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Absbocc- The paper examines the role of analytical tools 
inanal ysis of economic statistical data (commonly 
referred to as econometry) and artificial neural network 
(ANN) models for time series processing in forecasting, 
decision and control. The emphasis is put on the 
comparative analysis of classical econometric approach of 
pattern recognition (BoxJenkins approach) and neural 
network models, especially the class of recurrent ones and 
Elman ANN in particular. A comprehensive experiment 
in applying the latter modeling has been carried out, 
some specific applications software developed, and a 
number of benchmark series from the literature 
processed. This paper reports on comparison findings in 
favor of Elman ANN modeling, and on the use of a 
designed program package that encompasses routines for 
regression, ARlMA and ANN analysis of time series. The 
analysis is illustrated by two sample examples known as 
dimcult to model via any technique 

lnder Term: Analysis of time series; decision; financial 
engineering; forecasting; neural networks; patterns. 

I. INTRODUCTION 

TIME series analysis and prediction has been 
successfully used for long time to support the decision 
making in a number of real-world non-engineering 
applications that emphasized their potential in socio- 
economic systems forecasting and control [3], [ 8 ] ,  [91, 
[13], [14]. Classical pattern recognition has mainly 
been concerned with detecting systematic patterns in 
an array of measurements, which do not change in time 
(static patterns). Typical applications involve the 
classification of input vectors into one of several 
classes (discriminant analysis) or the approximate 
description of dependencies between observables 
(regression). These applications use linear models for 
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system dynamics identification and prediction. 
However, successful capturing the underlying system 
dynamics in economic time series, with all their 
features of time-variation, nonlinearity, nonstationarity 
and uncertainty stemming form the application area, 
seems to be an ever open problem [3], [91. 

Recently the use of artificial neural-net (ANN) 
computing structures has considerably expanded to 
economic time series analysis due to their capability to 
capture end emulate the underlying non-linear system 
dynamics, as the special 2001 issue on neural networks 
in financial system engineering [IS] has demonstrated. 
For data sets in these areas appear in the form of 
complexity time series. The way in which ANN 
computing structures are employed in the analysis of 
time series is based on non-linear autoregressive model 
with exogeneous inputs. In work [4] the application of 
memory ANN computing structures non-linear model 
identification has been studied. In work [ I O ]  Chen et 
al. have thoroughly explored the application of ANN to 
the problem of inflation forecasting via three classes of 
neural networks having different activation functions, 
and proved tight root mean squared error (rms) bounds 
on the convergence rates of ANN estimators. In the 
study [6 ] ,  Bastos et al. explored evolutionary design of 
NN for wide applications, while Doffner focused his 
study [ I l l  on especially designed ANN for time series 
processing. 

11. ON NEURALNET MODELSFORTIME SERIES 
PROCESSING 

It is known that different neural networks, according 
to the type of mechanism to deal with time series [ I  I], 
can be used. Most neural networks have previously 
been defined for pattern recognition in static panems; 
the temporal dimension has to be supplied additionally 
in an appropriate way [IO]. Some of them are worth 
mentioning: layer delay without feedback (time 
windows); layer delay with feedback; unit delay 



without feedback; unit delay with feedback (self- 
recurrent loops). Io this research the class of recurrent 
network created with adding new elements in classic 
neural feed-fonvard networks, which can be trained 
during a certain sequence of time, have been studied. 
The important feature of kind of neural networks is that 
they can identify dynamic systems with no need for 
more than one previous value of the input and output. 

. Therefore these are capable of identifying dynamic 
systems with unknown order or with unknown time 
delay, and are known as Elman networks. 

A common method for time series processing are so 
called (linear) state space models [71-[9]. The 
assumption is that a time series can he described as a 
linear transformation of a timede pendent state-given 
through a state vector S : 

i ( t )  = G(t) +E@) (1) 

where C is some transformation matrix. A linear 
model usually describes time dependent state vector: 

F(t )  =A?( t - l )+Brj (r )  ( 2 )  

where A and B are matrices, and ?(t) is a noise 
process, just like C(t) above. The model for the state 
change, in this version, is basically an ARMA[I,I] 
process. The basic assumption underlying this model is 
the assumption of so-called Markov property [12]: the 
next sequence element in the time series can be 
predictedon the grounds of the state of the system 
producing the time series is in, no matter how that state 
was reached. In other words, all the history of the 
series necessary for producing a sequence element can 
be expressed by one state vector. Should the 
assumption the states are also independent on the past 
sequence vector holds, by neglecting the moving 
average term B fi(t), one obtains 

F( t )  AS(? - 1) + Di(t - 1). (3) 

Then, basically, an equation describing Elman type of 
recurrent neural networks [ I  I], depicted in Figure 1, is 
obtained. 

The Elman network is in fact a multi layer 
perceptron (MLP) neural-net computing structure with 
an additional input layer, called the state layer, which 
receives a copy of the activations from the hidden layer 
at the previous time step via feedback. Should use this 
network is employed for forecasting modeling, the 
activation vector of the hidden layer is equated with S , 
and then the only difference to Eq. (3) is the fact that in 
an MLP a sigmoid activation function is applied to the 
input of each hidden unit 

.? ( t )=c~(A?( t - l )+D.?( t - l ) ) .  (4) 

Here a(a) refers to the application of the sigmoid (or 
logistic) function I/(l+exp(-aJ) to each element a; of 
A. Hence the transformation is no longer linear but a 
non-linear one according to the logistic regressor 
applied to the input vectors. 

Fig. I .  The smcNre of Elman neural-networks 

The Elman network can be trained with any teaming 
algorithm that is applicable to MLP such as back- 
propagation (implemented in our application software) 
or conjugant gradient, to name a few. This network 
belongs to the class of so-called simple recurrent 
networks. Even though it contains feedback 
connection, it is not viewed as a dynamical system in 
which activations can spread indefinitely. Instead, 
activations for each layer are computed only once at 
each time step (each presentation of one sequence 
vector). 

111. APPLICATIONOF BOX-JENKMSAND ELMAN ANN 
(NARX) MODELS: A COMPARISON STUDY 

By and large, many economic and financial time series 
observations are nonlinear; hence linear parametric time- 
series models may tit data poorly (see below). An alternative 
approach, which implements non-linear models, is via the use 
ofartificial neural networks (ANNs) [SI, [6], [IO], [ I l l .  We 
can point two basic characteristics that make them very 
attractive for time series prediction: the ability to 
approximate functions, and the direct relationship with 
classical models such as Box-Jenkins. It should be noted, 
however, despite these advantages, there are problems in 
using neural networks to be observed. ANN computing 
models are, in general, more complex and involved than 
linear models, hence more difficult to design. Funhermore, 
they are more vulnerable to the problems of over-fitting and 
local minimum [6]. Nonetheless, they enable to implement 
The NARX (Non-linear AutoRegressive model with 
exogenous variables) model described by Eq. (4). This class 
of models, which are useful in modelling time series of 
economy naNre and origin, can be implemented by means of 
the four mentioned types of ANN computing StNcNres. 

In the sequel we focus on modeling of a time series 
with both Box-Jenkins model and Elman ANN 



(NARX)  model. The sample time series processed by 
our design and implementation of application-oriented 
software - expert system [5 ] ,  which are used in this 
comparison analysis, have been taken from the 
literature [3]. The first one represents - Series B IBM 
common stock closing prices: daily; the second one - 
U.S. HOG price data: annual. And both are well known 
in the literature on time series analysis for forecasting 
and control [8], [9]. In order to obtain a stationary time 
series equivalent, for the modeling with ARIMA model 
(Figure 1) we have made one differencing and one 
seasonal differencing. For the modeling with NARX 
ANN, we have made one differencing and 
normalization in the interval [ - I ,  I ]  (Figure 2). 

The number of the dependent variables for the 
ARIMA model is determined by Bayesian-Schwarz 
criteria. Results obtained on the grounds of this 
criterion are given in Table 1. One can conclude from 
these results that five MA parameters and a constant as 
well as one seasonal parameter are the optimal number 
of parameters for ARlMA modeling. 

The results on ARIMA time series identification 
following Box-Jenkins, in series-graph and analytical 
forms, are depicted in Figure 3 and Tables 2 and 3. We 
can see that this model fits data less than 50% of the 
time series movement. If we take ‘R sqr-adj’ output, 
we can see that its value is 0.452 and it shows that this 
model can represent 45.2% of the time series or, in 
other words, it represents 45.2% better results than 
taking mean value of the series as a model. This can 
also be observed from the graphical output of the 
model in Figure 2. It is inferred from the values of the 
Ljung-Box statistics [9] that residuals of the model 
represent the process of white noise. 

The results of the output obtained by Elman ANN 
structure are given in Figure 4 and Table 4. These are 
presented in the same format as the results from 
ARIMA model in series-graph and analytical data. 
From the output data the goodness of the fit can be 
determined. The value of ‘R sqr-adj’ parameter is 
0.945, and the sum of squared errors is 0.6768. It can 
be concluded that this model fits 94.5% to the process 
dynamics of the given time series. We have 
implemented only one AR parameter in this model. 
The fit goodness can by increased by increasing the 
number of the dependent variables up to 4 variables. 
However, when further increase of the number of 
dependent variables is employed the results are poorer, 
hence this does not contribute to significant 
improvement [SI. With two AR parameters, I %  better 
results have been obtained than with one AR 
parameter. This is due to the recurrent mechanism of 
the ANN employed. Elman ANN takes into account 
previous values of the time series through the recurrent 
loops it possesses. Following the analyzed data and 
results, we can conclude that this time series could be 

.- . - considerably better represented by a non-linear model 
as compared to the linear case, Hence ANN-NARX is 
apparently advantageous. 

Should now the values of Ljung-Box statistics on 
5% level of significance are closely examined, it may 
well be noticed the residuals obtained via ANN-NARX 
modeling represent a stationary time series. Namely, 
values at lags 6, 24, 36, and 48 are above those in the 
Chi-square distribution. 

Cr6 2 k, Final Estimates of Parameters 

Type 
M A 1  
M A 2  
M A 3  
M A 4  
M A 5  

SMA 6 
Constant 

Coeff 
-0.0604 
-0.0140 
0.0187 
0.0329 
0.0603 
0.9658 

-0.03592 

SECoeff T P 
0.0531 -1.14 0.257 
0.0533 -0.26 0.792 
0.0532 0.35 0.726 
0.0532 0.62 0.537 
0.0536 1.12 0.261 
0.0192 50.34 0.000 
0.01970 -1.82 0.069 

Cr6 2luLModified Box-Pierce (Ljung-Box) Chi- 
Square statistics 

Lag 12 24 36 48 
Chi-square 8.0 29.8 41.6 59.8 

DF 5 17 29 41 
P-Value 0.159 0,028 0.061 0.029 

In this standard processing, the following data 
should be observed as well: 

Differencing: regular, 1 seasonal of order 6 
Number of observations: Original series 369, 

Residuals: SS = 19125.4 (back-forecasts 
after differencing 362 

excluded) 
MS= 53.9 DF=3S5 

Cr6 2ElModified Box-Pierce (Ljung-Box) Chi- 
Square statistics for Elman ANN modeling 

Lag 6 12 24 36 48 
Chi-Square 14.99 18.75 45.90 62.01 81.16 

It is emphasized at this point that considerably better 
results have been obtained when processing all other 
cases of time series, including the ones for the specific 
applications in tourism and insurance business [SI. 

Let now briefly discuss the results for the second 
case, U.S. HOG price data: annual, of well known time 
series. 

Cr6 2k7. Final Estimates of Parameters 

Type Coeff SECoeff T P 
MA 1 -0.1113 0.1066 -1.04 0.300 
MA 2 0.1522 0.1087 1.40 0.165 
MA 3 0.3774 0.1086 3.47 0.001 



In this standard processing, the following data 
should be observed as well: 
0 Number ofobservations: 81, 
0 Residuals: SS = 0.000315245 (back-forecasts 

excluded) 
MS = 0.000004042 DF =78 

Cr6 2H. Modified Box-Pierce (Ljung-Box) Chi- 
Square statistics 

Lag I2 24 36 48 
Chi-square 7.9 24.9 30.9 40.5 

DF 9 21 33 45 
P-Value 0.542 0.251 0.572 0.663 

The US. HOG price data time series possesses a 
varying variance and therefore Box-Cox [9] 
transformation with k=-0.5 is applied first. Then, for 
the purpose of ARlMA modeling, one differencing is 
made to obtain its stationary equivalent, and according 
to Akaike [I], [2] and Bayesian Schwartz [3], [6], [XI 
criteria three MA parameters are used so that model 
AlUMA[O,1,3] is obtained. Results obtained are 
presented in Figure 5. The calculation of ‘R sqr-adj’ 
showed 0.186 or 18.6% better modeling representation 
than in the alternative when the average of the 
stationary equivalent was taken. Results on Ljung-Box 
statistics [9] at 5% level of significance have revealed 
that residual time series represent white noise process. 

When this time series is modeled by means of 
Elman ANN-NARX the results shown in Figure 6 and 
Table 7 are obtained. As before, the original time series 
was processed by Box-Cox transformation and 
differenced ones, and thereafter normalized in the 
interval [-I, 11. For the modeling purpose one AR 
parameter and a constant has been used. It is noticed 
form both the graphical representation and the values 
of ’R-sqr-aq’ that the output of the neural network 
emulates the evolution of the time series 97.4% better 
than in the alternative when the average of the 
stationary equivalent was taken. Results on Ljung-Box 
statistics at 5% level of significance have revealed that 
the residuals represent white noise process. Referring 
to Figure 5, one can easily that in this case time series 
the modeling representation by means of Elman ANN- 
NARX is almost ideal one. 

Cr6 2lg. Modified Box-Pierce (Ljung-Box) Chi- 
Square statistics for Elman ANN modeling 

Lag 12 24 36 48 
Chi-square 9.475 9.515 9.581 9.726 

IV. CONCLUSION 
A thorough investigation and comparison analysis 

on Box-Jenkins and Elman-ANN methodologies, also 

involving the design and implementation of expert 
application-oriented software [SI, has been carried out 
with the prospect of their use in areas of insurance and 
tourism. These have been tested and verified by means 
of many time series and the two well known cases from 
literature [9] are used in this paper. Several different 
approaches can be applied to model economic 
processes and cycles in these areas, and both Box- 
Jenkins and Elman-ANN approaches can be successful. 
They are powerful tools for analysis that lead to deeper 
understanding of underlying evolution in recorded time 
series, hence better forecasting and control of the 
system dynamics. However, the two notoriously 
difticult case studies show that Elman-ANN approach 
offers superior toll in financial applications of 
insurance and tourism. 

While neural networks implementing NARX model 
can fit a dataset much better than linear models, it has 
been found that under certain circumstances they may 
forecast poorly thus confirming previous observations. 
However, this does not happen when convergence rate 
rms bounds [IO] are satisfied. It is believed therefore 
that both these techniques for modeling and forecasting 
time series of economic nature and origin should be 
incorporated in a decision support system, and their 
respective potentials exploited in parallel. This 
research is in progress towards the third alternative 
modeling that uses fuzzy regression, and its 
comparison analysis with the ones explored insofar. 
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Fig. 2. Stationary data obtained from Series B IBM (original series taken from the literature) 
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Fig. 3. Graph representation of series and analytical output of the modeling with ARIMA model for case I 
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Fig. 4. Graph representation of series and analytical output of the modeling with ANN-NARX model for case 1 
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Fig. 5.  . Graph representation of series and analytical output of the modeling with ARIMA model for case 2 
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Fig. 6. Graph representation of series and analytical output of the modeling with ANN-NARX model for case 2 


