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Abstract

We comparatively analyze the rare Λb → Λℓ+ℓ− channel in standard model, su-

persymmetry and Randall-Sundrum model with custodial protection (RSc). Using

the parametrization of the matrix elements entering the low energy effective Hamilto-

nian in terms of form factors, we calculate the corresponding differential decay width

and lepton forward-backward asymmetry in these models. We compare the results

obtained with the most recent data from LHCb as well as lattice QCD results on the

considered quantities. It is obtained that the standard model, with the form factors

calculated in light-cone QCD sum rules, can not reproduce some experimental data

on the physical quantities under consideration but the supersymmetry can do it. The

RSc model predictions are roughly the same as the standard model and there are no

considerable differences between the predictions of these two models. In the case of

differential decay rate, the data in the range 4 GeV2/c4 ≤ q2 ≤ 6 GeV2/c4 can not

be described by any of the considered models.
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1 Introduction

The ATLAS and CMS Collaborations at CERN have independently reported their discovery

of the Higgs boson with a mass of about 125 GeV using the samples of proton-proton

collision data collected in 2011 and 2012, commonly referred to as the first LHC run [1–3].

Recently, a measurement of the Higgs boson mass based on the combined data samples of the

ATLAS and CMS experiments has been presented as mH = 125.09±0.21(stat)±0.11(syst)

GeV in Refs [3–7]. At the same time, all LHC searches for signals of new physics above the

TeV scale have given negative results. However, the LHC constraints on new physics effects

can help theoreticians in the course of searching for these new effects and answering the

questions that the standard model (SM) has not answered yet. We hope that the upcoming

LHC run can bring unexpected surprises to observe signals of new physics in the experiment

[8].

Although the SM could be valid up to some arbitrary high scale, new scenarios should

exist because we are lacking a proper understanding of some important issues like origin

of the matter, matter-antimatter asymmetry, dark matter and dark energy etc. [9]. In

the baryonic sector, the loop-induced flavor changing neutral current (FCNC) decay of the

Λb → Λℓ+ℓ− with ℓ = e, µ, τ , which is described by the b → sℓ+ℓ− transition at quark

level, is one of the important rare processes that can help us in the course of indirectly

searching for new physics effects [10]. Recently, the differential branching fraction of the

Λ0
b → Λµ+µ− decay channel has been measured as a function of the square of the di-muon

invariant mass (q2), corresponding to an integrated luminosity of 3.0 fb−1 using proton-

proton collision data collected by the LHCb experiment [11]. The measured result at 15

GeV2/c4 ≤ q2 ≤ 20 GeV2/c4 region for the differential branching fraction is dBr(Λ0
b →

Λµ+µ−)/dq2 = (1.18 +0.09
− 0.08 ± 0.03 ± 0.27) × 10−7 GeV2/c4. The LHCb Collaboration has

also reported the measurement on the forward-backward asymmetries of this transition at

the µ channel. The measured result at the 15 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4 region for the

lepton forward-backward asymmetry is Aµ
FB = −0.05± 0.09(stat)± 0.03(syst) [11]. In the

literature, there are a lot of studies on this decay channel via different approaches (for some

recent studies see for instance Refs. [12–17]).

In the present work, we calculate the differential decay rate and lepton forward-backward

asymmetry related to the FCNC Λb → Λℓ+ℓ− transition for all leptons in the SM, super-

symmetry (SUSY) and Randall-Sundrum scenario with custodial protection (RSc). We

compare the results with the experimental data provided by LHCb [11] as well as the ex-

isting lattice QCD predictions [18]. Comparison of the LHCb results with the lattice QCD
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predictions shows that there are some deviations of data from the SM predictions. Such

deviations can be attributed to the new physics effects that can contribute to such loop level

processes. In this connection, we comparatively analyze the Λb → Λℓ+ℓ− decay channel in

SM and some new physics scenarios. In the calculations, we use the form factors calculated

via the light-cone QCD sum rules in [19]. Hence, to get ride of any misleading, we will

use SMLCSR instead of SM referring to the results that are obtained via using the from

factors predicted by the light-cone sum rules in [19] when we speak about the predictions of

different models. Note that there are many studies devoted to the calculations of the form

factors defining the transition under consideration via different approaches (se for instance

[20, 21]), but our aim here is to use those form factors that are obtained in the full theory

of QCD in [19] without any approximation.

The outline of the paper is as follows. In the next section, we introduce a detailed

discussion of the effective Hamiltonian responsible for the semileptonic Λb → Λℓ+ℓ− decay

channel and Wilson coefficients in SM, RSc and SUSY models. In this section, we also

present a basic introduction of the RSc scenario. In section 3, we calculate the differential

decay rate and lepton forward-backward asymmetry at different scenarios and compare the

predictions of different models.

2 The semileptonic Λb → Λℓ+ℓ− transition in SM,

SUSY and RSc models

2.1 The effective Hamiltonian and Wilson Coefficients

At quark level, the FCNC transition of Λb → Λℓ+ℓ− is governed by the b → sℓ+ℓ− transition

whose effective Hamiltonian in the SM can be written as

Heff
SM =

GFαemVtbV
∗
ts

2
√
2π

[

Ceff,SM
9 s̄γµ(1− γ5)b ℓ̄γ

µℓ+ CSM
10 s̄γµ(1− γ5)b ℓ̄γ

µγ5ℓ

− 2mbC
eff,SM
7

1

q2
s̄iσµνq

ν(1 + γ5)b ℓ̄γ
µℓ

]

, (2.1)

where Vtb and V ∗
ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM) mixing ma-

trix, αem is the fine structure constant at Z mass scale, GF is the Fermi weak coupling

constant, q2 is the transferred momentum squared; and the Ceff,SM
9 , CSM

10 and Ceff,SM
7

are the Wilson coefficients representing different interactions. The explicit expressions of

the Wilson coefficients entered to the above Hamiltonian are given in the following. The
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Wilson coefficient Ceff,SM
9 which is a function of ŝ′ = q2

m2
b

with q2 lies in the allowed region

4m2
l ≤ q2 ≤ (mΛb

−mΛ)
2 is given by [22, 23]

Ceff,SM
9 (ŝ′) = CNDR

9 η(ŝ′) + h(z, ŝ′) (3C1 + C2 + 3C3 + C4 + 3C5 + C6)

−1

2
h(1, ŝ′) (4C3 + 4C4 + 3C5 + C6)

−1

2
h(0, ŝ′) (C3 + 3C4) +

2

9
(3C3 + C4 + 3C5 + C6) , (2.2)

where the CNDR
9 in the naive dimensional regularization (NDR) scheme is expressed as

CNDR
9 = PNDR

0 +
Y SM

sin2 θW
− 4ZSM + PEE

SM . (2.3)

The last term in the right hand side is neglected due to smallness of the order of PE . Here

PNDR
0 = 2.60±0.25, Y SM = 0.98, ZSM = 0.679 and sin2 θW = 0.23 [22–24]. The parameter

η(ŝ′) in Eq.(2.2) is given as

η(ŝ′) = 1 +
αs(µb)

π
ω(ŝ′) , (2.4)

with

ω(ŝ′) = −2

9
π2 − 4

3
Li2(ŝ

′)− 2

3
ln ŝ′ ln(1− ŝ′)− 5 + 4ŝ′

3(1 + 2ŝ′)
ln(1− ŝ′)−

2ŝ′(1 + ŝ′)(1− 2ŝ′)

3(1− ŝ′)2(1 + 2ŝ′)
ln ŝ′ +

5 + 9ŝ′ − 6ŝ′2

6(1− ŝ′)(1 + 2ŝ′)
, (2.5)

and

αs(x) =
αs(mZ)

1− β0
αs(mZ )

2π
ln(mZ

x
)
. (2.6)

Here αs(mZ) = 0.118 and β0 =
23
3
. The function h(y, ŝ′) in Eq.(2.2) is also defined by

h(y, ŝ′) = −8

9
ln

mb

µb

− 8

9
ln y +

8

27
+

4

9
x (2.7)

−2

9
(2 + x)|1− x|1/2







(

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣
− iπ

)

, for x ≡ 4z2

ŝ′
< 1

2 arctan 1√
x−1

, for x ≡ 4z2

ŝ′
> 1 ,

(2.8)

where y = 1 or y = z = mc

mb

and,

h(0, ŝ′) =
8

27
− 8

9
ln

mb

µb
− 4

9
ln ŝ′ +

4

9
iπ . (2.9)
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In Eq.(2.2), the remaining coefficients are given by [24]

Cj =

8
∑

i=1

kjiη
ai (j = 1, ...6), (2.10)

where the kji are given as

k1i = ( 0, 0, 1
2
, −1

2
, 0, 0, 0, 0 ) ,

k2i = ( 0, 0, 1
2
, 1

2
, 0, 0, 0, 0 ) ,

k3i = ( 0, 0, − 1
14
, 1

6
, 0.0510, −0.1403, −0.0113, 0.0054 ) ,

k4i = ( 0, 0, − 1
14
, −1

6
, 0.0984, 0.1214, 0.0156, 0.0026 ) ,

k5i = ( 0, 0, 0, 0, −0.0397, 0.0117, −0.0025, 0.0304 ) ,

k6i = ( 0, 0, 0, 0, 0.0335, 0.0239, −0.0462, −0.0112 ) .

(2.11)

The explicit expression for the Wilson coefficient CSM
10 is given as

CSM
10 = − Y SM

sin2 θW
. (2.12)

Finally, the Wilson coefficient Ceff,SM
7 in the leading log approximation is defined by [22–25]

Ceff,SM
7 (µb) = η

16

23C7(µW ) +
8

3

(

η
14

23 − η
16

23

)

C8(µW ) + C2(µW )

8
∑

i=1

hiη
ai ,

(2.13)

where

η =
αs(µW )

αs(µb)
, (2.14)

and

C7(µW ) = −1

2
D′ SM

0 (xt) , C8(µW ) = −1

2
E ′ SM

0 (xt) , C2(µW ) = 1 . (2.15)

The functions D′ SM
0 (xt) and E ′ SM

0 (xt) with xt =
m2

t

m2
W

are given by

D′ SM
0 (xt) = −(8x3

t + 5x2
t − 7xt)

12(1− xt)3
+

x2
t (2− 3xt)

2(1− xt)4
ln xt , (2.16)

and

E ′ SM
0 (xt) = −xt(x

2
t − 5xt − 2)

4(1− xt)3
+

3x2
t

2(1− xt)4
ln xt . (2.17)
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The coefficients hi and ai inside the Ceff,SM
7 are also given by [22, 23]

hi = ( 2.2996, −1.0880, −3
7
, − 1

14
, −0.6494, −0.0380, −0.0186, −0.0057 ),

ai = ( 14
23
, 16

23
, 6

23
, −12

23
, 0.4086, −0.4230, −0.8994, 0.1456 ).

(2.18)

One of the most important new physics scenarios is SUSY. The different SUSY models

involve the SUSY I, SUSY II, SUSY III and SUSY SO(10) scenarios according to the values

of tanβ and an extra parameter µ with dimension of mass [26–29]. In SUSY I, the Wilson

coefficient Ceff
7 changes its sign, the µ takes a negative value and the contributions of the

neutral Higgs bosons (NHBs) have been disregarded. In the SUSY II model, the value of

the tanβ is large and the masses of the superparticles are relatively small. In SUSY III,

the tanβ takes a large value and the masses of the superparticles are relatively large. In

SUSY SO(10), the contributions of the NHBs are taken into account. The supersymmetric

effective Hamiltonian in terms of the new operators coming from the NHBs exchanges

diagrams and the corresponding Wilson coefficients is written as

Heff
SUSY =

GFαemVtbV
∗
ts

2
√
2π

[

Ceff,SUSY
9 s̄γµ(1− γ5)b ℓ̄γ

µℓ+ C ′ eff,SUSY
9 s̄γµ(1 + γ5)b ℓ̄γ

µℓ

+ CSUSY
10 s̄γµ(1− γ5)b ℓ̄γ

µγ5ℓ+ C ′ SUSY
10 s̄γµ(1 + γ5)b ℓ̄γ

µγ5ℓ

− 2mbC
eff,SUSY
7

1

q2
s̄iσµνq

ν(1 + γ5)b ℓ̄γ
µℓ− 2mbC

′ eff,SUSY
7

1

q2
s̄iσµνq

ν(1− γ5)b ℓ̄γ
µℓ

+ CSUSY
Q1

s̄(1 + γ5)b ℓ̄ℓ+ C ′ SUSY
Q1

s̄(1− γ5)b ℓ̄ℓ

+ CSUSY
Q2

s̄(1 + γ5)b ℓ̄γ5ℓ+ C ′ SUSY
Q2

s̄(1− γ5)b ℓ̄γ5ℓ

]

, (2.19)

where Ceff,SUSY
9 , C ′ eff,SUSY

9 , CSUSY
10 , C ′ SUSY

10 , Ceff,SUSY
7 , C ′ eff,SUSY

7 , CSUSY
Q1

, C ′ SUSY
Q1

,

CSUSY
Q2

and C ′ SUSY
Q2

are the new Wilson coefficients in the different SUSY models. The new

Wilson coefficients, C
(′)SUSY
Q1

and C
(′)SUSY
Q2

come from NHBs exchanging [29]. The primed

Wilson coefficients only appear in SUSY SO(10) model. The values of Wilson coefficients

in different supersymmetric models are presented in table 1 [27–30].

The last new physics scenario which we consider in this work is the Randall-Sundrum

scenario proposed to solve the gauge hierarchy and the flavor problems in 1999 [31, 32]. It

is a successful model, featuring one compact extra dimension with non-factorizable anti-

de Sitter (AdS5) space-time [33]. This model describes the five-dimensional space-time

manifold with coordinates (x; y) and metric

ds2 = e−2kyηµνdx
µdxν − dy2 ,

ηµν = diag(+1,−1,−1,−1) . (2.20)

5



Coefficient SUSY I SUSY II SUSY III SUSY SO(10)(A0 = −1000)

Ceff,SUSY
7 +0.376 +0.376 −0.376 −0.219

Ceff,SUSY
9 4.767 4.767 4.767 4.275

CSUSY
10 −3.735 −3.735 −3.735 −4.732

CSUSY
Q1

0 6.5(16.5) 1.2(4.5) 0.106 + 0i(1.775 + 0.002i)

CSUSY
Q2

0 −6.5(−16.5) −1.2(−4.5) −0.107 + 0i(−1.797− 0.002i)

C ′ eff,SUSY
7 0 0 0 0.039 + 0.038i

C ′ eff,SUSY
9 0 0 0 0.011 + 0.072i

C ′ SUSY
10 0 0 0 −0.075− 0.67i

C ′ SUSY
Q1

0 0 0 −0.247 + 0.242i(−4.148 + 4.074i)

C ′ SUSY
Q2

0 0 0 −0.25 + 0.246i(−4.202 + 4.128i)

Table 1: The Wilson coefficients in different SUSY models [27–30]. The values inside the

parentheses are for the τ lepton.

The scale parameter k is defined as k ≃ O(MP lanck). We choose it as k = 1019 GeV. The

fifth coordinate y varies in a range between two branes 0 and L. y = 0 and y = L correspond

to the so-called UV brane and IR brane, respectively. The simplest RS model with only the

SM gauge group in the bulk has many important problems with the electroweak precision

parameters [34]. In the present work, we consider the RS model with an enlarged custodial

protection based on SU(3)c × SU(2)L × SU(2)R × U(1)× × PLR, where PLR interchanges

the two SU(2) groups and is responsible for the protection of the ZbLbL vertex (for more

information on the model see [33–41]).

The effective Hamiltonian for the b → sℓ+ℓ− transition in the RSc model is given as

Heff
RSc

=
GFαemVtbV

∗
ts

2
√
2π

[

Ceff,RSc

9 s̄γµ(1− γ5)b ℓ̄γ
µℓ+ C ′ eff,RSc

9 s̄γµ(1 + γ5)b ℓ̄γ
µℓ

+ CRSc

10 s̄γµ(1− γ5)b ℓ̄γ
µγ5ℓ+ C ′ RSc

10 s̄γµ(1 + γ5)b ℓ̄γ
µγ5ℓ

− 2mbC
eff,RSc

7

1

q2
s̄iσµνq

ν(1 + γ5)b ℓ̄γ
µℓ

− 2mbC
′ eff,RSc

7

1

q2
s̄iσµνq

ν(1− γ5)b ℓ̄γ
µℓ

]

, (2.21)

where the new Wilson coefficients are modified considering the new interactions. The new

coefficients in terms of the SM coefficients are written as [33–41]

C
(′)RSc

i = C
(′)SM
i +∆C

(′)
i , i = 7, 9, 10 , (2.22)
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where

∆C9 =

[

∆Ys

sin2(θw)
− 4∆Zs

]

,

∆C ′
9 =

[

∆Y ′
s

sin2(θw)
− 4∆Z ′

s

]

,

∆C10 = − ∆Ys

sin2(θw)
, (2.23)

and

∆C ′
10 = − ∆Y ′

s

sin2(θw)
, (2.24)

with

∆Ys = − 1

VtbV
∗
ts

∑

X

∆ℓℓ
L (X)−∆ℓℓ

R(X)

4M2
Xg

2
SM

∆bs
L (X) ,

∆Y ′
s = − 1

VtbV ∗
ts

∑

X

∆ℓℓ
L (X)−∆ℓℓ

R(X)

4M2
Xg

2
SM

∆bs
R (X) ,

∆Zs =
1

VtbV
∗
ts

∑

X

∆ℓℓ
R(X)

8M2
Xg

2
SMsin2(θw)

∆bs
L (X) , (2.25)

and

∆Z ′
s =

1

VtbV ∗
ts

∑

X

∆ℓℓ
R(X)

8M2
Xg

2
SMsin2(θw)

∆bs
R (X) . (2.26)

In the above equations, X = Z,ZH, Z
′ and A(1), g2SM = GF√

2
α

2πsin2(θw)
and θw is the Weinberg

angle. The functions inside ∆Ys, ∆Y ′
s , ∆Zs and ∆Z ′

s are given in [33–41].

In the case of ∆C
(′)
7 , ∆C

(′)
7 (µb) = 0.429∆C

(′)
7 (MKK) + 0.128∆C

(′)
8 (MKK) is used where

the following three contributions are included [35]:

(∆C7)1 = iQu r
∑

F=u,c,t

[A+ 2m2
F (A

′ +B′)]
[

D†
LY

u(Y u)†Y dDR

]

23

(∆C7)2 = −iQd r
8

3
(g4Ds )2

∑

F=d,s,b

[I0 + A+B + 4m2
F (I

′
0 + A′ +B′)]

[

D†
LRLY

dRRDR

]

23

(∆C7)3 = iQd r
8

3
(g4Ds )2

∑

F=d,s,b

mF [I0 + A+B]
{[

D†
LRLRLY

dDR

]

23

+
mb

ms

[

D†
LY

dRRRRDR

]

23

}

(2.27)
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(∆C ′
7)1 = iQu r

∑

F=u,c,t

[A + 2m2
F (A

′ +B′)]
[

D†
R(Y

d)†Y u(Y u)†DL

]

23

(∆C ′
7)2 = −iQd r

8

3
(g4Ds )2

∑

F=d,s,b

[I0 + A+B + 4m2
F (I

′
0 + A′ +B′)]

[

D†
RRR(Y

d)†RLDL

]

23

(∆C ′
7)3 = iQd r

8

3
(g4Ds )2

∑

F=d,s,b

mF [I0 + A+B]
{[

D†
RRRRR(Y

d)†DL

]

23

+
mb

ms

[

D†
R(Y

d)†RLRLDL

]

23

}

(2.28)

(∆C8)1 = ir
∑

F=u,c,t

[A+ 2m2
F (A

′ +B′)]
[

D†
LY

u(Y u)†Y dDR

]

23

(∆C8)2 = −ir
9

8
(g4Ds )2

v2

mbms
T3

∑

F=d,s,b

[Ā + B̄ + 2m2
F (Ā

′ + B̄′)]

[

D†
LY

dRR(Y
d)†RLY

dDR

]

23

(∆C8)3 = −ir
9

4
(g4Ds )2T3

∑

F=d,s,b

[Ā+ B̄ + 2m2
F (Ā

′ + B̄′)]

[

D†
LRLY

dRRDR

]

23
(2.29)

(∆C ′
8)1 = ir

∑

F=u,c,t

[A + 2m2
F (A

′ +B′)]
[

D†
R(Y

d)†Y u(Y u)†DL

]

23

(∆C ′
8)2 = −ir

9

8
(g4Ds )2

v2

mbms

T3

∑

F=d,s,b

[Ā+ B̄ + 2m2
F (Ā

′ + B̄′)]

[

D†
R(Y

d)†RLY
dRR(Y

d)†DL

]

23

(∆C ′
8)3 = −ir

9

4
(g4Ds )2T3

∑

F=d,s,b

[Ā + B̄ + 2m2
F (Ā

′ + B̄′)]

[

D†
RRR(Y

d)†RLDL

]

23
(2.30)

where r = v
GF

4π2 VtbV
∗

ts
mb

and T3 = 1
L

∫ L

0
dy[g(y)]2. For the parameters inside the above equa-

tions and the related diagrams see [33–41]. The Qu and Qd are representing the electric

charges of the up and down type quarks, respectively. The functions I
(′)
0 , A(′) and B(′) are

8



given as

I0(t) =
i

(4π)2
1

M2
KK

(

− 1

t− 1
+

ln(t)

(t− 1)2

)

I ′0(t) =
i

(4π)2
1

M4
KK

(

1 + t

2t(t− 1)2
− ln(t)

(t− 1)3

)

A(t) = B(t) =
i

(4π)2
1

4M2
KK

(

t− 3

(t− 1)2
+

2ln(t)

(t− 1)3

)

A′(t) = 2B′(t) =
i

(4π)2
1

M4
KK

(

− t2 − 5t− 2

6t(t− 1)3
− ln(t)

(t− 1)4

)

Ā(t) = B̄(t) =
i

(4π)2
1

4M2
KK

(

− 3t− 1

(t− 1)2
+

2t2ln(t)

(t− 1)3

)

Ā′(t) = B̄′(t) =
i

(4π)2
1

4M4
KK

(

5t+ 1

(t− 1)3
− 2t(2 + t)ln(t)

(t− 1)4

)

, (2.31)

with t = m2
F/M

2
KK (for more information see [35]).

Fitting the parameters to the B → K∗µ+µ− channel, the modifications on Wilson

coefficients in RSc model are found as table 2 [35].

∆C7 ∆C ′
7 ∆C9 ∆C ′

9 ∆C10 ∆C ′
10

Values 0.046 0.05 0.0023 0.038 0.030 0.50

Table 2: The values of modifications in Wilson coefficients in RSc model used in the analysis

[35].

2.2 Transition amplitude and matrix elements

The amplitude of the transition under consideration is obtained by sandwiching the corre-

sponding effective Hamiltonian between the initial and final baryonic states, i.e.,

MΛb→Λℓ+ℓ− = 〈Λ(pΛ) | Heff | Λb(pΛb
)〉 , (2.32)

where pΛb
and pΛ are momenta of the initial and final baryons. To calculate the amplitude,

we need to know the following matrix elements which are parametrized in terms of twelve

9



form factors in full QCD:

〈Λ(pΛ) | s̄γµ(1− γ5)b | Λb(pΛb
)〉 = ūΛ(pΛ)

[

γµf1(q
2) + iσµνq

νf2(q
2) + qµf3(q

2)

− γµγ5g1(q
2)− iσµνγ5q

νg2(q
2)− qµγ5g3(q

2)

]

uΛb
(pΛb

) ,

(2.33)

〈Λ(pΛ) | s̄γµ(1 + γ5)b | Λb(pΛb
)〉 = ūΛ(pΛ)

[

γµf1(q
2) + iσµνq

νf2(q
2) + qµf3(q

2)

+ γµγ5g1(q
2) + iσµνγ5q

νg2(q
2) + qµγ5g3(q

2)

]

uΛb
(pΛb

) ,

(2.34)

〈Λ(pΛ) | s̄iσµνq
ν(1 + γ5)b | Λb(pΛb

)〉 = ūΛ(pΛ)

[

γµf
T
1 (q

2) + iσµνq
νfT

2 (q
2) + qµfT

3 (q
2)

+ γµγ5g
T
1 (q

2) + iσµνγ5q
νgT2 (q

2) + qµγ5g
T
3 (q

2)

]

uΛb
(pΛb

) ,

(2.35)

〈Λ(pΛ) | s̄iσµνq
ν(1− γ5)b | Λb(pΛb

)〉 = ūΛ(pΛ)

[

γµf
T
1 (q

2) + iσµνq
νfT

2 (q
2) + qµfT

3 (q
2)

− γµγ5g
T
1 (q

2)− iσµνγ5q
νgT2 (q

2)− qµγ5g
T
3 (q

2)

]

uΛb
(pΛb

) ,

(2.36)

〈Λ(pΛ) | s̄(1 + γ5)b | Λb(pΛb
)〉 = 1

mb
ūΛ(pΛ)

[

6qf1(q2) + iqµσµνq
νf2(q

2) + q2f3(q
2)

− 6qγ5g1(q2)− iqµσµνγ5q
νg2(q

2)− q2γ5g3(q
2)

]

uΛb
(pΛb

) ,

(2.37)

and

〈Λ(pΛ) | s̄(1− γ5)b | Λb(pΛb
)〉 = 1

mb
ūΛ(pΛ)

[

6qf1(q2) + iqµσµνq
νf2(q

2) + q2f3(q
2)

+ 6qγ5g1(q2) + iqµσµνγ5q
νg2(q

2) + q2γ5g3(q
2)

]

uΛb
(pΛb

) ,

(2.38)
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where the f
(T )
i and g

(T )
i (i running from 1 to 3) are transition form factors and uΛb

and uΛ

are spinors of the Λb and Λ baryons, respectively. We will use these form factors from [19]

that have been calculated using the light-cone QCD sum rules.

Using the above transition matrix elements in terms of form factors, we find the ampli-

tude of the transition under consideration at different scenarios. In the SM, we find

MΛb→Λℓ+ℓ−

SM =
GFαemVtbV

∗
ts

2
√
2π

{

[

ūΛ(pΛ)(γµ[ASM
1 R + BSM

1 L] + iσµνq
ν [ASM

2 R + BSM
2 L]

+ qµ[ASM
3 R + BSM

3 L])uΛb
(pΛb

)
]

(ℓ̄γµℓ)

+
[

ūΛ(pΛ)(γµ[DSM
1 R + ESM

1 L] + iσµνq
ν [DSM

2 R + ESM
2 L]

+ qµ[DSM
3 R + ESM

3 L])uΛb
(pΛb

)
]

(ℓ̄γµγ5ℓ)

}

.

(2.39)

In the case of SUSY we get

MΛb→Λℓ+ℓ−

SUSY =
GFαemVtbV

∗
ts

2
√
2π

{

[

ūΛ(pΛ)(γµ[ASUSY
1 R + BSUSY

1 L] + iσµνq
ν [ASUSY

2 R + BSUSY
2 L]

+ qµ[ASUSY
3 R + BSUSY

3 L])uΛb
(pΛb

)
]

(ℓ̄γµℓ)

+
[

ūΛ(pΛ)(γµ[DSUSY
1 R + ESUSY

1 L] + iσµνq
ν [DSUSY

2 R + ESUSY
2 L]

+ qµ[DSUSY
3 R + ESUSY

3 L])uΛb
(pΛb

)
]

(ℓ̄γµγ5ℓ)

+
[

ūΛ(pΛ)( 6q[GSUSY
1 R +HSUSY

1 L] + iqµσµνq
ν [GSUSY

2 R +HSUSY
2 L]

+ q2[GSUSY
3 R +HSUSY

3 L])uΛb
(pΛb

)
]

(ℓ̄ℓ)

+
[

ūΛ(pΛ)( 6q[KSUSY
1 R + SSUSY

1 L] + iqµσµνq
ν [KSUSY

2 R + SSUSY
2 L]

+ q2[KSUSY
3 R + SSUSY

3 L])uΛb
(pΛb

)
]

(ℓ̄γ5ℓ)

}

,

(2.40)
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and for RSc we obtain

MΛb→Λℓ+ℓ−

RSc
=

GFαemVtbV
∗
ts

2
√
2π

{

[

ūΛ(pΛ)(γµ[ARSc

1 R + BRSc

1 L] + iσµνq
ν [ARSc

2 R + BRSc

2 L]

+ qµ[ARSc

3 R + BRSc

3 L])uΛb
(pΛb

)
]

(ℓ̄γµℓ)

+
[

ūΛ(pΛ)(γµ[DRSc

1 R + ERSc

1 L] + iσµνq
ν [DRSc

2 R + ERSc

2 L]

+ qµ[DRSc

3 R + ERSc

3 L])uΛb
(pΛb

)
]

(ℓ̄γµγ5ℓ)

}

,

(2.41)

where R = (1+ γ5)/2 is the right-handed and L = (1− γ5)/2 is the left-handed projectors.

In the above equations, the calligraphic coefficients are defined at different models as

A1 = f1C
eff+
9 − g1C

eff−
9 − 2mb

1

q2

[

fT
1 C

eff+
7 + gT1 C

eff−
7

]

, A2 = A1(1 → 2), A3 = A1 (1 → 3) ,

B1 = f1C
eff+
9 + g1C

eff−
9 − 2mb

1

q2

[

fT
1 C

eff+
7 − gT1 C

eff−
7

]

, B2 = B1 (1 → 2) , B3 = B1 (1 → 3) ,

D1 = f1C
+
10 − g1C

−
10, D2 = D1 (1 → 2) , D3 = D1 (1 → 3) ,

E1 = f1C
+
10 + g1C

−
10, E2 = E1 (1 → 2) , E3 = E1 (1 → 3) ,

G1 =
1

mb

[

f1C
+
Q1

− g1C
−
Q1

]

, G2 = G1 (1 → 2) , G3 = G1 (1 → 3) ,

H1 =
1

mb

[

f1C
+
Q1

+ g1C
−
Q1

]

, H2 = H1 (1 → 2) , H3 = H1 (1 → 3) ,

K1 =
1

mb

[

f1C
+
Q2

− g1C
−
Q2

]

, K2 = K1 (1 → 2) , K3 = K1 (1 → 3) ,

S1 =
1

mb

[

f1C
+
Q2

+ g1C
−
Q2

]

, S2 = S1 (1 → 2) , S3 = S1 (1 → 3) ,

(2.42)

with

Ceff+
9 = Ceff

9 + C ′ eff
9 , Ceff−

9 = Ceff
9 − C ′ eff

9 ,
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Ceff+
7 = Ceff

7 + C ′ eff
7 , Ceff−

7 = Ceff
7 − C ′ eff

7 ,

C+
10 = C10 + C ′

10, C−
10 = C10 − C ′

10 ,

C+
Q1

= CQ1
+ C ′

Q1
, C−

Q1
= CQ1

− C ′
Q1

,

C+
Q2

= CQ2
+ C ′

Q2
, C−

Q2
= CQ2

− C ′
Q2

.

(2.43)

3 Physical Observables

3.1 The differential decay width

In the present subsection, we would like to calculate the differential decay width for the

decay channel under consideration. Using the decay amplitude and the transition matrix

elements in terms of form factors, the supersymmetric differential decay rate as the most

comprehensive differential decay rate among the models under consideration is obtained as

d2ΓSUSY

dŝdz
(z, ŝ) =

G2
Fα

2
emmΛb

16384π5
|VtbV

∗
ts|2v

√

λ(1, r, ŝ)

[

T SUSY
0 (ŝ) + T SUSY

1 (ŝ)z + T SUSY
2 (ŝ)z2

]

,

(3.44)

where z = cos θ with θ being the angle between the momenta of the lepton l+ and the

Λb in the center of mass of leptons, v =
√

1− 4m2
ℓ

q2
is the lepton velocity, λ = λ(1, r, ŝ) =

(1−r− ŝ)2−4rŝ is the usual triangle function, ŝ = q2/m2
Λb

and r = m2
Λ/m

2
Λb
. The functions

13



T SUSY
0 (ŝ), T SUSY

1 (ŝ) and T SUSY
2 (ŝ) are obtained as

T SUSY
0 (ŝ) = 32m2

ℓm
4
Λb
ŝ(1 + r − ŝ)

(

|D3|2 + |E3|2
)

+ 64m2
ℓm

3
Λb
(1− r − ŝ) Re

[

D∗
1E3 +D3E∗

1

]

+ 64m2
Λb

√
r(6m2

ℓ −m2
Λb
ŝ)Re

[

D∗
1E1
]

+ 64m2
ℓm

3
Λb

√
r

{

2mΛb
ŝRe

[

D∗
3E3
]

+ (1− r + ŝ)Re
[

D∗
1D3 + E∗

1E3
]

}

+ 32m2
Λb
(2m2

ℓ +m2
Λb
ŝ)

{

(1− r + ŝ)mΛb

√
rRe

[

A∗
1A2 + B∗

1B2

]

− mΛb
(1− r − ŝ) Re

[

A∗
1B2 +A∗

2B1

]

− 2
√
r
(

Re
[

A∗
1B1

]

+m2
Λb
ŝRe

[

A∗
2B2

])

}

+ 8m2
Λb

{

4m2
ℓ(1 + r − ŝ) +m2

Λb

[

(1− r)2 − ŝ2
]

}

(

|A1|2 + |B1|2
)

+ 8m4
Λb

{

4m2
ℓ

[

λ+ (1 + r − ŝ)ŝ
]

+m2
Λb
ŝ
[

(1− r)2 − ŝ2
]

}

(

|A2|2 + |B2|2
)

− 8m2
Λb

{

4m2
ℓ(1 + r − ŝ)−m2

Λb

[

(1− r)2 − ŝ2
]

}

(

|D1|2 + |E1|2
)

+ 8m5
Λb
ŝv2

{

− 8mΛb
ŝ
√
rRe

[

D∗
2E2
]

+ 4(1− r + ŝ)
√
rRe

[

D∗
1D2 + E∗

1E2
]

− 4(1− r − ŝ) Re
[

D∗
1E2 +D∗

2E1
]

+mΛb

[

(1− r)2 − ŝ2
](

|D2|2 + |E2|2
)

}

− 8m4
Λb

{

4mℓ

[

(1− r)2 − ŝ(1 + r)
]

Re
[

D∗
1K1 + E∗

1S1

]

+ (4m2
ℓ −m2

Λb
ŝ)
[

(1− r)2 − ŝ(1 + r)
] (

|G1|2 + |H1|2
)

+ 4m2
Λb

√
rŝ2(4m2

ℓ −m2
Λb
ŝ) Re

[

G∗
3H3

]

}

− 8m5
Λb
ŝ

{

2
√
r(4m2

ℓ −m2
Λb
ŝ) (1− r + ŝ) Re

[

G∗
1G3 +H∗

1H3

]

+ 4mℓ

√
r(1− r + ŝ)Re

[

D∗
1K3 + E∗

1S3 +D∗
3K1 + E∗

3S1

]
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+ 4mℓ(1− r − ŝ)Re
[

D∗
1S3 + E∗

1K3 +D∗
3S1 + E∗

3K1

]

+ 2(1− r − ŝ)(4m2
ℓ −m2

Λb
ŝ) Re

[

G∗
1H3 +H∗

1G3

]

− mΛb

[

(1− r)2 − ŝ(1 + r)
](

|K1|2 + |S1|2
)

}

− 32m4
Λb

√
rŝ

{

2mℓRe
[

D∗
1S1 + E∗

1K1

]

+ (4m2
ℓ −m2

Λb
ŝ) Re

[

G∗
1H1

]

}

+ 8m6
Λb
ŝ2

{

4
√
rRe

[

K∗
1S1

]

+ 2mΛb

√
r(1− r + ŝ)Re

[

K∗
1K3 + S∗

1S3

]

+ 2mΛb
(1− r − ŝ)Re

[

K∗
1S3 + S∗

1K3

]

− (4m2
ℓ −m2

Λb
ŝ)(1 + r − ŝ)

(

|G3|2 + |H3|2
)

− 4mℓ(1 + r − ŝ)Re
[

D∗
3K3 + E∗

3S3

]

− 8mℓ

√
rRe

[

D∗
3S3 + E∗

3K3

]

}

+ 8m8
Λb
ŝ3

{

(1 + r − ŝ)
(

|K3|2 + |S3|2
)

+ 4
√
rRe

[

K∗
3S3

]

}

,

(3.45)

T SUSY
1 (ŝ) = −32m4

Λb
mℓ

√
λv(1− r)Re

(

A∗
1G1 + B∗

1H1

)

− 16m4
Λb
ŝv
√
λ

{

2Re
(

A∗
1D1

)

− 2Re
(

B∗
1E1
)

+ 2mΛb
Re
(

B∗
1D2 − B∗

2D1 +A∗
2E1 −A∗

1E2
)

+ 2mΛb
mℓRe

(

A∗
1H3 + B∗

1G3 −A∗
2H1 − B∗

2G1

)

}

+ 32m5
Λb
ŝ v

√
λ

{

mΛb
(1− r)Re

(

A∗
2D2 − B∗

2E2
)

+
√
rRe

(

A∗
2D1 +A∗

1D2 − B∗
2E1 − B∗

1E2
)

−
√
rmℓRe

(

A∗
1G3 + B∗

1H3 +A∗
2G1 + B∗

2H1

)

}

+ 32m6
Λb
mℓ

√
λvŝ2Re

(

A∗
2G3 + B∗

2H3

)

,

(3.46)
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and

T SUSY
2 (ŝ) = −8m4

Λb
v2λ
(

|A1|2 + |B1|2 + |D1|2 + |E1|2
)

+ 8m6
Λb
ŝv2λ

(

|A2|2 + |B2|2 + |D2|2 + |E2|2
)

.

(3.47)

Integrating the Eq.(3.44) over z in the interval [−1, 1], we obtain the differential decay

width only in terms of ŝ as

dΓSUSY

dŝ
(ŝ) =

G2
Fα

2
emmΛb

8192π5
|VtbV

∗
ts|2v

√
λ

[

T SUSY
0 (ŝ) +

1

3
T SUSY
2 (ŝ)

]

. (3.48)

The differential decay rate of RSc is found from dΓSUSY

dŝ
(ŝ) by replacing CQ1

, C ′
Q1
, CQ2

and

C ′
Q2

with zero. In the case of SM, dΓSM

dŝ
(ŝ) is found from the supersymmetric differential

decay rate via setting C ′ eff
7 , C ′ eff

9 , C ′
10, CQ1

, C ′
Q1
, CQ2

and C ′
Q2

to zero.

3.2 The differential branching ratio

In this subsection, we numerically analyze the differential branching ratio that depends on

q2 for the Λb → Λℓ+ℓ− decay in SMLCSR, SUSY and RSc scenarios. In order to discuss

the variation of the differential branching ratio with respect to q2, we shall present some

values of input parameters in table 3 besides the form factors as the main inputs.

LHCb Collab.
SMLCSR

RSc

Lattice
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Figure 1: The dependence of the differential branching ratio on q2 for the Λb → Λµ+µ−

transition in the SMLCSR and RSc models. The lattice QCD [18] and recent experimental

data by LHCb [11] Collaboration are also included.

16



Some Input Parameters Values

mµ 0.10565 GeV

mτ 1.77682 GeV

mc 1.275± 0.025 GeV

mb 4.18± 0.03 GeV

mt 173.21± 0.51± 0.71 GeV

mW 80.385± 0.015 GeV

mΛb
5.6195± 0.0004 GeV

mΛ 1.11568 GeV

τΛb
(1.451± 0.013)× 10−12 s

~ 6.582× 10−25 GeV s

GF 1.166× 10−5 GeV−2

αem 1/137

|VtbV
∗
ts| 0.040

Table 3: The values of some input parameters used in our calculations, taken generally

from PDG [42].
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Figure 2: The dependence of the differential branching ratio on q2 for the Λb → Λτ+τ−

transition in the SMLCSR and RSc models.

By using all these input parameters and the form factors with their uncertainties, we

present the dependence of the differential branching ratio of the Λb → Λℓ+ℓ− on q2 in

SMLCSR, RSc and different SUSY models in figures 1-6. In these figures we also show the

experimental data provided by LHCb [11] as well as the existing lattice QCD predictions

[18]. We do not present the results for e in the presentations since the predictions at e
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Figure 3: The dependence of the differential branching ratio on q2 for the Λb → Λµ+µ−

transition in SMLCSR and SUSY I and II models. The lattice QCD [18] and recent exper-

imental data by LHCb [11] Collaboration are also included.
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Figure 4: The dependence of the differential branching ratio on q2 for the Λb → Λµ+µ−

transition in SMLCSR and SUSY III and SO(10) models. The lattice QCD [18] and recent

experimental data by LHCb [11] Collaboration are also included.
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Figure 5: The dependence of the differential branching ratio on q2 for the Λb → Λτ+τ−

transition in SMLCSR and SUSY I and II models.
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Figure 6: The dependence of the differential branching ratio on q2 for the Λb → Λτ+τ−

transition in SMLCSR and SUSY III and SO(10) models.

channel are very close to those of µ.

From figures 1-6 we see that

• for all lepton channels, the SMLCSR and RSc models have roughly the same pre-

dictions except for some values of q2 at which there are small differences between

predictions of the SMLCSR and RSc models on the differential branching ratio.

• The areas swept by the SMLCSR are wider compared to those of lattice QCD [18]

existing in the µ channel but they include those predictions.

• The experimental data in the intervals 4 GeV2/c4 ≤ q2 ≤ 6 GeV2/c4 and 18 GeV2/c4

≤ q2 ≤ 20 GeV2/c4 cannot be described by the SMLCSR, lattice QCD or RSc mod-

els. In the remaining intervals the SMLCSR, lattice and RSc models reproduce the

experimental data, except for 6 GeV2/c4 ≤ q2 ≤ 8 GeV2/c4, for which the datum

remains outside of the lattice predictions.

• In the τ channel, the bands of the SMLCSR and RSc scenarios intersect each other,

except for higher values of q2, for which the errors of the form factors do not kill the

differences between the two model predictions.

• At all lepton channels, the SUSY models show overall considerable deviations from the

SMLCSR, lattice QCD and experimental data although they include the predictions of

these models for some values of q2. The maximum deviations of the SUSY predictions

from the results of SMLCSR, lattice QCD and experiment belongs to the SUSY II

such that the SMLCSR, lattice QCD and experimental results remain out of the

regions swept by the SUSY II model at higher values of q2.
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• In the µ channel, the experimental data in the interval 18 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4

are reproduced by SUSY I, III and SO(10) but not by SUSY II. Note that in this

interval other models (SMLCSR, lattice QCD and RSc) also can not describe the

experimental data.

• Again in the µ channel, the experimental data in the interval 4 GeV2/c4 ≤ q2 ≤ 6

GeV2/c4 cannot be reproduced by any SUSY models like the SMLCSR, lattice QCD

and RSc scenarios.

• In the case of τ as the final lepton, there are considerable differences between different

SUSY models’ predictions and that of the SMLCSR and these cannot be completely

killed by the errors of form factors. The maximum deviations of the SUSY results

from the SMLCSR predictions belong to the SUSY II at higher q2 values.

3.3 The lepton forward-backward asymmetry

In this subsection, we would like to present the results of the lepton forward-backward

asymmetry obtained in different scenarios. The lepton AFB is defined as

AFB(ŝ) =

∫ 1

0

d2Γ

dŝdz
(z, ŝ) dz −

∫ 0

−1

d2Γ

dŝdz
(z, ŝ) dz

∫ 1

0

d2Γ

dŝdz
(z, ŝ) dz +

∫ 0

−1

d2Γ

dŝdz
(z, ŝ) dz

. (3.49)
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Figure 7: The dependence of the AFB on q2 for Λb → Λµ+µ− transition in SMLCSR, lattice

QCD [18] and RSc models together with recent experimental data by LHCb [11].
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Figure 8: The dependence of the AFB on q2 for Λb → Λτ+τ− transition in SMLCSR and

RSc models.
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Figure 9: The dependence of the AFB on q2 for Λb → Λµ+µ− transition in SMLCSR, lattice

QCD [18] and SUSY I and II together with recent experimental data by LHCb [11].
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Figure 10: The dependence of the AFB on q2 for Λb → Λµ+µ− transition in SMLCSR,

lattice QCD [18] and SUSY III and SO(10) together with recent experimental data by

LHCb [11].
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Figure 11: The dependence of the AFB on q2 for Λb → Λτ+τ− transition in SMLCSR and

SUSY I and II scenarios.
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Figure 12: The dependence of the AFB on q2 for Λb → Λτ+τ− transition in SMLCSR and

SUSY III and SO(10) scenarios.

Considering the form factors with their uncertainties from [19], we plot the dependence

of the lepton forward-backward asymmetry on q2 for the decay under consideration in both

lepton channels in the SMLCSR, RSc and different SUSY models in figures 7-12. From

these figures, we obtain that

• in the µ channel, the SMLCSR, lattice QCD and RSc models predictions on AFB

coincide with each other. Except for the lattice QCD, they can only describe the

experimental data existing in the 0 GeV2/c4 ≤ q2 ≤ 2 GeV2/c4 and 18 GeV2/c4

≤ q2 ≤ 20 GeV2/c4 regions. The remaining data lie out of the swept regions by all

these models.

• As far as the SUSY models are considered, in the µ channel, the SUSY models have

predictions that deviate from the SMLCSR and lattice QCD predictions, considerably.

All SUSY models reproduce the experimental data in the regions 0 GeV2/c4 ≤ q2 ≤ 2

GeV2/c4 and 18 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4. The other data also remain out of the
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regions swept by different SUSY models except for the SUSY II, which reproduces

the experimental data also in the interval 15 GeV2/c4 ≤ q2 ≤ 18 GeV2/c4.

• In the case of the τ lepton, the SMLCSR and RSc have roughly the same predictions

on AFB.

• In the τ lepton channel, the SMLCSR and SUSY I have roughly the same predictions

forAFB; however, the remaining SUSY models’ predictions deviate from the SMLCSR

predictions considerably, although they intersect each other at some points.

4 Conclusion

In the present work, we have analyzed the semileptonic Λb → Λℓ+ℓ− decay mode in

SMLCSR, different SUSY models and the RSc scenario. Using the form factors calculated

in light cone QCD sum rules in the full theory [19], we evaluated the differential branching

ratio and lepton forward-backward asymmetry for different leptons in those scenarios. We

also compared the results obtained via SMLCSR, RSc and different SUSY scenarios with

the recent experimental data provided by LHCb [11] as well as the existing lattice QCD

predictions [18] on the considered quantities. We observed that the regions swept by the

SMLCSR model include the RSc predictions although they are somewhat wider compared

to those of RSc models for the considered physical quantities. The SMLCSR predictions on

the considered quantities in the present work are overall consistent with the lattice QCD

predictions provided by Ref. [18].

The predictions of different SUSY models on the differential branching ratio deviate

considerably from the SMLCSR and lattice predictions. The maximum deviations belong

to the SUSY II model. In the case of AFB and the µ channel, the predictions of different

SUSY models have considerable deviations from the SMLCSR and lattice QCD predictions.

For AFB and the τ channel, the SUSY I and SMLCSR have roughly the same predictions

but the other SUSY models have predictions different from that of the SMLCSR.

The experimental data on the differential branching ratio in the µ channel can be re-

produced by SMLCSR, lattice QCD and RSc models except for the intervals 4 GeV2/c4

≤ q2 ≤ 6 GeV2/c4 and 18 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4, which cannot be described by

SMLCSR, lattice QCD or RSc models. As far as the SUSY models are considered, differ-

ent SUSY models also cannot reproduce the experimental data in the interval 4 GeV2/c4

≤ q2 ≤ 6 GeV2/c4. However, except for SUSY II, the remaining SUSY scenarios can explain

the experimental data in the region 18 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4.
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In the case of AFB and the µ channel, the SMLCSR, RSc and different SUSY models

can only describe the experimental data existing in the 0 GeV2/c4 ≤ q2 ≤ 2 GeV2/c4 and

18 GeV2/c4 ≤ q2 ≤ 20 GeV2/c4 regions. The other existing data remain out of the swept

areas by these models, except for SUSY II, which can also reproduce the experimental data

in 15 GeV2/c4 ≤ q2 ≤ 18 GeV2/c4.

More experimental data in the µ channel related to different physical quantities asso-

ciated with the Λb → Λµ+µ− mode, the future experimental data in the τ channel and

comparison of the results with our predictions on the quantities considered in the present

work may help us in the course of searching for new physics effects.
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