Hacettepe Journal of Mathematics and Statistics
(7 Volume 43 (6) (2014), 943-951

A combinatorial discussion on finite dimensional Leavitt path algebras

A. Koç $^{*}, \mathrm{~S} . \mathrm{Esin}^{\dagger}$, İ. Güloğlu ${ }^{\ddagger}$ and M. Kanuni ${ }^{\S}$

Abstract

Any finite dimensional semisimple algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix rings over suitable division rings. We shall consider the direct sum of finite dimensional full matrix rings over a field K. All such finite dimensional semisimple algebras arise as finite dimensional Leavitt path algebras. For this specific finite dimensional semisimple algebra A over a field K, we define a uniquely determined specific graph - called a truncated tree associated with A - whose Leavitt path algebra is isomorphic to A. We define an algebraic invariant $\kappa(A)$ for A and count the number of isomorphism classes of Leavitt path algebras with the same fixed value of $\kappa(A)$. Moreover, we find the maximum and the minimum K-dimensions of the Leavitt path algebras of possible trees with a given number of vertices and we also determine the number of distinct Leavitt path algebras of line graphs with a given number of vertices.

2000 AMS Classification: 16S99, 05C05.

Keywords: Finite dimensional semisimple algebra, Leavitt path algebra, Truncated trees, Line graphs.

Received 22:02:2012 : Accepted 05: 11:2013 Doi : 10.15672/HJMS. 2014437524

[^0]
1. Introduction

By the well-known Wedderburn-Artin Theorem [4], any finite dimensional semisimple algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix rings over suitable division rings. We shall consider the direct sum of finite dimensional full matrix rings over a field K. All such finite dimensional semisimple algebras arise as finite dimensional Leavitt path algebras as studied in [2]. The Leavitt path algebras are introduced independently by Abrams-Aranda Pino in [1] and by Ara-Moreno-Pardo in [3] via different approaches.

In general, the Leavitt path algebra $L_{K}\left(E_{1}\right)$ can be isomorphic to the Leavitt path algebra $L_{K}\left(E_{2}\right)$ for non-isomorphic graphs E_{1} and E_{2}. In this paper, we introduce a class of specific graphs which we call the class of truncated trees, denoted by \mathcal{T}, and prove that for any finite acyclic graph E there exists a unique element F in \mathcal{T} such that $L_{K}(E)$ is isomorphic to $L_{K}(F)$. Furthermore, for any two acyclic graphs E_{1} and E_{2} and their corresponding truncated trees F_{1} and F_{2} we have

$$
L_{K}\left(E_{1}\right) \cong L_{K}\left(E_{2}\right) \text { if and only if } F_{1} \cong F_{2}
$$

For a given finite dimensional Leavitt path algebra $A=\underset{i=1}{s} M_{n_{i}}(K)$ with $2 \leq n_{1} \leq$ $n_{2} \leq \ldots \leq n_{s}=N$, the number s is the number of minimal ideals of A and N^{2} is the maximum of the dimensions of the minimal ideals. Therefore, the integer $s+N-1$ is an algebraic invariant of A which we denote by $\kappa(A)$.

Then, we prove that the number of isomorphism classes of finite dimensional Leavitt path algebras A, with the invariant $\kappa(A)>1$, having no ideals isomorphic to K is equal to the number of distinct truncated trees with $\kappa(A)$ vertices. The number of distinct truncated trees with m vertices is computed in Proposition 3.4.

We also compute the best upper and lower bounds of the K-dimension of possible trees on m vertices, as a function of m and the number of sinks.

In the last section, we calculated the number of isomorphism classes of Leavitt path algebras of line graphs with m vertices as a function of m.

2. Preliminaries

We start by recalling the definitions of a path algebra and a Leavitt path algebra. For a more detailed discussion see [1]. A directed graph $E=\left(E^{0}, E^{1}, r, s\right)$ consists of two countable sets E^{0}, E^{1} and functions $r, s: E^{1} \rightarrow E^{0}$. The elements E^{0} and E^{1} are called vertices and edges, respectively. For each $e \in E^{0}, s(e)$ is the source of e and $r(e)$ is the range of e. If $s(e)=v$ and $r(e)=w$, then v is said to emit e and w is said to receive e. A vertex which does not receive any edges is called a source, and a vertex which emits no edges is called a sink. An isolated vertex is both a sink and a source. A graph is row-finite if $s^{-1}(v)$ is a finite set for each vertex v. A row-finite graph is finite if E^{0} is a finite set.

A path in a graph E is a sequence of edges $\mu=e_{1} \ldots e_{n}$ such that $r\left(e_{i}\right)=s\left(e_{i+1}\right)$ for $i=1, \ldots, n-1$. The source of μ and the range of μ are defined as $s(\mu)=s\left(e_{1}\right)$ and $r(\mu)=r\left(e_{n}\right)$ respectively. The number of edges in a path μ is called the length of μ, denoted by $l(\mu)$. If $s(\mu)=r(\mu)$ and $s\left(e_{i}\right) \neq s\left(e_{j}\right)$ for every $i \neq j$, then μ is called a cycle. A graph E is called acyclic if E does not have any cycles.

The total-degree of the vertex v is the number of edges that either have v as its source or as its range, that is, $\operatorname{totdeg}(v)=\left|s^{-1}(v) \cup r^{-1}(v)\right|$. A finite graph E is a line graph if it is connected, acyclic and $\operatorname{totdeg}(v) \leq 2$ for every $v \in E^{0}$. A line graph E is called an m-line graph if E has m vertices.

For $n \geq 2$, define E^{n} to be the set of paths of length n, and $E^{*}=\bigcup_{n \geq 0} E^{n}$ the set of all paths. Given a vertex v in a graph, the number of all paths ending at v is denoted by $n(v)$.

The path K-algebra over $E, K E$, is defined as the free K-algebra $K\left[E^{0} \cup E^{1}\right]$ with the relations:
(1) $v_{i} v_{j}=\delta_{i j} v_{i}$ for every $v_{i}, v_{j} \in E^{0}$,
(2) $e_{i}=e_{i} r\left(e_{i}\right)=s\left(e_{i}\right) e_{i}$ for every $e_{i} \in E^{1}$.

Given a graph E, define the extended graph of E as the new graph $\widehat{E}=\left(E^{0}, E^{1} \cup\right.$ $\left.\left(E^{1}\right)^{*}, r^{\prime}, s^{\prime}\right)$ where $\left(E^{1}\right)^{*}=\left\{e_{i}^{*} \mid e_{i} \in E^{1}\right\}$ is a set with the same cardinality as E and disjoint from E so that the map assigning e^{*} to e is a one-to-one correspondence; and the functions r^{\prime} and s^{\prime} are defined as

$$
\left.r^{\prime}\right|_{E^{1}}=r,\left.\quad s^{\prime}\right|_{E^{1}}=s, \quad r^{\prime}\left(e_{i}^{*}\right)=s\left(e_{i}\right) \quad \text { and } \quad s^{\prime}\left(e_{i}^{*}\right)=r\left(e_{i}\right) .
$$

The Leavitt path algebra of $E, L_{K}(E)$, with coefficients in K is defined as the path algebra over the extended graph \widehat{E}, which satisfies the additional relations:

$$
\begin{aligned}
& \text { (CK1) } e_{i}^{*} e_{j}=\delta_{i j} r\left(e_{j}\right) \text { for every } e_{j} \in E^{1} \text { and } e_{i}^{*} \in\left(E^{1}\right)^{*}, \\
& \text { (CK2) } v_{i}=\sum_{\left\{e_{j} \in E^{1} \mid s\left(e_{j}\right)=v_{i}\right\}} e_{j} e_{j}^{*} \text { for every } v_{i} \in E^{0} \text { which is not a sink, and emits only } \\
& \text { finitely many edges. }
\end{aligned}
$$

The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations. Note that the condition of row-finiteness is needed in order to define the equation (CK2).

Finite dimensional Leavitt path algebras are studied in [2] by Abrams, Aranda Pino and Siles Molina. The authors characterize the structure theorems for finite dimensional Leavitt path algebras. Their results are summarized in the following proposition:
2.1. Proposition. (1) The Leavitt path algebra $L_{K}(E)$ is a finite-dimensional K algebra if and only if E is a finite and acyclic graph.
(2) If $A=\bigoplus_{i=1}^{s} M_{n_{i}}(K)$, then $A \cong L_{K}(E)$ for a graph E having s connected components each of which is an oriented line graph with n_{i} vertices, $i=1,2, \cdots, s$.
(3) A finite dimensional K-algebra A arises as a $L_{K}(E)$ for a graph E if and only if $A=\bigoplus_{i=1}^{s} M_{n_{i}}(K)$.
(4) If $A=\bigoplus_{i=1}^{s} M_{n_{i}}(K)$ and $A \cong L_{K}(E)$ for a finite, acyclic graph E, then the number of sinks of E is equal to s, and each sink $v_{i}(i=1,2, \cdots, s)$ has $n\left(v_{i}\right)=n_{i}$ with a suitable indexing of the sinks.

3. Truncated Trees

For a finite dimensional Leavitt path algebra $L_{K}(E)$ of a graph E, we construct a distinguished graph F having the Leavitt path algebra isomorphic to $L_{K}(E)$ as follows:
3.1. Theorem. Let E be a finite, acyclic graph with no isolated vertices. Let $s=|S(E)|$ where $S(E)$ is the set of sinks of E and $N=\max \{n(v) \mid v \in S(E)\}$. Then there exists a unique (up to isomorphism) tree F with exactly one source and $s+N-1$ vertices such that $L_{K}(E) \cong L_{K}(F)$.
Proof. Let the sinks $v_{1}, v_{2}, \ldots, v_{s}$ of E be indexed such that

$$
2 \leq n\left(v_{1}\right) \leq n\left(v_{2}\right) \leq \ldots \leq n\left(v_{s}\right)=N .
$$

Define a graph $F=\left(F^{0}, F^{1}, r, s\right)$ as follows:

$$
\begin{aligned}
F^{0} & =\left\{u_{1}, u_{2}, \ldots, u_{N}, w_{1}, w_{2}, \ldots w_{s-1}\right\} \\
F^{1} & =\left\{e_{1}, e_{2}, \ldots, e_{N-1}, f_{1}, f_{2}, \ldots, f_{s-1}\right\} \\
s\left(e_{i}\right) & =u_{i} \quad \text { and } \quad r\left(e_{i}\right)=u_{i+1} \quad i=1, \ldots, N-1 \\
s\left(f_{i}\right) & =u_{n\left(v_{i}\right)-1} \quad \text { and } \quad r\left(f_{i}\right)=w_{i} \quad i=1, \ldots, s-1 .
\end{aligned}
$$

Clearly, F is a directed tree with unique source u_{1} and $s+N-1$ vertices. The graph F has exactly s sinks, namely $u_{N}, w_{1}, w_{2}, \ldots w_{s-1}$ with $n\left(u_{N}\right)=N, n\left(w_{i}\right)=n\left(v_{i}\right)$, $i=1, \ldots, s-1$. Therefore, $L_{K}(E) \cong L_{K}(F)$ by Proposition 2.1.

For the uniqueness part, take a tree T with exactly one source and $s+N-1$ vertices such that $L_{K}(E) \cong L_{K}(T)$. Now $N=\max \{n(v) \mid v \in S(E)\}$ is equal to the square root of the maximum of the K-dimensions of the minimal ideals of $L_{K}(E)$ and also of $L_{K}(T)$. So there exists a sink v in T with $\left|\left\{\mu_{i} \in T^{*} \mid r\left(\mu_{i}\right)=v\right\}\right|=N$. Since, any vertex in T is connected to the unique source by a uniquely determined path, the unique path joining v to the source must contain exactly N vertices, say $a_{1}, \ldots, a_{N-1}, v$ where a_{1} is the unique source and the length of the path joining a_{k} to a_{1} being equal to $k-1$ for any $k=1,2, \ldots, N-1$. As $L_{K}(E)=\bigoplus_{i=1}^{s} M_{n_{i}}(K)$ with s summands, all the remaining $s-1$ vertices, say b_{1}, \ldots, b_{s-1}, must be sinks by Proposition 2.1(4). For any vertex a different from the unique source, clearly $n(a)>1$. Also, there exists an edge g_{i} with $r\left(g_{i}\right)=b_{i}$ for each $i=1, \ldots, s-1$. Since $s\left(g_{i}\right)$ is not a sink, it follows that $s\left(g_{i}\right) \in\left\{a_{1}, a_{2}, \ldots, a_{N-1}\right\}$, more precisely $s\left(g_{i}\right)=a_{n\left(b_{i}\right)-1}$ for $i=1,2, \ldots, s-1$. Thus T is isomorphic to F.

We name the graph F constructed in Theorem 3.1 as the truncated tree associated with E.
3.2. Proposition. With the above definition of F, there is no tree T with $\left|T^{0}\right|<\left|F^{0}\right|$ such that $L_{K}(T) \cong L_{K}(F)$.
Proof. Notice that since T is a tree, any vertex contributing to a sink represents a unique path ending at that sink.

Assume on the contrary there exists a tree T with n vertices and $L_{K}(T) \cong A=$ $\bigoplus_{i=1}^{s} M_{n_{i}}(K)$ such that $n<s+N-1$. Since N is the maximum of n_{i} 's there exists a sink v with $n(v)=N$. But in T the number $n-s$ of vertices which are not sinks is less than $N-1$. Hence the maximum contribution to any sink can be at most $n-s+1$ which is strictly less than N. This is the desired contradiction.

Remark that the above proposition does not state that it is impossible to find a graph G with smaller number of vertices having $L_{K}(G)$ isomorphic to $L_{K}(E)$. The next example illustrates this point.
3.3. Example. Consider the graphs G and F.

Both $L_{K}(G) \cong M_{3}(K) \cong L_{K}(F)$ and $\left|G^{0}\right|=2$ where as $\left|F^{0}\right|=3$.

G

F

Given any graphs G_{1} and $G_{2}, L_{K}\left(G_{1}\right) \cong L_{K}\left(G_{2}\right)$ does not necessarily imply $G_{1} \cong G_{2}$. However, for truncated trees F_{1}, F_{2} we have $F_{1} \cong F_{2}$ if and only if $L_{K}\left(F_{1}\right) \cong L_{K}\left(F_{2}\right)$. So there is a one-to-one correspondence between the Leavitt path algebras and the truncated trees.

Consider a finite dimensional Leavitt path algebra $A=\bigoplus_{i=1}^{s} M_{n_{i}}(K)$ with $2 \leq n_{1} \leq$ $n_{2} \leq \ldots \leq n_{s}=N$. Here, the number s is the number of minimal ideals of A and N^{2} is the maximum of the dimensions of the minimal ideals. Therefore, the integer $s+N-1$ is an algebraic invariant of A which is denoted by $\kappa(A)$. Notice that the number of isomorphism classes of finite dimensional Leavitt path algebras A, with the invariant $\kappa(A)>1$, having no ideals isomorphic to K is equal to the number of distinct truncated trees with $\kappa(A)$ vertices by the previous paragraph. The next proposition computes this number.
3.4. Proposition. The number of distinct truncated trees with m vertices is 2^{m-2}.

Proof. In a truncated tree, $n\left(v_{1}\right) \neq n\left(v_{2}\right)$ for any two distinct non-sinks v_{1} and v_{2}. For every $\operatorname{sink} v$, there is a unique non-sink w so that there exists an edge e with $s(e)=w$ and $r(e)=v$. Namely the non-sink w is with $n(w)=n(v)-1$. This w is denoted by $b(v)$.

Now, define $d(u)=|\{v: n(v) \leq n(u)\}|$ for any $u \in E^{0}$. Clearly, $d(u)$ is equal to the sum of $n(u)$ and the number of sinks v with $n(b(v))<n(u)$ for any $u \in E^{0}$. Assign an m-tuple $\alpha(E)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right) \in\{0,1\}^{m}$ to a truncated tree E with m vertices by letting $\alpha_{j}=1$ if and only if $j=d(v)$ for some vertex v which is not a sink. Clearly, there is just one vertex v with $n(v)=1$, namely the unique source of E and that vertex is not a sink, so $\alpha_{1}=1$. Since there cannot be any non-sink v with $d(v)=m$, it follows that $\alpha_{m}=0$.

Conversely, for $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right) \in\{0,1\}^{m}$ with $\beta_{1}=1$ and $\beta_{m}=0$ there exists a unique truncated tree E with m vertices such that $\alpha(E)=\beta$: If $\beta_{i}=1$, then assign a non-sink v to E with $n(v)=\mid\left\{k: 1 \leq k<i\right.$ and $\left.\beta_{k}=1\right\} \mid$. If $\beta_{i}=0$ and $j=$ $\mid\left\{k: 1 \leq k<i\right.$ and $\left.\beta_{k}=1\right\} \mid$ then construct a sink which is joined to the non-sink v with $n(v)=j$. Clearly, the graph E is a truncated tree with m vertices and $\alpha(E)=\beta$.

Hence the number of distinct truncated trees with m vertices is equal to 2^{m-2} which is the number of all elements of $\{0,1\}^{m}$ with the first component 1 and the last component 0 .

Hence, we have the following corollary.
3.5. Corollary. Given $n \geq 2$, the number of isomorphism classes of finite dimensional Leavitt path algebras A with $\kappa(A)=n$ and which do not have any ideals isomorphic to K is 2^{n-2}.

4. Bounds on the K-Dimension of finite dimensional Leavitt Path Algebras

For a tree F with m vertices, the K-dimension of $L_{K}(F)$ is not uniquely determined by the number of vertices only. However, we can compute the maximum and the minimum K-dimensions of $L_{K}(F)$ where F ranges over all possible trees with m vertices.
4.1. Lemma. The maximum K-dimension of $L_{K}(E)$ where E ranges over all possible trees with m vertices and s sinks is attained at a tree in which $n(v)=m-s+1$ for each sink v. In this case, the value of the dimension is $s(m-s+1)^{2}$.

Proof. Assume E is a tree with m vertices. Then $L_{K}(E) \cong \bigoplus_{i=1}^{s} M_{n_{i}}(K)$, by Proposition 2.1 (3) where s is the number of sinks in E and $n_{i} \leq m-s+1$ for all $i=1, \ldots s$. Hence

$$
\operatorname{dim} L_{K}(E)=\sum_{i=1}^{s} n_{i}^{2} \leq s(m-s+1)^{2} .
$$

Notice that there exists a tree E as sketched below

with m vertices and s sinks such that $\operatorname{dim} L_{K}(E)=s(m-s+1)^{2}$.
4.2. Theorem. The maximum K-dimension of $L_{K}(E)$ where E ranges over all possible trees with m vertices is given by $f(m)$ where

$$
f(m)=\left\{\begin{array}{ccc}
\frac{m(2 m+3)^{2}}{27} & \text { if } & m \equiv 0(\bmod 3) \\
\frac{1}{27}(m+2)(2 m+1)^{2} & \text { if } & m \equiv 1(\bmod 3) \\
\frac{4}{27}(m+1)^{3} & \text { if } & m \equiv 2(\bmod 3)
\end{array}\right.
$$

Proof. Assume E is a tree with m vertices. Then $L_{K}(E) \cong \bigoplus_{i=1}^{s} M_{n_{i}}$ where s is the number of sinks in E. Now, to find the maximum dimension of $L_{K}(E)$, determine the maximum value of the function $f(s)=s(m-s+1)^{2}$ for $s=1,2, \ldots, m-1$. Extending the domain of $f(s)$ to real numbers $1 \leq s \leq m-1 f$ becomes a continuous function, hence its maximum value can be computed.

$$
f(s)=s(m-s+1)^{2} \Rightarrow \frac{d}{d s}\left(s(m-s+1)^{2}\right)=(m-3 s+1)(m-s+1)
$$

Then $s=\frac{m+1}{3}$ is the only critical point in the interval $[1, m-1]$ and since $\frac{d^{2} f}{d s^{2}}\left(\frac{m+1}{3}\right)<$ 0 , it is a local maximum. In particular f is increasing on the interval $\left[1, \frac{m+1}{3}\right]$ and decreasing on $\left[\frac{m+1}{3}, m-1\right]$. There are three cases:

Case 1: $\quad m \equiv 2(\bmod 3)$. In this case $s=\frac{m+1}{3}$ is an integer and maximum K-dimension of $L_{K}(E)$ is $f\left(\frac{m+1}{3}\right)=\frac{4}{27}(m+1)^{3}$ and $n_{i}=\frac{2(m+1)}{3}$, for each $i=$ $1,2, \ldots, s$.

Case 2: $m \equiv 0(\bmod 3)$. Then: $\frac{m}{3}=t<t+\frac{1}{3}=s<t+1$ and

$$
f\left(\frac{m}{3}\right)=\frac{(2 m+3)^{2} m}{27}=\alpha_{1} \text { and } f\left(\frac{m}{3}+1\right)=\frac{4 m^{2}(m+3)}{27}=\alpha_{2}
$$

Note that, $\alpha_{1}>\alpha_{2}$. So α_{1} is maximum K-dimension of $L_{K}(E)$ and $n_{i}=\frac{2}{3} m+1$, for each $i=1,2, \ldots, s$.

Case 3: $m \equiv 1(\bmod 3)$. Then $\frac{m-1}{3}=t<t+\frac{2}{3}=s<t+1$ and

$$
f\left(\frac{m-1}{3}\right)=\frac{4}{27}(m+2)^{2}(m-1)=\beta_{1}
$$

and

$$
f\left(\frac{m+2}{3}\right)=\frac{1}{27}(2 m+1)^{2}(m+2)=\beta_{2} .
$$

In this case $\beta_{2}>\beta_{1}$ and so β_{2} gives the maximum K-dimension of $L_{K}(E)$ and $n_{i}=$ $\frac{2 m+1}{3}$, for each $i=1,2, \ldots, s$.
4.3. Theorem. The minimum K-dimension of $L_{K}(E)$ where E ranges over all possible trees with m vertices and s sinks is equal to $r(q+2)^{2}+(s-r)(q+1)^{2}$, where $m-1=$ $q s+r, \quad 0 \leq r<s$.
Proof. We call a graph a bunch tree if it is obtained by identifying the unique sources of the finitely many disjoint oriented finite line graphs as seen in the figure.

Let $\mathcal{E}(m, s)$ be the set of all bunch trees with m vertices and s sinks. Every element of $\mathcal{E}(m, s)$ can be uniquely represented by an s-tuple ($t_{1}, t_{2}, \ldots, t_{s}$) where each t_{i} is the
number of vertices different from the source contributing to the $i^{\text {th }}$ sink, with $1 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{s}$ and $t_{1}+t_{2}+\ldots+t_{s}=m-1$.

Let $E \in \mathcal{E}(m, s)$ with $t_{s}-t_{1} \leq 1$. This E is represented by the s-tuple $(q, \ldots, q, q+1, \ldots, q+1)$ where $m-1=s q+r, 0 \leq r<s$.

Now, claim that the dimension of E is the minimum of the set

$$
\left\{\operatorname{dim} L_{K}(F): F \text { tree with } s \text { sinks and } m \text { vertices }\right\} .
$$

If we represent $U \in \mathcal{E}(m, s)$ by the s-tuple $\left(u_{1}, u_{2}, \ldots, u_{s}\right)$ then $E \neq U$ implies that $u_{s}-u_{1} \geq 2$.

Consider the s-tuple $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ where $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$ is obtained from $\left(u_{1}+1, u_{2}, \ldots, u_{s-1}, u_{s}-1\right)$ by reordering the components in increasing order.

In this case, the dimension d_{U} of U is

$$
d_{U}=\left(u_{1}+1\right)^{2}+\ldots+\left(u_{s}+1\right)^{2} .
$$

Similarly, the dimension d_{T} of the bunch graph T represented by the s-tuple $\left(t_{1}, t_{2}, \ldots, t_{s}\right)$, is

$$
d_{T}=\left(t_{1}+1\right)^{2}+\ldots+\left(t_{s}+1\right)^{2}=\left(u_{1}+2\right)^{2}+\ldots+\left(u_{s-1}+1\right)^{2}+u_{s}^{2}
$$

Hence

$$
d_{U}-d_{T}=2\left(u_{s}-u_{1}\right)-2>0 .
$$

Repeating this process sufficiently many times, the process has to end at the exceptional bunch tree E showing that its dimension is the smallest among the dimensions of all elements of $\mathcal{E}(m, s)$.

Now let F be an arbitrary tree with m vertices and s sinks. As above assign to F the s-tuple ($n_{1}, n_{2}, \ldots, n_{s}$) with $n_{i}=n\left(v_{i}\right)-1$ where the sinks $v_{i}, i=1,2, \ldots, s$ are indexed in such a way that $n_{i} \leq n_{i+1}, i=1, \ldots, s-1$. Observe that $n_{1}+n_{2}+\cdots+n_{s} \geq m-1$. Let $\beta=\sum_{i=1}^{s} n_{i}-(m-1)$. Since $s \leq m-1, \beta \leq \sum_{i=1}^{s}\left(n_{i}-1\right)$. Either $n_{1}-1 \geq \beta$ or there exists a unique $k \in\{2, \ldots, s\}$ such that $\sum_{i=1}^{k-1}\left(n_{i}-1\right)<\beta \leq \sum_{i=1}^{k}\left(n_{i}-1\right)$. If $n_{1}-1 \geq \beta$, then let

$$
m_{i}=\left\{\begin{array}{ccc}
n_{1}-\beta & , \quad i=1 \\
n_{i} & , & i>1
\end{array} .\right.
$$

Otherwise, let

$$
m_{i}=\left\{\begin{array}{ccc}
1 & , \quad i \leq k-1 \\
n_{k}-\left(\beta-\sum_{i=1}^{k-1}\left(n_{i}-1\right)\right) & , & i=k \\
n_{i} & , & i \geq k+1
\end{array} .\right.
$$

In both cases, the s-tuple $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ that satisfies $1 \leq m_{i} \leq n_{i}$, $m_{1} \leq m_{2} \leq \cdots \leq m_{s}$ and $m_{1}+m_{2}+\cdots+m_{s}=m-1$ is obtained. So, there exists a bunch tree M namely the one corresponding uniquely to ($m_{1}, m_{2}, \ldots, m_{s}$) which has dimension $d_{M} \leq d_{F}$. This implies that $d_{F} \geq d_{E}$.

Hence the result follows.
4.4. Lemma. The minimum K-dimension of $L_{K}(E)$ where E ranges over all possible trees with m vertices occurs when the number of sinks is $m-1$ and is equal to $4(m-1)$.

Proof. By the previous theorem observe that

$$
\operatorname{dim} L_{K}(E) \geq r(q+2)^{2}+(s-r)(q+1)^{2}
$$

where $m-1=q s+r, \quad 0 \leq r<s$. Then

$$
r(q+2)^{2}+(s-r)(q+1)^{2}=(m-1)(q+2)+q r+r+s
$$

Thus

$$
(m-1)(q+2)+q r+r+s-4(m-1)=(m-1)(q-2)+q r+r+s \geq 0 \text { if } q \geq 2
$$

If $q=1$, then $-(m-1)+2 r+s=-(m-1)+r+(m-1)=r \geq 0$. Hence $\operatorname{dim} L_{K}(E) \geq$ $4(m-1)$.

Notice that there exists a truncated tree E with m vertices and $\operatorname{dim} L_{K}(E)=4(m-1)$ as sketched below :

5. Line Graphs

In [2], the Proposition 5.7 shows that a semisimple finite dimensional algebra $A=$ $\bigoplus_{\oplus}^{s} M_{n_{i}}(K)$ over the field K can be described as a Leavitt path algebra $L_{K}(E)$ defined by a line graph E, if and only if A has no ideals of K-dimension 1 and the number of minimal ideals of A of K-dimension 2^{2} is at most 2 . On the other hand, if $A \cong L_{K}(E)$ for some m-line graph E then $m-1=\sum_{i=1}^{s}\left(n_{i}-1\right)$, that is, m is an algebraic invariant of A.

Therefore the following proposition answers a reasonable question.
5.1. Proposition. The number A_{m} of isomorphism classes of Leavitt path algebras defined by line graphs having exactly m vertices is

$$
A_{m}=P(m-1)-P(m-4)
$$

where $P(t)$ is the number of partitions of the natural number t.
Proof. Any m-line graph has $m-1$ edges. In a line graph, for any edge e there exists a unique sink v so that there exists a path from $s(e)$ to v. In this case we say that e is directed towards v. The number of edges directed towards v is clearly equal to $n(v)-1$. Let E and F be two m-line graphs. Then $L_{K}(E) \cong L_{K}(F)$ if and only if there exists a bijection $\phi: S(E) \rightarrow S(F)$ such that for each v in $S(E), n(v)=n(\phi(v))$. Therefore the number of isomorphism classes of Leavitt path algebras determined by m-line graphs is the number of partitions of $m-1$ edges in which the number of parts having exactly one edge is at most two. Since the number of partitions of k objects having at least three parts each of which containing exactly one element is $P(k-3)$, the result $A_{m}=P(m-1)-P(m-4)$ follows.

References

[1] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2) (2005), 319-334.
[2] G. Abrams, G. Aranda Pino, M. Siles Molina, Finite-dimensional Leavitt path algebras, J. Pure Appl. Algebra 209 (2007) 753-762.
[3] P. Ara, M.A. Moreno, and E. Pardo, Nonstable K-theory for graph algebras, Alg. Rep. Thy. 10 (2007), 157-178.
[4] T.Y. Lam, A First Course In Noncommutative Rings, Springer-Verlag 2001.

[^0]: *Department of Mathematics and Computer Sciences, İstanbul Kültür University, Ataköy, Istanbul, TURKEY
 ${ }^{\dagger}$ Tüccarbaşı Sok. Kaşe Apt. No:10A/25 Erenköy, Istanbul, TURKEY
 ${ }^{\ddagger}$ Department of Mathematics, Doğuş University, Acıbadem, Istanbul, TURKEY
 ${ }^{\S}$ Department of Mathematics, Düzce University, Konuralp Düzce, TURKEY

