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Mesons Spectral Functions at Finite Temperature
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Abstract. We investigate the thermal spectral densities for (pseudo)scalar and vector currents
in the framework of the real time formalism when mass of two quarks are different. Such
spectral densities are necessary for the phenomenological investigation of in-medium properties
of hadrons. We use the quark propagator at finite temperature and calculate annihilation and
scattering parts of spectral densities for above mentioned currents. The investigations show
that the thermal contributions are significantly important. The obtained results at T → 0 limit
are in good consistency with the vacuum results.

1. Introduction
One of the most important subjects of the QCD physics is the phenomenological investigation of
in-medium modifications of hadrons. Heavy-ion collisions and reactions have been elementarily
used to extract experimental information on in-medium properties of hadrons. Also, there
are a lot of different theoretical methods which have been widely used to for this purpose
in literature. These methods are effective hadronic models, chiral perturbation theory, lattice
theory, low-density theorems, quark models and QCD sum rules. QCD sum rules first introduced
by Shifman, Vainshtein and Zakharov [1], and its extension version to finite temperature [2] have
been one of the most efficient approaches among these methods. QCD sum rule is obtained by
equating the QCD and the phenomenological representations of the correlation function and
this method establishes a connection between QCD vacuum structure and hadron properties
[3]. Determination of correlation function by using dispersion relations is the first step in QCD
sum rules and it is necessary to evaluate the spectral density of mentioned current for this
aim. Therefore determination of spectral densities is the main tool of QCD sum rules method.
Spectral functions in different cases were studied in the literature [4]-[14].

In this paper, we study the thermal spectral densities for different currents at finite
temperature. We calculate the annihilation and scattering parts of the spectral densities for
(pseudo)scalar and vector currents for m1 ̸= m2 case using the quark propagator in the real time
formulation of the thermal field theory. The investigations show that the thermal contributions
are significantly important. Also, we show that our obtained results at T → 0 limit are in good
consistency with vacuum results.

2. Thermal spectral densities for various currents
The thermal QCD sum rule approach is based on the evaluation of thermal correlator of the
interpolating current J(x) = q̄1(x)Γq2(x). Two-point thermal correlation function is given by:
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Π
(
q, T

)
= i

∫
d4x eiq·xTr

(
ρ T

(
J(x)J†(0)

))
, (1)

where T denotes the time ordered product and ρ = e−βH/Tre−βH is the thermal density matrix
of QCD at temperature T = 1/β. In interpolating current J(x), Γ = I or iγ5 for scalar and
pseudoscalar particles, respectively and Γ = γµ as for vector particles.

Firstly, we consider the thermal spectral density for pseudo(scalar) particles. Π(q, T ) for
these currents can be written in momentum space as:

Π(q, T ) = 4iNc

∫
d4k

(2π)4
(k2 − k · q −m1m2)D(k,m1)D(k − q,m2), (2)

where, D(k) is expressed as D(k,m) = 1/(k2 − m2 + iε) + 2πin(|k0|)δ(k2 − m2) and in this
propagator n(x) = [exp(βx)+ 1]−1 is the Fermi distribution function. Carrying out the integral
over k0, we obtain the imaginary part of the Π(q, T ) as ImΠ(q, T ) = L(q0) + L(−q0), where

L(q0) = −Nc

∫
dk

8π2

ω2
1 − k2 + k · q− ω1q0 −m1m2

ω1ω2

[
A(n1, n2)δ(q0 − ω1 − ω2)

−B(n1, n2)δ(q0 − ω1 + ω2)
]
. (3)

Here m1 and m2 are quark masses, ω1 =
√
k2 +m2

1 , ω2 =
√
(k-q)2 +m2

2 , n1 = n(ω1),

n2 = n(ω2), A(n1, n2) = (1− n1)(1− n2) + n1n2, B(n1, n2) = (1 − n1)n2 + (1 − n2)n1 and the
plus and minus signs in front of m1, m2, correspond to the scalar and pseudoscalar particles,
respectively. The term, which does not include the Fermi distribution functions, shows the
vacuum contribution. Terms including the Fermi distributions depict medium contributions.
The delta-functions in the different terms of Eq. (3) control the regions of non-vanishing
imaginary parts of Π(q, T ) , which define the position of the branch cuts. Taking into account

δ(q0 − ω1 − ω2) =
ω2

|k||q|
δ
(
cos θ +

q2 − 2q0ω1

2|k||q|

)
(4)

expression (here θ is angle between of k and q momentums) and carrying out some
transformations, the annihilation and scattering parts of spectral density is found as:

ρa,pert(s, T ) = ρ0(s)
[
1− n

(√s

2

(
1 +

m2
1 −m2

2

s

))
− n

(√s

2

(
1− m2

1 −m2
2

s

))]
, (5)

for (m1 +m2)
2 ≤ s ≤ ∞,

ρs,pert(s, T ) = ρ0(s)
[
n
(√s

2

(
1 +

m2
1 −m2

2

s

))
− n

(
−

√
s

2

(
1− m2

1 −m2
2

s

))]
, (6)

for 0 ≤ s ≤ (m1 −m2)
2, with m1 ≥ m2. Here, ρ0(s) is the spectral density in the lowest order

of perturbation theory at zero temperature and it is given by

ρ0(s) =
3

8π2s
q2(s)vn(s), (7)

where q(s) = s− (m1 −m2)
2 and v(s) =

(
1− 4m1m2/q(s)

)1/2
. Here n = 3 and n = 1 for scalar

and pseudoscalar particles, respectively.
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Similarly, we consider thermal spectral density for vector mesons. The correlation function of

vector current in thermal field theory is given by Lorentz invariant functions, Πl

(
q2, ω

)
= Π2/q

2

and Πt

(
q2, ω

)
= −1

2(Π1 + q2Π2/q
2). Here Π1 = gµνΠµν , Π2 = uµΠµνu

ν , q2 = ω2 − q2, ω = u · q
and uµ is four-velocity. Carrying out the integral over k0, we obtain the imaginary part of the
Π2(q, T ) as ImΠ2 = K(q0) +K(−q0), where

K(q0) = Nc

∫
dk

8π2

k · q+ q0ω1 − 2ω2
1

ω1ω2

×
[
A(n1, n2)δ(q0 − ω1 − ω2)−B(n1, n2)δ(q0 − ω1 + ω2)

]
. (8)

Using Eq. (4) and carrying out the integral over angle θ, the annihilation and scattering
parts of thermal spectral densities for vector current at nonzero momentum can be written as:

ρl,a(s, |q|) =
3

16π2

∫ ν

−ν
dx(1− x2)

[
1− 2n+(s, |q|)

]
, (9)

ρl,s(s, |q|) =
3

16π2

∫ ∞

ν
dx(1− x2)

[
n+(s, |q|)− n−(s, |q|)

]
, (10)

where n+(s, |q|) = n
[
1
2(|q|x) +

√
s
]
and n−(s, |q|) = n

[
1
2(|q|x) −

√
s
]
. For m1 = m2, zero

temperature and |q| → 0 limit cases, Eqs. (5), (6), (9) and (10) are good consistency with the
results existing in the literature [14]-[19]. Also, the investigation of obtained results show that
thermal contributions are significantly important and therefore the thermal contributions must
be taken into account in analysis of mesons properties in medium and interpretation of heavy
ion collision experiments.
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