Here we follow these procedures and subtract the
continuum contributions only in the terms ∼M2.
The masses of the Bs and B∗

s mesons are numerically
close to each other, hence in our calculations we can
safely set M2

1 = M2
2 and u0 = 1/2. Then, it is not

difficult to write down the following sum rule:

fBs
fB∗

s
gB∗

sBsM =
mb

m2
Bs
mB∗

s

e
m2

Bs
+m2

B∗
s

2M2

×
{
M2

(
e−

m2
b

M2 − e−
s0
M2

)[
mbF

(s)
M φ

(s)
M (u0)

+
φ
(s)p
3M (u0)

2ms
u0 +

φ
(s)σ
3M (u0)

6ms

+
1

12ms
u0
dφ

(s)σ
3M (u0)

du
+ 2f

(s)
3MI

3(s)
M (u0)

]

+e−
m2

b

M2

[
F

(s)
M mb

(
−m2

Mu0u0φ
(s)
M (u0) + 2u0G

(s)
4M (u0)

+I
4(s)
M (u0)−

m2
b

4M2
φ
(s)
4M (u0)

)
+

m2
b

6ms
φ
(s)σ
3M (u0)

]}

u0=1/2

.(60)

This result differs from the corresponding expression of
Ref. [38] due to new definitions of the DAs, and the ad-
ditional mass term in the sum rule expression.
For self-consistent treatment of Eq. (60) one needs ex-

pressions for fBs
and fB∗

s
with NLO accuracy. Recent

calculation of the heavy-light mesons’ decay constants,
performed in the context of QCD sum rules method by
taking into account O(α2

s) terms in the perturbative part
and O(αs) corrections to the quark-condensate contribu-
tion, can be found in Ref. [44]. For further details and
explicit expressions we refer to this work (see, also [45]).

B. NLO corrections. Gluonic contributions to the

strong couplings

The QCD LCSR for the strong couplings Eq. (60) have
been derived at the leading order of the perturbative
QCD with twist-4 accuracy. In order to improve our
results and make more precise theoretical predictions for
the strong couplings we need to find NLO perturbative
corrections at least to the leading twist term, and by
this way include into analysis also the gluon component
of the eta mesons. The NLO correction to the leading
twist term, and relevant double spectral density for the
strong vertices B∗Bπ and D∗Dπ were found in Ref. [40].
In this work authors demonstrated that, to this end, it
is sufficient to utilize NLO correction to the transition
form factor B → π calculated in Ref. [46], and from
the corresponding expression deduced the double spec-
tral density for the coupling gB∗Bπ. Because the pion is
a pseudoscalar particle, and has only quark component,
after some corrections that depend on definitions of DAs
and decay constants, results of this work can be used to
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(a) (b) (c)

FIG. 2: Quark-box diagrams that determine the gluonic
contribution. Thick lines correspond to a heavy quark.

find NLO corrections to the leading twist term in the
LCSRs for strong couplings arising from the quark com-
ponent of the η and η′ mesons. Therefore, we borrow
corresponding expression for the NLO correction from

the work [40], and for the asymptotic DAs φ
(s)
η(η′)(u) get:

Q
(s)
η(η′)

(
M2, sBs

0

)
=
αsCF

4π

F
(s)
η(η′)mb√

2

×
∫ 2sBs

0

2m2
b

f

(
s

m2
b

− 2

)
e−s/2M2

ds, (61)

where

f(x) =
π2

4
+ 3 ln

(x
2

)
ln
(
1 +

x

2

)

−3
(
3x3 + 22x2 + 40x+ 24

)

3(2 + x)3
ln
(x
2

)

+6Li2

(
−x
2

)
− 3Li2(−x)− 3Li2(−1− x)

−3 ln(1 + x) ln(2 + x)− 3(3x2 + 20x+ 20)

4(2 + x)3
(62)

+
6x(1 + x) ln(1 + x)

(2 + x)2
. (63)

In order to find the gluonic contributions to the LCSRs
one has to compute the quark-box diagrams shown in Fig.
2. For the transitions B → η(′) they were calculated in
Ref. [25] (see also, [47]). We adapt to our problem the
relevant expressions obtained in Ref. [25] and use them
in our calculations.
To derive the double spectral density, we start from

the expression

F (g)(p2, (p+ q)2) =
αsCF

4π
f
(1)
M mb

∫
∞

m2
b

dαg(α, p2)

α− (p+ q)2
,

(64)

where

g(α, p2) =
25

6
√
3
a
(g)
2,M

{
m2

b − α

(α− p2)5
[
59m6

b

+21p6 − 63p4α− 19p2α2 + 2α3 +m2
bα
(
164p2 + 13α

)

−m4
b

(
82p2 + 95α

)]
+ 6

(m2
b − p2)(α−m2

b)

(α− p2)5

×
[
5m4

b + p4 + 3p2α+ α2 − 5m2
b(p

2 + α)
]

×
[
2 ln

α−m2
b

m2
b

− ln
µ2

m2
b

]}
. (65)

We employ a method described in detailed form in Ref.
[43]. In other words, first we perform the double Borel
transformations

Bt1(p
2)Bt2((p+ q)2)F (g)(p2, (p+ q)2) ≡ F̂ (g)(t1, t2)

=
1

t1t2

∫
ds1ds2ρ(s1, s2)e

−s1/t1−s1/t2 ,

then apply the Borel transformations in τ1 = 1/t1 and
τ2 = 1/t2 in order to extract ρ(s1, s2)

B1/s1(τ1)B1/s2(τ2)
1

τ1τ2
F̂ (g)(1/τ1, 1/τ2) = s1s2ρ(s1, s2).

Having subtracted contribution of the resonances and
continuum states we get the gluonic correction as the
double dispersion integral:

FM

(
p2, (p+ q)2

)
=
αsCF

4π
f
(1)
M mb

×
∫ sBs

0

m2
b

∫ sBs
0

m2
b

ds1ds2ρ(s1, s2)

(s1 − p2)(s2 − (p+ q)2)
, (66)

where

ρ(s1, s2) =
25

6
√
3
a
(g)
2,M [ρ1(s1, s2) + 6ρ2(s1, s2)] .

Here

ρ1(s1, s2) = 21∆(1)(s1 − s2)

−82

6
∆(3)(s1 − s2)−

59

24
∆(4)(s1 − s2), (67)

and

ρ2(s1, s2) = L(s1, µ)
[
∆(2)(s1 − s2)

+
1

3
∆(3)(s1 − s2) +

1

24
∆(4)(s1 − s2)

]
. (68)

In Eqs. (67) and (68)

∆(n)(s1 − s2) = (s1 −mb)
nδ(n)(s1 − s2),

L(s, µ) = 2 ln
s−m2

b

m2
b

− ln
µ2

m2
b

, (69)
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with δ(n)(s1 − s2) being defined as

δ(n)(s1 − s2) =
∂n

∂sn1
δ(s1 − s2).

The Borel transformations in the variables p2 and (p+q)2

of the integral in Eq. (66) gives us the desired gluonic
contribution to the sum rules

BM2
1
BM2

2
FM

(
(p+ q)2, p2

)
=
αsCF

4π
f
(1)
M mb

×
∫ sBs

0

m2
b

ds1

∫ sBs
0

m2
b

ds2ρ(s1, s2)e
−s1/M

2
1 e−s2/M

2
2 .(70)

In the case M2
1 =M2

2 = 2M2 by applying methods from
Appendix B of Ref. [38] , we calculate the integrals in
Eq. (70)

∫ sBs
0

m2
b

ds1

∫ sBs
0

m2
b

ds2∆
(k)(s1 − s2)e

−(s1+s2)/2M
2

=
(−1)k

2k+1

∫ 2sBs
0

2m2
b

dse−s/2M2

(
d

dv

)k (
v − m2

b

s

)k

v=1/2

(71)

and

∫ sBs
0

m2
b

ds1

∫ sBs
0

m2
b

ds2 ln
(
s1 −m2

b

)
∆(k)(s1 − s2)

×e−(s1+s2)/2M
2

=
(−1)k

2k+1

∫ 2sBs
0

2m2
b

dse−s/2M2

(
d

dv

)k

×
[(

v − m2
b

s

)k

ln
(
sv −m2

b

)
]

v=1/2

. (72)

The integrations over s can be performed explicitly that
allows us to find the gluonic contribution in a rather sim-
ple form

Q̃η(η′)

(
M2, sBs

0

)
=
αsCF

4π
f
(1)
η(η′)mb

×
[
r1(M

2, sBs

0 ) + r2(M
2, sBs

0 )
]
, (73)

where

r1(M
2, sBs

0 ) =M2
(
e−m2

b/M
2 − e−s0/M

2
)(

−51

32

)
,

(74)
and

r2(M
2, sBs

0 ) =
3

16
M2e−m2

b/M
2

[22 + 20ψ(7)

−20Γ

(
0,
sBs

0 −m2
b

M2

)
+ 20 ln

2M2

m2
b

− 10 ln
µ2

m2
b

]

+
3

16
M2e−sBs

0 /M2


−27− 20 ln

2
(
sBs

0 −m2
b

)

m2
b

+10 ln
µ2

m2
b

]
. (75)

fBs fBs
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M 2 HGeV2L

FIG. 3: The strong couplings as functions of the Borel pa-
rameter M2. The solid (red) line describes fBsfB∗

s
gB∗

sBsη′ ,
whereas the dashed (blue) curve corresponds to fBsfB∗

s
|

gB∗

sBsη |. In computations the model I is used. The pa-

rameter sBs
0 is set equal to 36 GeV2.

Here ψ(z) = (d/dz) ln Γ(z) and Γ(a, z) are digamma and
incomplete Gamma functions, respectively.
Then the NLO corrections to LCSRs arising from the

quark and gluonic components of the eta mesons are
given by the expression

mb

m2
Bs
mB∗

s

e
m2

Bs
+m2

B∗
s

2M2

(
Q

(s)
η(η′) + Q̃η(η′)

)
, (76)

which should be added to Eq. (60).
It is interesting to note that strong couplings given by

Eqs. (60) and (76) may be presented in the form

gB∗

sBsη ≃ − sinϕ G
(s)
B∗

sBsη
,

gB∗

sBsη′ ≃ cosϕ G
(s)
B∗

sBsη′ . (77)

In fact, excluding some terms, the couplings with the
high accuracy follow the mixing pattern discussed above
that can be demonstrated explicitly.

IV. NUMERICAL RESULTS AND

CONCLUSIONS

The LCSR expressions for gB∗

sBsη and gB∗

sBsη′ in Eqs.
(60) and (76) contain numerous parameters that should
be fixed in accordance with the usual procedures. But
apart from that in numerical calculations there is a neces-
sity to utilize also equalities to connect η and η′ mesons’
DAs and decay constants obtained using different bases.
Indeed, as we have emphasized above, in order to solve
renormalization group equations it is convenient to use
the singlet-octet basis. This basis was used in Ref. [31]
to describe evolution of the flavor-octet and flavor-singlet
DAs with NLO accuracy. One should note that the gluon
DA in Eq. (12) is normalized in terms of the decay con-

stant f
(1)
M . From another side, the QF basis is more

suitable to analyze the η − η′ mixing phenomena and
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fBs fBs
* gBs

*
 Bs  Η’ HGeV2

L

6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

M 2 HGeV2L

FIG. 4: Contributions to the coupling fBsfB∗

s
gB∗

sBsη′ orig-
inating from the leading, the higher-twist and NLO terms.
The upper solid (red) line is contribution of LO twist-2 term,
the upper dashed line (blue) shows contribution of the higher-
twist terms, the lower solid (red) curve is the NLO effect com-
ing from the meson’s quark component, and the lower dashed
(blue) line is the gluonic contribution to the coupling. The
parameters are the same as in Fig. 3.

solve equations of motions, which determine parameters
in twist-4 DAs. The values of the decay constants in Eq.
(20) were deduced within the QF mixing scheme, as well.
The general expression for such transformations can be
found in Eq. (19). Here we provide the formula for eta
mesons’ decay constants in the SO basis

(
f
(8)
η f

(1)
η

f
(8)
η′ f

(1)
η′

)
=

(
cos θ8 − sin θ1
sin θ8 cos θ1

)(
f8 0
0 f1

)

with the numerical values of the parameters

f1 = (1.17± 0.03)fπ, f8 = (1.26± 0.04)fπ,

θ1 = −(9.2◦ ± 1.7◦), θ8 = −(21.2◦ ± 1.6◦).

The Bs and B
∗

s mesons’ decay constants and masses enter
to Eqs. (60) and (76) as input parameters. Their values
are collected below (in MeV)

mη = 547.86± 0.02, mη′ = 957.78± 0.06,

mBs
= 5366.77± 0.4, mB∗

s
= 5415.4± 1.5.

The decay constants fBs
and fB∗

s
were calculated from

the two-point QCD sum rules in Ref. [45] (in MeV)

fBs
= 231± 16, fB∗

s
= 213± 18. (78)

We employ masses of the quarks in the MS scheme (in
GeV)

mb(mb) = 4.18± 0.03, mc(mc) = 1.275± 0.025, (79)

Their scale dependencies are taken into account in accor-
dance with the renormalization group evolution

mq(µ) = mq(µ0)

[
αs(µ)

αs(µ0)

]γq

,

fBs fBs
* gBs

*
 Bs  Η’ HGeV2

L

6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

M 2 HGeV2L

FIG. 5: The coupling fBsfB∗

s
gB∗

sBsη′ computed using the dif-
ferent model DAs. Correspondence between the curves and
models is: the solid (red) line - model I and the dashed (blue)
line - model III.

fDs fDs
*g HGeV2

L

model I
2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

M 2 HGeV2L

FIG. 6: The couplings as functions of the Borel parameter
M2. The solid (red) line corresponds to fDsfD∗

s
gD∗

sDsη′ , the
dashed (blue) curve is the coupling fDsfD∗

s
| gD∗

sDsη |. In

computations the model I is used. The parameter sDs
0 is set

equal to 7 GeV2.

with γb = 12/23 and γc = 12/25. The strange quark
mass is ms = 0.137 GeV. The renormalization scale is
set equal to

µb =
√
m2

Bs
−m2

b ≃ 3.4 GeV. (80)

The parameters and quantities are evolved to this scale
employing the two-loop QCD running coupling αs(µ)
with Λ(4) = 326 MeV. The same QCD two-loop cou-
pling is used throughout this work, for example, to com-
pute NLO corrections. The evolution of the leading twist
DAs is calculated with the NLO accuracy by taking into
account quark-gluon mixing [31]. Calculations require
to fix the threshold parameter s0 and a region within of
which it may be varied. For s0 we employ

sBs

0 ≡ s
B∗

s

0 ≃ 36± 2.5 GeV2.
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Additionally, the eta mesons’ DAs contain the Gegen-

bauer moments a
(1,8)
n (µ0) and a

(g)
n (µ0). In Ref. [31] they

were extracted from the analysis of the eta mesons’ elec-
tromagnetic transition form factors. In the present work

for a
(1,8)
n and a

(g)
2 we utilize values that are compatible

with ones from this work and accept the following models
for DAs

I. a
(1,8)
2 = a

(1,8)
4 = 0.1, a

(g)
2 = −0.2,

II. a
(1,8)
2 = a

(1,8)
4 = 0.2, a

(g)
2 = −0.2,

III. a
(1,8)
2 = 0.2, a

(1,8)
4 = 0, a

(g)
2 = −0.2. (81)

Results of the computations of the ”scaled” couplings
fBs

fB∗

s
gB∗

sBsη′ and fBs
fB∗

s
| gB∗

sBsη | are depicted in
Fig. 3. Calculations have been carried out employing
the model I. From analysis we find the range of values
of the Borel parameter 8 GeV2 < M2 < 12 GeV2, where
the effects of the higher resonances and continuum states
is less than 30% of the leading order twist-2 contribution,
and terms ∼M−2 form only ∼ 5% of the sum rule. Addi-
tionally, in this interval the dependence of the couplings
on M2 is stable, and one may expect that the sum rule
gives the reliable predictions.
The sum rules receive contributions from the differ-

ent terms that are shown in Fig. 4. The main compo-
nent is the leading order twist-2 term: it forms approx-
imately 60% of the strong couplings. The effect of the
NLO quark correction is also essential: in the explored
range of the Borel parameter it equals to ≃ 12.5% of the
coupling fBs

fB∗

s
gB∗

sBsη′ . The same estimation is valid
for fBs

fB∗

s
gB∗

sBsη, as well. Correction originating from
the gluon content of the meson is very small. In fact, it
equals only to ≃ −0.5 % of fBs

fB∗

s
gB∗

sBsη′ .
The higher-twist terms play an essential role in forming

of the couplings. Indeed, ∼ 28% of their values within
considering range of M2 are due to HT corrections. The
main part of the HT corrections are determined by the

two-particle twist-3 DAs φ
(s)p
3η′ (u) and φ

(s)σ
3η′ (u): they give

∼ 33 %, whereas corrections of remaining HT terms are
small −5%.
The extracted couplings, in general, depend on the dis-

tribution amplitudes utilized in calculations. We have
computed the couplings using the different model DAs,
and drown the results in Fig. 5. Some of the DAs (mod-
els I and II) lead to almost identical predictions such that
corresponding lines become undistinguishable. There-
fore, in Fig. 5 we show only the line corresponding to
the model I. At the same time, the results for couplings
due to another pair of DAs (models I and III) differ from
each other considerably .
The predictions in the present work are made employ-

ing the model I. By varying the parameters within the
allowed ranges we estimate uncertainties of computa-
tions. The important sources of uncertainties are M2

and sBs

0 , as well as the decay constants fBs
and fB∗

s
cal-

culated within the two-point QCD sum rules. Having
changed M2 and sBs

0 within 8 < M2 < 12 GeV2, and

33. 5 < sBs

0 < 38. 5 GeV2 respectively, and taken into
account uncertainties arising from the meson decay con-
stants we get

fBs
fB∗

s
| gB∗

sBsη |= 0.837± 0.08 GeV2,

fBs
fB∗

s
gB∗

sBsη′ = 0.994± 0.12 GeV2. (82)

Dividing the product of the couplings by the decay con-
stants gives for the couplings the following predictions:

| gB∗

sBsη |= 17.08± 1.63, gBsB∗

sη
′ = 20.2± 2.44. (83)

We proceed in our studies and extract the strong cou-
plings gD∗

sDsη and gD∗

sDsη′ (see, Fig. 6). To this end, in
all expressions we have to replace b→ c. The masses and
decay constants in units of MeV are:

mDs
= 1969± 1.4, mD∗

s
= 2112.1± 0.4,

fDs
= 240± 10, fD∗

s
= 308± 21. (84)

All parameters should be adjusted to the new problem.
This leads to the replacements

µc =
√
m2

Ds
−m2

c ≃ 1.68 GeV, (85)

and sDs

0 = 7± 1 GeV2. It has been found that the range

of the Borel parameter 3 GeV2 < M2 < 5 GeV2 is suit-
able for evaluating the sum rules. From the relevant sum
rules for the product of the decay constants and coupling
we extract the following values

fDs
fD∗

s
| gD∗

sDsη |= 0.411± 0.04 GeV2,

fDs
fD∗

s
gD∗

sDsη′ = 0.473± 0.042 GeV2. (86)

Then for the couplings we get

| gD∗

sDsη |= 4.51± 0.44, gD∗

sDsη′ = 5.19± 0.46. (87)

Our results have been obtained within the quark-
hadron duality ansatz of [38], where gD∗Dπ and gB∗Bπ

were evaluated. But there is a discrepancy between the
predictions for gD∗Dπ and data of CLEO Collaboration
[48]. One of the main input parameters in these calcula-
tions is a value of the leading twist DA at u0 = 1/2. In
Ref. [38] it was chosen as φπ(1/2) ≃ 1.2, whereas recent
analysis of the pion electromagnetic transition form fac-
tor performed in Refs. [49, 50] predicts LT pion DAs en-
hanced at the middle point: these model DAs at u0 = 1/2
are very close to the asymptotic DA with φasy(1/2) = 1.5.
The usage of updated twist-3 DAs may also lead to
sizeable corrections, because twist-3 terms contribute to
gD∗Dπ at the level of (50 − 60)%, and are as important
as the twist-2 term. All these questions necessitate new,
updated investigation of the couplings gD∗Dπ and gB∗Bπ

in the context of LCSRs method. The real accuracy of
this method is not completely clear at present. On the
one hand, it leads to results with 30 − 50% deviation
from experimental data as in gD∗Dπ case, on the other
hand, gives rather precise predictions for radiative decays
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of mesons. Indeed, LCSR prediction for gD∗Dγ [51, 52]
correctly describe experimental data: the value of the
quark condensate’ magnetic susceptibility that enters to
this sum rule as a nonperturbative parameter is known
from both QCD sum rules and lattice computations [53]
and agree with each other. As QCD lattice simulations of
gD∗Dπ (see, Ref. [54]) agree with the CLEO data, it will
be instructive to compare our predictions for the strong
couplings gB∗

sBsη(′) and gD∗

sDsη(′) with relevant lattice re-
sults, when they will be available.
The couplings gB∗

sBsη(′) were calculated in Ref. [12]
by applying the three-point sum rule method, as well.
Differences in adopted definitions for the couplings, cho-
sen structures and explored kinematical regimes to ex-
tract their values make direct comparison of relevant
findings rather problematic: we note only a sizeable nu-
merical discrepancy between our predictions and results
of Ref. [12]. We emphasize also the advantage of the
LCSR method compared to the three-point sum rules
approach in calculations of the strong couplings or/and
form factors. Indeed, in the three-point sum rules the
higher orders in the operator product expansion (OPE)
are enhanced by powers of the heavy quark mass and
for sufficiently large masses the OPE breaks down. The
LCSR method does not suffer from such problems: It
is consistent with heavy-quark limit, and provides more
elaborated tools for investigations, than alternative ap-
proaches.
In the present work we have investigated the strong

D∗

sDsη
(′) and B∗

sBsη
(′) vertices and calculated the rele-

vant couplings using the method of QCD sum rules on
the light-cone. We have included into our analysis effects
of the eta mesons’ gluon components. The derived ex-
pressions has been explored and numerical values of the
strong couplings gD∗

sDsη(′) and gB∗

sBsη(′) have been eval-
uated. Studies have demonstrated that the direct contri-
bution to the strong couplings arising from the two-gluon
components of the η and η′ is small. But owing to mixing
the gluon components affect the quark DAs, which can
not be ignored.
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Appendix: A

This appendix is devoted to calculation of f3s and δ
2(s)
M ,

which enter as parameters into higher twist DAs of the η

and η′ mesons. To this end, in the two-point sum rules
written down below, we consider fs and hs, as well as
mixing angle ϕ as input parameters; then only f3s and

δ
2(s)
M remain unknown.

The f3s and δ
2(s)
M can be defined in terms of matrix

elements of some local operators. Indeed, the parameter
f3s can be defined through the matrix element of the
following twist-3 operator

〈0 | sσzνγ5gGzνs |M(p)〉 = 2if
(s)
3M (pz)2.

In order to extract its value we use the correlation func-
tion of non-local light-ray operators, which enter the
definition of the three-particle distribution amplitude,
with corresponding local operator. Such so-called ”non-
diagonal” correlation function is given by the following
expression [36]

Πs
ND = i

∫
d4ye−ipy〈0 | T {[s(z)σµzγ5gGµz(vz)s(0)]

×[s(y)γ5s(y)]} | 0〉

≡ (pz)2
∫
Dαe−ipz(α2+vα3)πs

ND(α). (A.1)

The sum rule for the coupling f3s is derived by expanding
the correlation function in powers of pz

Πs
ND = (pz)4

{
Π

(0)s
ND + i(pz)

[
Π

(1A)s
ND

+(2v − 1)Π
(1B)s
ND

]
+ ...

}
. (A.2)

The hadronic content of the function Π has been modeled
employing ”η+ η′+continuum” approximation. Then we
get the following sum rule:

f
(s)
3η

h
(s)
η

ms
e−

m2
η

M2 + f
(s)
3η′

h
(s)
η′

ms
e−

m2
η′

M2 = BM2

[
Π

(0)s
ND

]
.

The left-hand side of this expression can be modified us-
ing information on mixing of the decay constants:

f3shs
ms

(
sin2 ϕe−

m2
η

M2 + cos2 ϕe−
m2

η′

M2

)

= BM2

[
Π

(0)s
ND

]
. (A.3)

Now having applied the explicit expression for

BM2

[
Π

(0)s
ND

]
we determine f3s using the sum rule:

f3shs
ms

(
sin2 ϕe−

m2
η

M2 + cos2 ϕe−
m2

η′

M2

)

=
αs

73π3

∫ s0

0

dsse−
s

M2 +
1

12
〈αs

π
G2〉

−4αs

9π
ms〈ss〉

[
19

6
+ γE − ln

M2

µ2
+

∫
∞

s0

ds

s
e−

s

M2

]

+
80

27

αsπ

M2
〈ss〉2 + 1

3M2
ms〈sσgGs〉. (A.4)
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Numerical calculations have been performed at the scale
µ0 = 1 GeV. To evaluate a continuum contribution we
set s0 = 1.5 GeV2, and varied it within limits 1.3 < s0 <
1.7 GeV2 to estimate errors. The Borel parameter M2

is changed in the interval 0.8 < M2 < 1.8 GeV2. The
parameters have been extracted at M2 = 1.3 GeV2. For
f3s(µ0) we have found:

f3s ≃ 0.0041 GeV2. (A.5)

The varying of s0 in the allowed limits results in errors
±0.00005, which may be neglected.

We introduce the parameter δ
2(s)
M through the local

matrix element

〈0|s̄γρigG̃ρµs|M(p)〉 = pµf
(s)
M δ

2(s)
M (A.6)

considering it as the universal one, i.e. we suggest that
it does not depend on the particles η and η′. In the local
matrix element information on the mixing is contained

in the decay constants f
(s)
M . Then we can write

f2
s δ

4(s)
M

[
sin2 ϕe−

m2
η

M2 + cos2 ϕe−
m2

η′

M2

]
= BM2

[
Π

A(s)
0

]
,

where BM2 [Π
A(s)
0 ] is given by the expression [36]

BM2 [Π
A(s)
0 ] =

αs

160π3

∫ s0

0

dss2e−
s

M2 +
1

72
〈αs

π
G2〉

×
∫ s0

0

dse−
s

M2 − αs

9π
ms〈ss〉

∫ s0

0

dse−
s

M2 +
8παs

9
〈ss〉2

−13αs

54π
ms〈sσgGs〉+

59παs

81

m2
0

M2
〈ss〉2

+
π

9M2
〈αs

π
G2〉ms〈ss〉 −

2αs

π
ms〈sσgGs〉

×
{
γE − ln

M2

µ2
+

∫
∞

s0

ds

s
e−

s

M2

}
. (A.7)

Computations of δ
2(s)
M with the same input parameters

as in previous case, lead to the following prediction:

δ
2(s)
M (µ0) ≃ 0.1896± 0.001 GeV2. (A.8)

As is seen f3s and δ
2(s)
M numerically are very close to the

pion’s parameters f3π and δ2π, respectively.

The values of the quark and quark-gluon condensates
at µ0 utilized in numerical calculations are listed below:

〈qq〉 = (−0.24± 0.01)3 GeV3, 〈qσgGq〉 = m2
0〈qq〉,

m2
0 = (0.8± 0.1) GeV2, 〈ss〉 = [1− (0.2± 0.2]〈qq〉,

〈αs

π
G2〉 = (0.012± 0.006) GeV4,

〈sσgGs〉 = [1− (0.2± 0.2)]〈qσgGq〉. (A.9)
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