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We analyze optimal replacement and repair problems of semi-Markov missions that are
composed of phases with random sequence and durations. The mission process is the
minimal semi-Markov process associated with a Markov renewal process. The system is
a complex one consisting of non-identical components whose failure properties depend on
the mission process. We prove some monotonicity properties for the optimal replacement
policy and analyze the optimal repair problem under different cost structures.

1. INTRODUCTION

Many complex systems perform missions which are composed of different phases or stages.
Deterioration of the components and configuration of the system change dramatically from
phase to phase. Such systems are called phased-mission systems or mission-based systems
in the literature where the sequence and the durations of phases can be deterministic or
random. The most important property of these systems is that all stochastic and determin-
istic failure properties of the components depend on the phases of the mission. This creates
stochastic dependence among the lifetimes of the components via the common mission
process. In this paper, we analyze optimal replacement and repair problems for phased-
mission systems assuming that the sequence of the phases and their durations are random.
Our results are valid for any lifetime distribution which can be chosen arbitrarily for each
component.

Phased-mission systems were introduced by Esary and Ziehms [8] and a vast literature
has accrued since then. We refer the reader to Burdick et al. [3], Veatch [15], Kim and Park [9]
and references cited in these papers for phased-mission systems with deterministic sequence
of phases. There are also some papers on phased-mission systems with random sequence
of phases such as Mura and Bondavalli [10], Mura and Bondavalli [11] and Bondavalli and
Filippini [2].

The phased-mission system considered in this study is assumed to perform a mission
with several phases whose sequence and durations are random. More specifically, we assume
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that the sequence of the successive phases follows a Markov chain and the phase durations
are generally distributed. Some previous work and real-life applications are the main source
of our motivation. In the prevailing phased-mission system literature, the phase durations
are generally assumed to be deterministic, which may be realistic for some applications, such
as aerospace applications where phases are preplanned on the ground (Mura and Bondavalli
[11]). However, Alam and Al-Saggaf [1] state that random phase durations are more realistic
in many systems including real-time control for air-craft and space vehicles in which different
sets of computational tasks are executed during different phases of a control process. In
NASA’s Mars Exploration Mission, for example, the mission consists of many phases such
as Vehicle Launch; Cruise; Approach; Entry ; Descent and Landing to Mars; Rover Egress;
and a number of Surface Operations that involve scientific data collection and transmission
to the Earth. Some complex calculations and evaluations by the science and engineering
teams determine what the rover actually does on the surface. The scientific investigations
performed involve further phases with random sequence and durations. Moreover, systems
may be affected by sources of randomness that are of an exogenous nature. For instance, the
performance of the rovers depends on various atmospheric conditions which can be defined
as different phases affecting the system. As another example, consider an online shopping
system which performs a mission with four phases; namely, Home, Search, Login, and Buy.
In phase Home, a user, visiting the Web page of the system, reads the advertisements on
the home page. Then, the user can either search for a specific product or directly go to
login page, where the system performs Search and Login phases, respectively. The user may
complete the session either by entering credit card information while the system performs
the Buy phase or by abandoning the system. It is clear that the mission performed by this
online system has a dynamic structure and can be represented by using a Markovian model.

We will use the intrinsic aging model introduced by Çınlar and Özekici [6] who propose
to construct an intrinsic clock which ticks differently in different environments or phases to
measure the intrinsic age of the component. The environment is modelled by a semi-Markov
jump process and the intrinsic age is represented by the cumulative hazard accumulated in
time during the operation of the device in the randomly varying environment. Özekici [14]
analyzed optimal replacement and repair problems for a single unit utilizing intrinsic aging
concepts and showed that optimal replacement policy is a control limit policy. Moreover,
some characterizations for the optimal repair policy under different cost structures are
proposed in that study. In this study, we actually extend Özekici [14] to the multi-component
case since we define the mission process as an environmental process which is not affected
by the deterioration levels of the components. We refer the interested readers to Özekici
[13], Cho and Parlar [4], Dekker, Wildeman and Van der Duyn Schouten [7], Wang [16],
and Nicolai and Dekker [12] for related literature on optimal maintenance.

Our purpose in the present setting is to study the optimal replacement and repair
problems of a multi-component phased-mission system. We assume that the sequence of
the phases follows a Markov chain, the duration of each phase and the lifetime of each
component are generally distributed. We aim to prove some monotonicity properties of the
optimal policies under the usual assumptions requiring increasing failure rate (IFR) life
distributions and reasonable cost structures.

This study contributes to the both phased-mission and optimal maintenance literatures.
The prevailing studies in the phased-mission literature generally assume deterministic phase
durations, which is not always reasonable as mentioned previously, or focus on specific
system structures. However, we consider a multi-component phased-mission system with
random durations, and our results are valid for any system structure. Our study is similar
to the optimal maintenance models including an environmental process modulating the
system failure parameters. In our setting, the environmental process is a Markov renewal
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TWO-DIMENSIONAL REFLECTING RANDOM WALK AND ITS APPLICATION 79

process, and the system is a multi-component device with generally distributed lifetimes.
To the best of our knowledge, this is the most general model analyzed in the optimal
maintenance literature yet.

In Section 2, the mission process and the intrinsic aging model are described. We will
analyze replacement and repair problems in Sections 3 and 4, respectively. The lengthy
proofs of some results given in the paper are provided in the Appendix. Finally, throughout
this paper, increasing means non-decreasing and decreasing means non-increasing.

2. THE MISSION PROCESS AND INTRINSIC AGING

Let Xn denote the nth phase of the mission and Tn denote the time at which the nth phase
starts with T0 ≡ 0. The main assumption is that the process (X,T ) = {(Xn, Tn);n ≥ 0} is
a Markov renewal process on the countable state space E with some semi-Markov kernel
Q. The state space E is actually that of the process X and it is implicitly understood that
the process T always takes values in R+ = [0,+∞) since they denote times at which certain
events occur. We refer the reader to Çınlar [5] for a more rigorous and detailed treatment
of Markov renewal processes and theory. The Markov renewal property states that

P {Xn+1 = j, Tn+1 − Tn ≤ t|X0, . . . , Xn;T0, . . . , Tn} = P {Xn+1 = j, Tn+1 − Tn ≤ t|Xn},
(1)

where we suppose that the process is time-homogeneous with the semi-Markov kernel

Q(i, j, t) = P{Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i} (2)

for any i, j ∈ E and t ∈ R+. The mission process Y = {Yt; t ≥ 0} is the minimal semi-Markov
process associated with (X,T ) so that Yt is the stage or phase of the mission at time t.
More precisely, Yt = Xn whenever Tn ≤ t < Tn+1.

Throughout this paper, we consider a complex device with an arbitrary structure and
m components. We let S = {1, . . . ,m} denote the set of all components in the system and
L(k) denote the lifetime of component k ∈ S. The lifetime of the whole system is denoted by
L. There is, of course, a relationship between the system and component failure times. For
example, L = min{L(k); k ∈ S} for a series system and L = max{L(k); k ∈ S} for a parallel
system.

Since all components perform the same phase at a given time, their lifetimes are
dependent via their common mission process. The successive flights of an airplane, for
instance, can be considered as a mission including simply five phases, namely take-off,
smooth cruise, cruise in turbulence, landing, and idleness. It is well known that failure rates
of airplane components, especially components of jet engine turbines, are much higher dur-
ing take-off and landing than during cruise. Moreover, it is reasonable to assume that a
turbulence increases the failure rates. For such an airplane, it is not realistic to assume that
the lifetimes of the components constituting the airplane are independent. This is mainly
because these components will operate in turbulence for the same amount of time, and
they will experience the same number of take-offs and landings. The degradation rates of
the components will increase and decrease simultaneously, and the corresponding transition
times will be governed by the same mission performed by the airplane. Therefore, the com-
ponent lifetimes are dependent via the common mission process. We further assume that
the mission process is the only source of dependence among the component lifetimes, and
they are otherwise independent during any given phase.

We consider a very general optimal maintenance problem. The system is composed of
multiple non-identical components with generally distributed lifetimes. Furthermore, these
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general lifetime distributions are modulated by an external process which is also a very
general stochastic process, namely a semi-Markov process. Since the memoryless property
does not hold in this case, the mathematical analysis of such a complex model is quite
hard. Consider a transition time at which a phase of the mission is completed and another
phase starts. At this time point, to be able to compute the residual lifetime of the system
probabilistically, the age of each component should be known. However, the real age of
a component, which is equal to the time since the start of the mission, is not directly
useful since different phases have different properties and, therefore, a same amount of time
in different phases has different degradation effects on the components. That is why in
addition to the real component ages, the previous phases and their durations should also
be known at the transition time to analyze the residual lifetime of the system. It is clear
that this issue complicates the mathematical analysis of the model. To attack this problem
related to the systems working in random environments, Çınlar and Özekici [6] suggests the
intrinsic aging model in which the intrinsic age of a component is defined as its cumulative
hazard accumulated in time during the operation of the device. This definition implies that
the authors design an intrinsic clock which ticks differently in different environments. This
directly implies that the intrinsic clock associated with a component will tick differently in
different phases of a mission since we define the mission process as an external environment
process. One of the main advantages of using the intrinsic age of a component instead of
the real age is that it is sufficient to know the intrinsic ages of the components to analyze
the residual lifetime of the system at the transition times, that is, it is not necessary to
store the previously performed phases. This is mainly due to the fact that the intrinsic
clock already takes account of the effects of changing phases. The second, possibly more
important, main advantage of the intrinsic aging model is that the intrinsic lifetime of any
device is exponentially distributed with rate 1. This implies that it is possible to make use
of the memoryless property if the intrinsic clock is used instead of real-time clock. Due to
these advantages which are especially helpful in our setting, we use the intrinsic aging model
in this study. The formal construction of the intrinsic aging model is given in the remainder
of this section.

Let Hk (i, t) be the cumulative hazard of component k at time t in phase i which is
assumed to be continuously differentiable in t. Then, we have the well-known equality

P {L (k) > t|Y = i} = e−Hk(i,t)

when the phase is fixed to be {Y = i} = {Yt = i for all t ≥ 0}. Note that if L (k) has a
continuously differentiable distribution function in phase i, then Hk (i, t) is continuously
differentiable in t. The intrinsic age of component k at time t is defined as Hk (i, t) provided
that the system performs phase i throughout [0, t]. The intrinsic aging rate of component
k during phase i is defined as

rk (i, a) =
d

dt
Hk (i, t) |t=H−1

k (i,a) (3)

at any age a ∈ R+ where H−1
k (i, a) is the time at which the intrinsic age of component k

becomes a if the system performs phase i; or

H−1
k (i, a) = inf {t ∈ R+;Hk (i, t) > a} .

Since Hk (i, t) is increasing in t, Hk

(
i,H−1

k (i, a)
)

= a.
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Let A (k) = {At(k); t ∈ R+} denote the intrinsic age process of component k for all
k ∈ S. We assume that the intrinsic age process satisfies

dAt (k)
dt

= rk (Yt, At (k))

for 0 ≤ t < min{L(k), L}. Therefore, if the intrinsic age of component k at time s when
phase i starts is As (k) = a, then after t units of time its age becomes

As+t (k) = hk (i, a, t) = Hk

(
i,H−1

k (i, a) + t
)
. (4)

Note that this definition requires that both component k and the system are functioning
at time s+ t. Let B0 (k) = A0 (k) and define an embedded process B(k) = {Bn (k) ;n =
0, 1, . . .} recursively through

Bn+1 (k) = hk (Xn, Bn (k) , Tn+1 − Tn)

for n ≥ 0. The intrinsic aging process A = {At(k); t ∈ R+, k ∈ S} of the whole system con-
sists of the aging processes of the components. Note that At ∈ F = R

m

+ = [0,+∞]m for all
t ∈ R+ and F is the state space of A. The intrinsic age process of component k can be
constructed recursively by

ATn+t(k) = hk (Xn, Bn(k), t)

provided that t ≤ Tn+1 − Tn and both the component and the whole system are functioning
at time Tn + t. As soon as component k fails at some time L(k), we set the intrinsic age
to AL(k)+t(k) = +∞ for all t ∈ R+. Clearly, +∞ denotes the failure state. We extend the
definition of hk in Eq. (4) such that hk (i,+∞, t) = +∞ since a failed component remains
failed.

Following the construction in Çınlar and Özekici [6], it is clear that component k is not
in a failed state at time t if and only if At (k) < L̂ (k) where L̂ (k) is the intrinsic lifetime
of component k. These also imply that component k fails at time

L(k) = inf{t ∈ R+;At(k) > L̂(k)}
when its intrinsic age exceeds its intrinsic lifetime. Furthermore, since the intrinsic life-
times {L̂ (k)} are independent and identically distributed random variables that have the
exponential distribution with rate 1, we can write

P {L (k) > t|A0 (k) = a,X0 = i} = P
{
L̂ (k) > At (k) |A0 (k) = a,X0 = i

}
,

= E
[
e−(At(k)−a)|A0 (k) = a,X0 = i

]
. (5)

Let B = {0, 1} be the binary set, h (i, a, t) denote the vector with elements hk (i, a (k) , t)
and

I{condition} =

{
1 if condition holds,
0 otherwise

be the indicator function for any condition, for example, a < b, x ∈ A, etc. We let ψi be the
structure function of the system defined on F during phase i such that

ψi (a) =

{
1 if the system is in working condition at intrinsic age a,
0 otherwise
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for all a ∈ F . It can be determined using the reliability structure of the whole system. For
instance, if the system is a series one with m components during phase i, then

ψi(a) =
m∏

k=1

I{a(k)<+∞},

for all a ∈ F , where a(k) is the intrinsic age of component k. Similarly, if the system is a
parallel one during phase i, then

ψi(a) = 1 −
m∏

k=1

(
1 − I{a(k)<+∞}

)
for all a ∈ F . More generally, if we have a coherent structure with some structure function
φi defined on Bm during phase i, then it suffices to take

ψi(a) = φi

(
I{a(1)<+∞}, I{a(2)<+∞}, . . . , I{a(m)<+∞}

)
.

In this study, we assume that ψi(a) = ψi(a1, a2, . . . , am) is nonincreasing in ak for every k.
Note that if the system structure is coherent in all phases, this condition is satisfied trivially.

We assume that P{T1 ≤ t,X1 = j|X0= i, A0 = a} = Q(i, j, t) for all a ∈ F , so that the
age of the system does not affect the mission that will be performed. Moreover, we now let

pk
ia(k)(s, db(k)) = P{As(k) ∈ db|Y = i, A0 = a} (6)

denote the probability that the intrinsic age of component k will be in db(k) at time s given
that the initial age of the system is a and the mission consists of phase i only. It now follows
from the construction of the intrinsic aging process that

pk
ia(k)(s, db(k)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e−(b(k)−a(k)) if a(k) < +∞, b(k) = hk (i, a(k), s) < +∞,

1 − e−(hk(i,a(k),s)−a(k)) if a(k) < +∞, b(k) = +∞,

1 if a(k) = +∞, b(k) = +∞,

0 otherwise.
(7)

We suppose that the condition {Y = i} in Eq. (6) can be extended further so that
pk

ia(k)(t, db(k)) = P{At(k) ∈ db|Y,A0 = a} for any realization of the mission process
Y = {Ys; s ≥ 0} so long as Ys = i for all 0 ≤ s ≤ t. If the system is at age a initially, the
probability that the age of the system will be in db after s units of time during phase i is

p̃ (i, a, s, db) = P {At ∈ db|Y = i, A0 = a} =
m∏

k=1

pk
ia(k)(s, db(k)). (8)

Note that Eq. (8) follows from our assumption that the aging of the components are indepen-
dent during any given phase. As long as the phase of the mission is fixed, aging of component
k occurs deterministically according to hk (i, a (k) , t) for all k ∈ S and any component fails
as soon as the age exceeds the exponential threshold.

In the foregoing text, unless otherwise specified, any vector c is a column vector. If
a and b are vectors with the same size, we will use a ≥ (≤) b, a �= b, and a � b when
a (k) ≥ (≤) b (k) for every k, a(k) �= b(k) for at least one k, and a ≤ b with a �= b respec-
tively. For any vectors x, y ∈ F with x = (x(1), . . . , x(m)) and y = (y(1), . . . , y(m)), the
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arithmetic operations xy, x+ y, x− y, and x/y define the vectors whose ith entries are
given by x (i) y (i) , x (i) + y (i) , x (i) − y (i) , and x (i) /y (i). We let 0 and 1 denote col-
umn vectors with all entries being equal to 0 and 1, respectively. We also assume that
rk (i, a) is increasing in a and it is strictly positive. Finally, all costs are discounted at
some rate α > 0. For a technical reason which will be clear shortly, we further assume that
K = supi∈E E

[
e−αT1 |X0 = i

]
< 1.

3. OPTIMAL REPLACEMENT PROBLEM

In this section, we will analyze a quite complex maintenance problem for a phased mission
system with some structure function ψi during phase i. We assume that the system is
observed only at the beginning of each phase. After an observation, a decision is made for
each component to replace or not to replace it by considering the intrinsic age vector of
the system. Then, the system starts to perform the next phase. We also assume that the
duration of the replacement activity is negligible (or included in the phase durations).

We let Bm be the set of all replacement policies so that for any r ∈ Bm, if r (k) = 1(0),
component k will (will not) be replaced. If the next phase is i and the intrinsic age vector
of the system is a, then the cost of applying the replacement policy r is cm (i, a; r). The
cost of performing phase i with an initial intrinsic age a is c (i, a) , which is increasing
in a; and if the system fails during phase i, the failure cost fi is incurred. We assume that
supi∈E,a∈F c (i, a) = C < +∞ and supi∈E fi = f < +∞.

Assumption 1: The maintenance cost function cm : E ×F ×Bm → R+ satisfies

(i) cm (i, a;0) = 0;
(ii) r, s ∈ Bm with r ≥ s implies cm (i, a; r) ≥ cm (i, a; s);
(iii) r, s ∈ Bm with rs = 0 implies that cm (i, a; r + s) ≤ cm (i, a; r) + cm (i, a; s);
(iv) cm (i, a; r) is independent of ak if rk = 0 for all k;
(v) supi∈E,a∈F cm (i, a;1) = Cm < +∞;
(vi) cm (i, a; r) is increasing in ak for all k.

The conditions imposed on cm by Assumption 1 are quite important and reasonable.
Conditions (i) and (ii) simply state that no cost is incurred if there is no replacement and
the replacement cost increases as more components are replaced. By condition (iii), if we
consider two replacement policies which do not replace the same components, the cost of
applying both policies at the same time is less than the sum of the individual costs. This is
very reasonable if there is a fixed cost associated with each replacement activity. Condition
(iv) asserts that the cost of a replacement policy is not affected by the age of a component
that is not replaced. The cost of replacing older components is higher by condition (vi).
This is also reasonable since the salvage value of older components is lower.

Our purpose is to find a replacement policy which minimizes the expected total dis-
counted cost. Let v (i, a) denote the minimum expected total discounted cost if the initial
phase is i, and the device is at age a. Then, v satisfies the dynamic programming equation
(DPE)

v (i, a) = min
r∈Bm

{cm (i, a; r) + c (i, a (1 − r)) + Γv (i, a (1 − r))} (9)
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where the operator Γ : B → B is defined by

Γg (i, a) =
∑
j∈E

∫ +∞

0

Q (i, j, ds) e−αs

{∫
F
p̃ (i, a, s, db) [g (j, b) + (1 − ψi (b)) fi]

}
(10)

for any function g in the set B of all bounded nonnegative real-valued functions defined on
E ×F . Note that we implicitly assume in Eq. (10) that if the system fails during a phase,
the failure cost is incurred at the end of the phase.

We will first show that the DPE Eq. (9) has a unique solution, which is increasing
in the initial age of the system. We will next give several results explaining the structure
of the optimal replacement policy. The next theorem shows the existence of the optimal
replacement policy utilizing Banach’s contraction mapping theorem.

Theorem 2: There is a unique function v∗ in B which satisfies the DPE given in Eq. (9).

We next show that v∗ is an increasing function of the age of the system for a fixed
phase. The following lemma is very important in proving this. Define

Bk = {c ∈ F : c (k) < +∞}, (11)

so that its complement is Bk = {c ∈ F : c (k) = +∞}.

Lemma 3: If g (i, a) is increasing in a for every i ∈ E, then∫
Bk

∏
j �=k

pj
ia(j)(s, dc(j))f (i, j, c) ≥

∫
Bk;

c(k)=hk(i,a(k),s)

∏
j �=k

pj
ia(j)(s, dc(j))f (i, j, c)

for all i ∈ E, k ∈ S, a ∈ F , and s ∈ R+ where

f (i, j, c) = g (j, c) + (1 − ψi (c)) fi.

Now, the following main result can be proved by using the previous technical lemma.

Theorem 4: Let v∗ be the optimal solution in Theorem 2, then

(i) 0 ≤ v∗ ≤ (Cm + C +Kf)/(1 −K);
(ii) v∗ (i, a) is increasing in a.

We introduce some new notation for simplicity. If r∗ is the optimal policy, we let

C (i, a) = {k; r∗k (i, a) = 1}
R (i, A) = {a;C (i, a) = A}

for every i ∈ E, a ∈ F , and A ⊂ S. Here, C (i, a) denotes the set of components which are
optimally replaced if the age of the system is a during phase i, and R (i, A) denotes the set
of ages at which the optimal decision is to replace the components in A during phase i.

The following theorem simply states that the optimal decision is do-nothing for any
state reached just after a maintenance. In other words, it is always preferred to replace a
set of components at the same time, rather than replacing two disjoint subsets of the same
components successively. This is an intuitive consequence of (iii) in Assumption 1 which is
quite reasonable if there is a fixed cost involved in the repair procedure.
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Theorem 5: There is an optimal replacement policy satisfying DPE given in Eq. (9) such
that

(i). r∗k (i, a) = 0 if ak = 0,
(ii). a (1 − r∗ (i, a)) ∈ R (i,∅) .

Proof: The proof of the first statement trivially follows from Eq. (9) since cm (i, a; r)
is increasing in r and kth entry of a (1 − r) is 0 independent of r. To prove the second
statement, first note that r∗k (i, a) = 1 implies that

r∗k (i, a (1 − r∗ (i, a))) = 0

for any k ∈ C(i, a) by the first statement. By taking the contrapositive, r∗k(i, a(1 −
r∗(i, a))) = 1 implies that r∗k(i, a) = 0. Therefore,

r∗ (i, a) r∗ (i, a (1 − r∗ (i, a))) = 0

and

cm (i, a; r∗ (i, a (1 − r∗ (i, a)))) = cm (i, a (1 − r∗ (i, a)) ; r∗ (i, a (1 − r∗ (i, a))))

by Assumption 1. By defining

r̂ (i, a) = r∗ (i, a) + r∗ (i, a (1 − r∗ (i, a)))

we have

v∗ (i, a) ≤ cm (i, a; r̂ (i, a)) + c (i, a (1 − r̂ (i, a))) + Γv∗ (i, a (1 − r̂ (i, a)))

≤ cm (i, a; r∗ (i, a)) + c (i, a (1 − r̂ (i, a))) + Γv∗ (i, a (1 − r̂ (i, a)))

+ cm (i, a (1 − r∗ (i, a)) ; r∗ (i, a (1 − r∗ (i, a))))

= cm (i, a; r∗ (i, a)) + cm (i, a (1 − r∗ (i, a)) ; r∗ (i, a (1 − r∗ (i, a))))

+ c (i, a (1 − r∗ (i, a)) (1 − r∗ (i, a (1 − r∗ (i, a)))))

+ Γv∗ (i, a (1 − r∗ (i, a)) (1 − r∗ (i, a (1 − r∗ (i, a)))))

= cm (i, a; r∗ (i, a)) + v∗ (i, a (1 − r∗ (i, a)))

≤ cm (i, a; r∗ (i, a)) + c (i, a (1 − r∗ (i, a))) + Γv∗ (i, a (1 − r∗ (i, a)))

= v∗ (i, a) .

In this chain of implications, the first inequality directly follows from Eq. (9) since r̂ ∈ Bm.
The second inequality follows from (iii) in Assumption 1. The first equality follows from the
fact that

1 − r̂ (i, a) = 1 − r∗ (i, a) − r∗ (i, a (1 − r∗ (i, a))) + r∗ (i, a) r∗ (i, a (1 − r∗ (i, a)))

= 1 − r∗ (i, a) − (1 − r∗ (i, a)) r∗ (i, a (1 − r∗ (i, a)))

= (1 − r∗ (i, a)) (1 − r∗ (i, a (1 − r∗ (i, a))))

since

r∗ (i, a) r∗ (i, a (1 − r∗ (i, a))) = 0.
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The second equality follows from the fact that

v∗ (i, a (1 − r∗ (i, a))) = cm (i, a (1 − r∗ (i, a)) ; r∗ (i, a (1 − r∗ (i, a))))

+ c (i, a (1 − r∗ (i, a)) (1 − r∗ (i, a (1 − r∗ (i, a)))))

+ Γv∗ (i, a (1 − r∗ (i, a)) (1 − r∗ (i, a (1 − r∗ (i, a)))))

and the third inequality follows from the fact that cm (i, a, x;0) = 0 and

v∗ (i, a (1 − r∗ (i, a))) ≤ c (i, a (1 − r∗ (i, a))) + Γv∗ (i, a (1 − r∗ (i, a))). (12)

Finally, the last equality is trivial since r∗ (i, a) minimizes the right-hand side of Eq. (9).
Therefore, all of these inequalities must be equalities which means that

cm (i, a; r̂ (i, a)) = cm (i, a; r∗ (i, a)) + cm (i, a (1 − r∗ (i, a)) ; r∗ (i, a (1 − r∗ (i, a))))

and Eq. (12) is also an equality. But this implies that we can define r∗ at a (1 − r∗ (i, a)) such
that r∗ (i, a (1 − r∗ (i, a))) = 0 and r̂ (i, a) = r∗ (i, a) with a (1 − r∗ (i, a)) ∈ R (i,∅). �

The following two results express the monotonic structure of the optimal replacement
policy. If the optimal decision for a component is replacement at a decision epoch where the
component age is a, then the same decision is still optimal when the age of the component
is larger than a in the same phase.

Theorem 6: Suppose that cm (i, a; r) is independent of a. Then, there is an optimal
replacement policy satisfying DPE given in Eq. (9) such that

(i) If bk ≥ ak for k ∈ A ⊂ C (i, a) and bk = ak for k /∈ A, then r∗ (i, b) = r∗(i, a);
(ii) If bk < ak for k ∈ A ⊂ S\C(i, a) and bk = ak for k /∈ A, then there exists k ∈ A such

that r∗k(i, b) = 0.

Proof: Using Theorem 4, we have v∗ (i, b) ≥ v∗ (i, a) and, hence,

cm (i, b; r∗ (i, b)) + c (i, b (1 − r∗ (i, b))) + Γv∗ (i, b (1 − r∗ (i, b)))

≥ cm (i, a; r∗ (i, a)) + c (i, a (1 − r∗ (i, a))) + Γv∗ (i, a (1 − r∗ (i, a)))

= cm (i, b; r∗ (i, a)) + c (i, b (1 − r∗ (i, a))) + Γv∗ (i, b (1 − r∗ (i, a))).

The last equality follows from the main assumption. This result implies that at age b, if
we apply the optimal policy at age a, we have the same optimal cost. Therefore, in the
optimal policy at age b, we can apply the optimal replacement policy at age a and this
proves (i). To prove (ii) by contradiction, suppose that r∗k (i, b) = 1 for every k ∈ A. Then,
a (k) ≥ b (k) for k ∈ A ⊂ C (i, b) and a (k) = b (k) for k /∈ A. Applying Theorem 6 (i), we
have r∗ (i, a) = r∗ (i, b). This implies that r∗k (i, a) = 1 for every k ∈ A ⊂ S\C (i, a). Clearly,
this is a contradiction. �

An immediate corollary of this theorem is the following.

Corollary 7: Let r∗ be the optimal policy of Theorem 6. Then,

(i) r∗k (i, a) is increasing in ak for all k ∈ S;
(ii) If a ∈ R (i, S), then b ∈ R (i, S) for all b ≥ a;
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(iii) If b (k) < a (k) and b (j) = a (j) for every j �= k with r∗k (i, a) = 0, then r∗k (i, b) = 0;
(iv) If a ∈ R (i,∅), b (k) < a (k) and b (j) = a (j) for every j �= k, then r∗k (i, b) = 0.

Proof: To prove (i), it suffices to show that if r∗k (i, a) = 1 for some a ∈ F , then r∗k (i, b) = 1
for b ∈ F with b (k) ≥ a (k) and b (j) = a (j) for every j �= k. This follows from Theorem 6
trivially. To prove the second statement suppose that a ∈ R (i, S) and choose b ∈ F such
that b ≥ a. Then, since r∗k (i, a) = 1 for every k ∈ S, r∗ (i, b) = r∗ (i, a) using Theorem 6.
This trivially implies that b ∈ R (i, S). The proofs of (iii) and (iv) follow trivially from (ii)
in Theorem 6 by taking A = {k}. �

Even though the structure of the optimal replacement policy of the whole system is
too complex to be characterized using some simple rules, the optimal replacement policy
of a component in the system is monotone. This also implies that the optimal policy for a
component in the system adopts a control-limit rule, where the threshold value is a function
of the phase of the mission and the ages of the other components in the system. In other
words, there exists a threshold value above which the optimal decision for a component
in the system is “replace”, and below which to do nothing is optimal if the phase of the
mission and the ages of the other components are fixed.

4. OPTIMAL REPAIR PROBLEM

In the previous section, there are only two decision alternatives at each decision epoch:
to replace a component by a brand new one or to let it operate during the next phase.
In many applications, however, it is also possible to repair a component so that its age is
decreased to a lower level by some technical maintenance operations or by simply replacing
the old component by one that is younger, if not brand new. We will use the settings and
probabilities constructed in the previous section once more.

The decision maker observes the system at the beginning of each phase and makes a
repair decision. If the next phase is i and the intrinsic age of the system is a at the end of
a phase, then the decision maker chooses an action y (i, a) from the set {b ∈ F ; b ≤ a}. The
cost of repairing the system from age a to b during phase i is Ci (a; b) where b ≤ a.

Assumption 8: The repair cost function Ci :
{
(a, b) ∈ F2; b ≤ a

} → R+ satisfies

(i) Ci (a; b) is increasing in ak and decreasing in bk for every k ∈ S;
(ii) Ci (a; a) = 0;
(iii) supi∈E,a∈F Ci (a;0) = Cr < +∞.

Condition (i) simply states that the cost of repair increases as the amount of
improvement increases. Condition (ii) asserts that if the system does not experience any
maintenance, then no cost will be incurred. It is clear that these are very reasonable
assumptions.

We also suppose that if there are more than one optimal repair action, then the alter-
native with lower final age will be chosen. Our purpose is to find a repair policy which
minimizes the expected total discounted cost. Let v (i, a) denote the minimum expected
total discounted cost if the initial phase is i, and the device is at age a. Then, v satisfies
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the DPE
v (i, a) = inf

b;b≤a
{Ci (a; b) + c (i, b) + Γv (i, b)} , (13)

where the operator Γ : B → B is defined by

Γg (i, a) =
∑
j∈E

∫ +∞

0

Q (i, j, ds) e−αs

{∫
F
p̃ (i, a, s, db) [g (j, b) + (1 − ψi (b)) fi]

}
(14)

for any function g in B.
The following result shows that an optimal solution for the DPE Eq. (13) exists.

Theorem 9: There is a unique function v∗ in B which satisfies the DPE given in Eq. (13).

The next result shows that the DPE Eq. (13) corresponding to the optimal repair
problem has a bounded solution which is increasing in the ages of the components. The
only restriction for being increasing is that the repair cost function must be non-decreasing
in the ages of the unmaintained components. This is very reasonable since the repair cost
function is generally independent of the ages of the unmaintained components in real-life
applications, and the condition of the result is satisfied in this case.

Theorem 10: Let v∗ be the optimal value function of Theorem 9. Then,

(i) 0 ≤ v∗ ≤ (Cr + C +Kf)/(1 −K);
(ii) If Ci (a; b) ≥ Ci

(
a; b

)
whenever bk = ak ≥ ak = bk for some k and aj = aj , bj = bj

for every j �= k, then v∗ (i, a) is increasing in ak for every k.

We will let y∗ (i, a) denote the optimal decision at state (i, a) which provides the mini-
mum to the right-hand side of Eq. (13). The structure of the repair cost function C is too
general to obtain useful characterizations of the optimal policy. We will therefore impose
additional restrictions on C which lead to some simplifications.

The first case that we consider assumes that for the same amount of improvement,
the cost of two successive repairs is larger than the cost of a direct repair. Under this cost
structure, it is always preferred to repair a system at some age a directly to a lower age b,
rather than repairing it first to an intermediate age c (b < c < a) and then to age b. If there
is a fixed cost associated with each repair action, then this assumption is quite reasonable.
A quite intuitive and expected consequence of this assumption is the following theorem.

Theorem 11: If Ci (a; b) ≤ Ci (a; c) + Ci (c; b) for all a ≥ c ≥ b ≥ 0 and i ∈ E, then there
is an optimal policy such that y∗ (i, y∗ (i, a)) = y∗ (i, a).

Proof: Choose arbitrary i ∈ E, and a ∈ F . Suppose that y∗ (i, a) = α, and choose some
b ≤ α. Using the main hypothesis, we have

Ci (a; b) ≤ Ci (a;α) + Ci (α; b)

and
Ci (a; b) − Ci (a;α) ≤ Ci(α; b). (15)

Since y∗ (i, a) = α,

Ci (a;α) + c (i, α) + Γv∗ (i, α) ≤ Ci (a; b) + c (i, b) + Γv∗ (i, b)
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and

c (i, α) + Γv∗ (i, α) ≤ Ci (a; b) − Ci (a;α) + c (i, b) + Γv∗(i, b).

This implies that

c (i, α) + Γv∗ (i, α) ≤ Ci (α; b) + c (i, b) + Γv∗(i, b) (16)

using Eq. (15). Since b is an arbitrary value satisfying b ≤ α , using Eq. (16), we have

c (i, α) + Γv∗ (i, α) ≤ inf
b;b≤α

{Ci (α; b) + c (i, b) + Γv∗ (i, b)}.

Since Ci (α;α) = 0, we can conclude that we can choose y∗ (i, α) = α in the optimal repair
policy and, hence, y∗ (i, y∗ (i, a)) = y∗ (i, a). �

The next result states that if there is no fixed cost associated with a repair action, and if
the optimal decision at age a+ u is to repair the system to age a, then the optimal decision
for the all intermediate ages, from a to a+ u, is to repair the system to the same age. This
clearly implies that the optimal repair policy is monotone, as is proved in the subsequent
corollary.

Theorem 12: Choose some a ∈ F and i ∈ E. Suppose that Ci (b; d) = Ci (b; c) + Ci (c; d)
for all a+ u ≥ b ≥ c ≥ d ≥ 0 for some u ≥ 0. Then, y∗ (i, a+ u) ≤ a implies that there is
an optimal policy such that y∗ (i, a+ z) = y∗ (i, a) for all 0 ≤ z ≤ u.

Proof: Choose arbitrary z �= 0. By the main hypothesis, it is clear that there is a repair
decision at (i, a+ u) and, hence,

v∗ (i, a+ u) = inf
b;b≤a+u

{Ci (a+ u; b) + c (i, b) + Γv∗ (i, b)}

= inf
b;b≤a+z

{Ci (a+ u; b) + c (i, b) + Γv∗ (i, b)}

= inf
b;b≤a

{Ci (a+ u; b) + c (i, b) + Γv∗ (i, b)} .

This implies that

inf
b;b≤a+z

{Ci (a+ u; b) + c (i, b) + Γv∗ (i, b)} = Ci (a+ u; a+ z)

+ inf
b;b≤a+z

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)}

= Ci (a+ u; a+ z)

+ inf
b;b≤a

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)}

and

v∗ (i, a+ z) = inf
b;b≤a+z

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)} (17)

= inf
b;b≤a

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)}. (18)
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Therefore, there is an optimal policy with y∗ (i, a+ z) ≤ a. Now, choose b ≤ a. Then,

Ci (a+ z; y∗ (i, a)) + c (i, y∗ (i, a)) + Γv∗ (i, y∗ (i, a))

= Ci (a+ z; a) + Ci (a; y∗ (i, a)) + c (i, y∗ (i, a)) + Γv∗ (i, y∗ (i, a))

≤ Ci (a+ z; a) + Ci (a; b) + c (i, b) + Γv∗ (i, b)

= Ci (a+ z; b) + c (i, b) + Γv∗ (i, b).

This and Eq. (17) imply that

Ci (a+ z; y∗ (i, a)) + c (i, y∗ (i, a)) + Γv∗ (i, y∗ (i, a))

≤ inf
b;b≤a

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)}

= inf
b;b≤a+z

{Ci (a+ z; b) + c (i, b) + Γv∗ (i, b)}

and there is an optimal policy such that y∗ (i, a+ z) = y∗ (i, a). �

An immediate corollary of the theorem is the following, stating that if there is no fixed
cost of a repair action, then the optimal repair policy is monotone.

Corollary 13: Suppose that Ci(a; b) = Ci(a; c) + Ci(c; b) for every a ≥ c ≥ b ≥ 0 and
i ∈ E. Then, there is an optimal policy such that y∗k(i, a) is increasing in ak.

Proof: Suppose that y∗ (i, a) = c and y∗ (i, a+ u) = b where uk > 0 and uj = 0 for every
j �= k. If bk ≥ ak, then bk ≥ ck since ck ≤ ak trivially. Now, suppose that bk < ak. Then, we
have b ≤ a and y∗ (i, a) = y∗ (i, a+ u) using Theorem 12 and this completes the proof. �

The following result gives a sufficient condition for the optimal repair policy to be a
replacement policy. The sufficient condition is that the total repair and state occupancy cost
is increasing in the final age of the system occurring as a result of a repair activity. This
condition is only possible when the marginal increase in the state occupancy cost c(i, b) is
larger than the marginal decrease in the repair cost Ci(a, b) as b increases for all a ∈ F .
If this condition holds, then the optimal repair policy has the structure that the optimal
decision is either “do nothing” or system replacement. This result is very intuitive since
repairing the device to a smaller age is always cheaper under this cost structure.

Proposition 14: Suppose that

Ci (a; b) + c (i, b) ≥ Ci (a; c) + c (i, c) (19)

whenever b ≥ c and b �= a. Then, v∗ (i, a) is increasing in a and there is an optimal policy
such that y∗ (i, a) ∈ {0, a}. If Eq. (19) also holds for b = a, then there is an optimal policy
such that y∗ (i, a) = 0.

Proof: Following the same steps as in the proof of Theorem 4, it can be shown that Γg (i, a)
is increasing in a. Choose a, c ∈ F such that c (k) > a (k) and c (j) = a (j) for every j �= k.
We need to show that Υg (i, c) ≥ Υg (i, a), where

Υg (i, a) = inf
b;b≤a

{Ci (a; b) + c (i, b) + Γg (i, b)} (20)

for all i ∈ E, a ∈ F .
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Choose b ≤ a. Then, trivially b ≤ c and, hence,

Ci (c; b) + c (i, b) + Γg (i, b) ≥ Ci (a; b) + c (i, b) + Γg (i, b) ≥ Υg (i, a)

since Ci (a; b) is increasing in a. Now, choose b ≤ c with c(k) > b (k) > a (k). Define b such
that b (k) = a (k) and b (j) = b (j) for every j �= k. Then, b ≤ b and b ≤ a. This implies that

Ci (c; b) + c (i, b) + Γg (i, b) ≥ Ci

(
c; b

)
+ c

(
i, b

)
+ Γg

(
i, b

)
≥ Ci

(
a; b

)
+ c

(
i, b

)
+ Γg

(
i, b

)
≥ Υg(i, a).

If b = c,

Ci (c; b) + c (i, b) + Γg (i, b) = c (i, c) + Γg (i, c)

≥ c (i, a) + Γg (i, a)

≥ Υg(i, a).

Then,

Υg (i, c) = min
{

inf
b;b≤a

{Ci (c; b) + c (i, b) + Γg (i, b)} ,

inf
b;b≤c,b(k)>a(k)

{Ci (c; b) + c (i, b) + Γg (i, b)}
}

≥ min {Υg (i, a) ,Υg (i, a)} = Υg(i, a).

Using the main hypothesis,

Ci (a;0) + c (i,0) + Γv (i,0) ≤ Ci (a; b) + c (i, b) + Γv (i, b)

for every b � a. Therefore,

v∗ (i, a) = inf
b;b≤a

{Ci (a; b) + c (i, b) + Γv∗ (i, b)}

= min
{

inf
b�a

{Ci (a; b) + c (i, b) + Γv∗ (i, b)} , c (i, a) + Γv∗ (i, a)
}

= min {Ci (a;0) + c (i,0) + Γv∗ (i,0) , c (i, a) + Γv∗ (i, a)}.

This trivially implies that there is an optimal policy such that y∗ (i, a) ∈ {0, a}. Suppose that
Eq. (19) also holds for b = a. It is sufficient to show that Ci (a;0) + c (i,0) + Γv∗ (i,0) ≤
c (i, a) + Γv∗ (i, a). This follows from Γv∗ (i, a) ≥ Γv∗ (i,0) and

c (i, a) = Ci (a; a) + c (i, a) ≥ Ci (a;0) + c(i,0).

�

An interesting special case is when the repair action corresponds to selling the old device
at hand and replacing it with a younger one purchased from the market. Let ci (a) and si (a)
be the purchase cost and salvage value, respectively, of a device with intrinsic age a. Then,
Ci (a; b) = ci (b) − si (a) whenever b ≤ a with a �= b and, as usual, Ci (a; a) = 0. Thereafter,
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this cost model will be called sell–purchase cost model. We assume that ci and si are both
decreasing in ak for every k with ci ≥ si. It is easy to show that the hypothesis of Theorem
11 is satisfied under this cost structure and hence y∗ (i, y∗ (i, a)) = y∗ (i, a) for every a.

Under the sell–purchase cost model, Eq. (13) simplifies to

v (i, a) = min
{
c (i, a) + Γv (i, a) + si (a) , inf

b�a
{ci (b) + c (i, b) + Γv (i, b)}

}
− si (a) (21)

for all i ∈ E and a ∈ F .
The following two results characterizes the structure of the optimal repair policy under

the sell–purchase cost model.

Theorem 15: Let y∗ (i, a) be the optimal repair policy of DPE given in Eq. (21). Then, if
y∗ (i, a) �= a, y∗ (i, a+ u) � a for some u ≥ 0 and y∗ (i, a+ z) �= a+ z for some 0 ≤ z ≤ u,
then there is an optimal policy such that y∗ (i, a+ z) = y∗ (i, a).

Proof: Since y∗ (i, a) �= a,

v∗ (i, a) = inf
b�a

{ci (b) + Γv∗ (i, b)} − si(a).

If u = 0, then there is nothing to prove. Suppose that u �= 0. By the main hypothesis, it is
clear that there is a repair decision at (i, a+ u) and, hence,

v∗ (i, a+ u) = inf
b�a+u

{ci (b) + c (i, b) + Γv∗ (i, b)} − si (a+ u)

= inf
b�a

{ci (b) + c (i, b) + Γv∗ (i, b)} − si (a+ u) (22)

where the last equality follows from y∗ (i, a+ u) � a. Now, choose arbitrary z �= 0 such that
y∗ (i, a+ z) �= a+ z. Then, we have

v∗ (i, a+ z) = inf
b�a+z

{ci (b) + c (i, b) + Γv∗ (i, b)} − si (a+ z)

and
{b; b � a} ⊂ {b; b � a+ z} ⊂ {b; b � a+ u}.

This implies that

inf
b�a

{ci (b) + c (i, b) + Γv∗ (i, b)} ≥ inf
b�a+z

{ci (b) + c (i, b) + Γv∗ (i, b)}

≥ inf
b�a+u

{ci (b) + c (i, b) + Γv∗ (i, b)}

and using Eq. (22),

inf
b�a+z

{ci (b) + c (i, b) + Γv∗ (i, b)} = inf
b�a

{ci (b) + c (i, b) + Γv∗ (i, b)}

which implies that we can choose y∗ (i, a+ z) = y∗ (i, a). �

An immediate corollary of the theorem is the following, stating that the optimal repair
policy is nondecreasing over the set of ages for which the optimal decision is not do nothing.
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This also implies that when the optimal decision changes from do nothing to repair, the
optimal repair policy might be decreasing, that is, it is possible that y∗(i, a+) < y∗(i, a) = a.

Corollary 16: Let y∗ (i, a) be the optimal repair policy of DPE given in Eq. (21). Then,
there is an optimal policy such that y∗k (i, a) ≥ y∗k (i, a) provided that ak > ak for some k,
aj = aj for every j �= k and y∗ (i, a) �= a.

Proof: Note that if y∗k (i, a) = a, then there is nothing to prove. Choose a, a and k such
that ak > ak, aj = aj for every j �= k, y∗ (i, a) = c �= a, and y∗ (i, a) = b �= a. If bk ≥ ak, then
bk ≥ ck since ck ≤ ak. Now, assume that bk < ak. This implies that b � a. If u = a− a,
y∗ (i, a) �= a, y∗ (i, a+ u) � a and y∗ (i, a+ u) �= a+ u by Theorem 15. This implies that
y∗ (i, a+ u) = y∗ (i, a) and, hence, y∗ (i, a) = y∗ (i, a) which completes the proof. �

In some cases, the purchase cost and the salvage value of a system may be equal. Then,
Ci (a; b) = ci (b) − ci (a) and Eq. (13) simplifies to

v (i, a) = inf
b;b≤a

{ci (b) + c (i, b) + Γv (i, b)} − ci(a). (23)

Theorem 17: Let y∗ (i, a) be the optimal repair policy of DPE given in Eq. (23). Then,
there is an optimal policy such that

(i). If y∗ (i, a+ u) ≤ a, for some u ≥ 0, then y∗ (i, a+ z) = y∗ (i, a) for all 0 ≤ z ≤ u,

(ii). y∗k (i, a) is increasing in ak.

Proof: Choose arbitrary a ≥ c ≥ b ≥ 0. Then,

Ci (a; c) + Ci (c; b) = ci (c) − ci (a) + ci (b) − ci (c)

= ci (b) − ci (a) = Ci(a; b).

Then, the results trivially follow from Theorem 12 and Corollary 13. �

The previous theorem characterizes the structure of the optimal repair policy when
the purchase cost and the salvage value of a system are equal. The optimal repair policy
is increasing under such a cost structure. Moreover, if y∗(i, b) = a < b, then the optimal
decision is to repair the system to age a for all intermediate ages between a and b. This can
be trivially proved by letting u = b− a in Theorem 17, and applying Theorem 11.

In addition, if there is no salvage value, that is, si = 0, the DPE given in Eq. (13) can
be rewritten as

v (i, a) = min
{
c (i, a) + Γv (i, a) , inf

b�a
{ci (b) + c (i, b) + Γv (i, b)}

}
. (24)

Theorem 18: Let y∗ (i, a) be the optimal repair policy of DPE given in Eq. (24). Then,
there is an optimal policy such that

(i). If y∗ (i, a) �= a, y∗ (i, a+ u) = b with b � a for some u ≥ 0 and y∗ (i, a+ z) �= a+ z
for some 0 ≤ z ≤ u, then y∗ (i, a+ z) = y∗ (i, a),

(ii). y∗k (i, a) ≥ y∗k (i, a) provided that ak > ak for some k, aj = aj for every j �= k and
y∗ (i, a) �= a.

Proof: The results follow trivially from Theorem 15 and Corollary 16 since ci ≥ si = 0. �
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Acknowledgment
This research is funded by the Scientific and Technological Research Council of Turkey
through grant 106M044.

References

1. Alam, M. & Al-Saggaf, U.M. (1986). Quantitative reliability evaluation of repairable phased-mission
systems using Markov approach. IEEE Transactions on Reliability 35: 498–503.

2. Bondavalli, A. & Filippini, R. (2004). Modeling and analysis of a scheduled maintenance system: a
DSPN approach. Computer Journal 47: 634–650.

3. Burdick, G.R., Fussell, J.B., Rasmuson, D.M. & Wilson, J.R. (1977). Phased mission analysis: a review
of new developments and an application. IEEE Transactions on Reliability 26: 43–49.

4. Cho, D.I. & Parlar, M. (1991). A survey of maintenance models for multi-unit systems. European Journal
of Operational Research 51: 1–23.
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APPENDIX A

A.1 Proof of Theorem 2

For any g ∈ B, we define the operator Υ : B → B so that

Υg (i, a) = min
r∈Bm

{cm (i, a; r) + c (i, a (1 − r)) + Γg (i, a (1 − r))} (A.1)

for all i ∈ E, a ∈ F .
We will use Banach’s contraction mapping theorem. Choose two functions f, g ∈ B and

suppose ‖·‖ is the usual supremum norm on B such that ‖g‖ = supi∈E,a∈F |g (i, a)|. Note
that

Υg (i, a) − Υf (i, a) = min
r∈Bm

{cm (i, a; r) + c (i, a (1 − r)) + Γg (i, a (1 − r))}

− min
r∈Bm

{cm (i, a; r) + c (i, a (1 − r)) + Γf (i, a (1 − r))}. (A.2)
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Let r be the replacement policy which minimizes the second term on the right-hand side of
Eq. (A.2). Then,

Υg (i, a) − Υf (i, a) = min
r∈Bm

{cm (i, a; r) + c (i, a (1 − r)) + Γg (i, a (1 − r))}

− cm (i, a; r) − c (i, a (1 − r)) − Γf (i, a (1 − r))

≤ cm (i, a; r) + c (i, a (1 − r)) + Γg (i, a (1 − r))

− cm (i, a; r) − c (i, a (1 − r)) − Γf (i, a (1 − r))

= Γg (i, a (1 − r)) − Γf (i, a (1 − r))

=
∑
j∈E

∫ +∞

0

Q (i, j, ds) e−αs

∫
F
p̃ (i, a (1 − r) , s, db) [g (j, b) − f (j, b)]

≤
∑
j∈E

∫ +∞

0

Q (i, j, ds) e−αs

∫
F
p̃ (i, a (1 − r) , s, db) ‖g − f‖

≤ K ‖g − f‖ .
Similarly, it can be shown that Υf (i, a) − Υg (i, a) ≤ K ‖g − f‖ for any i ∈ E and a ∈ F .
Thus, we have ‖Υg − Υf‖ ≤ K ‖g − f‖. Since K < 1, Υ is a contraction mapping on B
and it has a unique fixed point v∗ = Υv∗ which is the unique solution of DPE given in
Eq. (9). �

A.2 Proof of Lemma 3

Choose arbitrary c ∈ Bk such that c (k) = hk (i, a(k), s). Then, there exists c∗ ∈ Bk such
that c∗ (k) = +∞ and c∗ (j) = c (j) for every j �= k. If ψi (c) = 0, then ψi (c∗) = 0 since ψi

is non-increasing in ck. Then, f (i, j, c) = fi + g (j, c), f (i, j, c∗) = fi + g (j, c∗) and, hence,
f (i, j, c∗) ≥ f (i, j, c). Now, suppose that ψi (c) = 1. Then,

f (i, j, c) = g (j, c) ≤ g (j, c∗) + (1 − ψi (c∗)) fi = f (i, j, c∗).

Thus, for every c ∈ Bk with c (k) = hk (i, a(k), s), we can find c∗ ∈ Bk such that f (i, j, c∗) ≥
f (i, j, c) and c∗ (j) = c (j) for every j �= k. This completes the proof. �

A.3 Proof of Theorem 4

It suffices to show that Υg is increasing in a and 0 ≤ Υg ≤ (Cm + C +Kf)/(1 −K) if
0 ≤ g ≤ (Cm + C +Kf)/(1 −K) and g is increasing in a. It is clear that 0 ≤ Γg ≤ K(Cm +
C + f)/(1 −K). Then, using Eq. (A.1) we have 0 ≤ Υg ≤ (Cm + C +Kf)/(1 −K). It is
clear that

dhk (i, ak, s)
dak

=
dHk

(
i,H−1

k (i, ak) + s
)

dak
=
dHk (i, t)

dt
|t=H−1

k (i,ak)+s

d
(
H−1

k (i, ak) + s
)

dak

= rk
(
i,Hk

(
i,H−1

k (i, ak) + s
)) dH−1

k (i, ak)
dak

= rk
(
i,Hk

(
i,H−1

k (i, ak) + s
)) 1

dHk(i,t)
dt |t=H−1

k (i,ak)

=
rk

(
i,Hk

(
i,H−1

k (i, ak) + s
))

rk (i, ak)
≥ 1,
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if component k and the system are in working condition since rk is always positive and
increasing. Therefore, h (i, a, s) and h (i, a, s) − a are increasing in a. Choose a, b ∈ F such
that a (k) < b (k) and b (j) = a (j) for every j �= k for some k. We need to show that
Υg (i, b) ≥ Υg (i, a). Define

p̃k (i, a, s, dc) =
∏
j �=k

pj
ia(j)(s, dc(j)).

Then, since cm (i, a; r) and c (i, a (1 − r)) are increasing in a for every r, it is sufficient to
show that ∫

F
p̃ (i, b, s, dc) f (i, j, c) ≥

∫
F
p̃ (i, a, s, dc) f (i, j, c)

for a given s where f (i, j, c) = g (j, c) + (1 − ψi (c)) fi. Let

q =
∫
F

(p̃ (i, b, s, dc) − p̃ (i, a, s, dc)) f (i, j, c) .

Then, we need to show that q ≥ 0. Suppose that b (k) < +∞. Then,

q =
∫

Bk

(p̃ (i, b, s, dc) − p̃ (i, a, s, dc)) f (i, j, c)

+
∫

Bk

(p̃ (i, b, s, dc) − p̃ (i, a, s, dc)) f (i, j, c)

=
∫

Bk;
c(k)=hk(i,b(k),s)

p̃k (i, a, s, dc) e−(hk(i,b(k),s)−b(k))f (i, j, c)

−
∫

Bk;
c(k)=hk(i,a(k),s)

p̃k (i, a, s, dc) e−(hk(i,a(k),s)−a(k))f (i, j, c)

+
∫

Bk

p̃k (i, a, s, dc)
(
e−(hk(i,a(k),s)−a(k)) − e−(hk(i,b(k),s)−b(k))

)
f (i, j, c)

≥
∫

Bk;
c(k)=hk(i,a(k),s)

p̃k (i, a, s, dc)
(
e−(hk(i,b(k),s)−b(k)) − e−(hk(i,a(k),s)−a(k))

)
f (i, j, c)

+
∫

Bk

p̃k (i, a, s, dc)
(
e−(hk(i,a(k),s)−a(k)) − e−(hk(i,b(k),s)−b(k))

)
f (i, j, c)

=
(
e−(hk(i,b(k),s)−b(k)) − e−(hk(i,a(k),s)−a(k))

)
×

⎡⎣∫
Bk;

c(k)=hk(i,a(k),s)

p̃k (i, a, s, dc) f (i, j, c) −
∫

Bk

p̃k (i, a, s, dc) f (i, j, c)

⎤⎦
≥ 0,

where the last inequality follows from Lemma 3.
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Now, suppose that b (k) = +∞. Then,

q =
∫

Bk

(p̃ (i, b, s, dc) − p̃ (i, a, s, dc)) f (i, j, c) −
∫

Bk

p̃ (i, a, s, dc) f (i, j, c)

=
∫

Bk

p̃k (i, a, s, dc)
(
e−(hk(i,a(k),s)−a(k))

)
f (i, j, c)

−
∫

Bk;
c(k)=hk(i,a(k),s)

p̃k (i, a, s, dc) e−(hk(i,a(k),s)−a(k))f (i, j, c)

= e−(hk(i,a(k),s)−a(k))

×
⎡⎣∫

Bk

p̃k (i, a, s, dc) f (i, j, c) −
∫

Bk;
c(k)=hk(i,a(k),s)

p̃k (i, a, s, dc) f (i, j, c)

⎤⎦
≥ 0,

where the last inequality follows from Lemma 3. �

A.4 Proof of Theorem 9

The same proof as for Theorem 2 applies by defining the operator Υ : B → B for any g ∈ B
as

Υg (i, a) = inf
b;b≤a

{Ci (a; b) + c (i, b) + Γg (i, b)} (A.3)

for all i ∈ E, a ∈ F . �

A.5 Proof of Theorem 10

To simplify the notation, we let (ak, b) = c where c(k) = a (k) and c(j) = b(j) for every
j �= k.

We need to show that Υg is increasing in a and 0 ≤ Υg ≤ (Cr + C +Kf)/(1 −K) if
0 ≤ g ≤ (Cr + C +Kf)/(1 −K) and g is increasing in a. Following the same steps as in the
proof of Theorem 4, it can be shown that 0 ≤ v∗ ≤ (Cr + C +Kf)/(1 −K) and Γg(i, a)
is increasing in a. Now choose a, c ∈ F such that c (k) > a (k) and c (j) = a (j) for every
j �= k. We need to show that Υg (i, c) ≥ Υg (i, a). Choose b ≤ a. Then, trivially b ≤ c and,
hence,

Ci (c; b) + c (i, b) + Γg (i, b) ≥ Ci (a; b) + c (i, b) + Γg (i, b) ≥ Υg (i, a)

since Ci (a; b) is increasing in a. Now, choose b ≤ c with b (k) > a (k). Then,

Ci (c; b) + c (i, b) + Γg (i, b) ≥ Ci ((bk, c) ; b) + c (i, b) + Γg (i, b)

≥ Ci ((ak, (bk, c)); (ak, b)) + c (i, (ak, b)) + Γg (i, (ak, b))

= Ci (a; (ak, b)) + c (i, (ak, b)) + Γg (i, (ak, b))

≥ Υg(i, a),
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where the first inequality follows from the fact that c ≥ (bk, c) and the second inequality
follows from the main hypothesis and b ≥ (ak, b). Then,

Υg (i, c) = min
{

inf
b;b≤a

{Ci (c; b) + c (i, b) + Γg (i, b)} ,

inf
b;b≤c,b(k)>a(k)

{Ci (c; b) + c (i, b) + Γg (i, b)}
}

≥ min {Υg(i, a),Υg (i, a)} = Υg (i, a) .

�
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