CAST: Status and Latest Results

T. Dafni¹, S. Aune², K. Barth³, A. Belov⁴, S. Borghi^{22,3}, H. Bräuninger⁵, G. Cantatore⁶, J. M. Carmona¹, S. A. Cetin⁷, J. I. Collar⁸, M. Davenport³, C. Eleftheriadis⁹, N. Elias³, C. Ezer⁷, G. Fanourakis¹⁰, E. Ferrer-Ribas², P. Friedrich⁵, J. Galán¹, J. A. García¹, A. Gardikiotis¹², E. N. Gazis¹³, T. Geralis¹⁰, I. Giomataris², S. Gninenko⁴, H. Gómez¹, E. Gruber¹¹, T. Guthörl¹¹, R. Hartmann^{23,14}, F. Haug³, M. D. Hasinoff¹⁵, D. H. H. Hoffmann¹⁶, F. J. Iguaz^{2,1}, I. G. Irastorza¹, J. Jacoby¹⁷, K. Jakovčić¹⁸, M. Karuza⁶, K. Königsmann¹¹, R. Kotthaus¹⁹, M. Krčmar¹⁸, M. Kuster^{24,5,16}, B. Lakić¹⁸, J. M. Laurent³, A. Liolios⁹, A. Ljubičić¹⁸, V. Lozza⁶, G. Lutz^{23,14}, G. Luzón¹, J. Morales¹^{*}, T. Niinikoski^{25,3}, A. Nordt^{3,5,16}, T. Papaevangelou², M. J. Pivovaroff²⁰, G. Raffelt¹⁹, T. Rashba²¹, H. Riege¹⁶, A. Rodríguez¹, M. Rosu¹⁶, J. Ruz^{1,3}, I. Savvidis⁹, P. S. Silva³, S. K. Solanki²¹, L. Stewart³, A. Tomás¹, M. Tsagri^{3,12}, K. van Bibber^{26,20}, T. Vafeiadis^{3,9,12}, J. Villar¹, J. K. Vogel^{20,11}, S. C. Yildiz⁷ and K. Zioutas^{3,12} ¹Instituto de Física Nuclear y Altas Energías, Universidad de Zaragoza, Zaragoza, Spain ²IRFU, Centre d'Études Nucléaires de Saclay (CEA-Saclay), Gif-sur-Yvette, France ³European Organization for Nuclear Research (CERN), Genève, Switzerland ⁴Institute for Nuclear Research (INR), Russian Academy of Sciences, Moscow, Russia ⁵Max-Planck-Institut für Extraterrestrische Physik, Garching, Germany ⁶Instituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste and Università di Trieste, Trieste, Italy ⁷Dogus University, Istanbul, Turkey ⁸Enrico Fermi Institute and KICP, University of Chicago, Chicago, IL, USA ⁹Aristotle University of Thessaloniki, Thessaloniki, Greece ¹⁰National Center for Scientific Research "Demokritos", Athens, Greece ¹¹Albert-Ludwigs-Universität Freiburg, Freiburg, Germany ¹²Physics Department, University of Patras, Patras, Greece ¹³National Technical University of Athens, Athens, Greece ¹⁴MPI Halbleiterlabor, München, Germany ¹⁵Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada ¹⁶Technische Universität Darmstadt, IKP, Darmstadt, Germany ¹⁷Johann Wolfgang Goethe-Universität, Institut für Angewandte Physik, Frankfurt am Main, Germany ¹⁸Rudjer Bošković Institute, Zagreb, Croatia ¹⁹Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany ²⁰Lawrence Livermore National Laboratory, Livermore, CA, USA ²¹Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany ²²Department of Physics and Astronomy, University of Glasgow, Glasgow, UK ²³PNSensor GmbH, München, Germany ²⁴European XFEL GmbH, Notkestrasse 85, 22607 Hamburg, Germany ²⁵Excellence Cluster Universe, Technische Universität München, Garching, Germany ²⁶Naval Postgraduate School, Monterey, CA, USA

DOI: http://dx.doi.org/10.3204/DESY-PROC-2011-04/dafni_theopisti

PATRAS 2011

In July 2011, CAST finished the data-taking of its nominal programme, having scanned axion masses up to $\sim 1.18 \,\mathrm{eV/c^2}$. Here we present the first results of the data taken in 2008, first year of the last data-taking campaign when ³He was used inside the magnet bores. No excess of signal over background has been recorded, and an upper limit has been set to the axion-to-photon coupling to $2.3 \times 10^{-10} \,\mathrm{GeV^{-1}}$ for axion masses between 0.39 and 0.64 eV. CAST remains the most sensitive axion helioscope and for the first time crosses the benchmark line of the KSVZ model at the upper end of the spectrum.

1 Introduction

The CERN Axion Solar Telescope (CAST) is looking for axions and axion-like particles since 2003. The axions are hypothetical particles arising in models which may explain the CP problem of strong interactions and can be Dark Matter candidates. With the help of a decommissioned LHC dipole magnet hopes to convert axions produced by the Primakoff process in the solar core into detectable x-ray photons. These photons would carry the energy and the momentum of the original axion. CAST is the most sensitive axion helioscope built so far. Its sensitivity is based on three points, a powerful magnet, an x-ray focusing device and low-background detectors. The magnet employed in CAST is an LHC dipole prototype, which can reach 9 T along the 9 m of its length. With the help of a moving platform, it is aligned with the center of the sun for 90 min twice a day. A total of four detectors are connected at the two ends of the magnet, two looking at sunrise and two at sunset.

CAST has been taking data since 2003. During 2003 and 2004 the experiment operated with vacuum in the magnet bores (CAST phase I) and set the best experimental limit on the axion-photon coupling constant in the range of axion masses up to $0.02 \text{ eV}/\text{c}^2$ [1, 2]. For CAST, above this mass the sensitivity is degraded due to coherence loss. The experimental setup was upgraded in 2005 in order to extend the sensitivity to higher axion masses. For this purpose, the experiment has to operate with the magnet bores filled with a buffer gas whose density has to be increased in appropriate steps to cover equally a range of higher axion masses. During 2005 and 2006, ⁴He was used as a buffer gas and the experiment scanned the range of axion masses from $0.02 \text{ eV}/\text{c}^2$ to $0.39 \text{ eV}/\text{c}^2$ and set the most restrictive limit on the axion-photon coupling constant for this range of masses [3]. Furthermore, for the first time the theoretically favoured region of masses has been probed. Due to the condensation of ⁴He at high pressures (aprox. 14 mbar at 1.8 K, the operating temperature of the CAST magnet), the system had to be thoroughly upgraded to use ³He as a buffer gas. In parallel, CAST has been looking into other related searches, such as high energy axions [4], 14.4 keV axions from M1 transitions in the sun [5] and low energy axions in the visible [6].

2 Upgrades and latest results

After the ⁴He data-taking, several upgrades were necessary in order to prepare for data taking with ³He. The most important of these was the design and installation of a sophisticated ³He gas system. As mentioned above, in order to scan over a range of axion masses, CAST fills the cold bores with gas in incremental steps. It is essential to know and reproduce the exact gas density inside the bores but also to ensure that the density remains homogeneous along the bores. To achieve the desired gas density, the amount of gas introduced into the cold bores

^{*}Deceased.

CAST: STATUS AND LATEST RESULTS

needs to be accurately calculated, with the help of several temperature and pressure sensors, strategically placed in the magnet and the gas system. A lot of effort has been invested from the collaboration in order to perform extensive simulations for a most detailed model of the system under the different configurations and the calculations of the gas density, which have to be performed through computational fluid dynamic (CFD) simulations. The achieved agreement between the simulated and measured parameters allow us to believe that despite the variations in the value of the temperature and gas density, this latter remains homogeneous along the magnet.

During the ³He data taking, the CAST x-ray detectors were upgraded as well. The number of Micromegas detectors was increased from one to three, when the Time Projection Chamber (TPC) with a multi-wire proportional readout [7] that had covered both bores of the sunset end of the magnet was replaced. The two sunset microbulks use the shielding that was already in place for the TPC detector, while the sunrise detector counts with a dedicated shielding since the latest upgrade [8, 9, 10]. The microbulk detectors belong to the latest generation of Micromegas and the ones installed in CAST have obtained background levels down to 5×10^{-6} counts keV⁻¹ cm⁻² s⁻¹ in the energy range of interest, already one order of magnitude better that the previous ones [11]. On the other hand, the x-ray mirror telescope with a pn-CCD chip [12] covering the other bore of the sunrise side remained unchanged.

Figure 1: The CAST exclusion plot after the different phases of the experiment: in vacuum [1, 2], ⁴He [3] and ${}^{3}\text{He}$ [13] phase. The limit achieved in the ³He CAST phase for axion mass range between 0.39 eV and $0.64 \,\mathrm{eV}$. The results from the Tokyo helioscope [14, 15, 16], horizontal branch (HB) stars [17], and the hot dark matter (HDM) bound [18] are also shown. The yellow band represents typical theoretical models with. The green solid line corresponds to E/N = 0 (KSVZ model).

Here we present the results obtained from the data-taking in 2008, the first year of operation with ³He. The axion mass range scanned was between 0.39 eV and 0.64 eV. The data analysis performed is similar to the results obtained with ⁴He gas. The differences are mainly due to the overall reduction of background rates achieved by CAST detectors with respect to the ones of the ⁴He phase, as well as the reduced ³He density setting exposure time of the overall data taking period. Figure 1 presents these results: CAST has extended the last exclusion plot towards higher axion masses, probing further inside the theoretically favoured region and excluding the axion-photon coupling down to $2.3 \times 10^{-10} \text{ GeV}^{-1}$ for axion masses between 0.39 and 0.64 eV [13], the exact value depending on the pressure setting. It is the first time that the limit given by the KSVZ model is crossed.

PATRAS 2011

2.1 The next steps

Currently, the collaboration is analysing the remaining of the data, from the campaigns of 2009 through the summer of 2011. In parallel, there are preparations in course regarding the short- and long-term future of the experiment. Given the latest upgrades of the system, the first idea would be to repeat the measurements with ⁴He in the magnet bores. Focusing on the detectors which now obtain rather low backgrounds, one can expect an improvement on the limits already set by CAST which will lower the sensitivity in the range of most interest and will probably probe the KSVZ line at lower masses. As a second step, the vacuum-phase of CAST could be revisited. Work is also done towards lowering the detector thresholds; in this way, when the system will be back to vacuum operation, other studies could be foreseen, regarding paraphotons [19] and solar chameleons [20]. A feasibility study of a new generation axion helioscope is ongoing [21]. This initiative includes the construction of a new toroidal magnet with much larger magnetic volume, together with exhaustive use of x-ray optics and low background detectors. A sensitivity of more than one order of magnitude in the axion-to-photon coupling beyond CAST seems feasible.

3 Conclusions

CAST presents the first results of the data taken when using ³He as buffer gas inside the magnet bores. The axion-to-photon coupling has been excluded to $2.3 \times 10^{-10} \text{ GeV}^{-1}$ for axion masses between 0.39 and 0.64 eV. The remaining of the data taken, which have reached axion masses up to 1.18 eV are being analysed. Short term prospects include revising some ⁴He and vacuum configurations, given the improved performance of the detectors. For the longer term, studies of a new generation axion helioscope are ongoing

4 Acknowledgments

We thank CERN for hosting the experiment and for the technical support. We acknowledge support from NSERC (Canada), MSES (Croatia) under the grant number 098-0982887-2872, CEA (France), BMBF (Germany) under the grant numbers 05 CC2EEA/9 and 05 CC1RD1/0 and DFG (Germany) under grant numbers HO 1400/7-1 and EXC-153, the Virtuelles Institut für Dunkle Materie und Neutrinos –VIDMAN (Germany), GSRT (Greece), RFFR (Russia), the Spanish Ministry of Science and Innovation (MICINN) under grants FPA2007-62833 and FPA2008-03456, Turkish Atomic Energy Authority (TAEK), NSF (USA) under Award number 0239812, US Department of Energy, NASA under the grant number NAG5-10842. Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge the helpful discussions within the network on direct dark matter detection of the ILIAS integrating activity (Contract number: RII3-CT-2003-506222).

References

- K. Zioutas *et al.* [CAST Collaboration], "First Results from the CERN Axion Solar Telescope," Phys. Rev. Lett. 94 121301 (2005).
- [2] S. Adriamonje et al. [CAST Collaboration], "An improved limit on the axion-photon coupling from the CAST experiment," J. Cosmol. Astropart. Phys. JCAP04(2007)01.

CAST: STATUS AND LATEST RESULTS

- [3] E. Arik et al. [CAST Collaboration], "Probing eV-scale axions with CAST," J. Cosmol. Astropart. Phys. JCAP 02(2009)008.
- [4] S. Adriamonje *et al.* [CAST Collaboration], "Search for solar axion emission from ⁷Li and $D(p,\gamma)^{3}$ He nuclear decays with the CAST γ -ray calorimeter," J. Cosmol. Astropart. Phys. JCAP03(2010)032.
- S. Adriamonje *et al.* [CAST Collaboration], "Search for 14.4 keV solar axions emitted in the M1-transition of ⁵⁷Fe nuclei with CAST," J. Cosmol. Astropart. Phys. JCAP12(2009)002.
- [6] G. Cantatore for the CAST collaboration, "Search for low Energy solar Axions with CAST," [arXiv:0809.4581 [hep-ex]].
- [7] D. Autiero et al., "The CAST time projection chamber," New J. Phys. 9, 171 (2007).
- [8] S. Andriamonje et al., "Development and performance of Microbulk Micromegas detectors," J. Instrum. JINST 5, P02001 (2010).
- [9] J. Galan et al., "MICROMEGAS detectors in the CAST experiment," J. Instrum. JINST 5, P01009 (2010).
- [10] S. Aune et al., "New Micromegas detectors in the CAST experiment," Nucl. Instrum. Meth. A 604, 15 (2009).
- [11] P. Abbon et al., "The Micromegas detector of the CAST experiment," New J. Phys. 9, 170 (2007).
- [12] M. Kuster et al., "The x-ray telescope of CAST," New J. Phys. 9, 169 (2007).
- [13] S. Aune et al. [CAST Collaboration], "CAST search for sub-eV mass solar axions with 3He buffer gas," [arXiv:1106.3919 [hep-ex]].
- [14] S. Moriyama et al., "Direct search for solar axions by using strong magnetic field and X-ray detectors," Phys. Lett. B 434, 147 (1998).
- [15] Y. Inoue *et al.*, "Search for sub-electronvolt solar axions using coherent conversion of axions into photons in magnetic field and gas helium," Phys. Lett. B 536, 18 (2002).
- [16] Y. Inoue *et al.*, "Search for solar axions with mass around 1 eV using coherent conversion of axions into photons," Phys. Lett. B 668, 93 (2008).
- [17] G. G. Raffelt, "Astrophysical Axion Bounds", Lect. Notes Phys. 741, 51 (2008).
- [18] S. Hannestad, A. Mirizzi, G. G. Raffelt and Y. Y. Y. Wong, "Neutrino and axion hot dark matter bounds after WMAP-7," J. Cosmol. Astropart. Phys. JCAP08(2010)001.
- [19] S. Troitsky, proceedings of this conference.
- [20] P. Brax, A. Lindner and K. Zioutas, "Chameleon foreCAST," [arXiv:1110.2583v2 [hep-ph]].
- [21] I. G. Irastorza *et al.*, "Towards a new generation axion helioscope," J. Cosmol. Astropart. Phys. JCAP06(2011)013.