
ar
X

iv
:1

40
1.

30
83

v2
  [

he
p-

ex
] 

 1
6 

Ja
n 

20
14

Amplitude Analysis of the D+ → K0
Sπ

+π0 Dalitz Plot

M. Ablikim1, M. N. Achasov8,a, X. C. Ai1, O. Albayrak4, M. Albrecht3, D. J. Ambrose41,

F. F. An1, Q. An42, J. Z. Bai1, R. Baldini Ferroli19A, Y. Ban28, J. V. Bennett18, M. Bertani19A,

J. M. Bian40, E. Boger21,b, O. Bondarenko22, I. Boyko21, S. Braun37, R. A. Briere4, H. Cai47,

X. Cai1, O. Cakir36A, A. Calcaterra19A, G. F. Cao1, S. A. Cetin36B , J. F. Chang1,

G. Chelkov21,b, G. Chen1, H. S. Chen1, J. C. Chen1, M. L. Chen1, S. J. Chen26, X. Chen1,

X. R. Chen23, Y. B. Chen1, H. P. Cheng16, X. K. Chu28, Y. P. Chu1, D. Cronin-Hennessy40,

H. L. Dai1, J. P. Dai1, D. Dedovich21, Z. Y. Deng1, A. Denig20, I. Denysenko21,

M. Destefanis45A,45C , W. M. Ding30, Y. Ding24, C. Dong27, J. Dong1, L. Y. Dong1, M. Y. Dong1,

S. X. Du49, J. Z. Fan35, J. Fang1, S. S. Fang1, Y. Fang1, L. Fava45B,45C , C. Q. Feng42, C. D. Fu1,

O. Fuks21,b, Q. Gao1, Y. Gao35, C. Geng42, K. Goetzen9, W. X. Gong1, W. Gradl20,

M. Greco45A,45C , M. H. Gu1, Y. T. Gu11, Y. H. Guan1, A. Q. Guo27, L. B. Guo25, T. Guo25,

Y. P. Guo20, Y. L. Han1, F. A. Harris39, K. L. He1, M. He1, Z. Y. He27, T. Held3, Y. K. Heng1,

Z. L. Hou1, C. Hu25, H. M. Hu1, J. F. Hu37, T. Hu1, G. M. Huang5, G. S. Huang42,

H. P. Huang47, J. S. Huang14, L. Huang1, X. T. Huang30, Y. Huang26, T. Hussain44, C. S. Ji42,

Q. Ji1, Q. P. Ji27, X. B. Ji1, X. L. Ji1, L. L. Jiang1, L. W. Jiang47, X. S. Jiang1, J. B. Jiao30,

Z. Jiao16, D. P. Jin1, S. Jin1, T. Johansson46, N. Kalantar-Nayestanaki22 , X. L. Kang1,

X. S. Kang27, M. Kavatsyuk22, B. Kloss20, B. Kopf3, M. Kornicer39, W. Kuehn37, A. Kupsc46,

W. Lai1, J. S. Lange37, M. Lara18, P. Larin13, M. Leyhe3, C. H. Li1, Cheng Li42, Cui Li42,

D. Li17, D. M. Li49, F. Li1, G. Li1, H. B. Li1, J. C. Li1, K. Li12, K. Li30, Lei Li1, P. R. Li38,

Q. J. Li1, T. Li30, W. D. Li1, W. G. Li1, X. L. Li30, X. N. Li1, X. Q. Li27, Z. B. Li34, H. Liang42,

Y. F. Liang32, Y. T. Liang37, D. X. Lin13, B. J. Liu1, C. L. Liu4, C. X. Liu1, F. H. Liu31,

Fang Liu1, Feng Liu5, H. B. Liu11, H. H. Liu15, H. M. Liu1, J. Liu1, J. P. Liu47, K. Liu35,

K. Y. Liu24, P. L. Liu30, Q. Liu38, S. B. Liu42, X. Liu23, Y. B. Liu27, Z. A. Liu1, Zhiqiang Liu1,

Zhiqing Liu20, H. Loehner22, X. C. Lou1,c, G. R. Lu14, H. J. Lu16, H. L. Lu1, J. G. Lu1,

X. R. Lu38, Y. Lu1, Y. P. Lu1, C. L. Luo25, M. X. Luo48, T. Luo39, X. L. Luo1, M. Lv1,

F. C. Ma24, H. L. Ma1, Q. M. Ma1, S. Ma1, T. Ma1, X. Y. Ma1, F. E. Maas13,

M. Maggiora45A,45C , Q. A. Malik44, Y. J. Mao28, Z. P. Mao1, J. G. Messchendorp22, J. Min1,

T. J. Min1, R. E. Mitchell18, X. H. Mo1, Y. J. Mo5, H. Moeini22, C. Morales Morales13,

K. Moriya18, N. Yu. Muchnoi8,a, H. Muramatsu40, Y. Nefedov21, I. B. Nikolaev8,a, Z. Ning1,

S. Nisar7, X. Y. Niu1, S. L. Olsen29, Q. Ouyang1, S. Pacetti19B , M. Pelizaeus3, H. P. Peng42,

K. Peters9, J. L. Ping25, R. G. Ping1, R. Poling40, N. Q.47, M. Qi26, S. Qian1, C. F. Qiao38,

L. Q. Qin30, X. S. Qin1, Y. Qin28, Z. H. Qin1, J. F. Qiu1, K. H. Rashid44, C. F. Redmer20,

M. Ripka20, G. Rong1, X. D. Ruan11, A. Sarantsev21,d, K. Schoenning46, S. Schumann20,

W. Shan28, M. Shao42, C. P. Shen2, X. Y. Shen1, H. Y. Sheng1, M. R. Shepherd18, W. M. Song1,

X. Y. Song1, S. Spataro45A,45C , B. Spruck37, G. X. Sun1, J. F. Sun14, S. S. Sun1, Y. J. Sun42,

Y. Z. Sun1, Z. J. Sun1, Z. T. Sun42, C. J. Tang32, X. Tang1, I. Tapan36C , E. H. Thorndike41,

D. Toth40, M. Ullrich37, I. Uman36B , G. S. Varner39, B. Wang27, D. Wang28, D. Y. Wang28,

K. Wang1, L. L. Wang1, L. S. Wang1, M. Wang30, P. Wang1, P. L. Wang1, Q. J. Wang1,

S. G. Wang28, W. Wang1, X. F. Wang35, Y. D. Wang19A, Y. F. Wang1, Y. Q. Wang20, Z. Wang1,

Z. G. Wang1, Z. H. Wang42, Z. Y. Wang1, D. H. Wei10, J. B. Wei28, P. Weidenkaff20, S. P. Wen1,

M. Werner37, U. Wiedner3, M. Wolke46, L. H. Wu1, N. Wu1, Z. Wu1, L. G. Xia35, Y. Xia17,

D. Xiao1, Z. J. Xiao25, Y. G. Xie1, Q. L. Xiu1, G. F. Xu1, L. Xu1, Q. J. Xu12, Q. N. Xu38,

X. P. Xu33, Z. Xue1, L. Yan42, W. B. Yan42, W. C. Yan42, Y. H. Yan17, H. X. Yang1, L. Yang47,

Y. Yang5, Y. X. Yang10, H. Ye1, M. Ye1, M. H. Ye6, B. X. Yu1, C. X. Yu27, H. W. Yu28,

1

Author's Copy

http://arxiv.org/abs/1401.3083v2


J. S. Yu23, S. P. Yu30, C. Z. Yuan1, W. L. Yuan26, Y. Yuan1, A. A. Zafar44, A. Zallo19A,

S. L. Zang26, Y. Zeng17, B. X. Zhang1, B. Y. Zhang1, C. Zhang26, C. B. Zhang17, C. C. Zhang1,

D. H. Zhang1, H. H. Zhang34, H. Y. Zhang1, J. J. Zhang1, J. Q. Zhang1, J. W. Zhang1,

J. Y. Zhang1, J. Z. Zhang1, S. H. Zhang1, X. J. Zhang1, X. Y. Zhang30, Y. Zhang1, Y. H. Zhang1,

Z. H. Zhang5, Z. P. Zhang42, Z. Y. Zhang47, G. Zhao1, J. W. Zhao1, Lei Zhao42, Ling Zhao1,

M. G. Zhao27, Q. Zhao1, Q. W. Zhao1, S. J. Zhao49, T. C. Zhao1, X. H. Zhao26, Y. B. Zhao1,

Z. G. Zhao42, A. Zhemchugov21,b, B. Zheng43, J. P. Zheng1, Y. H. Zheng38, B. Zhong25, L. Zhou1,

Li Zhou27, X. Zhou47, X. K. Zhou38, X. R. Zhou42, X. Y. Zhou1, K. Zhu1, K. J. Zhu1,

X. L. Zhu35, Y. C. Zhu42, Y. S. Zhu1, Z. A. Zhu1, J. Zhuang1, B. S. Zou1, J. H. Zou1

(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China

3 Bochum Ruhr-University, D-44780 Bochum, Germany
4 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

5 Central China Normal University, Wuhan 430079, People’s Republic of China
6 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China

7 COMSATS Institute of Information Technology, Lahore, Defence Road, Off Raiwind Road,

54000 Lahore
8 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
9 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany

10 Guangxi Normal University, Guilin 541004, People’s Republic of China
11 GuangXi University, Nanning 530004, People’s Republic of China

12 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
13 Helmholtz Institute Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany

14 Henan Normal University, Xinxiang 453007, People’s Republic of China
15 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China

16 Huangshan College, Huangshan 245000, People’s Republic of China
17 Hunan University, Changsha 410082, People’s Republic of China

18 Indiana University, Bloomington, Indiana 47405, USA
19 (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of

Perugia, I-06100, Perugia, Italy
20 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz,

Germany
21 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
22 KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands

23 Lanzhou University, Lanzhou 730000, People’s Republic of China
24 Liaoning University, Shenyang 110036, People’s Republic of China

25 Nanjing Normal University, Nanjing 210023, People’s Republic of China
26 Nanjing University, Nanjing 210093, People’s Republic of China
27 Nankai university, Tianjin 300071, People’s Republic of China
28 Peking University, Beijing 100871, People’s Republic of China

29 Seoul National University, Seoul, 151-747 Korea
30 Shandong University, Jinan 250100, People’s Republic of China
31 Shanxi University, Taiyuan 030006, People’s Republic of China

32 Sichuan University, Chengdu 610064, People’s Republic of China

2

Author's Copy



33 Soochow University, Suzhou 215006, People’s Republic of China
34 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China

35 Tsinghua University, Beijing 100084, People’s Republic of China
36 (A)Ankara University, Dogol Caddesi, 06100 Tandogan, Ankara, Turkey; (B)Dogus University,

34722 Istanbul, Turkey; (C)Uludag University, 16059 Bursa, Turkey
37 Universitaet Giessen, D-35392 Giessen, Germany

38 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
39 University of Hawaii, Honolulu, Hawaii 96822, USA

40 University of Minnesota, Minneapolis, Minnesota 55455, USA
41 University of Rochester, Rochester, New York 14627, USA

42 University of Science and Technology of China, Hefei 230026, People’s Republic of China
43 University of South China, Hengyang 421001, People’s Republic of China

44 University of the Punjab, Lahore-54590, Pakistan
45 (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121,

Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
46 Uppsala University, Box 516, SE-75120 Uppsala

47 Wuhan University, Wuhan 430072, People’s Republic of China
48 Zhejiang University, Hangzhou 310027, People’s Republic of China

49 Zhengzhou University, Zhengzhou 450001, People’s Republic of China

a Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
b Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia

c Also at University of Texas at Dallas, Richardson, Texas 75083, USA
d Also at the PNPI, Gatchina 188300, Russia

(Dated: January 17, 2014)

Abstract
We perform an analysis of the D+ → K0

Sπ
+π0 Dalitz plot using a data set of 2.92 fb−1 of e+e−

collisions at the ψ(3770) mass accumulated by the BESIII Experiment, in which 166694 candidate

events are selected with a background of 15.1%. The Dalitz plot is found to be well-represented by

a combination of six quasi-two-body decay channels (K0
Sρ

+, K0
Sρ(1450)

+, K
∗0
π+, K0(1430)

0π+,

K(1680)0π+, κ0π+) plus a small non-resonant component. Using the fit fractions from this analysis,

partial branching ratios are updated with higher precision than previous measurements.
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I. INTRODUCTION

A clear understanding of final-state interactions in exclusive weak decays is an important
ingredient in our ability to predict decay rates and to model the dynamics of two-body decays
of charmed mesons. Final-state interactions can cause significant changes in decay rates,
and can cause shifts in the phases of decay amplitudes. Clear experimental measurements
can help refine theoretical models of these phenomena.

Three-body decays provide a rich laboratory in which to study the interferences between
intermediate-state resonances. They also provide a direct probe of final-state interactions
in certain decays. When a particle decays into three or more daughters, such as the de-
cay of D → P1P2P3, where Pi (i=1,2,3) represents a pseudo-scalar particle, intermediate
resonances dominate the decay rate. Amplitudes are typically obtained with a Dalitz plot
analysis technique [1], which uses the minimum number of independent observable quanti-
ties, and any variation in the population over the Dalitz plot shows dynamical rather than
kinematical effects. This provides the opportunity to experimentally measure both the am-
plitudes and phases of the intermediate decay channels, which in turn allows us to deduce
their relative branching fractions. These phase differences can even allow details about very
broad resonances to be extracted by observing their interference with other intermediate
states.

A large contribution from a Kπ S-wave intermediate state has been observed in earlier
experiments including MARKIII [2], NA14 [3], E691 [4], E687 [5], E791 [6, 7], and CLEO-
c [8] in the D+ → K−π+π+ decay. Both E791 and CLEO-c interpreted their data with
a Model-Independent Partial Wave Analysis (MIPWA) and found a phase shift at low Kπ
mass to confirm the κπ component. Complementary to D+ → K−π+π+, the D+ → K0

Sπ
+π0

decay is also a golden channel to study the Kπ S-wave in D decays.

The previous Dalitz plot analysis of D+ → K0
Sπ

+π0 by MARKIII [2] included only two

intermediate decay channels, K0
Sρ and K

∗0
π+, and was based on a small data set. A much

larger data sample of e+e− collisions at
√
s ≈ 3.773 GeV has been accumulated with the

BESIII detector running at the Beijing Electron-Positron Collider (BEPCII). With much
larger statistics, it is possible to measure relative branching fractions more precisely and
to find more intermediate resonances. In this paper, we present an improved Dalitz plot
analysis of the D+ → K0

Sπ
+π0 decay.

II. EVENT SELECTION

This analysis is based on a data sample of 2.92 fb−1 [12], which was collected at the peak
of the ψ(3770) resonance. BEPCII/BESIII [9] is a major upgrade of the BESII experiment
at the BEPC accelerator [10]. The design peak luminosity of the double-ring e+e− collider,
BEPCII [11], is 1033 cm−2s−1 at a beam current of 0.93 A. The BESIII detector with a
geometrical acceptance of 93% of 4π consists of the following main components: 1) a small-
celled, helium-based main drift chamber (MDC) with 43 layers. The average single wire
resolution is 135 µm, and the momentum resolution for 1 GeV/c charged particle in a 1 T
magnetic field is 0.5%. The chamber also provides a measurement of the specific energy loss
dE/dx for charged particles; 2) an electromagnetic calorimeter (EMC) made of 6240 CsI(Tl)
crystals arranged in a cylindrical shape (barrel) plus two endcaps. For 1.0 GeV photons, the
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energy resolution is 2.5% in the barrel and 5% in the endcaps, and the position resolution
is 6 mm in the barrel and 9 mm in the endcaps; 3) a Time-Of-Flight system (TOF) for
particle identification composed of a barrel part made of two layers with 88 pieces of 5 cm
thick, 2.4 m long plastic scintillators in each layer, and two endcaps with 96 fan-shaped,
5 cm thick, plastic scintillators in each endcap. The time resolution is 80 ps in the barrel,
and 110 ps in the endcaps, corresponding to better than a 2σ K/π separation for momenta
below about 1 GeV/c; 4) a muon chamber system (MUC) made of 1000 m2 of Resistive
Plate Chambers (RPC) arranged in 9 layers in the barrel and 8 layers in the endcaps and
incorporated in the return iron of the superconducting magnet. The position resolution is
about 2 cm.

At the ψ(3770), D mesons are produced in the reaction e+e− → ψ(3770) → DD. A single
D+ (or D−) is first reconstructed by its daughters. This analysis uses the D+ → K0

Sπ
+π0

decay and its charge conjugate channel. If one event contains both a D+ and D− candidate,
it will be treated as two events.

K0
S candidates are detected through the decay K0

S → π+π−. The pions from the K0
S are

identified by requiring their dE/dx be within 4σ of the pion hypothesis. In order to improve
the signal-to-background ratio, the decay vertex of π+π− pairs is required to be more than
2 standard deviations in the measurement of the decay length away from the interaction
point, and their invariant mass is required to be within 20 MeV of the mass of the K0

S.
They are then kinematically constrained to the K0

S mass.

Charged π candidates are required to satisfy |cos θ| < 0.93, where θ is the polar angle with
respect to the beam, to ensure reliable main drift chamber measurements. Only the tracks
with points of closest approach to the beam line that are within 10 cm of the interaction point
in the beam direction, and within 1 cm in the plane perpendicular to the beam, are selected.
TOF and dE/dx information are combined to form particle identification confidence levels
for π and K hypotheses. Pions are identified by requiring the pion probability to be larger
than that for a kaon.

π0 candidates are detected through the decay π0 → γγ. Energy deposited in the nearby
TOF counters is included in the photon energy measurement to improve the reconstruction
efficiency and energy resolution [13]. Photon candidates in the barrel region (|cos θ| < 0.8,
where θ is the polar angle of the shower) of the EMC must have at least 25 MeV total energy
deposition; those in the endcap region (0.84 < |cos θ| < 0.92) must have at least 50 MeV
total energy deposition. All neutral showers must lie in a window of EMC time measured
by the rising edge of the signal in the pre-amplifier electronics to reduce the number of
fake π0 from random electronics noise and to improve their resolution. Of each γγ pair,
at least one γ is required to be in the barrel EMC, and the γγ mass is required to satisfy
0.115 GeV < m(γγ) < 0.150 GeV. The pair is then kinematically constrained to the π0

mass.

After K0
S, π

+ and π0 candidates are selected, D+ candidates are constructed using the
requirement −73 MeV < ∆E < 41 MeV, where ∆E = ED−Eb, ED is the sum of theK0

S, π
+

and π0 candidate energies, and Eb is the beam energy, in the center mass system of e+e−. For
multiple D+ candidates, the candidate with the smallest |∆E| is chosen. We then perform
a kinematic fit in which the invariant mass of the D+ candidate is constrained to the D+

mass, and its recoiling mass mrec =
√

(pe+e− − pD)2 is allowed to vary, where pe+e− is the
four-momentum of the e+e− system and pD is the four-momentum of the reconstructed D+

candidate. This ensures that all D+ decays have the same amount of phase space, regardless
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of whether the recoiling mass is in the signal or sideband region.

Figure 1 shows the recoil-mass distribution fitted with a signal shape derived from Monte-
Carlo (MC) simulation [16], with an ARGUS function [14] for the combinatorial background.
The signal shape is determined by the MC shape convolved with a Gaussian resolution
function. The signal region is defined as 1.864 GeV < mrec < 1.877 GeV, corresponding to
the shaded region of Fig. 1; the events in the cross-hatched regions are taken as sideband
events. In the signal region, the number of events above the combinatorial background
is determined to be 142446 ± 378, and the amount of background in the signal region is
estimated to be 24248± 156 events. Therefore, the size of the signal in the signal region is
(85.45 ± 0.09)% of the total. A peaking background contribution is included in the signal
shape, which accounts for self-cross-feed events (where the D+ decays to K0

Sπ
+π0, but the

two π+ are swapped, one from the D+ and one from the K0
S). The size of the peaking

background is estimated using a MC study to be about 0.6% of the signal size. Subtracting
this background, the signal purity is (84.9± 0.1)%.

Figure 2 shows the Dalitz plot of the selected data sample in the signal region and three
projections onto the squared K0

Sπ
0 invariant mass (m2

K0
S
π0), the squared π+π0 invariant

mass (m2
π+π0), and the squared K0

Sπ
+ invariant mass (m2

K0
S
π+). In this paper, x = m2

K0
S
π0

and y = m2
π+π0 are selected as the two axes of the Dalitz plot, since only two of these

three variables are independent according to energy and momentum conservation; m2
K0

S
π+ is

defined as z.

III. PARTIAL WAVE ANALYSIS

A. Matrix element

The D+ → K0
Sπ

+π0 Dalitz plot distribution satisfies dΓ/dxdy ∝ |M|2, where M is the
decay matrix element and contains the dynamics. The matrix element is parameterized by

M =

Lmax
∑

L=0

ZLF
L
DAL, (1)

where ZL describes the angular distribution of the final-state particles; FL
D is the barrier

factor for the production of the partial wave; and AL is the partial wave. The sum is over
the decay orbital angular momentum L of two-body partial waves. In this analysis we
consider the sum up to the maximal orbital momentum Lmax = 3.

The partial waves AL are L-dependent functions of a single variable sR (x, y or z). In the
D+ → K0

Sπ
+π0 decay, the S, P , D and F waves (L = 0, 1, 2, 3 respectively) are represented
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Figure 1. The recoil-mass distribution of K0
Sπ

+π0 candidates.

by the sum of functions WR for individual intermediate states:

A0(x) = cNR +Wκ0 +WK
∗

0(1430)
0

+
(

Wκ+ +WK∗

0
(1430)+

)

DCS
, (2a)

A1(x) = W
K

∗0 +WK
∗

(1410)0 +WK
∗

(1680)0

+
(

WK∗+ +WK∗(1410)+ +WK∗(1680)+
)

DCS
, (2b)

A1(y) = Wρ +Wρ(1450), (2c)

A2(x) = WK
∗

2(1430)
0 +

(

WK∗

2
(1430)+

)

DCS
, and (2d)

A3(x) = WK
∗

3(1780)
0 +

(

WK∗

3
(1780)+

)

DCS
, (2e)
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Figure 2. (a) The Dalitz plot for data and the projections onto (b) m2
π+π0 , (c) m

2
K0

S
π0 , and (d)

m2
K0

S
π+ .

where the subscripts denote the intermediate resonances (expressed by R generally), and
those in Doubly-Cabbibo Suppressed (DCS) channels are marked out. The contribution of
non-resonant (NR) decays is represented by cNR = aNRe

iφNR , a complex factor with two fit
parameters for magnitude aNR and phase φNR. For each resonance, the function

WR = cRWRF
L
R (3)

is the shape of an individual resonance, WR, multiplied by the barrier factor in the resonance
R decay vertex, FL

R , and the coupling factor, cR = aRe
iφR .

In this analysis, the angular distribution ZL, the barrier factor F
L
D (FL

R ), and the resonance
dynamical function WR are chosen as described in Appendix A.
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B. Maximum likelihood fit

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.) P(x, y) described as follows:

P(x, y) =



























ε(x,y)|M(x,y)|2∫

DP

ε(x,y)|M(x,y)|2dxdy
for efficiency,

B1(x,y)∫

DP

B1(x,y)dxdy
for background, and

fS
|M(x,y)|2ε(x,y)∫

DP

|M(x,y)|2ε(x,y)dxdy
+ fB1

B1(x,y)∫

DP

B1(x,y)dxdy
+ fB2

B2(x,y)∫

DP

B2(x,y)dxdy
for signal with background,

(4)

where the ε(x, y), B1(x, y), and B2(x, y) are functions representing the shapes of the effi-
ciency, combinatorial background, and peaking background across the Dalitz plot, respec-
tively; fS, fB1, and fB2 are the fractions of signal, combinatorial background and peaking
background under the constraint that fS +fB1+fB2 ≡ 1; and the integral limit DP denotes
the kinematic limit of the Dalitz plot. The p.d.f. free parameters are optimized with a
maximum likelihood fit, where the log-likelihood function is described as

lnL =

N
∑

i=1

lnP(xi, yi), (5)

where N is the number of events in the sample to parameterize.

Since we will test different models and obtain different parameters from different fits,
we choose the Pearson goodness of fit to check them. A χ2 variable for the multinomial
distribution on the binned Dalitz plot is defined as

χ2 =

N
∑

i=1

(ni − vi)
2

vi
, (6)

where N is the number of the bins, ni is the number of events observed in the ith bin, and
vi is the number predicted from the fitted p.d.f.

C. Fit fractions

We calculate the contribution of each component in the matrix element using a standard
definition of the fit fraction

FFC =

∫

DP

∣

∣

∣

∣

∑

i∈C

Ai(x, y)

∣

∣

∣

∣

2

dxdy

∫

DP

|M(x, y)|2dxdy , (7)

whereAi(x, y) is the amplitude contribution of the ith component, described as cRZLF
L
DF

L
RWR

for resonances and cNR for the non-resonant component, and C is any combined set of com-
ponents. When C includes only one element, Eq. 7 gives the fit fraction of a single
component. For the K0

Sπ
0 S-wave, it consists of a non-resonant piece, a K∗

0 (1430)
0, and a

κ0.
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D. Parameters

In Eq. 5, parameters include the ratios of signal and backgrounds, parameters describing
the shapes of the efficiency and backgrounds, the coupling factors, the masses and widths
of resonances, and the effective radii. Parameters for the efficiency shape are determined by
studies of MC samples, and the backgrounds are estimated with the mrec sideband events
of data. They are fixed in the fit to data. The ratios of signal and backgrounds are also
fixed by first fitting the mrec distribution and studying the signal MC samples. The complex
coupling factors, including the magnitude and phase, are free parameters in the fit and are
used to calculate the fit fractions, but the magnitude and phase of the K0

Sρ
+ component

(which has the largest fit fraction) are fixed as 1 and 0. The masses and widths of the κ and
the K∗

0 (1430) are allowed to vary. Those of the other resonances used in the fit are fixed to
their PDG [15] values. The effective radii for the barrier factors are fixed at rD = 5.0 GeV−1

and rR = 1.5 GeV−1.

IV. FITTING PROCEDURE

A. Efficiency

We determine the efficiency for signal events as a function of position in the two-
dimensional Dalitz plot, which can be described as a product of a polynomial function
and threshold factors:

ε(x, y) = T (v)(1 + Exx+ Eyy + Exxx
2 + Exyxy

+ Eyyy
2 + Exxxx

3 + Exxyx
2y + Exyyxy

2

+ Eyyyy
3), (8)

where T (v) are the threshold factors for each Dalitz plot variable v(x, y or z), defined with
an exponential form

T (v) = E0,v + (1− E0,v)
[

1− e−Eth,v|v−vedge|
]

. (9)

All polynomial coefficients Ex, Ey, Exx, Exy, Eyy, Exxx, Exxy, Exyy, and Eyyy are fit param-
eters. In the threshold function, the parameter Eth,v is free in the fit and vedge is defined as
the expected value of v at the Dalitz plot edge. E0 denotes the efficiency when v = vmax.
The threshold factor describes the low efficiency in regions with v → vmax, where one of the
three particles is produced with zero momentum in the D meson rest frame. We consider
the threshold for v = m2

K0
S
π0 and v = m2

π+π0.

To determine the efficiency we use a signal MC simulation [16] in which one of the charged
D mesons decays in the signal mode, while the other D meson decays in all its known decay
modes with proper branching fractions. These events are input into the BESIII detector
simulation and are processed with the regular reconstruction package. The MC-generated
events are required to pass the same selection requirements as data in the signal region, as
shown in Fig. 1. A track-matching technology is applied to the MC events to select only the
signal mode side and to avoid contamination from the other D meson. Then the efficiency
is obtained by fitting Eq. 4 to this sample with fixed M(x, y).
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B. Background

As described in Section II, there are both combinatorial and peaking backgrounds. For
the peaking background, the shape in the Dalitz plot is estimated by an MC sample, as shown
in Fig. 3. Most of the self-cross-feed events have small m2

K0
S
π+ values, corresponding to small

angles between the K0
S and the π+. For the self-cross-feed contribution to the background,

we use the histogram as the p.d.f. of B2(x, y). For the combinatorial background, we use
data events from the two mrec sideband regions, shown by the hatched range in Fig. 1.

Because the high-mass mrec sideband has a significant contribution from signal events
due to a tail caused by initial state radiation, we consider a contribution of signal for these

2)2 (GeV/c0πS
0K

2m
1 2 3

2 )2
 (

G
eV

/c
0 π+ π2

m

0

0.5

1

1.5

2

Figure 3. The shape of self-cross-feed events on the Dalitz plot.
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Figure 4. Results of the fit to the sideband backgrounds: (a), (b), and (c) are the three projections

for the low-mass sideband only; (d), (e), and (f) are for the high-mass sideband only; and (g), (h),

and (i) are for the combined sidebands. The signals are fed in for the signal tail in the sideband of

the mrec distribution.

events, whose fraction is obtained by fitting the distribution of mrec. The contribution of
signal, M0, is initialized by the parameterized shape of the low-mass sideband, B0. The B0

is fitted by Eq. 4 for background using events in the low-mass sideband, and then the M0

is fitted using B0 as B1(x, y). After that, the events in both sidebands are used to estimate
the shape of the background in the Dalitz plot. B1 is parameterized to the total background
events in sidebands by Eq. 4 for signal with background, based on the fixed M0, and then
the M1 is fitted using B1. In order to make sure the right resonance contribution is used,
this process is repeated i times to obtain Bi and Mi until the variation of the signal from
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the last result is small enough. In this analysis, this process is repeated once.

The dominant misreconstructed D decays are from D+ → K0
Sa1(1260)

+, D0 → K−π+π0,
and D0 → K0

Sπ
+π−π0. It is worth noting that the background from the D0 decay will bring

a K∗(892)+ contribution to the Dalitz plot which is a DCS process in the D+ → K0
Sπ

+π0

decay. We take this into account by adding this noncoherent K∗(892)+ contribution to the
background p.d.f., along with the ρ(770)+ and K∗(892)0 described below.

To parameterize the background shape on the Dalitz plot we employ a function similar
to that used for the efficiency:

B1(x, y) = T (x)(1 + Bxx+Byy +Bxxx
2 +Bxyxy

+ Byyy
2 +Bxxxx

3 +Bxxyx
2y +Bxyyxy

2

+ Byyyy
3 +Bρ|Aρ|2 +B

K
∗0

∣

∣A
K

∗0

∣

∣

2

+ B
K

∗+

∣

∣A
K

∗+

∣

∣

2
), (10)

where all the coefficients, Bx, By, Bxx, Bxy, Byy, Bxxx, Bxxy, Bxyy, Byyy, Bρ, BK
∗0, and B

K
∗+,

are fit parameters. Unlike the efficiency parameterization, the terms for the intermediate

resonances ρ and K
∗0

describe the contributions from these resonances. Figure 4 shows the
results of the fit with the background-corrected polynomial function to our sideband sample.
There are some deviations between the parameterized functions and the sidebands, which
primarily lie on the projection of m2

K0
S
π+ . The deviations will be considered as one source of

systematic error in Section VA. The impact of the deviation is comparable to other sources
of systematic uncertainties.

C. Fit to data

A previous analysis from the MARKIII experiment [2] included only two intermediate

resonances in the D+ → K0
Sπ

+π0 decay: K0
Sρ

+ and K
∗0
π+. Obvious contributions from

more resonances have been seen in the more recent D+ → K−π+π+ analyses. Hence, more
resonances are considered in this analysis. All possible intermediate resonance decay modes
are listed in Table I, including Cabbibo Favored (CF) modes and DCS modes. A model
using only these CF channels is found to be adequate. No evidence is found for additional

Table I. The intermediate resonance decay modes considered in this analysis.

CF mode DCS mode

K0
SX

+ X0π+ X+π0

K0
Sρ(770)

+ K
∗

(892)0π+ K∗(892)+π0

K0
Sρ(1450)

+ K
∗

0(1430)
0π+ K∗

0 (1430)
+π0

K
∗

(1680)0π+ K∗(1680)+π0

κ0π+ κ+π0

K0
Sρ(1700)

+ K
∗

(1410)0π+ K∗(1410)+π0

K
∗

2(1430)
0π+ K∗

2 (1430)
+π0

K
∗

3(1780)
0π+ K∗

3 (1780)
+π0

13

Author's Copy



Table II. The results of the fits to the D+ → K0
Sπ

+π0 Dalitz plot with a complex pole for the κ

and Breit-Wigner functions for others, described in the text. The first term of errors are statistical

and the second terms are experimental errors in Model A, and statistical only in Model B, C,

and D. Model A includes all decay modes listed in the first column. Based on the Model A,

Model B excludes the contribution of κ0π+; Model C excludes the non-resonant contribution;

Model D consists of the decay modes after dropping the modes with small fractions, K
∗

(1410)0π+,

K
∗

2(1430)
0π+, andK

∗

3(1780)
0π+. The S-wave is calculated by adding the non-resonant component,

the κ0π+, and the K
∗

0(1430)
0π+.

Decay Mode Par. Model A Model B Model C Model D
Non-resonant FF(%) 4.5±0.7±2.6 18.3±0.6 6.1±0.9

φ(◦) 269±6±26 232.7±1.3 276±6
K0

Sρ(770)
+ FF(%) 84.6±1.8±2.5 82.0±1.3 86.7±1.1 82.2±2.2

φ(◦) 0(fixed) 0(fixed) 0(fixed) 0(fixed)
K0

Sρ(1450)
+ FF(%) 1.8±0.2±0.8 6.03±0.29 0.63±0.12 2.65±0.28

φ(◦) 198±4±10 167.1±2.1 186±8 183.7±2.6
K

∗

(892)0π+ FF(%) 3.22±0.14±0.15 2.99±0.10 3.30±0.10 3.38±0.16
φ(◦) 294.7±1.3±1.4 279.3±1.2 292.3±1.5 292.2±1.3

K
∗

(1410)0π+ FF(%) 0.12±0.05±0.17 0.18±0.05 0.12±0.05
φ(◦) 228±9±26 301±10 243±12

K
∗

0(1430)
0π+ FF(%) 4.5±0.6±1.2 10.5±1.3 3.6±0.5 3.7±0.6

φ(◦) 319±5±14 306.2±2.0 317±4 339±5
mass(MeV) 1452±5±15 1435±4 1449±4 1470±6
width(MeV) 184±7±15 287±11 163±6 187±7

K
∗

2(1430)
0π+ FF(%) 0.12±0.02±0.09 0.086±0.014 0.111±0.015

φ(◦) 273±7±18 265±9 267±7
K

∗

(1680)0π+ FF(%) 0.21±0.06±0.08 0.58±0.08 0.43±0.10 1.05±0.09
φ(◦) 243±6±22 284±4 234±5 255.3±2.0

K
∗

3(1780)
0π+ FF(%) 0.034±0.008±0.0200.055±0.008 0.037±0.008

φ(◦) 130±12±50 113±9 131±11
κ0π+ FF(%) 6.8±0.7±2.2 18.8±0.5 6.4±1.0

φ(◦) 92±6±22 11.6±1.9 92±7
ℜ(MeV) 739±14±40 773±11 750±15
ℑ(MeV) -220±14±15 -396±18 -230±21

NR+κ0π+ FF(%) 18.1±1.4±1.6 18.3±0.6 18.8±0.5 19.2±1.8
K0

Sπ
0 S-wave FF(%) 18.9±1.0±2.0 15.8±1.0 21.2±1.0 17.1±1.4

ΣFF(%) 106 121 114 105
χ2/Ndof 1672/1187 2497/1191 1777/1189 2068/1193
−2 lnL 239415 240284 239521 239807

DCS channels. However, the heavy ρ mesons, ρ(1450) and ρ(1700), contribute parts of
their resonance shapes, and then their shapes in the Dalitz plot are close. As pointed out
by CLEO [17], the inclusion of both ρ resonances is probably a misrepresentation of the
contents of the Dalitz plot. In order to avoid fake interference, we choose only one of them,
the ρ(1450), to express approximatively their combined contribution in the decay matrix
element. The results of the CF model (called model A) with a complex pole for the κ and
Breit-Wigner functions for the other resonances are listed in the column “Model A” of Table
II.

Based on the model A, we perform a fit with a model without the κ (called model B)
as a test, as listed in the column “Model B” of Table II. It is found that the goodness of
fit is worse than in the model A, which demonstrates the presence of κ in our data at high
confidence level.

Similarly, we also test the model without the non-resonant component (called model C),
and the results are listed in the column “Model C” of Table II. The resulting χ2 increases
by 105 units over the model A, indicating that a non-resonant component is indeed present
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Figure 5. The results of fitting the D+ → K0
Sπ

+π0 data with the model D. (a) Distribution of

fitted p.d.f. and projections on (b) m2
π+π0 , (c) m

2
K0

S
π0 , and (d) m2

K0
S
π+. Residuals between the

data and the total p.d.f. are shown by dots with statistical error bars in the top insets with minor

contributions from the ρ(1450) and the K
∗

(1680)0.

in our data.

In the above three models, the contributions of the three channelsK
∗

(1410)0π+,K
∗

2(1430)
0π+

and K
∗

3(1780)
0π+ are not significant, compared to the systematic uncertainties estimated in

model A (listed in Table II). Therefore, we remove them from the model A as the final model
(called model D). The model D is composed of a non-resonant component and intermediate

resonances, including K0
Sρ(770)

+, K0
Sρ(1450)

+, K
∗

(892)0π+, K
∗

0(1430)
0π+, K

∗

(1680)0π+,
and κ0π+. The results are listed in the column “Model D” of Table II. Except for the large
(∼85%) contributions from K0

Sρ(770)
+ and K0

Sρ(1450)
+, and a visible (∼3%) component

of K
∗0
π+, a significant (∼20%) contribution of K0

Sπ
0 S-wave is found in our fit. The

projections of the fit and the Dalitz plot is shown in Fig. 5.

A deviation of efficiency between data and MC simulation will cause a deviation of the
fit results. Therefore, a momentum-dependent correction is applied to the final results.
First, the differences of efficiencies between MC and data are determined. For the charged
π tracking efficiency and PID, Ref. [18] has studied their momentum-dependent differences
through ψ′ → π+π−J/ψ and J/ψ → ρπ → π+π−π0. They are also studied using D0 →
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Figure 6. The differences of efficiencies between data and MC as a function of momentum, (a) for

K0
S and (b) for π0, for the control samples described in the text.

K−π+ and D+ → K−π+π+ control samples. The momentum-dependent differences in this
range are all smaller than 2% and are used to correct MC efficiencies. The K0

S efficiency
is studied through J/ψ → K∗−K+ and D0 → K∗−π+ control samples. Besides the sample
obtained by the standard selection, a loose selection without the K0

S requirement is used to
obtain a reference sample. The distributions of missing mass squared of these K0

S are fitted
with the shape of MC signal convolved by a Gaussian function plus the shape of the MC
backgrounds. The number of expected events Nexp is obtained from the reference sample,
and the number of observed events Nobs from the standard sample. Then the efficiency
is taken as Nobs/Nexp. Dividing the samples into sub-samples according to momentum,
momentum-dependent efficiencies are obtained. The same process is performed on data and
MC events respectively, and their difference is shown in Fig. 6(a). The π0 efficiency is studied
through the D0 → Kππ0 control sample, and similar steps are taken. Figure 6(b) shows
the difference in the π0 reconstruction efficiency. According to the momentum-dependent
differences, a correction is performed. Details of the correcting process are described in
Appendix B. The corrected results of the model D are listed in Table III.

In fits with these models,the κ is represented with a complex pole form, and the position
of the pole κ is allowed to float as a free complex parameter. The pole of the κ is measured
at (752±15±69+55

−73,−229±21±44+40
−55) MeV, where the errors are statistical, experimental,

and modeling uncertainties, respectively, consistent with the model C result of CLEO-c [8].

The mass and width of the K∗

0(1430)
0 are also floated, since the measured values from

E791 [6] and CLEO-c [8] in the D+ → K−π+π+ decay are significantly different from the
measurement from the Kp experiment LASS [19]. In our fit, the mass and width of the
K∗

0 (1430)
0 are 1464 ± 6 ± 9+9

−28 MeV and 190 ± 7 ± 11+6
−26 MeV, respectively, consistent

with the measurements from CLEO-c and E791. In our model without the κ, the efficiency
corrected results are 1444± 4 MeV and 283± 11 MeV, with statistical errors only.
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D. Cross-check with MIPWA

The biggest issue of any Dalitz plot analysis is its model dependence. An attempt to
mitigate the model dependence for the D+ → K−π+π+ decay under study is described in
[7]. Here, we apply this model-independent partial wave analysis (MIPWA) technique as a
cross-check of our model D for the contributions of K0

Sπ
0 S-wave.

The complex term WR and cNR in Eq. 2 and 3 can be used alone or in combination with
other terms. In this check, it represents a correction to the complex amplitude of the isobar
model. We use this term in the form of an s-dependent complex number

WL,binned(s) = aL(s)e
iφL(s), (11)

with the functions aL(s) and φL(s) calculated by a linear interpolation between the bins for
the magnitude aLk and phase φLk, where k(s) = 1, 2, ..., NL is an s-dependent index of these
bins.

We test two models, one with a binned K0
Sπ

0 S-wave, and another with a binned K0
Sπ

0

S-wave excluding the K
∗

0(1430)
0 (whose contribution is kept in its Breit-Wigner form). The

measured S-wave magnitudes and phases are illustrated in Fig. 7. In order to compare
with the previous D+ → K−π+π+ results, we measure all magnitudes and phases relative
to the K

∗

(892)0π+ decay mode in the MIPWA fits. Comparing the binned S-wave fit

without the K
∗

0(1430)
0 component to a sum of the κ pole and the non-resonant component

in the model D, and the total binned S-wave to a sum of the κ0 pole, K
∗

0(1430)
0 and the

non-resonant component in the model D, respectively, these models are consistent with the
model-dependent analysis. It is obvious that there is still a phase variation from low mass
threshold to higher mass in the K0

Sπ
0 S-wave excluding the K

∗

0(1430)
0, similar with the

combination of the NR and the κπ+ in model D. In the total binned K0
Sπ

0 S-wave, the

amplitude is distorted by a contribution from the K
∗

0(1430) resonance.

V. SYSTEMATIC UNCERTAINTIES

In our analysis, according to Eq. 4, there are several possible sources of systematic
uncertainties: the background, the efficiency, the numerical integration, and the modeling
of the decay. In order to estimate systematic uncertainties of the fit parameters due to
these sources, we carry out the checks described in this section in detail. We require 10−8

precision to get the integral of the p.d.f. If we improve the precision by an order of mag-
nitude, we find negligible change. The final systematic errors are shown in Table III. The
“Total” experimental errors are obtained as a quadratic sum of that from background and
efficiency.

A. Background

The uncertainties from the background (shown in the “Background” column) come from
two sources: the background shape and the background normalization. The background
shape depends on both the parameterization and the sideband approximation.
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Figure 7. The magnitude and phase of theKπ S-wave in model D and the MIPWA. The open circles

with error bars (statistical uncertainties only) show the binned Kπ S-wave without the K∗

0 (1430)

and the black dots show the total Kπ S-wave. Other curves show the S-wave components of model

D.

There is a difference between the true background shape and the polynomial function as
pointed out in Section IVB. But in the high-mass sideband, we do not know the shape of
the background component because of the signal tail. According to Fig. 4, the differences
are close in cases of low-mass sideband, high-mass sideband, and combined sideband. Hence
we choose the low-mass sideband to examine the 3rd order polynomial parameterization.
Inputting the low-mass sideband shape using a histogram p.d.f., we compare to the fit result
with the parameterized low-mass sideband shape. We take the variation as the systematic
error.
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Table III. A summary of the statistical and systematic errors on the fit parameters of the model D.

The “Value” and “Statistical” columns show the results from the momentum-dependent efficiency

correction. The three columns under “Experimental Errors” (“Modeling Errors”) summarize the

systematic uncertainties due to experimental (modeling) sources respectively, described in the text

in detail. The S-wave is calculated by adding the non-resonant component, the κ0π+, and the

K
∗

0(1430)
0π+.

Parameters Value Statistical Experimental Errors Modeling Errors
Errors BackgroundEfficiency Total Shape Add Total

NR FF(%) 4.6 0.7 3.5 1.0 3.6 +2.9
−1.5

+2.7
−3.3

+4.0
−3.6

NR Phase(◦) 279 6 5 15 15 +6

−25

+22

−12

+23

−27

ρ(770)+ FF(%) 83.4 2.2 2.7 0.7 2.8 +1.1
−1.9

+6.4
−1.1

+6.5
−2.2

ρ(1450)+ FF(%) 2.1 0.3 0.9 0.9 1.2 +0.7
−0.1

+0.8
−1.5

+1.0
−1.5

ρ(1450)+ Phase(◦) 187 3 4 4 5 +9

−15

+26

−5

+28

−16

K
∗

(892)0 FF(%) 3.58 0.17 0.12 0.11 0.17 +0.31
−0.18

+0.16
−0.28

+0.35
−0.34

K
∗

(892)0 Phase(◦) 293 2 1 2 2 +2

−7

+6

−2

+6

−7

K
∗

0(1430)
0 FF(%) 3.7 0.6 0.6 0.5 0.8 +0.4

−0.3
+0.7
−0.8 0.8

K
∗

0(1430)
0 Phase(◦) 334 5 8 4 9 +1

−10

+3

−28

+3

−30

K
∗

(1680)0 FF(%) 1.3 0.2 0.6 0.2 0.7 +0.6
−0.1

+0.1
−1.1

+0.6
−1.1

K
∗

(1680)0 Phase(◦) 252 2 9 6 11 +6

−2

+7

−28

+9

−28

κ0 FF(%) 7.7 1.2 2.5 3.1 4.0 +2.0
−2.7

+4.7
−0.1

+5.1
−2.7

κ0 Phase(◦) 93 7 25 14 28 +14

−7

+16

−22

+21

−23

NR+κ0 FF(%) 18.6 1.7 1.1 1.0 1.5 +1.6
−3.7

+0.5
−2.3

+1.7
−4.4

K0
Sπ

0 S-wave FF(%) 17.3 1.4 2.1 0.5 2.1 +0.7
−3.8

+2.6
−0.6

+2.7
−3.8

Both sidebands are used to parameterize background in the final fit, and it is believable
that the deviation of this shape from the real background would not exceed the difference
between backgrounds in the low-mass and high-mass sidebands. Inputting the background
shape parameterized by these two sidebands, the difference of results is estimated as the
uncertainty due to the background shape.

In Section II, we estimate that the statistical error of the signal ratio is 0.1%. Through
comparing MC truth to the result of fitting on the mrec distribution of MC sample, its
systematic uncertainty is estimated to be +0.1

−1.4%, and if the signal ratio is floated in the
Dalitz fit, the fitted value is (83.3± 0.4)%. They are consistent with each other. We change
the signal ratio in the fit to change the background level by one standard deviation. The
variation of results is taken as the estimation of uncertainty of the background level.

B. Efficiency

The systematic uncertainty from the efficiency (shown in the “Efficiency” column) in-
cludes two terms: the efficiency parameterization and the difference between data and MC.
The sources of the difference of data and MC include event selection criteria, tracking, un-
stable particle reconstruction, and particle identification. The resolution of the detector is
also considered here.

For the efficiency parameterization, we change the global polynomial fit to the average
efficiencies of local bins. Each bin’s efficiency value is replaced by the average efficiency. We
also try smoothing the efficiencies by averaging either nine or twenty-five nearest neighbors
as a check. The differences caused by using different parameterizations is also considered in
the systematic error.
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Table IV. Partial branching fractions calculated by combining our fit fractions with the PDG’s

D+ → K0
Sπ

+π0 branching ratio. The errors shown are statistical, experimental systematic, and

modeling systematic, respectively.

Mode Partial Branching Fraction (%)

D+ → K0
Sπ

+π0 Non Resonant 0.32±0.05±0.25+0.28
−0.25

D+ → ρ+K0
S , ρ

+ → π+π0 5.83±0.16±0.30+0.45
−0.15

D+ → ρ(1450)+K0
S , ρ(1450)

+ → π+π0 0.15±0.02±0.09+0.07
−0.11

D+ → K
∗

(892)0π+,K
∗

(892)0 → K0
Sπ

0 0.250 ± 0.012 ± 0.015+0.025
−0.024

D+ → K
∗

0(1430)
0π+,K

∗

0(1430)
0 → K0

Sπ
0 0.26 ± 0.04 ± 0.05 ± 0.06

D+ → K
∗

(1680)0π+,K
∗

(1680)0 → K0
Sπ

0 0.09 ± 0.01 ± 0.05+0.04
−0.08

D+ → κ0π+, κ0 → K0
Sπ

0 0.54 ± 0.09 ± 0.28+0.36
−0.19

NR+κ0π+ 1.30±0.12±0.12+0.12
−0.30

K0
Sπ

0 S-wave 1.21±0.10±0.16+0.19
−0.27

Another efficiency parameterization, which is obtained using a MC sample uniform in
phase space, is used as a cross check. The variation is taken as one of the systematic
uncertainties.

Because the resolutions of ∆E and mrec in data are a little larger than in MC, the
efficiency shape could possibly be different as well. In order to estimate the uncertainty
caused by the cuts, we change the cuts on the MC sample to make the cumulative probability
at the cut position the same as data. This check indicates that this uncertainty is small.

The particle reconstruction and identification are also possible sources of systematic er-
ror. If the differences between data and MC are independent of 3-momentum, there will be
no effect on the relative branching fractions. Therefore, a momentum dependent correction
on reconstruction and PID efficiency is performed, as described in Appendix B. Correspond-
ingly, the r.m.s. of the measured values are taken as an estimate of the systematic errors.

To estimate the experimental systematic error due to the finite resolution of the Dalitz
plot variables, we have included the effects of smearing when fitting the data as a check.
This was done by measuring the resolution as a function of position across the Dalitz plot
and numerically convoluting this with the amplitude at each point when performing the
fit. The resulting change of parameters from the nominal best fit is very small and can be
neglected when compared to other uncertainties.

C. Model

Systematic uncertainties of the modeling of the decay can arise from the parameteriza-
tion of the resonances (shown in the “Shape” column), which include barrier factors, dy-
namical functions and resonance parameters, and also come from the choice of resonances in
the baseline fit (shown in the “Add” column). The “Shape” and “Add” columns are added
in quadrature to obtain the final model dependent systematic errors, shown in the “To-
tal” column under “Modeling Errors”.

We test the exponential barrier factor F 0
V = e−(q2−q2V )/12 as an alternative description

of the scalar intermediate resonances in Table V. A smaller NR fraction is obtained, but
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the total Kπ S-wave is relatively unaffected. We do not consider it as a systematic error.
We also test the fit by changing the radial parameters used in the barrier factors from
0 GeV−1 to 3 GeV−1 for the intermediate resonances, and from 0 GeV−1 to 10 GeV−1

for the D+ meson. The maximum likelihood values L appear at rD ≈ 2.75 GeV−1 and
rR ≈ 1.48 GeV−1, respectively. It indicates that the radial parameter of the intermediate
resonances is consistent with 1.5 GeV−1 and the radius of the D meson has large uncertainty.
The variation caused by the uncertainties of the radii is taken as a systematic error.

Different resonance shapes for K
∗

0(1430) and κ are tested. A Flatté form for K
∗

0(1430)

and Breit-Wigner for κ are tried. If only the K
∗

0(1430) is changed to the Flatté form, the χ2

changes by −11 units. If only the κ is changed to Breit-Wigner, the χ2 changes by 11. We
also perform the fit while floating the masses and widths of the ρ(770) and the K

∗

(892). The
variations from the nominal values are taken as an estimation of this systematic uncertainty.

The final systematic check is on our choice of which resonances are to be included. We
do two fits for different ρ(1450)+ and ρ(1700)+, and take the variation of parameters as the

error. We also add insignificant resonances one by one, including K
∗

(892)+π0, K
∗

(1410)0π+,

K
∗

0(1430)
+π0, K

∗

2(1430)
0π+, K

∗

3(1780)
0π+, and watch the variations of the fit fractions of

the observed channels, which is taken as an additional systematic uncertainty.

VI. SUMMARY AND CONCLUSIONS

We describe an amplitude analysis of the D+ → K0
Sπ

+π0 Dalitz plot. We start with a
BESIII data set of 2.92 fb−1 of e+e− collisions accumulated at the peak of the ψ(3770), and
select 166694 candidate events with a background of (15.1± 0.1+1.4

−0.1)%.

We fit the distribution of data to a coherent sum of six intermediate resonances plus a
non-resonant component, with a low mass scalar resonance, the κ, included. The final fit
fraction and phase for each component is given in Table III. These fit fractions, multiplied
by the world average D+ → K0

Sπ
+π0 branching ratio of (6.99±0.27)% [15], yield the partial

branching fractions shown in Table IV. The error on the world average branching ratio is
incorporated by adding it in quadrature with the experimental systematic errors on the fit
fractions to give the experimental systematic error on the partial branching fractions.

In this result, the K0
Sπ

0 waves can be compared with the K−π+ waves in the D+ →
K−π+π+ decay. For example, according to our measured branching ratio of D+ →
K

∗0
π+ → K0

Sπ
+π0 and the PDG value of branching ratio of D+ → K

∗0
π+ → K−π+π+

of (1.01±0.11)%, the ratio of the branching fractions of D+ → K
∗0
π+ → K−π+π+ and

D+ → K
∗0
π+ → K

0
π+π0 is calculated to be 2.02 ± 0.34, which is consistent with the

expectation.

We also apply a model-independent approach to describe the Dalitz plot, developed in
Ref. [7], to confirm the results. The Kπ S-wave can be well-described by a κ, a K

∗

0(1430),
and a non-resonant component. The resonance parameters of the κ and the K∗

0(1430) are
consistent with the results of E791 [6] and CLEO-c [8] in the D+ → K−π+π+ decay.

21

Author's Copy



ACKNOWLEDGMENTS

The BESIII collaboration thanks the staff of BEPCII and the computing center for their
strong support. This work is supported in part by the Ministry of Science and Technology
of China under Contract No. 2009CB825200; Joint Funds of the National Natural Science
Foundation of China under Contracts Nos. 11079008, 11179007, U1332201; National Natural
Science Foundation of China (NSFC) under Contracts Nos. 10625524, 10821063, 10825524,
10835001, 10935007, 11125525, 11235011; the Chinese Academy of Sciences (CAS) Large-
Scale Scientific Facility Program; CAS under Contracts Nos. KJCX2-YW-N29, KJCX2-
YW-N45; 100 Talents Program of CAS; German Research Foundation DFG under Contract
No. Collaborative Research Center CRC-1044; Istituto Nazionale di Fisica Nucleare, Italy;
Ministry of Development of Turkey under Contract No. DPT2006K-120470; U. S. Depart-
ment of Energy under Contracts Nos. DE-FG02-04ER41291, DE-FG02-05ER41374, DE-
FG02-94ER40823, DESC0010118; U.S. National Science Foundation; University of Gronin-
gen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt;
WCU Program of National Research Foundation of Korea under Contract No. R32-2008-
000-10155-0. This paper is also supported by the NSFC under Contract Nos. 10875138,
11205178.

Appendix A: Isobar Model

In general, for the decay of D → Rc, R → ab, where the spins of a, b, and c are equal
to zero, the orbital angular momentum between R and c is equal to the spin of R and the
angular distribution can be simplified to a function of the momentum of a (pa) and the
momentum of c (pc) in the R rest frame:

ZL = (−2papc)
LPL(cosθ), (A1)

where the Legendre polynomials PL(cos θ) depend on the orbital angular momentum (the
spin of R). Here θ is the helicity angle and its cosine is given in terms of the masses ma(mc)
and energies Ea(Ec) of the a(c) in the R rest frame:

cos θ =
m2

a +m2
c + 2EaEc −m2

ac

2papc
. (A2)

In this analysis, intermediate resonances are parameterized using the standard Breit-
Wigner function defined as

WR (mab) =
1

m2
R −m2

ab − imRΓ(mab)
, (A3)

where mR is the resonance mass and mab is the invariant mass of the ab system, and the
mass-dependent width Γ(mab) has the usual form [20]:

Γ(mab) = ΓR

(

pa
pR

)2L+1(
mR

mab

)

(

FL
R

)2
, (A4)

where ΓR is the resonance width, and pR is the value of pa when mab = mR.
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Table V. The Blatt-Weisskopf barrier factor used in this analysis. The index V stands for the D

or R decay vertex, and q = rV p (p is the magnitude of the momentum of the decay daughters in

the rest frame of mother particle, and rV is the effective radius for the D or R vertex). For both

D and R decays, qV = rV pV , where pV is the value of p when mab = mR.

L Form factor FL
V

0 1

1
√

1+q2
V

1+q2

2
√

9+3q2
V
+q4

V

9+3q2+q4

3
√

405+45q2
V
+6q4

V
+q6

V

405+45q2+6q4+q6

In Eq. 1, Eq. 3, and Eq. A4, FL
D and FL

R are the barrier factors for the production of Rc
and ab, defined using the Blatt-Weisskopf form [21], as listed in Table V.

For the κ we have tested both the Breit-Wigner function and the complex pole proposed
in Ref. [22]:

WR(mab) =
1

sR −m2
ab

=
1

m2
R −m2

ab − imRΓR
, (A5)

which is equivalent to a Breit-Wigner function with constant width. In the fit,

sR = (ℜ+ iℑ)2, (A6)

where ℜ and ℑ are the two parameters of the complex pole.

Appendix B: Momentum-Dependent Correction

Based on momentum-dependent differences in efficiency, we can correct the MC efficiency
to the expected data efficiency through a sampling method, and use the corrected efficiency
to improve the results. The detailed steps are described as follows. First, an MC sample is
generated and selected using the same event selection as data, and its events are denoted
as Ei(pK0

S
, pπ+ , pπ0), i = 1 . . . N , where pK0

S
, pπ+ , and pπ0 are the momentum of K0

S, π
+, and

π0, respectively. Before sampling, the efficiency ratio of data and MC is computed as

rε(pK0
S
, pπ+, pπ0) =

∏

c

εc,data(pc)

εc,MC(pc)
, (B1)

where the subscripts c include the K0
S efficiency, the π0 efficiency, the π+ tracking efficiency,

and the π+ PID efficiency, and pc denotes the momentum of the corresponding particles.
Then for each event Ei, if rε is less than one, it will be compared with a uniform (0,1)
random number ζ , and the event is kept only if rε > ζ ; if rε is larger than one, the event
will always be kept, and it will be repeated once while rε − 1 > ζ . The sampling process is
complete after all selected events are looped over. Finally, the efficiency parameterization is
applied to the sampled events and the new efficiency parameters are used to fit data.

To remove the statistical fluctuations while sampling and the uncertainty of measurement
of rε, we repeat this process, and change the rε value according to its uncertainty each time.
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Then we can obtain the distribution of results following a Gaussian distribution. The means
denote the corrected results, and the sigmas describe the uncertainty of sampling and the
measurement of efficiencies.
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