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Abstract. The heavy fourth generation of quarks that have sufficiently small mixing with
the three known SM families form hadrons. In the present work, we calculate the masses and
decay constants of mesons containing either both quarks from the fourth generation or one
from fourth family and the other from observed SM quarks, namely charm or bottom quark, in
the framework of the QCD sum rules. In the calculations, the two gluon condensate diagrams
as nonperturbative contributions are taken into account. The obtained numerical results are
reduced to the known masses and decay constants of the b̄b and c̄c quarkonia, when the fourth
family quark is replaced by the bottom or charm quark.

1. Introduction

In the standard model (SM), we have three generation of quarks experimentally observed.
Among these quarks, the top (t) quark does not form bound states (hadrons) as a consequence
of the high value of its mass. The top quark immediately decays to the bottom quark giving a
W boson and this transition has full strength. The number of quark and lepton generations is
one of the mysteries of nature and can not be addressed by the SM. There are flavor democracy
arguments that predict the existence of the fourth generation of quarks [1, 2, 3]. It is expected
that the masses of the fourth generation quarks be in the interval (300 − 700) GeV [4]. The
last value coincides with upper limit following from partial-wave unitarity at high energies [5].
Within the flavor democracy approach, the Dirac masses of the fourth family fermions are almost
equal, whereas masses of the first three family fermions, as well as CKM and PMNS mixings
are obtained via small violations of democracy [6, 7]. For the recent status of the SM with four
generations (SM4), see e.g. [8, 9, 10] and references therein.

Although the masses of fourth generation quarks are larger than the top quark mass (the last
analysis of the Tevatron data implies md4 > 372 GeV [11] and mu4 > 358 GeV [12]), they can
form bound states as a result of the smallness of mixing between these quarks and ordinary SM
quarks [13, 14, 15, 16, 17, 18, 19]. As the mass difference between these two quarks is small,
we will refer to both members of the fourth family by u4. The condition for formation of new
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hadrons containing ultra-heavy quarks (Q) is given by [20]:

|VQq| ≤

(

100 GeV

mQ

)3/2

. (1)

For t-quark with mt = 172 GeV , Eq. (1) leads to Vtq < 0.44, whereas single top production at
the Tevatron gives Vtb > 0.74 [21]. When the fourth family quarks have sufficiently small mixing
with the ordinary quarks, the hadrons made up from these quarks can be long enough lived and
the bound state ū4u4 decays through its annihilation and not via u4 decays to a lower family
quark plus a W boson [19]. Concerning flavor democracy approach, this situation is realized
for parameterizations proposed in [7] and [22], whereas parameterization [6] predicts Vu4q ∼ 0.2
which does not allow formation of the fourth family quarkonia for mu4 > 300GeV .

Considering the above discussions, the production of such bound states if exist will be possible
at LHC. The conditions for observation of the fourth SM family quarks at the LHC has been
discussed in [13, 23, 24, 25, 26, 27, 28, 29, 30]. As there is a possibility to observe the bound
states containing fourth family quarks at the LHC, it is reasonable to investigate their properties,
theoretically and phenomenologically.

In the present work, we calculate the masses and decay constants of the bound state mesons
containing two heavy quarks with either both quarks from the SM4 or one from the heavy fourth
family and the other from ordinary heavy b or c quark. Here, we consider ground state mesons
with different quantum numbers, namely scalar (ū4u4, ū4b and ū4c), pseudoscalar (ū4γ5u4, ū4γ5b

and ū4γ5c), vector (ū4γµu4, ū4γµb and ū4γµc) and axial vector (ū4γµγ5u4, ū4γµγ5b and ū4γµγ5c)
mesons. These mesons, similar to the ordinary hadrons, are formed in a region of energy very
far from the asymptotic region. Hence, perturbation theory can not be used in this region
since the coupling constant between quarks and gluons is large. Therefore, to calculate the
hadronic parameters such as the mass and leptonic decay constant, we need to consult to some
nonperturbative approaches. Among the nonperturbative methods, the QCD sum rules [31],
which is based on QCD Lagrangian and is free from the model dependent parameter, is one
of the most applicable and predictive approaches to hadron physics. This method has been
successfully used to calculate the masses and decay constants of mesons both in vacuum and at
finite temperature (see for instance [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]). Now, we extend the
application of this method to calculate the masses and decay constants of the considered mesons
containing fourth family quarkonia. For details see the original work [42].

2. QCD sum rules for the mass and decay constant

We start this section considering the sufficient correlation functions responsible for calculation of
the masses and decay constants of the bound states containing heavy fourth generation quarks
in the framework of the QCD sum rules. The two point correlation function corresponding to
the scalar (S) and pseudoscalar (PS) cases can be written as:

ΠS(PS) = i

∫

d4xeip.x〈0 | T
(

JS(PS)(x)J̄S(PS)(0)
)

| 0〉, (2)

where T is the time ordering product and JS(x) = u4(x)q(x) and JPS(x) = u4(x)γ5q(x) are the
interpolating currents of the heavy scalar and pseudoscalar bound states, respectively. Here, we
consider the q to be either fourth family u4 quark or ordinary heavy b or c quark. Similarly for
the vector (V) and axial vector (AV), the correlation function can be written as:

ΠV (AV )
µν = i

∫

d4xeip.x〈0 | T
(

JV (AV )
µ (x)J̄V (AV )

ν (0)
)

| 0〉, (3)
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where, the currents JV
µ = u4(x)γµq(x) and JAV

µ = u4(x)γµγ5q(x) are responsible for creating
the vector and axial vector quarkonia, respectively from the vacuum with the same quantum
numbers as the interpolating currents.

From the general philosophy of the QCD sum rules, we calculate the aforesaid correlation
functions in two alternative ways. From the physical or phenomenological side, we calculate them
in terms of hadronic parameters such as masses and decay constants. In QCD or theoretical
side, they are calculated in terms of QCD degrees of freedom such as quark masses and
gluon condensates by the help of operator product expansion (OPE) in deep Euclidean region.
Equating these two representations of the correlation functions through dispersion relations, we
acquire the QCD sum rules for the masses and decay constants. These sum rules relate the
hadronic parameters to the fundamental QCD parameters. To suppress the contribution of the
higher states and continuum, the Borel transformation with respect to the momentum squared
is applied to both sides of the correlation functions.

First, to calculate the phenomenological part, we insert a complete set of intermediate states
having the same quantum numbers as the interpolating currents. Performing the integral over
x and isolating the ground state, we obtain

ΠS(PS) =
〈0 | JS(PS)(0) | S(PS)〉〈S(PS) | JS(PS)(0) | 0〉

m2
S(PS) − p2

+ · · · , (4)

where · · · represents the contributions of the higher states and continuum and mS(PS) is mass of
the heavy scalar (pseudoscalar) meson. Similarly, for the vector (axial vector) case, we obtain

ΠV (AV )
µν =

〈0 | J
V (AV )
µ (0) | V (AV )〉〈V (AV ) | J

V (AV )
ν (0) | 0〉

m2
V (AV ) − p2

+ · · · , (5)

To proceed, we need to know the matrix elements of the interpolating currents between the
vacuum and mesonic states. These matrix elements are parametrized in terms of the leptonic
decay constants as:

〈0 | J(0) | S〉 = fSmS ,

〈0 | J(0) | PS〉 = fPS
m2

PS

mu4 + mq
,

〈0 | J(0) | V (AV )〉 = fV (AV )mV (AV )εµ, (6)

where fi are the leptonic decay constants of the considered bound state mesons. Using the
summation over the polarization vectors in the V (AV ) case via

ǫµǫ∗ν = −gµν +
pµpν

m2
V (AV )

, (7)

we get, the final expressions of the physical sides of the correlation functions as:

ΠS =
f2

Sm2
S

m2
S − p2

+ · · ·

ΠPS =
f2

PS(
m2

PS

mu4+mq
)2

m2
PS − p2

+ · · ·

ΠV (AV )
µν =

f2
V (AV )m

2
V (AV )

m2
V (AV ) − p2

[

−gµν +
pµpν

m2
V (AV )

]

+ · · · , (8)
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(a)

(b)

Figure 1. (a): Bare loop diagram (b): Diagrams corresponding to gluon condensates.

where to calculate the mass and decay constant in the V (AV ) case, we choose the structure gµν .
In QCD side, the correlation functions are calculated in deep Euclidean region, p2 ≪ −Λ2

QCD
via OPE where the short or perturbative and long distance or non-perturbative effects are
separated. For each correlation function in S(PS) case and coefficient of the selected structure
in V (AV ) case, we write

ΠQCD = Πpert + Πnonpert. (9)

The short distance contribution (bare loop diagram in figure (1) part (a)) in each case is
calculated using the perturbation theory, whereas the long distance contributions (diagrams
shown in figure (1) part (b)) are parameterized in terms of gluon condensates. To proceed, we
write the perturbative part in terms of a dispersion integral,

ΠQCD =

∫

dsρ(s)

s − p2
+ Πnonpert, (10)

where, ρ(s) is called the spectral density. To calculate the spectral density, we calculate the
Feynman amplitude of the bare loop diagram by the help of the Cutkosky rules, where the
quark propagators are replaced by Dirac delta function, i.e., 1

p2
−m2 → (−2πi)δ(p2 − m2). As a

result, the spectral density is obtained as follows:

ρ(s) =
3s

8π2
(1 −

(m1 ± m2)
2

s
)

√

1 − 2
m2

1 + m2
2

s
+

(m2
1 − m2

2)
2

s2
(11)

where + sign in (m1±m2) is chosen for scalar and axial vector cases and − sign is for pseudoscalar
and vector channels. Here, m1 = mu4 and m2 is either mu4 or mc(b).

To obtain the non-perturbative part, we calculate the gluon condensate diagrams represented
in part (b) of figure (1). For this aim, we use Fock-Schwinger gauge, xµAa

µ(x) = 0. In momentum
space, the vacuum gluon field is expressed as:

Aa
µ(k′) = −

i

2
(2π)4Ga

ρµ(0)
∂

∂k′

ρ

δ(4)(k′), (12)

where k′ is the gluon momentum and in calculations, we use the quark-gluon-quark vertex as:

Γa
ijµ = igγµ

(

λa

2

)

ij
, (13)

After straightforward but lengthy calculations, the non-perturbative part for each case in
momentum space is obtained as:
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Πi
nonpert =

∫ 1

0
〈αsG

2〉
Θi + Θi(m1 ↔ m2)

96π(m2
2 + m2

1x − m2
2x − p2x + p2x2)4

dx (14)

where Θi(m1 ↔ m2) means that in Θi, we exchange m1 and m2. The explicit expressions for
Θi are given in [42].

The next step is to match the phenomenological and QCD sides of the correlation functions to
get sum rules for the masses and decay constants of the bound states. To suppress contribution of
the higher states and continuum, Borel transformation over p2 as well as continuum subtraction
are performed. As a result of this procedure, we obtain the following sum rules:

m2
S(V )(AV )f

2
S(V )(AV )e

−m2
S(V )(AV )

M2 =

∫ s0

(m1+m2)2
ds ρS(V )(AV )(s) e

−
s

M2 + B̂Π
S(V )(AV )
nonpert ,

m4
PSf2

PS

(mu4 + mq)2
e

−m2
PS

M2 =

∫ s0

(m1+m2)2
ds ρPS(s) e

−
s

M2 + B̂ΠPS
nonpert, (15)

where M2 is the Borel mass parameter and s0 is the continuum threshold. The sum rules for
the masses are obtained applying derivative with respect to − 1

M2 to both sides of the above sum
rules and dividing by themselves, i.e.,

m2
S(PS)(V )(AV ) =

− d
d( 1

M2 )

[

∫ s0

(m1+m2)2 ds ρS(PS)(V )(AV )(s) e
−

s

M2 + B̂Π
S(PS)(V )(AV )
nonpert

]

∫ s0

(m1+m2)2 ds ρS(PS)(V )(AV )(s) e
−

s

M2 + B̂Π
S(PS)(V )(AV )
nonpert

, (16)

where

B̂Πi
nonpert =

∫ 1

0
e

m2
2
+x(m2

1
−m2

2
)

M2x(x−1)
∆i + ∆i(m1 ↔ m2)

π96M6(x − 1)4x3
〈αsG

2〉dx, (17)

and explicit expressions for ∆i are given in [42].

3. Numerical Results

To obtain numerical values for the decay constants and masses of the considered bound
states containing heavy fourth family from the obtained QCD sum rules, we take the mass
of the u4 in the interval mu4 = (450 − 550) GeV , mb = 4.8 GeV , mc = 1.3 GeV and
〈0 | 1

παsG
2 | 0〉 = 0.012 GeV 4. The sum rules for the masses and decay constants also contain

two auxiliary parameters, namely Borel mass parameter M2 and continuum threshold s0. The
standard criteria in QCD sum rules is that the physical quantities should be independent of the
auxiliary parameters. Therefore, we should look for working regions of these parameters such
that our results be approximately insensitive to their variations. The working regions for the
Borel mass parameter and the continuum threshold are found in [42].

As an example, let us consider the case of the bound state ū4u4. The dependence of the masses
of scalar ū4u4, pseudoscalar ū4γ5u4, vector ū4γµu4 and axial vector ū4γ5γµu4 are presented in
figures (2-5) at three different fixed values from the considered working region for the continuum
threshold. From these figures, we see a good stability of the masses with respect to the Borel
mass parameter M2. From these figures, it is also clear that the results do not depend on
the continuum threshold in its working region. The dependence of the decay constants of the
scalar ū4u4, pseudoscalar ū4γ5u4, vector ū4γµu4 and axial vector ū4γ5γµu4 are presented in
figures (6-9) also at three different fixed values of the continuum threshold. These figures also
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4

Figure 2. Dependence of mass of the scalar ū4u4 on the Borel parameter, M2 at three fixed
values of the continuum threshold. The upper, middle and lower lines belong to the values
s0 = (m1 + m2 + 3.7)2 GeV 2, s0 = (m1 + m2 + 3.5)2 GeV 2 and s0 = (m1 + m2 + 3.3)2 GeV 2,
respectively.
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Figure 3. The same as Fig. 2 but for pseudoscalar ū4γ5u4.
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Figure 4. The same as Fig. 2 but for vector ū4γµu4.

depict approximately insensitivity of the results under variation of the Borel mass parameter
in its working region. The results of decay constants also show very weak dependency on the
continuum threshold in its working region. From the similar way we analyze the mass and decay
constants of the cases when one of the quarks belong to the heavy fourth generation and the other
is ordinary bottom or charm quark. The numerical results deduced from the figures are collected
in Tables I-VI for three different values of the mu4, namely mu4 = 450 GeV , mu4 = 500 GeV and
mu4 = 550 GeV . The errors presented in these tables are only due to the uncertainties coming
from the determination of the working regions for the auxiliary parameters. Here, we should
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Figure 5. The same as Fig. 2 but for axial vector ū4γ5γµu4.
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Figure 6. Dependence of the decay constant of the scalar ū4u4 on the Borel parameter, M2 at
three fixed values of the continuum threshold. The upper, middle and lower lines belong to the
values s0 = (m1+m2+3.7)2 GeV 2, s0 = (m1+m2+3.5)2 GeV 2 and s0 = (m1+m2+3.3)2 GeV 2,
respectively.
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Figure 7. The same as Fig. 6 but for the decay constant of pseudoscalar ū4γ5u4.

stress that the obtained results in Tables I-VI are within QCD and do not include contributions
coming from the Higgs couplings to the ultra heavy quarks. Such contributions to the binding
energy have been calculated in [19], where it is shown that these contributions are more than
several GeV in the case when both quarks belong to the fourth family. The Higgs contribution
calculated in [19] is proportional to the product of two quark masses. When we replace one of
the ultra heavy quarks by b or c quark, the binding energy obtained in [19] reduces to a value
which is less than the QCD sum rules predictions in the present work. However, when both
quarks belong to the fourth family, the binding energy obtained in the present work is very small
comparing to the Higgs corrections in [19].
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Figure 8. The same as Fig. 6 but for the decay constant of vector ū4γµu4.
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Figure 9. The same as Fig. 6 but for the decay constant of axial vector ū4γ5γµu4.

Table 1. The values of masses of different bound states obtained using mu4 = 450 GeV .

mass (GeV) u4c̄ u4b̄ u4ū4

Scalar 453.01 ± 0.25 456.45 ± 0.25 901.68 ± 0.50
Pseudoscalar 452.62 ± 0.15 455.95 ± 0.15 901.12 ± 0.30
axial vector 453.00 ± 0.25 456.44 ± 0.25 901.70 ± 0.50

vector 452.62 ± 0.15 455.94 ± 0.15 901.13 ± 0.30

At the end of this part, we would like to mention that the obtained QCD sum rules in the
present work reproduce the masses and decay constants of the ordinary b̄b(c̄c) states when we
set u4 → b(c). The obtained numerical values in this limit are in a good consistency with the
existing experimental data [43] and QCD sum rules predictions [40, 41].

To sum up, unlike the top quark, the heavy fourth generation of quarks that have sufficiently
small mixing with the three known family SM quarks form hadrons. Considering the arguments
mentioned in the text, the production of such bound states will be possible at LHC. Hoping this
possibility, we calculated the masses and decay constants of the bound state objects containing
two quarks with either both quarks from the SM4 or one from heavy fourth generation and the
other from observed SM bottom or charm quarks in the framework of the QCD sum rules. The
obtained numerical results approach to the known masses and decay constants of the b̄b and c̄c

heavy quarkonia, when the fourth family quark is replaced by the bottom or charm quark.
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Table 2. The values of masses of different bound states obtained using mu4 = 500 GeV .

mass (GeV) u4c̄ u4b̄ u4ū4

Scalar 502.91 ± 0.28 506.36 ± 0.28 1001.61 ± 0.55
Pseudoscalar 502.52 ± 0.17 505.86 ± 0.17 1001.04 ± 0.33
Axial Vector 502.91 ± 0.28 506.35 ± 0.28 1001.60 ± 0.55

Vector 502.57 ± 0.17 505.85 ± 0.17 1001.04 ± 0.33

Table 3. The values of masses of different bound states obtained using mu4 = 550 GeV .

mass (GeV) u4c̄ u4b̄ u4ū4

Scalar 552.82 ± 0.31 556.27 ± 0.31 1101.67 ± 0.60
Pseudoscalar 552.43 ± 0.18 555.78 ± 0.18 1101.11 ± 0.36
Axial Vector 552.81 ± 0.31 556.25 ± 0.31 1101.68 ± 0.60

Vector 552.42 ± 0.18 555.77 ± 0.18 1101.12 ± 0.36

Table 4. The values of decay constants of different bound states obtained using mu4 = 450 GeV .

Leptonic decay constant f (GeV) u4c̄ u4b̄ u4ū4

Scalar 0.12 ± 0.01 0.15 ± 0.02 0.28 ± 0.03
Pseudoscalar 0.17 ± 0.01 0.34 ± 0.02 4.01 ± 0.20
Axial Vector 0.12 ± 0.01 0.15 ± 0.02 0.28 ± 0.03

Vector 0.17 ± 0.01 0.34 ± 0.02 4.01 ± 0.20

Table 5. The values of decay constants of different bound states obtained using mu4 = 500 GeV .

Leptonic decay constant f (GeV) u4c̄ u4b̄ u4ū4

Scalar 0.11 ± 0.01 0.13 ± 0.01 0.26 ± 0.03
Pseudoscalar 0.15 ± 0.01 0.30 ± 0.02 3.91 ± 0.19
Axial Vector 0.11 ± 0.01 0.13 ± 0.01 0.26 ± 0.03

Vector 0.15 ± 0.01 0.29 ± 0.02 3.91 ± 0.19

Table 6. The values of decay constants of different bound states obtained using mu4 = 550 GeV .

Leptonic decay constant f (GeV) u4c̄ u4b̄ u4ū4

Scalar 0.10 ± 0.01 0.12 ± 0.01 0.26 ± 0.03
Pseudoscalar 0.14 ± 0.01 0.27 ± 0.01 4.19 ± 0.20
Axial Vector 0.10 ± 0.01 0.12 ± 0.01 0.26 ± 0.03

Vector 0.14 ± 0.01 0.27 ± 0.01 4.18 ± 0.20
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