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Abstract

One- and two-dimensional discrete solutions of Poisson, Laplace, and wave equations are given in this tutorial. The terms
wave propagation and numerical propagation are discussed. Simple MA TLA B scripts are also supplied.
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1. Introduction

T he wave equation is a second-order linear partial differential
equation that describes the propagation of a variety of elec-

tromagnetic, acoustic, and fluid waves. The Poisson/Laplace
equation, on the other hand, is a partial differential equation that
describes the behavior of electric, gravitational, and fluid poten-
tials. They describe some phenomena in electrodynamics and elec-
trostatics, respectively. What are the fundamental differences
between wave and Poisson/Laplace equations? What do they repre-
sent physically or numerically? What type of boundary conditions
do they require? Both of them can be put into discrete and iterative
forms, and can be solved numerically. People who simulate both
the wave equation and Laplace equations use the term numerical
propagation. To what does the termn numerical propagation refer
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when waves or potentials are of interest? What do we mean when
we say "wave propagation," "numerical wave propagation," or
"numerical propagation?" This tutorial simply covers the answers
to these questions, together with a few interesting MA TLAB scripts
and examples.

2. Taylor's Expansion and Finite
Difference Discretization

of the Differential Operator

Any continuous, infinitely differentiable function f (x) can

be represented as an infinite sum of terms, calculated from its
derivatives at a single point, x0 , as [1]
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f~ ~~ (-O (Xdff(X)xo):ý1ý (X _XO)2 d 2 f (X0)
fIx ! xo) 2 ! dy

+(X - X0 )' d'f (xo) +(Xx x)n dnf (x0)
3! dx3 n! dXn

This sum is called a Taylor expansion, and is used to replace the
mathematical derivative with a finite-difference approximation. If

-0=0, then the sum is called the MacLaurin series. A Taylor

expansion is used to approximate a function with a given accuracy.
If x is close to x0, then a few terms would be adequate within a

specified accuracy (e.g., less than a relative error of 1%-2%). More
and more terms would be required for the same specified accuracy
as x goes further and further away from x0 .

A Taylor expansion is also used in the numerical solution of
ordinary differential equations (ODE). For example, analytical
exact and four-term numerical solutions of the ordinary differential
equation

dy/dx = -2x --y

with y (0) -1 are

yx -3e- - 2x+ 2

and

y (x) = I+ Ax -3AX2/2 + AX3/2.

The numerical solution that is obtained by using y(0), y'(0),

y"(0), Y"'(0) ,etc., gives

YN (0.) =~ -0.915,

YN (0.2) =-0.864,

YN (0.5 ) = 0.815,

which may easily be obtained from Equation (1) if Ax =x - x 0 .

Here, O(Ax) refers to the order of the error (the most significant

term of the residue). This is called the forward-difference scheme,
because only points x0 and x + x0are used. Similarly,

f W f(YO-fAX0 X + 0(Ax),

f X)f(XO +A.X) -f (xo -Ax) O(Ax 2),
2Ax

(4)

(5)

are the backward- and central-difference schemes, respectively.
The central-difference scheme uses one point more, but the error is
one Order less than for the forward- or backward-difference
schemes. The order of the error may be further decreased if the
number of points is increased.

Similarly, finite-difference representations of second deriva-
tives are

f (xo + 2Ax) -2f (xo -Ax) + f(xo)
f 0 (X0) =Ax2

f (xo +Ax) -2f(xo) +f(xo -Ax)
f, (X0 ) -Ax2

(6)

(7)

for the forward- and central-difference approximations, yielding

errors of the orders of 0O(Ax) and 0O( AX2), respectively.

3. PoissonlLaplace/Wave Equations

The elliptic-type Poisson equation is a partial differential
equation widely used to represent physical problems in electrical
and mechanical engineering, theoretical physics, etc. It represents
various physical problems: the temperature distribution in thermo-
dynamics, gravitational fields and a vibrating string in mechanics,
the potential distribution in electrostatics, etc. It is given as

V2 U (x, y, Z) = f(X, y, Z), (8)

while the analytical solutions are

YA (0, 1) = 0.915,

where, in three-dimensional (3D) Cartesian coordinates, the

Laplacian operator, V 2(or, as is widely used, A) is given as

YA (0.2)=- 0.856,

YA (0.5) = 0.810.

The mathematical definition of a derivative is given as

f'(xo) df I _=_ f(X0 +A,,) f (X0) (

d, 0o Ax

Numrerically, Equation (2) can be replaced with

f'(x 0) -= f (X0+ )f f(X0)+ o(Ax), (3
Ax

2 2 a2 a2

2 l 2 ay 2 a9 (9)

If the right-hand side of Equation (8) is the Dirac delta function,

.S(x -x') (y -y') (z -z')., then the Green's function,

g k ,y z; X',y',Z'), replaces the function U . The Poisson equation

is not a basic equation, but it follows directly from Maxwell's
equations if all time derivatives are zero, i.e., for electrostatic con-
ditions. In electrostatics, the Poisson equation expresses Gauss's
Law: U is the scalar potential function, and is obtained from the
solution of Equation (8) under a given charge density distribution
function, / (i.e., f - p/e, where p and E are the volume

charge density and permittivity of the region, respectively). On the
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other hand, in elasticity, U in one dimension denotes the trans-
verse displacement along the direction of a stretched string under a
nonzero tension, T, with the right-hand side of Equation (8) being
f = w/T, and with w being the force density. Equation (8)
becomes the Laplace equation for vanishing f .

1-0

0.0
The wave equation,

(10)

represents waves (spherical in three dimensions, cylindrical in two
dimensions) in the time domain in electromagnetics, and

c = 1/ cou is the velocity of light in free space. Note that for a

specified geometry, Equation (8) represents a boundary-value
problem (BVP), but Equation (10) is an initial-boundary value
problem (IBVP).

4. Iterative Solutions and
MATLAB-Based Simulators

The Poisson, Laplace, and wave equations can be solved
numerically. One way is to discretize and put them into iterative
forms.

4.1 PoissonlLaplace Equation

Suppose the Poisson equation is considered in one dimension
along the z direction in a finite region, 0 < z <ý-Z__, The differential

equation then reduces to

(11)
dz2 (zWfz,

and can be uniquely solved if the boundary conditions, U (0) and

U(Zm,), are supplied. The geometry of the problem is given in

Figure 1. The finite-difference solution of Equation (11) is

U (k) = -1[U (k +1) + U(k -1) -f(k)], (12)

and it is applied to all inner nodes (i.e., k-=2,3,4,..,KE -1, KE

being the number of nodes). This states that the potential value at a
node is determined by the values at two neighboring nodes and a

given charge distribution. The terminating values, U (1) and

U (KE), should be supplied as boundary conditions. In two dimen-

sions, Equations (11) and (12) become

-1.0

-2.0 I

Potential

r

-J
S~ - S S S S S ~

0.5
Z-Axis

1.0

Figure 2. A numerical solution of the Laplace equation for
Zin 1,KE =100 U(0 = 2, Ul) 1, = 2, Y5103.

a2+a2 IUI,.Y)=f(.X,Y),Tx2 aY
(13)

(14)

This states that the potential at a node can be calculated from the
potentials at four neighboring nodes plus a given charge distribu-
tion. Figure 2 shows the results of a Laplace problem with Z.. -=1,

U (0) = -2, and U (1) = 1. This means that the potentials at the left

and right are -2V and lV, respectively. The problem is to find the
U (x) function that satisfies these boundary conditions and Equa-

tion (11). Initially, all the inner nodes are assumed zero, and Equa-
tion (12) is applied over and over again, in an infinite loop. The
iterations cause the boundary potentials to propagate node by node
from both ends. As the number of iterations increases, the potential
values at the inner nodes change because of the contributions from
the left and right then converge. The difference between each
iteration and the previous iteration becomes less and less, and
finally settles to a fixed value. A kind of convergence criterion,
such as "the iterations may be terminated if the sum of the differ-
ences between two consecutive iterations of all nodes is less than a
given value," may be set. In one dimension, this is equivalent to
setting

KE

EjnZ U'U •,
k=1

(15)

where ), is the total error limit. The arrows in Figure 2 show the

propagation of the potential values at the nodes as the number of
iterations increases. The thick line is the final potential distribution
that satisfies a given error criteria.

2

U

=0 Z=ZýFigure 3 shows the progress of iterations for the Poisson

=0Z equation for the same space and boundary conditions given in Fig-

I II ure 2, but with a Gaussian type of charge distribution. The dots

(1) (2) (3) (KE) show the given charge distribution. The left and right vertical axes
(1) (2) (3) ... (KE) correspond to potential and normalized charge densities (i.e.,

Figure 1. A one-dimensional, finite, z space. p, /,-), respectively. Figure 4 shows another simulation result for
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Charge
DensitytPotential1.0

0.0 ...

-1.0

-2.0 p
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0.0

1ý00.5
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Figure 3. A numerical solution of the Poisson equation for

Zml =I KE-=l00, U (0) =--2, U (1) =1, yr=14 6 , Y:510O 3 .The

dots show the charge distribution.

az at
a Hy -,o a E,(16)

Note that the second-order uncoupled wave equation, Equa-

tion (10), is directly obtained from Equation (16) and (17) if, for

example, one of them is further differentiated with respect to z and

they are combined to eliminate either E., (z, t) or Hy (z, t) . The

unique solution of Equations (16) and (17) can be given when the

initial and boundary conditions are specified.

The iterative equations for these coupled first-order plane-

wave representations, discretized according to the finite-difference
scheme, are

(1 8a)

(1 8b)
Poenia H (k) = H yn'(k) -At [E n, (k) - E .- (k-I1)]

Ch
De

1L03

05 1.0
Z-Axis

Figure 4. The convergence of the Poisson equation for Zm =I,

KE-.l00, U(0)=-2, U(1)=1, 7=256, r<ý10 3'. The dots

show the charge distribution.

the Poisson equation for the same parameters except the charge

distribution. Again, the dots show the normalized charge distribu-

tion, and the left and right vertical axes correspond to the potential

and charge densities, respectively. Finally, two examples for the

solution of the Poisson equation in two dimensions, computed

from Equation (14), are illustrated in Figure 5.

4.2 Wave Equation

Now, let us take the wave equation into account. Assume a

plane wave, having E, (z, t) and Hy (z, t) , propagating along the z

direction in a finite region 0 <ý z <5Z_ and for tŽý 0 (actually, the

electric and magnetic fields have both x and y components in this

case, but this assumption further simplifies the equations without

loosing generality). The two partial differential (first-order coupled

wave) equations under this assumption, derived directly from

Maxwell's equations, are
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arge where z =kAz and I=nAt (k and n are integers). Note that the

isity classical Yee cell (leap-frog approach) is used here [2]. Therefore,

the electric and magnetic fields along z are located Az/2 apart, and

the magnetic fields are updated At/2 later than the electric fields.

-. 2 Electric (magnetic) fields in the next time step need only electric

-ý002 (magnetic) fields and two neighboring magnetic (electric) fields at

the current time step.

Iterative equations are open-form representations, and are

therefore conditionally stable: At and Az can not be specified

arbitrarily. The physical restriction of the stability condition is that

the discrete time and spatial steps cannot be specified independ-

ently. Here, Courant stability applies: once Az is determined, At is

chosen such that At: • Az/c. Finally, Az is determined according to

the numerical dispersion effect: the highest frequency component

should be discretized with a sufficient number of samples (e.g.,
AZ! <2in/110).

The source in Equation (18) can be injected in time using

E.' (k, ) = E.' (k,) + g(.), where g (n) is any suitable pulse func-

tion and k, is the source node. In general, the Gaussian pulse is

used

g (n)-= exp{ _(j no)2} (19)

with delay and pulse-width parameters no and nr, respectively.

Pulse propagation at different instants of time along a 100-node

discrete z space with k, - 35 and nT = 25 is pictured in Figure 6.

As observed, the injection starts as a kind of impulse, then a

Gaussian-shaped pulse is formed and splits into two leftward (-z)

and rightward (+z) propagating pulses. The space is terminated

with a perfectly reflecting boundary at the left and right. The pulses

are therefore totally reflected with the opposite phase when they hit

the boundaries. (Note that a Gaussian pulse has low-pass filter

characteristics: i.e., its frequency spectrum extends from dc to a

maximum frequency that is inversely proportional to the pulse

249

2.0

1.0

0.0

-1.0

-2.0

Eý',' (k) = E,,n, -1 (k) - At Hn (k) - Hyn (k - 1)
COAZ I Y I



4W W

Figure 6. Plane-wave pulse propagation at different time
instants (the pulse was injected in time and PEC boundaries
were used at the left and right ends).

length. This is strange, because ths pulse is propagating in air: dc
cannot propagate, it can only he transmitted via transmission lines.
This is why we call plane waves nonphysical, theoretical waves).

Alternatively, an initial spatial field distribution may be
given. For example, the Gaussian-pulsed plane wave may be
located in space before the time iteration starts:

E,' (k) exp{ ~Kg} (20a)

(20b)

q0 = /io /,,o= 377 Q.

Here, z, =k,Az is the location of the pulse maximum, and

Zg =Kg Az is the extent of the spatial pulse. Note that a Gaussian

pulse in space is injected into both the electric-field and magnetic-
field components according to Ohm's Law. This guarantees one-
way propagating pulsed plane-wave injection. The ± signs in Equa-
tion (20b) represent pulsed plane waves propagating towards the
right and left, respectively. (Run the code listed in Appendix B
with both signs separately and observe the right and left propagat-
ing waves injected via Equation (20). You'll see that the right-
propagating pulsed plane wave is injected without any numerical
noise, but the left propagating pulse has some residuals. Since
iterations in the code are performed from left to right, the nature of
a pulse propagating from left to right is coherent with the structure
of the code.)

The second-order form for this plane-wave representation
for example, for the electric-field component -is

a 2 1 a2~
(21)

The iterative form discretized according to the finite-difference
scheme is

(22)
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where p = cAt/Ax. Second-order partial derivatives in Equa-
tion (21) necessitate two boundary conditions and two initial con-
ditions. The implementation of boundary conditions in both first-
order coupled forms, Equations (16) and (17), and the second-order
decoupled form, Equation (21), are the same, but the initial condi-
tions are not: in Equation (22), both E, (z, 0) and aE, (z, O)/8t

should be given. As observed in Equation (22), E,,'+ is iteratively

calculated from E,' and Ent-. Because of this, n starts from two.

The first time step is calculated separately from

Time injection of the pulsed plane wave is quite different in the
second-order wave equation. The pulsed plane wave may be
injected from the left or right (i.e., as E,(0,t)-g(t)) or

Ex (Zm, t) - g (t) ). Alternatively, the pulsed plane wave may be

located in space at the beginning. In this case, Equation (20a) will
be used initially at the first time step, and the once-differentiated
Gaussian function

g'(z): 2 t z-zs exp{ L Z9 ý2}
(24)

will be used in the next (second) time step. The rest is handled via
iterations in Equations (22). These are all given in the MATLAB
script listed in Appendix C.

Note that Equation (21) may also be used to model the
oscillations of a taut string, stretched between two fixed points
( 0 <ý z •! Z,,1), when Eý, (z, t) is replaced with the vertical displace-

ment function, U (z, t), and c = Tg/ w ( T, w, and g are the force,

weight for unit string length, and the gravitational acceleration).
The examples presented above show that the term numerical
propagation in electrostatics, in the iterative forms of the discrete
Poisson and Laplace equations, refers to the convergence of the
solution and not the electromagnetic wave propagation. On the
other hand, in electrodynamics, numerical propagation refers to
real wave propagation, since Maxwell's equations in their general
form model electromagnetic waves.

4.3 MATLAB-Based FDTDID Package

A nice educational package has been developed for the
illustration of one-dimensional pulsed plane-wave propagation, and
to observe its frequency spectrum. The front panel of the MA TLAB-
based FDTDJD virtual tool (visit http://www3.dogus.edu.tr/Isevgi
for this and many virtual tools, previously published in the Maga-
zine) is quite similar to those of the TDRMeter and MGL-2D vir-
tual tools [3, 4]. The front panel of this virtual tool is given in Fig-
ure 7. The propagation medium may be free space, partially or fully
dielectric-filled, finite, semi-infinite, or infinite. Perfectly reflecting
and open boundary terminations may be chosen at the left. An
impedance-type boundary condition is also implemented, in addi-
tion to these two, at the right termination.
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0 02

Figure 5a. The solution of a two-dimensional Poisson equation
for a 1 square meter plate (100 x100 space), for the boundary
values of (left, right, top, bottom) (1, 1, - 2, -2 ), y = 942, with

similar Gaussian charge distributions inside (y:<10-3).

Figure 9. The lowest four modes and their null points.
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Figure 5b. The solution of a two-dimensional Poisson equation
for a 1 square meter plate (lO0xlOO space), for the boundary
values of (left, right, top, bottom) (0, 0, 1, -2), y = 865, with

similar Gaussian charge distributions inside (y: •10-3").
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directly traveled between the source and observer. The others were
once-reflected, twice-reflected, etc., pulses. The reader may easily
identify each pulse in this figure.

Recording this time history and transforming to the frequency
domain yields the resonance characteristics of the region. Any
closed region forms a resonator. In one-dimensional electromag-
netics, the resonance frequencies (i.e., eigenvalues) can be calcu-
lated analytically from ff,I), =150n / Z. [MHz], where n is an inte-
ger and Zn is the length of the finite region. These resonances

belong to the modes (i.e., eigenfunctions), given as

(25)

Figure 7. The front panel of the MATLAB-based FDTD1D vir-
tual tool.

Figure 8. The signal as a function of time recorded at the speci-
tied observation point and its frequency spectrum, showing the
resonances.

The front panel is divided horizontally into two. Parameters,
grouped and located into four blocks, are supplied at the top; the
electric field as a function of range is displayed at the bottom. The
medium parameters are supplied in the first blocks. The user also
specifies the termination conditions at the left and right within this
block. The second-left block is reserved for the slab, which can be
located vertically in the region, and the third block is used for the
source specification. The source may be a Gaussian-pulse injection
at anywhere in the region, a plane wave entering from left or right,
or CW or rectangular-pulse injections. Finally, the last parameter
block is for the operational parameters.

The Plot Sg . vs . Time button is used for offline separate
graphs of signal as a function of time and its spectrum (i.e., signal
as a function of frequency) at the chosen observation point. An
example is given in Figure 8. The region was 100 m long, so the
time step was nearly 3.3 ns. It took a pulse 330 ns to travel from
one end to the other. The first pulse belonged to the pulse that
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which are orthonormal wave objects. In this example, Zm, = 100 m,

and therefore the first (dominant) resonance frequency was
1.5 MHz, and the rest were integer multiples (i.e., 3.0 MHz,
4.5 MHz, 6.0 MHz, 7.5 MHz, etc.). The bottom plot in Figure 8
shows this spectrum. As observed, the resonances at integer multi-
pies of 7.5 MHz were missing (see [5] for the mathematical and
numerical requirements for the discrete and fast Fourier transfor-
mations, DFT, FFT).

In order to observe a resonance (an eigenvalue) in the fre-
quency spectrum, both the source and the observation points must
not lie on null points (i.e., zero crossings) of that mode (eigenfunc-
tion). For example, Equation (25) tells us that the dominant mode
(n = 1) has no null point; therefore, a source located anywhere in
the region excites the dominant mode. On the other hand, the sec-
ond mode (n =2) and all other even-order modes (i.e., n = 4,
n =6, etc.) have null points at mid-range. This means that if either
the source or observation point is located at the midpoint (i.e., at
z =50 in), then these modes either are not excited, or are excited
but not observed.

Figure 9 plots the first four modes of a one-dimensional reso-
nator. A source at point A (at mid-range) excites the dominant
mode and the third mode; but even-order modes can not be excited.
A source at point B excites all four modes, except for the third
mode; at point C all four modes but the fourth are excited. Finally,
a source at point D excites all of them. In the above example, the
locations of the source and observer were 30 m and 60 mn, respec-
tively. This means the source was located at the null point of the
tenth mode and its integer multiples (twentieth, thirtieth, fortieth,
etc.). The observer was located at nulls of fifth mode and its integer
multiples. Therefore, the fifth, tenth, fifteenth, etc., resonances
cannot be observed in the frequency spectrum.

5. Conclusions

Wave propagation and numerical propagation may sometimes
be used improperly. People who deal with simulations in electro-
statics and electrodynamics might refer to different concepts with
the same term: numerical propagation. This is because the word
iteration has different meanings in the numerical simulation of the
Poisson and wave equations. It refers to the convergence of the
data for the Poisson equation, but yields the time progress in the
wave equation. This tutorial was devoted to the discussion of these
terms. Numerical simulations of the Poisson/Laplace and wave
equations were taken into account, and these terms were discussed
for the discrete iterative solutions of these equations. MATLAB
scripts were also supplied.
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7. Appendix A:
A Short MATLAB Script for the

One-Dimensional Poisson Equation

% ý- PoissonID.m, Dec 2007
cdc; clear all; close all;

LZ =1; % input('Length of I D Medium [in]:T)

NZ=-100; % input('Number of nodes along Z:T)
NI =1000; % inputCNumber of iterations (NI):')
u(1) - input('Potential at left boundary (z=0): ');
u(NZ) =input(¶Potential at right boundary (z=LZ): )

% Parameters
Eps~l.e-3; dz=LZI(NZ-1);
iO=NZI4; aO llsqrt(2.*pi*iO^ 2);

for i I :NZ % set initial values for zo and u()
z(i)-(i-1 )*dz;

end

figure (1); hold on; plot(z,u); xlim([0 LZ]);
xlabel('Z-axis'); ylabei('Potetial [V]');

% Main iteration loop
k 0; ueps-lO0;
while ueps>Eps

k k+i; ueps=0;
for i=2:NZ- I

old=u(i);

new--u(i);
ueps~9Ieps+(abs(new-old))^2;

end
if k>N I

display('Maximum iteration number is exceeded.
break
end
plot(z,u); pause(0.002);

end % End of iteration loop

,plot(z,u,'r, 'Linewidth', 2);
fprintfl'Total. Number of Iterations =%3d ', k);

figure(2);
subplot(2, 1, 1)
plot(z,Ui,'k--', 'Linewidth', 3); ylabel('Charge distribution')
subplot(2, 1,2)
plot(z,u,'r', 'Linewidth', 2); xlabel(ZX-axis'); ylabel('Potetial

8. Appendix B:
A Short MATLAB Script for One-

Dimensional First Order Coupled Wave
Equations

%___ FDTD1D~m, Dec 2007

epsO-8.82e-12; muO~pi*4e-7;
eta--sqrt(mu0leps0);
c-i.Jsqrt(epso*muo);
Exoldr=0O; Exoldl-0;
rbc-0; % Reflecting boundary at right
lbc 1; % Open-boundary at left

nt=500; %inputQ'Number of time steps=-? ');
zmax~l; %input(QMaximum distance [in] =-?');

ke=10i; %input('Number of range steps, ke [ )

kc=30; %input('Source location, kc [] =? ');

delz-floor(zmax/ke); dt~delz/c; tt-ke/2; t=1 0;
ce--dtl(epso*deiz); ch dtl(muO*delz);

band-c/(i 0*delz); alfa 3.3*band*band;
shift=4./sqrt(alfa);

% (1) put zeros (2) Inject a plane wave
for k-i :ke % Initial values along z

Ex(k)=0.0; Hy(k)=0.0; z(k)-k; % (1)

end

for n-i :nt % FDTD time ioop starts
t--n*dt;
for k=2:ke-1 % Ex is calculated alon z

Ex(k)=Ex(k)+ce*(Hy(k-l)-Hy(k));
end

% Inject Gaussian pulse
Ex(kc)=Ex(kc) + exp(-a~fa*(t-shift)^2);

if lbc==0; Ex(1)-Exoldl; end
if rbc 0O; Ex(ke)=Exoldr; end

for k-I:ke-1 % Hy is calculated along z
Hy(k)=Hy(k)+ch*(Ex(k)-Ex(k+1 ));

end
Exoldr-Ex(ke- 1);
Exoldl=Ex(2);

plot(z, Ex);
xlim([i,ke]); ylim([-.iJ.]); xlabel('z axis'); grid,
pause(0.00i)

end % end of time loop
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9. Appendix C: A Short Matlab Script for
the One-Dimensional Second-Order

Decoupled Wave Equation

% -. WAVE 1 Dm, Dec 2007
% Eq: CA 2*uz- utt=0, 0<zocZm, t>0
% IC: U(z,0)=0, U t(z,0)=0
%/ BC: U(0,t) =fl (t), U(Zm,t) = t2(t) (Once-Diff. Gauss)

epsO=8.82e-12; muO~pi*4e-7;
eta--sqrt(mu0/eps0); c I ./sqrt(epsO*muo);

Zm= I-1

NZ =100;
kmax =500;

%o input('Length of z space, Zm [in]:
%input('Number of nodes, n [
%input('# of time iterations :

% Calculate other parameters (using stability condition)
z =0:delz:Zm; delz-Zm/(NZ-1);
delt delz/c; p c*delt/delz;

% Prepare 1 D arrays for the iterations
u =zeros(1,NZ); % Current time values
ue zeros(1 ,NZ); 00 Previous time values
uy = zeros(1,NZ); % Next time values
uold 0.0;

% Source parameters
band-c/(l 0*delz); alfa=3.3*band*band;
shift=4./sqrt(alfa);

% Locate Gaussian pulse in space (at t-0)
ns=NZ/4; nT=NZ/5;
for k =2:NZ-lI

end

fork 2:NZ-l % First Time step
f2= -2*(k-ns)*exp(-(k-ns)A2/nT)/nT;
uy(k)=(1 -p,'2)*u(k)+delt*f2+0.5*pA2*(u(k-l1)+u(k±1 ));

end
ue-u; U uy;

for n-l :Nmax % Time Iteration starts
tmn*delt;

% Inject fl(t) from left or f2(t) from right

% u( 1)=-(0.5 *n/ntO)*exp( 1 6.*(n*delt-
ntO*delt)A2/(nT*delt)A2);

% u(n)=(O.25*n/ntO)*exp( 1 6.*(n*delt-
ntO*delt)A2/(nT*delt)A2);

u(l)=0.0; u(NZ)=0.0; 00 uold;
for k=2:(NZ-l1)

uy(k)=2 -^)u~)u~)p^2*1 ~k1 )+u(k+1 ));
end
uold u(k-l);l

% Inject source in time
% uy(ns) uy(ns)-(0.5*n/nt0)*exp(- 1 6.*(n*delt-

nto*delt)^2/(nT*delt)^2);
ue u; u uy; % Replace the arrays

% Plot wave vs. x-axis
plot(,',u); xlim([ 1,Zm]); xlabel('x axis'); pause(0.001)

end % End of the time loop
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