

THE AGA KHAN UNIVERSITY

eCommons@AKU

Department of Paediatrics and Child Health

Division of Woman and Child Health

October 2009

Venoarterial PCO2 difference: a marker of postoperative cardiac output in children with congenital heart disease

Muhammad Furqan *Aga Khan University*

Fahad Hashmat Aga Khan University

Munir Amanullah Aga Khan University

Mansoor Khan Aga Khan University

Hina K Durani Aga Khan University

See next page for additional authors

Follow this and additional works at: http://ecommons.aku.edu/ pakistan_fhs_mc_women_childhealth_paediatr

Part of the <u>Pediatrics Commons</u>

Recommended Citation

Furqan, M., Hashmat, F., Amanullah, M., Khan, M., Durani, H., Haque, A. (2009). Venoarterial PCO2 difference: a marker of postoperative cardiac output in children with congenital heart disease. *Journal of the College of Physicians and Surgeons Pakistan*, 19(10), 640-3.

Available at: http://ecommons.aku.edu/pakistan_fhs_mc_women_childhealth_paediatr/5

Authors

Muhammad Furqan, Fahad Hashmat, Munir Amanullah, Mansoor Khan, Hina K Durani, and Anwarul Haque

Venoarterial PCO₂ Difference: A Marker of Postoperative Cardiac Output in Children with Congenital Heart Disease

Muhammad Furqan¹, Fahad Hashmat¹, Munir Amanullah², Mansoor Khan³, Hina K. Durani³ and Anwar-ul-Haque¹

ABSTRACT

Objective: To determine the relationship between venoarterial carbon dioxide gradient (ΔpCO_2) and central venous oxygen saturation (ScvO₂) in children after cardiac surgery.

Study Design: A cohort study.

Place and Duration of Study: The Paediatric cardiac intensive care unit of the Aga Khan University Hospital, Karachi, from June 2006 to May 2007.

Methodology: All children admitted in the paediatric cardiac intensive care after complete repair of congenital heart defect using cardiopulmonary bypass were included in the study. Simultaneous arterial and central venous blood gas samples were obtained from a catheter placed in the artery (either radial or femoral) and superior vena cava respectively. Linear regression analysis was performed between $ScvO_2$ and ΔpCO_2 .

Results: Fifty seven children aged from 5 days to 14 years were included and 272-paired simultaneous arterial and central venous samples were analyzed. Mean venous pCO_2 was 47.82 ± 9.03 mmHg and mean arterial pCO_2 was 40.50 ± 9.06 mmHg. One hundred seventy four samples had $ScvO_2 > 70\%$ with mean ΔpCO_2 of 5.44 ± 2.55 mmHg and 98 samples had $ScvO_2 < 70\%$ with mean ΔpCO_2 of 9.07 ± 3.90 mmHg. With $ScvO_2 < 70\%$, 77 samples had ΔpCO_2 of > 6 mmHg while only 21 samples had ΔpCO_2 of < 6 mmHg (p < 0.001). On the contrary with $ScvO_2 > 70\%$, 71 samples had ΔpCO_2 of > 6 mmHg and ΔpCO_2 of < 6 mmHg. Coefficient of correlation (R₂) between 0.340 was $ScvO_2$ and ΔpCO_2 .

Conclusion: Elevated ΔpCO_2 is practical and can be utilized as a useful adjunct to low ScvO₂ in the assessment of low cardiac output syndrome in children after cardiac surgery.

Key words: Veno-arterial pCO₂ difference. Cardiac output. Central venous oxygen saturation. Paediatric.

INTRODUCTION

Advancement in the field of paediatric cardiology. cardiac surgery and critical care medicine has led to an increased survival of children having congenital heart diseases.¹ Despite this, the postoperative period can be complicated by a predictable fall in cardiac output which has a significant impact on the future wellbeing of these children. The factors responsible for low cardiac output after cardiopulmonary bypass include myocardial ischemia, hypothermia, reperfusion injury, inflammatory mediators and altered vascular reactivity. Early identification and appropriate management of this perfusion abnormality (low cardiac output syndrome = LCOS) is essential for the smooth recovery of these patients. Various invasive and non-invasive techniques/ methods have been described and are in use to estimate the cardiac output in this population. Of these,

Department of Paediatrics¹/Cardiac Surgery²/Cardiac Anaesthesia³, The Aga Khan University Hospital, Karachi.

Correspondence: Dr. Anwar-ul-Haque, A-3, ML Apartment, FJ Colony, Karachi. E-mail: anwar.haq@aku.edu

Received July 24, 2008; accepted June 6, 2009.

mixed venous oxygen saturation (SvO₂) is one of the commonly employed measures for assessing low flow states. According to the Fick principle if oxygen consumption and the arterial content of oxygen remain constant, then SvO₂ is proportional to cardiac output and can be used as a reliable indicator for cardiac index.²⁻⁵ SvO₂ is determined by a catheter in the pulmonary artery while the central venous O₂ saturation (ScvO₂) is measured by a catheter in the superior vena cava, which can be used as surrogate of SvO₂ without involving the complication of pulmonary artery catheterization.

Some studies reported high venoarterial difference in pCO_2 (ΔpCO_2) in hypoperfusive states that can be used as a powerful clinical adjunct to $ScvO_2$ in predicting low flow states.⁶⁻⁹ The purpose of this study was to determine the relationship between these two markers of cardiac index that is ΔpCO_2 and $ScvO_2$ during the postoperative course of the children who underwent cardiac surgery using cardiopulmonary bypass.

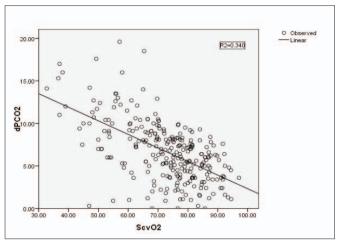
METHODOLOGY

A retrospective chart review of children, who underwent cardiac surgery for correction of their congenital heart defects, using cardiopulmonary bypass from June 2005 to May 2006 at the Aga Khan University Hospital (AKUH), Karachi was conducted. Patients with single ventricular physiology and with residual shunt, as determined by echocardiography, were excluded from the study. The study protocol was approved by Ethical Review Committee of AKUH.

Demographic details, primary diagnosis and the values of simultaneous arterial and venous blood parameters were recorded on the data sheet. Arterial blood samples were drawn either from the radial or femoral artery while venous blood samples were obtained from the superior vena cava. These samples were analyzed immediately in an Automatic Blood Gas System (Stat Profile pHox. Nova Biomedical Waltham, MA, USA). Values of ApCO₂ were calculated by subtracting venous pCO₂ from arterial pCO₂. For the purpose of the study; $\Delta pCO_2 > 6$ mmHg and ScvO₂ < 70% represented hypoperfusion.^{10,11} Data was expressed as mean ± SD or percentages as appropriate. Chi-square test for categorical variables and student t-test for continuous variables were used for statistical comparison. P-value of < 0.05 was considered statistically significant. Linear regression analysis was applied to measure the degree of correlation between the ΔpCO_2 and ScvO₂ by using the Pearson correlation coefficients. The statistical analysis was performed by using SPSS version 14 (SPSS Inc. Chicago, IL, USA).

RESULTS

Fifty seven children underwent cardiac surgery during the study period having a mean age of 14 months ranging from 5 days to 14 years. Table I shows the type of congenital heart defect for which cardiac surgery was required. A total of 272-paired simultaneous arterial and venous samples were collected for blood gas analysis. The mean venous pCO₂ was 47.8±9 mmHg and the mean arterial pCO₂ was 40.5±9 mmHg (p < 0.001) and mean Δ pCO₂ was 7±4 mmHg. In 148 (54.4%) out of 272


Table I:	List of	congenital	heart	disease	in	study	population.
----------	---------	------------	-------	---------	----	-------	-------------

0		
Congenital heart disease	n	
Tetralogy's of Fallot	20	
Ventricular Septal Defect (VSD)	10	
ASD and VSD	10	
Atrial Septal Defect (ASD)	8	
Aortic stenosis	3	
Total Anomalous pulmonary venous return	3	
Transposition of great arteries	2	
Atrioventricular canal defect	1	

Table 2: Number of samples within each range of ΔpCO_2 in relation to $ScvO_2$

3000	J ₂ .			
ScvO ₂ %	Number of samples having	Number of samples having		
	$\Delta pCO_2 > 6 mmHg$	$\Delta pCO_2 < 6 mmHg$		
< 70%(n=98)	77	21		
≥ 70%(n=174)	71	103		
Total (n=272)	148	124		

samples ΔpCO_2 was elevated (> 6 mmHg). Mean ΔpCO_2 was 9.0±3.9 mmHg when ScvO₂ was < 70% while mean ΔpCO_2 was 5.4±2.55 mmHg when ScvO₂ was > 70%. When ScvO₂ was > 70% more than half (59.2%) of the samples had delta pCO_2 of < 6 mmHg and 41% had ΔpCO_2 > 6 mmHg. However, in those patients who had ScvO₂ of < 70%, delta pCO_2 of > 6 mmHg was observed in 79% of patients as compared to only 21% of patients with delta pCO_2 of < 6 mmHg (p < 0.001). Linear regression analysis of delta pCO_2 versus ScvO₂ revealed R2=0.340 (Figure 1).

Figure 1: Linear regression analysis: Relation between $\triangle pCO_2$ (dpCO₂) and central venous oxygen saturation ScvO₂.

The mean venous pH value was 7.39 ± 0.065 and the mean arterial pH value was 7.43 ± 0.079 . Moreover, forty-four percent (44%) and 28% of samples had pH differences of greater than.05 when ScvO₂ was < 70% and \geq 70% respectively.

DISCUSSION

In this study, ScvO₂ was found to have an inverse relation with ΔpCO_2 . Razi et al. and McBride et al. reported similar findings in their studies.12,13 Razi et al. did not mention the source of venous blood while McBride et al. utilized both the pulmonary artery and superior vena cava to obtain venous blood samples.^{12,} ¹³ By Fick's law, it is SvO₂ rather than ScvO₂ that is proportional to the cardiac output provided the arterial oxygen content and oxygen consumption remain constant. The studies by Rocha et al. and Waller et al. also suggest the same.^{2,3} However, in the paediatric population it is difficult to obtain mixed venous blood through the pulmonary artery. Therefore, many studies have been carried out to uncover the relation between SvO₂ and ScvO₂. These have reported that the oxygen saturation in the superior vena cava (Central venous saturation (ScvO₂)) and approximate pulmonary artery saturation (mix venous saturation (SvO₂)) is close enough to be used as a surrogate of SvO2.1,14-16 As a

consequence paediatricians assess cardiac output usually on the basis of central venous oxygen saturation. Likewise for calculating ΔpCO_2 , superior vena cava blood is employed instead of pulmonary artery blood.

Studies highlighting the significance of ΔpCO_2 , for assessment of hypoperfusive states strongly advocate its specificity for this purpose unless pulmonary impairment is present.6,7,14-23 It should be clear that ΔpCO₂ does not indicate hypoxia but ischemic hypoxia as proved by Vallet et al.22 Increase in CO₂ production either by non-ischemic hypoxia (anaerobic metabolism) or aerobically during early stages of septic shock (because of high flow) alone cannot cause venous hypercarbia as it can easily be cleared by high venous flow. Thus only low flow states can increase in ΔpCO_2 , regardless of the cause of the circulatory failure, provided normal gas exchange occurs at the pulmonary membrane. The causes of venous hypercarbia in low flow states are multiple. Reduced pulmonary flow leads to increased ventilation to perfusion ratio causing widening of the veno-arterial pCO₂ gradient. Increased production of CO₂ is because of buffering of acids produced during anaerobic metabolism. Others are decarboxylation of metabolic intermediates, and aerobic production of CO₂. The last is minimal during low flow states.

Confounding factors may play a role while considering low ScvO₂ as an indicator of low cardiac output because it depends upon other variables as well. Haemoglobin concentration, partial pressure of oxygen in the arterial tree and oxygen consumption can all affect ScvO₂. Keeping haemoglobin concentration constant in a patient is not that difficult and the arterial partial pressure of oxygen depends on inspired oxygen concentration and pulmonary exchange which is a prerequisite for elevation of ΔpCO_2 as well. Therefore, oxygen consumption is the only factor that can potentially confound the relation of ScvO₂ and cardiac output and hence the relation with ΔpCO_2 . After cardiopulmonary bypass, oxygen utilization increases in almost all cases to match the oxygen debt (oxygen uptake by myoglobin mainly to re-establish oxygen stores) without producing CO₂. This increase in oxygen consumption without affecting CO2 production can influence the relation of ScvO₂ with cardiac output.

In addition we have also observed that 44% of our patients had a pH difference of greater than 0.05 when $ScvO_2$ was < 70% while only 28% patient with > 70% saturation had significant pH difference. Thus ΔpCO_2 and pH gradient increased with decreasing $ScvO_2$. Therefore, both can be used as adjunct to indicate cardiac output besides $ScvO_2$. Other investigators like Zhang *et al.* and Adrogue *et al.* also explained the widening of veno-arterial pCO_2 and pH differences on

behalf of decreasing cardiac output, provided that alveolar ventilation should be normal.^{8,11}

Being retrospective in nature, this study lacks randomization in patient's selection. Oxygen consumption was not measured during the postoperative care of the patients which may have potentially affected ScvO₂, its relationship with cardiac output and therefore, the final results of this study. Another limitation of the study worth mentioning is that it did not directly measure the predictive value of ΔpCO_2 in relation to cardiac output. No clinical or outcome parameters were used to prove the presence or absence of a low cardiac output state in the patient population. The study indirectly proves the relationship between ΔpCO_2 and cardiac output by showing strong relationships between ScvO₂, SvO₂ and ΔpCO_2 as mixed venous saturation have previously been shown to correlate to a state of cardiac output.

CONCLUSION

Prompt identification and management of LCOS is essential to the critical care of children with heart disease and may improve the outcome. Elevated ΔpCO_2 is a practical marker and can be utilized as a useful adjunct to low ScvO₂ in the assessment of LCOS in children after cardiac surgery. Further studies are needed to extend this correlation in the low-systemic flow states.

REFERENCES

- 1. Ravishankar C, Tabbutt S, Wernovsky G. Critical care in cardiovascular medicine. *Curr Opin Pediatr* 2003; **15**:443-53.
- De la Rocha AG, Edmonds JF, Williams WG, Poirier C, Trusler RN. Importance of mixed venous oxygen saturation in the care of critically ill patients. *Can J Surg* 1978; 21:227-9.
- 3. Waller JL, Kaplan JA, Bauman DI, Craver JM. Clinical evaluation of a new fiberoptic catheter oximeter during cardiac surgery. *Anesth Analg* 1982; **61**:676-9.
- 4. Baele PL, McMichan JC, Marsh HM, Sill JC, Southern PA. Continuous monitoring of mixed venous oxygen saturation in critically ill patients. *Anesth Analg* 1982; **61**:513-7.
- Scheinman MM, Brown MA, Rapaport E. Critical assessment of use of central venous oxygen saturation as a mirror of mixed venous oxygen in severely ill cardiac patients. *Circulation* 1969; 40:165-72.
- Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, *et al.* Central venous-arterial carbon-dioxide difference as an indicator of cardiac index. *Intensive Care Med* 2005; **31**:818-822. Comment in: p. 1141.
- Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO₂ gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. *Crit Care Med* 1998; 26:1007-10.
- Zhang H, Vincent JL Arteriovenous differences in PCO₂ and pH are good indicators of critical hypoperfusion. *Am Rev Respir Dis* 1993; **148**:867-71.
- 9. Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Samii K, et al.

Central venous-to-arterial carbon-dioxide difference: an additional target for goal-directed therapy in septic shock? *Intensive Care Med* 2008; **34**:2218-25.

- Rivers E, Nguyen B, Havstad S, Ressler BS, Muzzin A, Knoblich B, *et al.* Early goal-directed therapy collaborative group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. *N Engl J Med* 2001; **345**:1368-77.
- Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. *N Engl J Med* 1989; 320:1312-6.
- Razi E, Moosavi GA. Comparison of arterial and venous blood gases analysis in patients with exacerbation of chronic obstructive pulmonary disease. *Saudi Med J* 2007; 28:862-5.
- 13. McBride ME, Berkenbosch JW, Tobias JD. Correlation of venous and arterial blood gas values following cardiothoracic surgery in infants and children. *J Intensive Care Med* 2001; **16**:231-5.
- 14. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. *Curr Opin Crit Care* 2001; **7**:204-11.
- Scalea TM, Hartnett RW, Duncan AO, Atweh NA, Phillips TF, Sclafani SJ, *et al.* Central venous oxygen saturation: a useful clinical tool in trauma patients. *J Trauma*. 1990; **30**:1539-43.
- 16. Goldman RH, Klughaupt M, Metcalf T, Spivack AP, Harrison DC.

Measurement of central venous oxygen saturation in patients with myocarial infarction. *Circulation* 1968; **38**:941-6.

- Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, *et al.* Combination of venoarterial PCO₂ difference with arteriovenous O₂ content difference to detect anaerobic metabolism in patients. *Intensive Care Med* 2002; 28:272-7.
- Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. *Crit Care Med* 1990; 18:585-9.
- Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon-dioxide gradient in human septic shock. *Chest* 1992; **101**:509-15.
- Johnson BA, Weil MH. Redefining ischemia due to circulatory failure as dual defects of oxygen deficits and of carbon-dioxide excesses. *Crit Care Med* 1991; **19**:1432-8.
- Jacob SV, Hornby L, Lands LC. Estimation of mixed venous PCO₂ for determination of cardiac output in children. *Chest* 1997; 111:474-80.
- Vallet B, Taboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. *J Appl Pbysiol* 2000; 89:1317-21.
- Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO₂ difference in circulatory shock. *Minerva Anestesiol* 2006; **72**: 597-604.

.....*.....