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In July 2011, CAST finished the data-taking of its nominal programme, having scanned
axion masses up to ∼ 1.18 eV/c2. Here we present the first results of the data taken in
2008, first year of the last data-taking campaign when 3He was used inside the magnet
bores. No excess of signal over background has been recorded, and an upper limit has
been set to the axion-to-photon coupling to 2.3×10−10 GeV−1 for axion masses between
0.39 and 0.64 eV. CAST remains the most sensitive axion helioscope and for the first time
crosses the benchmark line of the KSVZ model at the upper end of the spectrum.

1 Introduction

The CERN Axion Solar Telescope (CAST) is looking for axions and axion-like particles since
2003. The axions are hypothetical particles arising in models which may explain the CP problem
of strong interactions and can be Dark Matter candidates. With the help of a decommissioned
LHC dipole magnet hopes to convert axions produced by the Primakoff process in the solar core
into detectable x-ray photons. These photons would carry the energy and the momentum of the
original axion. CAST is the most sensitive axion helioscope built so far. Its sensitivity is based
on three points, a powerful magnet, an x-ray focusing device and low-background detectors.
The magnet employed in CAST is an LHC dipole prototype, which can reach 9T along the 9m
of its length. With the help of a moving platform, it is aligned with the center of the sun for
90min twice a day. A total of four detectors are connected at the two ends of the magnet, two
looking at sunrise and two at sunset.

CAST has been taking data since 2003. During 2003 and 2004 the experiment operated
with vacuum in the magnet bores (CAST phase I) and set the best experimental limit on the
axion-photon coupling constant in the range of axion masses up to 0.02 eV/c2 [1, 2]. For CAST,
above this mass the sensitivity is degraded due to coherence loss. The experimental setup was
upgraded in 2005 in order to extend the sensitivity to higher axion masses. For this purpose,
the experiment has to operate with the magnet bores filled with a buffer gas whose density has
to be increased in appropriate steps to cover equally a range of higher axion masses. During
2005 and 2006, 4He was used as a buffer gas and the experiment scanned the range of axion
masses from 0.02 eV/c2 to 0.39 eV/c2 and set the most restrictive limit on the axion-photon
coupling constant for this range of masses [3]. Furthermore, for the first time the theoretically
favoured region of masses has been probed. Due to the condensation of 4He at high pressures
(aprox. 14mbar at 1.8K, the operating temperature of the CAST magnet), the system had to
be thoroughly upgraded to use 3He as a buffer gas. In parallel, CAST has been looking into
other related searches, such as high energy axions [4], 14.4 keV axions from M1 transitions in
the sun [5] and low energy axions in the visible [6].

2 Upgrades and latest results

After the 4He data-taking, several upgrades were necessary in order to prepare for data taking
with 3He. The most important of these was the design and installation of a sophisticated 3He
gas system. As mentioned above, in order to scan over a range of axion masses, CAST fills
the cold bores with gas in incremental steps. It is essential to know and reproduce the exact
gas density inside the bores but also to ensure that the density remains homogeneous along
the bores. To achieve the desired gas density, the amount of gas introduced into the cold bores
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needs to be accurately calculated, with the help of several temperature and pressure sensors,
strategically placed in the magnet and the gas system. A lot of effort has been invested from the
collaboration in order to perform extensive simulations for a most detailed model of the system
under the different configurations and the calculations of the gas density, which have to be
performed through computational fluid dynamic (CFD) simulations. The achieved agreement
between the simulated and measured parameters allow us to believe that despite the variations
in the value of the temperature and gas density, this latter remains homogeneous along the
magnet.

During the 3He data taking, the CAST x-ray detectors were upgraded as well. The number
of Micromegas detectors was increased from one to three, when the Time Projection Chamber
(TPC) with a multi-wire proportional readout [7] that had covered both bores of the sun-
set end of the magnet was replaced. The two sunset microbulks use the shielding that was
already in place for the TPC detector, while the sunrise detector counts with a dedicated
shielding since the latest upgrade [8, 9, 10]. The microbulk detectors belong to the latest gen-
eration of Micromegas and the ones installed in CAST have obtained background levels down
to 5×10−6 counts keV−1 cm−2 s−1 in the energy range of interest, already one order of magni-
tude better that the previous ones [11]. On the other hand, the x-ray mirror telescope with a
pn-CCD chip [12] covering the other bore of the sunrise side remained unchanged.
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Figure 1: The CAST exclusion plot
after the different phases of the ex-
periment: in vacuum [1, 2], 4He
[3] and 3He [13] phase. The limit
achieved in the 3He CAST phase for
axion mass range between 0.39 eV
and 0.64 eV. The results from the
Tokyo helioscope [14, 15, 16], hor-
izontal branch (HB) stars [17], and
the hot dark matter (HDM) bound
[18] are also shown. The yellow
band represents typical theoretical
models with. The green solid line
corresponds to E/N = 0 (KSVZ
model).

Here we present the results obtained from the data-taking in 2008, the first year of operation
with 3He. The axion mass range scanned was between 0.39 eV and 0.64 eV. The data analysis
performed is similar to the results obtained with 4He gas. The differences are mainly due
to the overall reduction of background rates achieved by CAST detectors with respect to the
ones of the 4He phase, as well as the reduced 3He density setting exposure time of the overall
data taking period. Figure 1 presents these results: CAST has extended the last exclusion
plot towards higher axion masses, probing further inside the theoretically favoured region and
excluding the axion-photon coupling down to 2.3×10−10 GeV−1 for axion masses between 0.39
and 0.64 eV [13], the exact value depending on the pressure setting. It is the first time that the
limit given by the KSVZ model is crossed.
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2.1 The next steps

Currently, the collaboration is analysing the remaining of the data, from the campaigns of
2009 through the summer of 2011. In parallel, there are preparations in course regarding the
short- and long–term future of the experiment. Given the latest upgrades of the system, the
first idea would be to repeat the measurements with 4He in the magnet bores. Focusing on
the detectors which now obtain rather low backgrounds, one can expect an improvement on
the limits already set by CAST which will lower the sensitivity in the range of most interest
and will probably probe the KSVZ line at lower masses. As a second step, the vacuum-phase
of CAST could be revisited. Work is also done towards lowering the detector thresholds; in
this way, when the system will be back to vacuum operation, other studies could be foreseen,
regarding paraphotons [19] and solar chameleons [20]. A feasibility study of a new generation
axion helioscope is ongoing [21]. This initiative includes the construction of a new toroidal
magnet with much larger magnetic volume, together with exhaustive use of x-ray optics and
low background detectors. A sensitivity of more than one order of magnitude in the axion-to-
photon coupling beyond CAST seems feasible.

3 Conclusions

CAST presents the first results of the data taken when using 3He as buffer gas inside the magnet
bores. The axion-to-photon coupling has been excluded to 2.3×10−10 GeV−1 for axion masses
between 0.39 and 0.64 eV. The remaining of the data taken, which have reached axion masses
up to 1.18 eV are being analysed. Short term prospects include revising some 4He and vacuum
configurations, given the improved performance of the detectors. For the longer term, studies
of a new generation axion helioscope are ongoing
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