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A combinatorial discussion on finite dimensional
Leavitt path algebras

A. Koç∗ , S. Esin† , İ. Güloğlu‡ and M. Kanuni§

Abstract

Any finite dimensional semisimple algebra A over a field K is isomorphic
to a direct sum of finite dimensional full matrix rings over suitable
division rings. We shall consider the direct sum of finite dimensional
full matrix rings over a field K. All such finite dimensional semisimple
algebras arise as finite dimensional Leavitt path algebras. For this
specific finite dimensional semisimple algebra A over a fieldK, we define
a uniquely determined specific graph - called a truncated tree associated
with A - whose Leavitt path algebra is isomorphic to A. We define an
algebraic invariant κ(A) for A and count the number of isomorphism
classes of Leavitt path algebras with the same fixed value of κ(A).
Moreover, we find the maximum and the minimumK-dimensions of the
Leavitt path algebras of possible trees with a given number of vertices
and we also determine the number of distinct Leavitt path algebras of
line graphs with a given number of vertices.
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1. Introduction
By the well-known Wedderburn-Artin Theorem [4], any finite dimensional semisimple

algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix
rings over suitable division rings. We shall consider the direct sum of finite dimensional
full matrix rings over a field K. All such finite dimensional semisimple algebras arise as
finite dimensional Leavitt path algebras as studied in [2]. The Leavitt path algebras are
introduced independently by Abrams-Aranda Pino in [1] and by Ara-Moreno-Pardo in
[3] via different approaches.

In general, the Leavitt path algebra LK(E1) can be isomorphic to the Leavitt path
algebra LK(E2) for non-isomorphic graphs E1 and E2. In this paper, we introduce a
class of specific graphs which we call the class of truncated trees, denoted by T, and
prove that for any finite acyclic graph E there exists a unique element F in T such that
LK(E) is isomorphic to LK(F ). Furthermore, for any two acyclic graphs E1 and E2 and
their corresponding truncated trees F1 and F2 we have

LK(E1) ∼= LK(E2) if and only if F1
∼= F2.

For a given finite dimensional Leavitt path algebra A =
s⊕

i=1

Mni(K) with 2 ≤ n1 ≤

n2 ≤ . . . ≤ ns = N, the number s is the number of minimal ideals of A and N2 is the
maximum of the dimensions of the minimal ideals. Therefore, the integer s + N − 1 is
an algebraic invariant of A which we denote by κ(A).

Then, we prove that the number of isomorphism classes of finite dimensional Leavitt
path algebras A, with the invariant κ(A) > 1, having no ideals isomorphic to K is equal
to the number of distinct truncated trees with κ(A) vertices. The number of distinct
truncated trees with m vertices is computed in Proposition 3.4.

We also compute the best upper and lower bounds of the K-dimension of possible
trees on m vertices, as a function of m and the number of sinks.

In the last section, we calculated the number of isomorphism classes of Leavitt path
algebras of line graphs with m vertices as a function of m.

2. Preliminaries
We start by recalling the definitions of a path algebra and a Leavitt path algebra. For

a more detailed discussion see [1]. A directed graph E = (E0, E1, r, s) consists of two
countable sets E0, E1 and functions r, s : E1 → E0. The elements E0 and E1 are called
vertices and edges, respectively. For each e ∈ E0, s(e) is the source of e and r(e) is the
range of e. If s(e) = v and r(e) = w, then v is said to emit e and w is said to receive e.
A vertex which does not receive any edges is called a source, and a vertex which emits
no edges is called a sink. An isolated vertex is both a sink and a source. A graph is
row-finite if s−1(v) is a finite set for each vertex v. A row-finite graph is finite if E0 is a
finite set.

A path in a graph E is a sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1)
for i = 1, . . . , n− 1. The source of µ and the range of µ are defined as s(µ) = s(e1) and
r(µ) = r(en) respectively. The number of edges in a path µ is called the length of µ,
denoted by l(µ). If s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle.
A graph E is called acyclic if E does not have any cycles.

The total-degree of the vertex v is the number of edges that either have v as its source
or as its range, that is, totdeg(v) =

∣∣s−1(v) ∪ r−1(v)
∣∣ . A finite graph E is a line graph if

it is connected, acyclic and totdeg(v) ≤ 2 for every v ∈ E0. A line graph E is called an
m-line graph if E has m vertices.



For n ≥ 2, define En to be the set of paths of length n, and E∗ =
⋃

n≥0

En the set of

all paths. Given a vertex v in a graph, the number of all paths ending at v is denoted by
n(v).

The path K-algebra over E, KE, is defined as the free K-algebra K[E0 ∪ E1] with
the relations:

(1) vivj = δijvi for every vi, vj ∈ E0,
(2) ei = eir(ei) = s(ei)ei for every ei ∈ E1.

Given a graph E, define the extended graph of E as the new graph Ê = (E0, E1 ∪
(E1)∗, r′, s′) where (E1)∗ = {e∗i | ei ∈ E1} is a set with the same cardinality as E and
disjoint from E so that the map assigning e* to e is a one-to-one correspondence; and
the functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

The Leavitt path algebra of E, LK(E), with coefficients in K is defined as the path
algebra over the extended graph Ê, which satisfies the additional relations:
(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗,
(CK2) vi =

∑
{ej∈E1 | s(ej)=vi}

eje
∗
j for every vi ∈ E0 which is not a sink, and emits only

finitely many edges.
The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations. Note that

the condition of row-finiteness is needed in order to define the equation (CK2).
Finite dimensional Leavitt path algebras are studied in [2] by Abrams, Aranda Pino

and Siles Molina. The authors characterize the structure theorems for finite dimensional
Leavitt path algebras. Their results are summarized in the following proposition:

2.1. Proposition. (1) The Leavitt path algebra LK(E) is a finite-dimensional K-
algebra if and only if E is a finite and acyclic graph.

(2) If A =
s⊕

i=1

Mni(K) , then A ∼= LK(E) for a graph E having s connected compo-

nents each of which is an oriented line graph with ni vertices,
i = 1, 2, · · · , s.

(3) A finite dimensional K-algebra A arises as a LK(E) for a graph E if and only

if A =
s⊕

i=1

Mni(K).

(4) If A =
s⊕

i=1

Mni(K) and A ∼= LK(E) for a finite, acyclic graph E, then the number

of sinks of E is equal to s, and each sink vi (i = 1, 2, · · · , s) has n(vi) = ni with
a suitable indexing of the sinks.

3. Truncated Trees
For a finite dimensional Leavitt path algebra LK(E) of a graph E, we construct a

distinguished graph F having the Leavitt path algebra isomorphic to LK(E) as follows:

3.1. Theorem. Let E be a finite, acyclic graph with no isolated vertices. Let
s = |S(E)| where S(E) is the set of sinks of E and N = max{n(v) | v ∈ S(E)}. Then
there exists a unique (up to isomorphism) tree F with exactly one source and s+N − 1
vertices such that LK(E) ∼= LK(F ).

Proof. Let the sinks v1, v2, . . . , vs of E be indexed such that

2 ≤ n(v1) ≤ n(v2) ≤ . . . ≤ n(vs) = N.



Define a graph F = (F 0, F 1, r, s) as follows:

F 0 = {u1, u2, . . . , uN , w1, w2, . . . ws−1}
F 1 = {e1, e2, . . . , eN−1, f1, f2, . . . , fs−1}

s(ei) = ui and r(ei) = ui+1 i = 1, . . . , N − 1

s(fi) = un(vi)−1 and r(fi) = wi i = 1, . . . , s− 1.

u1 u2 un(v1)−1 un(v1) un(vs−1)−1 un(vs−1) uN−1 uN

w1 ws−1

f1 fs−1

e1 en(v1)−1 en(vs−1)−1 eN−1· · · · · · · · ·

Clearly, F is a directed tree with unique source u1 and s+N − 1 vertices. The graph
F has exactly s sinks, namely uN , w1, w2, . . . ws−1 with n(uN ) = N , n(wi) = n(vi),
i = 1, . . . , s− 1. Therefore, LK(E) ∼= LK(F ) by Proposition 2.1.

For the uniqueness part, take a tree T with exactly one source and
s+N−1 vertices such that LK(E) ∼= LK(T ). Now N = max{n(v) | v ∈ S(E)} is equal to
the square root of the maximum of the K-dimensions of the minimal ideals of LK(E) and
also of LK(T ). So there exists a sink v in T with |{µi ∈ T ∗ | r(µi) = v}| = N. Since, any
vertex in T is connected to the unique source by a uniquely determined path, the unique
path joining v to the source must contain exactly N vertices, say a1, ..., aN−1, v where a1
is the unique source and the length of the path joining ak to a1 being equal to k−1 for any

k = 1, 2, ..., N − 1. As LK(E) =
s⊕

i=1

Mni(K) with s summands, all the remaining s − 1

vertices, say b1, ..., bs−1, must be sinks by Proposition 2.1(4). For any vertex a different
from the unique source, clearly n(a) > 1. Also, there exists an edge gi with r(gi) = bi for
each i = 1, . . . , s − 1. Since s(gi) is not a sink, it follows that s(gi) ∈ {a1, a2, ..., aN−1},
more precisely s(gi) = an(bi)−1 for i = 1, 2, ..., s− 1. Thus T is isomorphic to F . �

We name the graph F constructed in Theorem 3.1 as the truncated tree associated
with E.

3.2. Proposition. With the above definition of F , there is no tree T with
|T 0| < |F 0| such that LK(T ) ∼= LK(F ).

Proof. Notice that since T is a tree, any vertex contributing to a sink represents a unique
path ending at that sink.

Assume on the contrary there exists a tree T with n vertices and LK(T ) ∼= A =
s⊕

i=1

Mni(K) such that n < s+N − 1. Since N is the maximum of ni’s there exists a sink

v with n(v) = N . But in T the number n− s of vertices which are not sinks is less than
N − 1. Hence the maximum contribution to any sink can be at most n− s+ 1 which is
strictly less than N . This is the desired contradiction. �

Remark that the above proposition does not state that it is impossible to find a graph
G with smaller number of vertices having LK(G) isomorphic to LK(E). The next example
illustrates this point.

3.3. Example. Consider the graphs G and F .

Both LK(G) ∼=M3(K) ∼= LK(F ) and |G0| = 2 where as |F 0| = 3.



G F

Given any graphs G1 and G2, LK(G1) ∼= LK(G2) does not necessarily imply G1
∼= G2.

However, for truncated trees F1, F2 we have F1
∼= F2 if and only if LK(F1) ∼= LK(F2). So

there is a one-to-one correspondence between the Leavitt path algebras and the truncated
trees.

Consider a finite dimensional Leavitt path algebra A =
s⊕

i=1

Mni(K) with 2 ≤ n1 ≤

n2 ≤ . . . ≤ ns = N . Here, the number s is the number of minimal ideals of A and N2 is
the maximum of the dimensions of the minimal ideals. Therefore, the integer s+N − 1
is an algebraic invariant of A which is denoted by κ(A). Notice that the number of
isomorphism classes of finite dimensional Leavitt path algebras A, with the invariant
κ(A) > 1, having no ideals isomorphic to K is equal to the number of distinct truncated
trees with κ(A) vertices by the previous paragraph. The next proposition computes this
number.

3.4. Proposition. The number of distinct truncated trees with m vertices is 2m−2.

Proof. In a truncated tree, n(v1) 6= n(v2) for any two distinct non-sinks v1 and v2. For
every sink v, there is a unique non-sink w so that there exists an edge e with s(e) = w
and r(e) = v. Namely the non-sink w is with n(w) = n(v)−1. This w is denoted by b(v).

Now, define d(u) = |{v : n(v) ≤ n(u)}| for any u ∈ E0. Clearly, d(u) is equal to the
sum of n(u) and the number of sinks v with n(b(v)) < n(u) for any u ∈ E0. Assign
an m-tuple α(E) = (α1, α2, ..., αm) ∈ {0, 1}m to a truncated tree E with m vertices by
letting αj = 1 if and only if j = d(v) for some vertex v which is not a sink. Clearly, there
is just one vertex v with n(v) = 1, namely the unique source of E and that vertex is not
a sink, so α1 = 1. Since there cannot be any non-sink v with d(v) = m, it follows that
αm = 0.

Conversely, for β = (β1, β2, ..., βm) ∈ {0, 1}m with β1 = 1 and βm = 0 there exists
a unique truncated tree E with m vertices such that α(E) = β : If βi = 1, then
assign a non-sink v to E with n(v) = |{k : 1 ≤ k < i and βk = 1}|. If βi = 0 and j =
|{k : 1 ≤ k < i and βk = 1}| then construct a sink which is joined to the non-sink v with
n(v) = j. Clearly, the graph E is a truncated tree with m vertices and α(E) = β.

Hence the number of distinct truncated trees with m vertices is equal to 2m−2 which is
the number of all elements of {0, 1}m with the first component 1 and the last component
0. �

Hence, we have the following corollary.

3.5. Corollary. Given n ≥ 2, the number of isomorphism classes of finite dimensional
Leavitt path algebras A with κ(A) = n and which do not have any ideals isomorphic to
K is 2n−2.



4. Bounds on the K-Dimension of finite dimensional Leavitt Path
Algebras
For a tree F withm vertices, theK-dimension of LK(F ) is not uniquely determined by

the number of vertices only. However, we can compute the maximum and the minimum
K-dimensions of LK(F ) where F ranges over all possible trees with m vertices.

4.1. Lemma. The maximum K-dimension of LK(E) where E ranges over all possible
trees with m vertices and s sinks is attained at a tree in which n(v) = m− s+1 for each
sink v. In this case, the value of the dimension is s(m− s+ 1)2.

Proof. Assume E is a tree with m vertices. Then LK(E) ∼=
s⊕

i=1

Mni(K), by Proposition

2.1 (3) where s is the number of sinks in E and ni ≤ m− s+ 1 for all i = 1, . . . s. Hence

dimLK(E) =
s∑

i=1

n2
i ≤ s(m− s+ 1)2.

Notice that there exists a tree E as sketched below

•

•

• // • // • • // •

AA

GG

��

...

•

with m vertices and s sinks such that dimLK(E) = s(m− s+ 1)2. �

4.2. Theorem. The maximum K-dimension of LK(E) where E ranges over all possible
trees with m vertices is given by f(m) where

f(m) =



m(2m+ 3)2

27
if m ≡ 0(mod 3)

1

27
(m+ 2) (2m+ 1)2 if m ≡ 1(mod 3)

4

27
(m+ 1)3 if m ≡ 2(mod 3)

Proof. Assume E is a tree with m vertices. Then LK(E) ∼=
s⊕

i=1

Mni where s is the

number of sinks in E. Now, to find the maximum dimension of LK(E), determine the
maximum value of the function f(s) = s(m− s+ 1)2 for s = 1, 2, . . . ,m− 1. Extending
the domain of f(s) to real numbers 1 ≤ s ≤ m − 1 f becomes a continuous function,
hence its maximum value can be computed.

f(s) = s(m− s+ 1)2 ⇒ d

ds

(
s(m− s+ 1)2

)
= (m− 3s+ 1) (m− s+ 1)



Then s =
m+ 1

3
is the only critical point in the interval [1,m− 1] and since

d2f

ds2
(
m+ 1

3
) <

0, it is a local maximum. In particular f is increasing on the interval
[
1,
m+ 1

3

]
and

decreasing on
[
m+ 1

3
,m− 1

]
. There are three cases:

Case 1: m ≡ 2 (mod 3). In this case s =
m+ 1

3
is an integer and maximum

K-dimension of LK(E) is f
(
m+ 1

3

)
=

4

27
(m+ 1)3 and ni =

2(m+ 1)

3
, for each i =

1, 2, . . . , s.

Case 2: m ≡ 0 (mod 3). Then:
m

3
= t < t+

1

3
= s < t+ 1 and

f
(m
3

)
=

(2m+ 3)2m

27
= α1 and f

(m
3

+ 1
)
=

4m2(m+ 3)

27
= α2.

Note that, α1 > α2. So α1 is maximum K -dimension of LK(E) and ni =
2

3
m + 1, for

each i = 1, 2, . . . , s.

Case 3: m ≡ 1 (mod 3). Then
m− 1

3
= t < t+

2

3
= s < t+ 1 and

f

(
m− 1

3

)
=

4

27
(m+ 2)2 (m− 1) = β1

and

f

(
m+ 2

3

)
=

1

27
(2m+ 1)2 (m+ 2) = β2.

In this case β2 > β1 and so β2 gives the maximum K-dimension of LK(E) and ni =
2m+ 1

3
, for each i = 1, 2, . . . , s. �

4.3. Theorem. The minimum K-dimension of LK(E) where E ranges over all possible
trees with m vertices and s sinks is equal to r(q + 2)2 + (s − r)(q + 1)2, where m − 1 =
qs+ r, 0 ≤ r < s.

Proof. We call a graph a bunch tree if it is obtained by identifying the unique sources of
the finitely many disjoint oriented finite line graphs as seen in the figure.

· · ·

Let E(m, s) be the set of all bunch trees with m vertices and s sinks. Every element
of E(m, s) can be uniquely represented by an s -tuple (t1, t2, ..., ts) where each ti is the



number of vertices different from the source contributing to the ith sink,
with 1 ≤ t1 ≤ t2 ≤ ... ≤ ts and t1 + t2 + ...+ ts = m− 1.

Let E ∈ E(m, s) with ts − t1 ≤ 1. This E is represented by the s-tuple
(q, . . . , q, q + 1, . . . , q + 1) where m− 1 = sq + r, 0 ≤ r < s.

Now, claim that the dimension of E is the minimum of the set

{dimLK(F ) : F tree with s sinks and m vertices} .

If we represent U ∈ E(m, s) by the s-tuple (u1, u2, ..., us) then E 6= U implies that
us − u1 ≥ 2.

Consider the s-tuple (t1, t2, ..., ts) where (t1, t2, ..., ts) is obtained from
(u1 + 1, u2, ..., us−1, us − 1) by reordering the components in increasing order.

In this case, the dimension dU of U is

dU = (u1 + 1)2 + . . .+ (us + 1)2.

Similarly, the dimension dT of the bunch graph T represented by the s-tuple (t1, t2, ..., ts),
is

dT = (t1 + 1)2 + . . .+ (ts + 1)2 = (u1 + 2)2 + . . .+ (us−1 + 1)2 + u2
s.

Hence

dU − dT = 2(us − u1)− 2 > 0.

Repeating this process sufficiently many times, the process has to end at the exceptional
bunch tree E showing that its dimension is the smallest among the dimensions of all
elements of E(m, s).

Now let F be an arbitrary tree with m vertices and s sinks. As above assign to F the
s-tuple (n1, n2, ..., ns) with ni = n(vi)− 1 where the sinks vi, i = 1, 2, . . . , s are indexed
in such a way that ni ≤ ni+1, i = 1, . . . , s− 1. Observe that n1 + n2 + · · ·+ ns ≥ m− 1.
Let β =

∑s
i=1 ni − (m − 1). Since s ≤ m − 1, β ≤

∑s
i=1(ni − 1). Either n1 − 1 ≥ β or

there exists a unique k ∈ {2, . . . , s} such that
∑k−1

i=1 (ni − 1) < β ≤
∑k

i=1(ni − 1). If
n1 − 1 ≥ β, then let

mi =

{
n1 − β , i = 1
ni , i > 1

.

Otherwise, let

mi =


1 , i ≤ k − 1

nk −
(
β −

∑k−1
i=1 (ni − 1)

)
, i = k

ni , i ≥ k + 1

.

In both cases, the s-tuple (m1,m2, . . . ,ms) that satisfies 1 ≤ mi ≤ ni,
m1 ≤ m2 ≤ · · · ≤ ms and m1 + m2 + · · · + ms = m − 1 is obtained. So, there ex-
ists a bunch tree M namely the one corresponding uniquely to (m1,m2, . . . ,ms) which
has dimension dM ≤ dF . This implies that dF ≥ dE .

Hence the result follows. �

4.4. Lemma. The minimum K-dimension of LK(E) where E ranges over all possible
trees with m vertices occurs when the number of sinks is m− 1 and is equal to 4(m− 1).

Proof. By the previous theorem observe that

dimLK(E) ≥ r(q + 2)2 + (s− r)(q + 1)2

where m− 1 = qs+ r, 0 ≤ r < s. Then

r(q + 2)2 + (s− r)(q + 1)2 = (m− 1)(q + 2) + qr + r + s.



Thus

(m−1)(q+2)+qr+r+s−4(m−1) = (m−1)(q−2)+qr+r+s ≥ 0 if q ≥ 2.

If q = 1, then −(m− 1)+ 2r+ s = −(m− 1)+ r+(m− 1) = r ≥ 0. Hence dimLK(E) ≥
4(m− 1).

Notice that there exists a truncated tree E with m vertices and
dimLK(E) = 4(m− 1) as sketched below :

•v2 •v3 · · · •vm−1 •vm

•v1

55hh aa ;;

�

5. Line Graphs
In [2], the Proposition 5.7 shows that a semisimple finite dimensional algebra A =

s⊕
i=1

Mni(K) over the field K can be described as a Leavitt path algebra LK(E) defined

by a line graph E, if and only if A has no ideals of K-dimension 1 and the number of
minimal ideals of A of K-dimension 22 is at most 2. On the other hand, if A ∼= LK(E)
for some m-line graph E then m− 1 =

∑s
i=1(ni− 1), that is, m is an algebraic invariant

of A.
Therefore the following proposition answers a reasonable question.

5.1. Proposition. The number Am of isomorphism classes of Leavitt path algebras de-
fined by line graphs having exactly m vertices is

Am = P (m− 1)− P (m− 4)

where P (t) is the number of partitions of the natural number t.

Proof. Any m-line graph has m − 1 edges. In a line graph, for any edge e there exists
a unique sink v so that there exists a path from s(e) to v. In this case we say that
e is directed towards v. The number of edges directed towards v is clearly equal to
n(v) − 1. Let E and F be two m -line graphs. Then LK(E) ∼= LK(F ) if and only if
there exists a bijection φ : S(E) → S(F ) such that for each v in S(E), n(v) = n(φ(v)).
Therefore the number of isomorphism classes of Leavitt path algebras determined by
m-line graphs is the number of partitions of m − 1 edges in which the number of parts
having exactly one edge is at most two. Since the number of partitions of k objects
having at least three parts each of which containing exactly one element is P (k− 3), the
result Am = P (m− 1)− P (m− 4) follows. �
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