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and secretory antibody defenses, mucosal-

associated lymphoid tissue (MALT) —

 populated by distinct dendritic, T, B, 

and accessory cell populations — acts as 

an inductive tissue for priming of anti-

gen-presenting cells at remote eff ector 

sites via the  “ common mucosal immune 

system ” . 2,3  Gut-associated lymyphoid 

tissue — the subset of MALT that exists in 

the gastrointestinal tract — is a major site 

for induction of T regulatory cells neces-

sary for microbial tolerance. 4  With recog-

nition of the common mucosal immune 

system and its unique properties, the 

development of mucosal vaccines and 

therapies has become an area of intense 

research interest. 2,5,6  

 In this commentary, we briefl y review 

epidemiological evidence that the clini-

cal outcome of the respiratory infection 

caused by  Mycobacterium tuberculosis  

may be modulated by mucosal infections 

that are endemic in the same populations. 

As examples, we focus on  Helicobacter 

pylori  and gastro-intestinal helminthiasis, 

two major gut-associated  “ pathobiontic ”  

infections that frequently co-exist in TB-

infected hosts ( Figure 1 ). We propose 

that colonization with these pathogens 

exerts competitive eff ects on regulation of 

the immune response to  M. tuberculosis : 

 H. pylori  promoting a Th 1-type response 

consistent with control of TB, and helmin-

thiasis promoting a Th 2-type response that 

may disregulate responses to tuberculosis 

(TB). In each case, the newly recognized 

Th17 lineage 7 – 10  may also have a role. 

Th ese lines of investigation are just begin-

ning, and further mechanistic as well as 

immuno-epidemiological research is 

needed. Understanding how common, nat-

urally occurring mucosal infections infl u-

ence immunity to TB may lead to further 

insights into the therapeutic properties of 

the common mucosal immune system.   

 INTRODUCTION 
 Th e mucosa of the gastrointestinal and 

respiratory tracts comprise the largest 

surfaces in contact with the external 

milieu. Th is system is designed to pro-

vide a physico-chemical barrier against 

dissemination of pathogenic mircroor-

ganisms while sampling a vast array of 

foreign antigens, presenting them to the 

immune system, and adapting them to the 

presence of foreign microbial communi-

ties. 1  In addition to pattern recognition 
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 IMMUNO-EPIDEMIOLOGY OF TB 

 Th e intracellular pathogen  M. tuberculosis  

has co-existed in human populations 

for at least 50,000 years. 11  Spread from 

person to person via aerosol droplets, 

 M. tuberculosis  infects one-third of the 

world ’ s population, or over 2 billion 

people. Despite dramatic declines in inci-

dence and prevalence of TB infection in 

industrialized countries, there are over 

8 million new cases of  M. tuberculosis , 1.5 

million deaths, and 40 million new infec-

tions each year. 12  Although TB typically 

occurs in poor socio-economic condi-

tions, even under these circumstances, 

a competent human immune system is 

equipped to control the infection. Of 

those exposed to TB, only 30 %  13,14  are 

thought to develop the state of latent 

infection, during which the host remains 

clinically well, but bacilli survive within 

T-cell activated granulomas in a dormant 

or slowly replicating state. 15  Of those 

harboring a latent infection, on average, 

only 5 – 10 %  will progress to active clini-

cal disease, the majority within 2 – 3 years 

of exposure. Approximately 50 %  of those 

with active disease will survive without 

treatment, although each could infect 

an additional 10 – 20 contacts during the 

period of active disease. 12,16  

 Protective immunity to TB is predomi-

nately cell-mediated and incompletely 

understood. Although the precise mech-

anisms are controversial, TLR-medi-

ated innate immunity and microbicides 

present in the airways, and are likely to 

play a role in resistance during the ini-

tial phases of acute infection. 17  Th e only 

vaccine currently in use, the live attenu-

ated  M. bovis -derived Bacille – Calmette –

 Guerin (BCG) vaccine, stimulates a wide 

spectrum of cellular immune responses, 

but has highly variable effi  cacy, and does 

not protect against adult pulmonary 

disease. 18,19  Based on animal models of 

BCG vaccination, T-cell recall responses 

are delayed approximately 2 weeks post-

challenge, representing a significant 

delay in T-cell priming. 20  For this reason, 

mucosal Th 17 vaccines based on early 

recruitment of neutrophils with produc-

tion of interleukin (IL)-17 and mediators 

such as IL-23 in the alveolar passages are a 

promising area of investigation. 9  Mucos-

ally administered TB vaccines may off er 

properties superior to the intramuscular 

route. 21  

 With the establishment of latent 

 M. tuberculosis  infection, a network of 

pro-infl ammatory and regulatory circuits 

is invoked to sequester bacilli-infected 

macrophages within granulomae. Both 

tumor necrosis factor- �  and interferon 

(IFN)- �  derived from activated T cells 

appear to be essential for maintaining the 

integrity of granulomae and preventing 

reactivation. 22  Central memory T-cells 

expressing IL-2 also appear to be impor-

tant for clearance of infection and resolu-

tion of fi brosis. 23 – 25  To circumvent these 

defenses,  M. tuberculosis  inhibits phagoly-

somic fusion and acidification within 

macrophages. 15,26  In household-contact 

biomarker studies, early progression has 

been associated with alterations in the 

production of regulatory Th -2 cytokines, 

such as IL-4 and IL-10. 27,28  Th us, the bal-

ance of eff ector and suppressive immune 

responses appears to be important in 

the host ’ s prolonged management of TB 

infection. 29  In longitudinal studies, many 

acquired immuno-suppressive condi-

tions are known to disrupt this balance 

  Figure 1             Hypothetical framework for interaction of protective immune responses to  Mycobacterium tuberculosis  ( Mtb ) infection in the setting of 
( a )  H. pylori , ( b ) intestinal helminth, and ( c ) triple infection: ( a )  Mtb / H. pylori  coinfection may enhance pro-inflammatory signals (e.g., interferon (IFN)- � ) 
involved in control of TB infection, 68,85  while ( b )  Mtb /  helminth co-infection may suppress pro-inflammatory responses to  Mtb  infection via the Th2 
pathway. 53,54  The presence of all three infections ( c ) would be expected to heighten pro-inflammatory and anti-inflammatory signals. Also, as shown in 
( d ),  H. pylori  and helminth co-infection may suppress proinflammatory responses to  H. pylori  infection. 81,82  IL, interleukin; TNF, tumor necrosis factor.  
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and increase the risk of active disease, 

including HIV infection, 30,31  malnutri-

tion, 32  Vitamin D deficiency, 33  diabe-

tes, 34  and anti-tumor necrosis factor- �  

therapy. 35  With insights from systems 

biology models, a dynamic spectrum of 

TB infection, continuously mediated by 

micro-environmental factors, has been 

postulated. 17,36  Understanding the role 

of concurrent mucosal infections like 

 H. pylori  and gastro-intestinal helminthi-

asis may lead to better delineation of this 

spectrum.   

 INTESTINAL HELMINTHS AND 

 M. TUBERCULOSIS  

 Over a quarter of the world ’ s population is 

infected with the soil-transmitted intesti-

nal helminths, including the roundworm 

 Ascaris lumbricoides , the hookworms 

 Necatoramericanus  and  Ancylostomaduo-

denale , the whipworm  Trichuristrichiura , 

and  Enterobiusvermicularis , and  Strongy-

loides  spp. 37,38  Despite their species diver-

sity, gastrointestinal helminths (and also 

many non-mucosalworms) elicit a stere-

otypic human immune response. Clas-

sically, this is characterized by secretion 

of IgE and IgG4 isotype with concurrent 

eosinophilia, 39  and polarization of CD4    +     

T cells towards a Th 2 phenotype, 40 – 42  on 

which expulsion depends. 43  Th is  “ modi-

fi ed ”  Th 2 phenotype is associated with 

production of the cytokines IL-4, IL-9, 

IL-10, IL-13, 44  as well as induction 

of Foxp3    +     Treg cells and regulatory 

cytokines TGF- �  and IL-10. 45  In endemic 

regions, worm burdens tend to peak by 

adolescence, suggesting the develop-

ment of partial resistance with age. 40  

Conversely, the virtual disappearance of 

helminths from the human microbiome 

of high-income countries has been linked 

with the rise in atopic and auto-immune 

conditions, 46  possibly due to eff ects on 

Treg induction. Based on these fi ndings, 

helminth-based therapies for conditions 

such as multiple sclerosis and infl amma-

tory bowel disease are an active area of 

investigation. 47,48  

 Although there are few studies, epi-

demiological evidence suggests that 

helminth infections may diminish 

immune responses to TB antigens. 

In humans, chronic intestinal helmi-

nathiasis is associated with immune 

hypo- responsiveness, 49,50  including a 

 “ bystander effect ” , to oral cholera 51,52  

and BCG vaccines. 53  In a randomized 

control trial, Elias  et al.  54  reported that 

albendazole deworming was associated 

with signifi cant improvements in purifi ed 

protein derivative-induced IFN- �  produc-

tion following BCG vaccination of Ethio-

pian adults. In a second trial, this team 

also reported that co-infected adults not 

receiving anti-helminthic treatment had 

increased production of PPD-induced 

TGF- �  3 months following BCG vaccina-

tion. 53  In a Brazilian cohort, TB patients 

with intestinal parasites had lower IFN- �  

and higher IL-10 levels compared with 

TB patients without intestinal parasites. 55  

In  in vitro  T-cell functional studies in 

blood from Indonesian school children, 

researchers found that geohelminth-

associated regulatory T-cell responses 

suppressed IFN- �  responses to BCG and 

 Plasmodium falciparum , an eff ect that was 

reversed with removal of CD4    +    CD25 hi  T 

cells. 56  Th ese studies off er evidence that 

both infl ammatory and regulatory sig-

nals involved in control of TB infection 

can be modifi ed by concurrent intestinal 

helminth infection. Some fi larial worms 

and tissue-invasive cestodes, beyond the 

scope of this commentary, are also thought 

to aff ect responsiveness to mycobacterial 

antigens, although the mechanisms may 

diff er. 49  Although environmental myco-

bacteria are widely considered to block 

immune responses to TB antigens, 57  their 

distribution does not account for the wide 

variability in responses to BCG. Th e role 

of concurrent helminth infections needs 

to be more systematically explored in the 

context of TB vaccine and immunogenic-

ity trials.   

  H. PYLORI  AND  M. TUBERCULOSIS  

  H.pylori , a bacterium that colonizes the 

gastric mucosa and epithelial lining of the 

human stomach, remains one of the most 

common chronic mucosal infections in 

the world, 58  infecting approximately 80 %  

of those in TB-endemic regions. Typi-

cally acquired in early life via oral – oral 

or fecal – oral pathways, 59  chronic infec-

tion is now known to be the preeminent 

cause of gastric cancer and peptic ulcer 

disease. 60 – 62  All infected hosts develop a 

superfi cial gastritis that typically persists 

asymptomatically for many decades. In 

addition to specifi c IgA, IgM, and IgG 

responses, this gastritis is associated with 

induction of IL-8 by epithelial cells, 63  as 

well as a locally vigorous, cell-mediated 

immune response, characterized by 

increased mucosal concentrations of the 

infl ammatory cytokines IFN- � , tumor 

necrosis factor- � , IL-1 � , and IL-6. 64  Th e 

cytokine IL-12 is present in large num-

bers of mononuclear cells and appears 

to be involved in differentiating naive 

T-cells into a Th 1 phenotype. 65  Although 

the predominate profile during infec-

tion is infl ammatory, the IL4 antagonist, 

IL-4 � 2, T-regulatory-activated IL-10, as 

well as B-cell responses, may be permis-

sive for chronic  H. pylori  colonization via 

counter-regulatory mechanisms. 66  Th e 

role of IL-17 in infl ammation and recruit-

ment of neutrophils at the site of infection 

is an area of intense investigation. 67,68  

 As helminth infections vary with 

respect to their immunological eff ects, 

so too,  H. pylori  strains elicit diff erent 

immune responses. 69  Of particular note, 

some  H. pylori  strains contain a patho-

genicity island, 70  a 30-gene cassette 

encoding a Type IV secretion system 

that translocates virulence factors to the 

host cytosol. 71  Th is pathogenicity island 

induces increased inflammation with 

higher risk of ulcer disease 72  and gastric 

cancers. 73,74  Host polymorphisms are also 

thought to exacerbate this interaction. 75  

Other differences in  H. pylori  strain, 

such as expression of the active form of 

the immunogenic vacuolating antigen 76  

or preservation of the outer membrane 

protein BabA (which mediates adhesion 

to human Le b  blood group antigens), may 

also infl uence immunological reactions 

by aff ecting attachment and neutrophil 

recruitment. 64  

 Dramatic declines in the incidence of 

 H. pylori  infection occurring in industrial-

ized regions during the twentieth century 

have corresponded with increases in the 

prevalence of allergy-like symptoms 77  as 

well as upper gastrointestinal diseases. 78  

Th ese trends have prompted some inves-

tigators to speculate that in regions of 

high infant mortality, immune-regulated 

 H. pylori  infection confers survival advan-

tages against deadlier infections of early 

childhood. 79  For example, in Northern 
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Californian Hispanic households, 

 H. pylori  infection was associated with 

protection from household gastroenteri-

tis. 80  Th at concurrent helminth infection 

has been observed to alter the infl am-

matory response to  H. pylori  in rodent 81  

and human 82  studies could support the 

notion that the two infections exert 

competitive regulatory eff ects on cell-

mediated immunity when present in the 

same host. 

 Because social conditions contribut-

ing to the prevalence of  M. tuberculosis  

and  H. pylori  are similar, cross-sectional 

studies of disease association tend to yield 

confl icting results. 83,84  Few studies have 

correlated immune responses to  H. pylori  

and TB infection in co-infected hosts. In 

a preliminary fi nding, we have reported 

that Northern Californians seropositive 

for  H. pylori  and testing positive for latent 

TB have enhanced IFN- �  production and 

a dominant Th 1-type cytokine profi le in 

response to specifi c TB antigens. 85  We 

also reported that, compared with latently 

infected household contacts who did not 

progress to active TB disease during 

2 years of follow-up, Gambian TB patients 

were one-third as likely to be  H. pylori  

seropositive. However, in Gambian and 

Pakistani household contacts exposed 

to an infectious case of TB, baseline 

 H. pylori  infection was not associated with 

secondary case activation aft er 2 years. 

In cynomolgus macaques, those with nat-

ural  H. pylori  infection were one-third as 

likely to progress to TB 6 – 8 months aft er 

 M. tuberculosis  challenge. 85  Although 

these lines of investigation provide pre-

liminary evidence of enhanced immunity 

to TB with  H. pylori  infection, challenges 

in study design remain to be overcome. 

Th ese include the relatively poor predic-

tive value of immunodiagnostics in the 

setting of primary progressive TB, 86  the 

need to identify more prevalent inter-

mediate markers of progression, and 

the suboptimal performance of  H. pylori  

serology in the developing world. 85  

 If  H. pylori  influences the immune 

response to TB infection, there are sev-

eral possible mechanisms. For example,  

H. pylori  could promote a  “ Th2 – Th1 

switch ”  in early life, such that Th 1-type 

responses to an unrelated MALT infec-

tion are permanently heightened. Such 

a  “ hygiene hypothesis ”  has been pro-

posed for hepatitus A virus. 87  Studies 

comparing BCG immunogenicity in 

infants and adolescents from develop-

ing and industrialized countries also 

support this type of phenomenon. 88  In 

a second model, active, asymptomatic,  

H. pylori  gastritis would provide a con-

tinuous source of infl ammatory stimu-

lation. Such a  “ bystander ”  model was 

recently described for mice infected 

with mucosal herpes viridae and pro-

tected from subsequent challenge by 

 Y. pestis  and  L. monocytogenes . Th is model 

may apply uniquely to chronic mucosal 

infections. 89  Th ough more speculative, 

 H. pylori -induced IL-17 might have a role 

in early T-cell recruitment to the lung 

compartment, thereby enhancing initial 

resistance to latent TB infection. Another 

possibility is that dysregulation of the 

 H. pylori -associated gastric T-regulatory 

system compromises systemic Th1 

responses involved in control of a TB 

infection. In separate laboratory studies, 

the IL-4 inhibitor, IL4 � 2 splice variant, 

has been implicated both in upregula-

tion of the Th 1 dominant  H. pylori  Cag 

A response 90  and downregulation of the 

Th 2-mediated response associated with 

progression of latent TB infection. 91    

 TOWARD A MICROBIOMIC PERSPECTIVE 

 Th e human immune system has evolved 

in the face of a panoply of commen-

sal and mutual infections. 92  Classic 

mucosal defenses, including organo-

genesis of lymphoid follicles, induction 

of secretory IgA, and recruitment of the 

cell-mediated armentarium appear to be 

seeded and orchestrated by the establish-

ment of microbrial communities in early 

life. 93,94  Growing evidence implicates the 

human microbiome as a major regulator 

of immunopathologies associated with 

diverse conditions such as infl ammatory 

bowel disease, 95  obesity, 96  allergies, 97  and 

even psychopathology. 98  Understanding 

the interactions of naturally occurring 

mucosal infections such as  H. pylori , intes-

tinal helminths, and  M. tuberculosis  —

 three distinct parasitic infections present 

in the same ecosystem for millennia, exert-

ing contrasting immunoregulatory eff ects, 

to which the normal human immune is 

substantially adapted — off ers a potentially 

informative  “ microbiomic ”  perspective for 

vaccine and immunodiagnostic research. 

The evidence presented here remains 

preliminary and belies the need for more 

original work. Th e research infrastruc-

ture now assembled for TB vaccine trials 

provides a well-organized platform to roll 

out interdisciplinary prospective studies 

of major public health importance.     
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