
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 212.174.144.130

This content was downloaded on 15/12/2015 at 16:04

Please note that terms and conditions apply.

gDsDK*0 and gBsDK*0 coupling constants in QCD sum rules

View the table of contents for this issue, or go to the journal homepage for more

2012 J. Phys.: Conf. Ser. 348 012011

(http://iopscience.iop.org/1742-6596/348/1/012011)

Home Search Collections Journals About Contact us My IOPscience

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dogus University Institutional Repository

https://core.ac.uk/display/47258089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/348/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


gDsDK∗
0
and gBsBK∗

0
coupling constants in QCD sum

rules
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Abstract. In the present study, we calculate the strong coupling constants gDsDK∗
0
(800) and

gBsBK∗
0
(800) within the three-point QCD sum rules approach. We evaluate the correlation

function of the considered vertices taking into account both D[B] and K∗
0 (800) mesons as off-

shell states.

1. Introduction
In low energies, it is difficult to obtain confident theoretical results using the perturbation
theory since the interaction between quarks and gluons becomes large in this scale. Therefore,
we need some non-perturbative approaches to describe low energy dynamics of hadrons clearly.
Among these dynamics, the strong coupling constants of mesons are closely related to their
strong interactions. Using the QCD sum rules method as one of the powerful and applicable
non-perturbative approaches [1], we can determine these coupling constants more accurately. In
this work, we calculate the strong coupling constants of DsDK∗

0 (800) and BsBK∗
0 (800) vertices.

Calculation of such coupling constants can help us in understanding the nature of the strong
interaction among the participating particles.

2. QCD Sum Rules for the Strong Coupling Constants
In this section, we obtain QCD sum rules for the strong coupling constants associated with
the Ds −D −K∗

0 (800) and Bs − B −K∗
0 (800) vertices. For this aim, the following three-point

correlation function for D(B) off-shell case is studied:

ΠD(B) = i2
∫

d4x d4y eip
′·x eiq·y⟨0|T

(
ηK

∗
0 (x) ηD(B)(y) ηDs(Bs)†(0)

)
|0⟩, (1)

where T indicates the time ordering product, q = p− p′ is the momentum of the off-shell state
and p′ is the momentum of the final on-shell state. The interpolating quark currents, which
produce the considered mesons from the vacuum with the same quantum numbers as these
currents can be written in terms of the quark field operators as shown in [2]. In the QCD sum
rules method, we calculate the related correlation function in two different ways as outlined
in [2]. The strong coupling constants are obtained equating these two different presentations
via dispersion relation. To suppress contributions of the higher states and continuum, we will
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apply double Borel transformation with respect to the momentum squared of the initial and
final on-shell states to both sides of the obtained sum rules.

First, we start to the calculation of the physical side of the concerned correlation function.
Inserting a complete set of intermediate hadronic states with the same quantum numbers as
interpolating quark currents into the correlation function, we obtain:

ΠD(B) =
⟨0|ηK∗

0 |K∗
0 (p

′)⟩⟨0|ηD(B)|D(B)(q)⟩⟨K∗
0 (p

′)D(B)(q)|Ds(Bs)(p)⟩⟨Ds(Bs)(p)|ηDs(Bs)|0⟩
(q2 −m2

D(B))(p
2 −m2

Ds(Bs)
)(p′2 −m2

K∗
0
)

+ ..., (2)

The matrix elements shown in the above equation can be parameterized in terms of leptonic

decay constants and strong coupling constant g
D(B)
DsDK∗

0 (BsBK∗
0 )
(q2) (see [2] for details). The final

physical representation of the correlation function in the case of D(B) off-shell is obtained as:

ΠD(B) = g
D(B)
DsDK∗

0 (BsBK∗
0 )
(q2)

fK∗
0
mK∗

0

fD(B)m
2
D(B)

mc(b)+mu

fDs(Bs)m
2
Ds(Bs)

mc(b)+ms

2 (q2 −m2
D(B))(p

′2 −m2
K∗

0
)(p2 −m2

Ds(Bs)
)
(m2

Ds(Bs)
+m2

K∗
0
− q2)

+ ...., (3)

Now, we concentrate to calculate the QCD or theoretical side of the considered correlation
function. The correlation function in QCD side is written in terms of the perturbative and non-
perturbative parts. The perturbative part is defined in terms of double dispersion integral as
shown in [2]. In order to obtain the spectral density, we need to calculate the bare loop diagram
for D(B) off-shell presented in [2]. As a result, the spectral density is obtained as follows:

ρD(B)(s, s′, q2) =
Nc

2 λ1/2(s, s′, q2)

{
ms

(
mu(ms +mu)− q2

)
− smu

− mc(b)

(
(ms +mu)

2 − s′ −mc(b)(ms +mu)
)}

, (4)

Now, we proceed to calculate the nonperturbative contributions in QCD side. We consider the
quark-quark and quark-gluon condensate diagrams presented in [2]. As a result, we obtain:

ΠD(B)
nonper =

⟨ss⟩
2

{2mc(b)mu −m2
c(b) + q2

rr′
− 1

r
− 1

r′
+

m2
0(4mc(b)mu −m2

c(b) + q2)

4r2r′

− m2
0

4rr′
− m2

0

4r2
+

m2
0(m

2
c(b) − 4mc(b)mu − q2)

4rr′2
+

m2
0

4r2
+

m2
0

4rr′

}
, (5)

Finally, after applying the double Borel transformation, the following sum rules for the
considered coupling constant is obtained as:

g
D(B)
DsDK∗

0 (BsBK∗
0 )
(q2) =

2(q2 −m2
D(B))(mc(b) +mu)(mc(b) +ms)

m2
Ds(Bs)

m2
D(B)mK∗

0
fDs(Bs)fD(B)fK∗

0
(m2

Ds(Bs)
+m2

K∗
0
− q2)

e
m2

Ds(Bs)

M2

× e

m2
K∗

0

M′2
[
− 1

4π2

∫ s0

(mc(b)+ms)2
ds

∫ s′0

(ms+mu)2
ds′ρD(B)(s, s′, q2)θ[1− (fD(B)(s, s′))

2
]e

−s

M2 e
−s′

M′2

+ B̂ΠD(B)
nonper

]
, (6)

Similarly, one can calculate the coupling constant for K∗
0 (800) off-shell case.
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3. Numerical analysis
To obtain the behavior of the coupling constants in terms of q2, we should look for working
regions for Borel mass parameters (M2 and M ′2)and continuum thresholds (s0 and s′0) (see [2]
for details). We use the following Boltzmann function to find the Q2 behavior of the considered
strong coupling constants:

g(Q2) =
[
A1 +

A2

1 + exp[Q
2−x0

∆x ]

]
[GeV −1]. (7)

where, Q2 = −q2 and the parameters A1, A2, x0, ∆x are given in Table 1.

Table 1. Parameters appearing in the fit function of the coupling constants for DsDK∗
0 (800)

and BsBK∗
0 (800) vertices.

A1 A1 x0 ∆x

g
(D)
DsDK∗

0 (800)
(Q2) 3.468 -2.741 8.067 4.995

g
(K∗

0 (800))

DsDK∗
0 (800)

(Q2) -0.024 0.772 5.723 1.257

g
(B)
BsBK∗

0 (800)
(Q2) 4.151 -1.932 13.842 12.149

g
(K∗

0 (800))

BsBK∗
0 (800)

(Q2) -0.017 0.547 5.431 1.121

Table 2. Value of the gDsDK∗
0 (800)

and gBsBK∗
0 (800)

coupling constants in GeV −1 unit.

Q2 = −m2
D Q2 = −m2

K∗
0 (800)

Average

gDsDK∗
0 (800)

0.97± 0.02 0.74± 0.05 0.85± 0.08

Q2 = −m2
B Q2 = −m2

K∗
0 (800)

Average

gBsBK∗
0 (800)

2.28± 0.18 0.53± 0.09 1.41± 0.21

The final result for each coupling constant is obtained taking the average of the coupling
constants obtained from two different off-shell cases.
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