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1 Introduction

Supersymmetry (SUSY) [1–9] is a spacetime symmetry that postulates for each Standard

Model (SM) particle the existence of a partner particle whose spin differs by one-half unit.

The introduction of these new particles provides a potential solution to the hierarchy prob-

lem [10–13]. If R-parity is conserved [14–18], as is assumed in this paper, SUSY particles

are always produced in pairs and the lightest supersymmetric particle (LSP) emerges as a

stable dark-matter candidate.
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The charginos and neutralinos are mixtures of the bino, winos and higgsinos that are

superpartners of the U(1), SU(2) gauge bosons and the Higgs bosons, respectively. Their

mass eigenstates are referred to as χ̃±
i (i = 1, 2) and χ̃0

j (j = 1, 2, 3, 4) in the order of

increasing masses. Even though the gluinos and squarks are produced strongly in pp colli-

sions, if the masses of the gluinos and squarks are large, the direct production of charginos,

neutralinos and sleptons through electroweak interactions may dominate the production

of SUSY particles at the Large Hadron Collider (LHC). Such a scenario is possible in the

general framework of the phenomenological minimal supersymmetric SM (pMSSM) [19–

21]. Naturalness suggests that third-generation sparticles and some of the charginos and

neutralinos should have masses of a few hundred GeV [22, 23]. Light sleptons are expected

in gauge-mediated [24–29] and anomaly-mediated [30, 31] SUSY breaking scenarios. Light

sleptons could also play a role in the co-annihilation of neutralinos, allowing a dark matter

relic density consistent with cosmological observations [32, 33].

This paper presents searches for electroweak production of charginos, neutralinos

and sleptons using 20.3 fb−1 of proton-proton collision data with a centre-of-mass energy√
s = 8 TeV collected at the LHC with the ATLAS detector. The searches target final

states with two oppositely-charged leptons (electrons or muons) and missing transverse

momentum. Similar searches [34, 35] have been performed using
√
s = 7 TeV data by the

ATLAS and CMS experiments. The combined LEP limits on the selectron, smuon and

chargino masses are mẽ > 99.9 GeV, mµ̃ > 94.6 GeV and mχ̃±

1
> 103.5 GeV [36–41]. The

LEP selectron limit assumes gaugino mass unification and cannot be directly compared

with the results presented here.

2 SUSY scenarios

Simplified models [42] are considered for optimization of the event selection and interpreta-

tion of the results. The LSP is the lightest neutralino χ̃0
1 in all SUSY scenarios considered,

except in one scenario in which it is the gravitino G̃. All SUSY particles except for the

LSP are assumed to decay promptly. In the electroweak production of χ̃+
1 χ̃

−
1 and χ̃±

1 χ̃
0
2,

χ̃±
1 and χ̃0

2 are assumed to be pure wino and mass degenerate, and only the s-channel

production diagrams, qq̄ → (Z/γ)∗ → χ̃+
1 χ̃

−
1 and qq̄′ →W±∗ → χ̃±

1 χ̃
0
2, are considered. The

cross-section for χ̃+
1 χ̃

−
1 production is 6 pb for a χ̃±

1 mass of 100GeV and decreases to 10 fb

at 450GeV. The cross-section for χ̃±
1 χ̃

0
2 production is 11.5 pb for a degenerate χ̃±

1 /χ̃
0
2 mass

of 100 GeV, and 40 fb for 400 GeV.

In the scenario in which the masses of the sleptons and sneutrinos lie between the χ̃±
1

and χ̃0
1 masses, the χ̃±

1 decays predominantly as χ̃±
1 → (ℓ̃±ν or ℓ±ν̃) → ℓ±νχ̃0

1. Figure 1(a)

shows direct chargino-pair production, pp → χ̃+
1 χ̃

−
1 , followed by the slepton-mediated de-

cays. The final-state leptons can be either of the same flavour (SF = e+e− or µ+µ−), or of

different flavours (DF = e±µ∓). In this scenario, the masses of the three left-handed slep-

tons and three sneutrinos are assumed to be degenerate with mℓ̃ = mν̃ = (mχ̃0
1
+mχ̃±

1
)/2.

The χ̃±
1 is assumed to decay with equal branching ratios (1/6) into ℓ̃±ν and ℓ±ν̃ for three

lepton flavours, followed by ℓ̃± → ℓ±χ̃0
1 or ν̃ → νχ̃0

1 with a 100% branching ratio.
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(a) (b)

(c) (d)

Figure 1. Electroweak SUSY production processes of the considered simplified models.

In the scenario in which the χ̃±
1 is the next-to-lightest supersymmetric particle (NLSP),

the χ̃±
1 decays as χ̃±

1 → W±χ̃0
1. In direct χ̃+

1 χ̃
−
1 production, if both W bosons decay

leptonically as shown in figure 1(b), the final state contains two opposite-sign leptons,

either SF or DF, and large missing transverse momentum.

Another scenario is considered in which χ̃±
1 and χ̃0

2 are mass degenerate and are co-

NLSPs. The direct χ̃±
1 χ̃

0
2 production is followed by the decays χ̃±

1 →W±χ̃0
1 and χ̃0

2 → Zχ̃0
1

with a 100% branching fraction. If the Z boson decays leptonically and theW boson decays

hadronically, as shown in figure 1(c), the final state contains two opposite-sign leptons, two

hadronic jets, and missing transverse momentum. The leptons in this case are SF and their

invariant mass is consistent with the Z boson mass. The invariant mass of the two jets

from the W decay gives an additional constraint to characterize this signal.

A scenario in which the slepton is the NLSP is modelled according to ref. [43]. Fig-

ure 1(d) shows direct slepton-pair production pp→ ℓ̃+ℓ̃− followed by ℓ̃± → ℓ±χ̃0
1 (ℓ = e or

µ), giving rise to a pair of SF leptons and missing transverse momentum due to the two

neutralinos. The cross-section for direct slepton pair production in this scenario decreases

from 127 fb to 0.5 fb per slepton flavour for left-handed sleptons, and from 49 fb to 0.2 fb

for right-handed sleptons, as the slepton mass increases from 100 to 370 GeV.

Results are also interpreted in dedicated pMSSM [44] scenarios. In the models con-

sidered in this paper, the masses of the coloured sparticles, of the CP-odd Higgs boson,

and of the left-handed sleptons are set to high values to allow only the direct produc-

tion of charginos and neutralinos via W/Z, and their decay via right-handed sleptons,

gauge bosons and the lightest Higgs boson. The lightest Higgs boson mass is set close to

125 GeV [45, 46] by tuning the mixing in the top squark sector. The mass hierarchy, com-
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position and production cross-section of the charginos and neutralinos are governed by the

ratio tanβ of the expectation values of the two Higgs doublets, the gaugino mass parame-

ters M1 and M2, and the higgsino mass parameter µ. Two classes of pMSSM scenarios are

studied on a µ-M2 grid, distinguished by the masses of the right-handed sleptons ℓ̃R. If

mℓ̃R lies halfway betweenmχ̃0
1
andmχ̃0

2
, χ̃0

2 decays preferentially through χ̃0
2 → ℓ̃Rℓ→ χ̃0

1ℓℓ.

The parameter tanβ is set to 6, yielding comparable branching ratios into each slepton

generation. To probe the sensitivity to different χ̃
0
1 compositions, three values ofM1 = 100,

140 and 250 GeV are considered. If, on the other hand, all sleptons are heavy, χ̃±
1 and χ̃0

2

decay via W , Z and Higgs bosons. The remaining parameters are fixed to tanβ = 10 and

M1 = 50 GeV so that the relic dark-matter density is below the cosmological bound across

the entire µ-M2 grid. The lightest Higgs boson has a mass close to 125 GeV and decays to

both SUSY and SM particles where kinematically allowed.

In addition, the gauge-mediated SUSY breaking (GMSB) model proposed in ref. [47] is

considered. In this simplified model, the LSP is the gravitino G̃, the NLSP is the chargino

with mχ̃±

1
= 110 GeV, and in addition there are two other light neutralinos with masses

mχ̃0
1
= 113 GeV and mχ̃0

2
= 130 GeV. All coloured sparticles are assumed to be very

heavy. The χ̃+
1 χ̃

−
1 production cross-section is not large (∼1.4 pb), but the same final state

is reached via production of χ̃±
1 χ̃

0
1 (∼2.5 pb), χ̃±

1 χ̃
0
2 (∼1.0 pb) and χ̃0

1χ̃
0
2 (∼0.5 pb). The

χ̃0
1 decays into χ̃±

1 W
∓∗, and the χ̃0

2 decays either into χ̃±
1 W

∓∗ or χ̃0
1Z

∗. Because of the

small mass differences, decay products of the off-shell W and Z bosons are unlikely to be

detected. As a result, all of the four production channels result in the same experimental

signature, and their production cross-sections can be added together for the purpose of this

search. Each χ̃±
1 then decays via χ̃±

1 → W±G̃, and leptonic decays of the two W bosons

produce the same final-state as in the other scenarios.

3 The ATLAS detector

The ATLAS detector [48] is a multi-purpose particle physics detector with a forward-

backward symmetric cylindrical geometry and nearly 4π coverage in solid angle.1 It con-

tains four superconducting magnet systems, which include a thin solenoid surrounding the

inner tracking detector (ID), and barrel and end-cap toroids as part of a muon spectrom-

eter (MS). The ID covers the pseudorapidity region |η| < 2.5 and consists of a silicon

pixel detector, a silicon microstrip detector, and a transition radiation tracker. In the

pseudorapidity region |η| < 3.2, high-granularity liquid-argon (LAr) electromagnetic (EM)

sampling calorimeters are used. An iron-scintillator tile calorimeter provides coverage for

hadron detection over |η| < 1.7. The end-cap and forward regions, spanning 1.5 < |η| < 4.9,

are instrumented with LAr calorimeters for both EM and hadronic measurements. The

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in

the centre of the detector, and the z-axis along the beam line. The x-axis points from the IP to the centre

of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, φ) are used in the transverse

plane, φ being the azimuthal angle around the z-axis. Observables labelled ‘transverse’ are projected into

the x–y plane. The pseudorapidity is defined in terms of the polar angle θ by η = − ln tan(θ/2).
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MS surrounds the calorimeters and consists of a system of precision tracking chambers

(|η| < 2.7), and detectors for triggering (|η| < 2.4).

4 Monte Carlo simulation

Monte Carlo (MC) simulated event samples are used to develop and validate the analy-

sis procedure and to evaluate the subdominant SM backgrounds as well as the expected

signal yields. The dominant SM background processes include tt̄, single-top, and diboson

(WW , WZ and ZZ) production. The predictions for the most relevant SM processes are

normalized to data in dedicated control regions, as detailed in section 7. MC samples are

produced using a GEANT4 [49] based detector simulation [50] or a fast simulation using a

parameterization of the performance of the ATLAS electromagnetic and hadronic calorime-

ters [51, 52] and GEANT4 elsewhere. The effect of multiple proton-proton collisions from the

same or different bunch crossings is incorporated into the simulation by overlaying mini-

mum bias events generated using PYTHIA [53] onto hard scatter events. Simulated events

are weighted to match the distribution of the number of interactions per bunch crossing

observed in data, which averaged 20.7.

Production of top-quark pairs is simulated at next-to-leading order (NLO) with MC@NLO

v4.06 [54–56], assuming a top-quark mass of 172.5GeV. Additional samples generated

with POWHEG-BOX v1.0 [57] and AcerMC v3.8 [58] are used for the evaluation of system-

atic uncertainties. The tt̄ cross-section is normalized to the next-to-next-to-leading order

(NNLO) calculation including resummation of next-to-next-to-leading logarithmic (NNLL)

soft gluon terms obtained with Top++ v2.0 [59]. Single top production is modelled with

MC@NLO v4.06 forWt and s-channel production, and with AcerMC v3.8 for t-channel produc-

tion. Production of tt̄ associated with a vector boson is simulated with the leading-order

(LO) generator MADGRAPH 5 v1.3.33 [60] and normalized to the NLO cross-section [61–63].

Diboson (WW , WZ and ZZ) production is simulated with POWHEG-BOX v1.0, with

additional gluon-gluon contributions simulated with gg2WW v3.1.2 [64] and gg2ZZ v3.1.2 [65].

Additional diboson samples are generated at the particle level with aMC@NLO v2.0 [66] to

assess systematic uncertainties. The diboson cross-sections are normalized to NLO QCD

predictions obtained with MCFM v6.2 [67, 68]. Triple-boson (WWW , ZWW and ZZZ)

production is simulated with MADGRAPH 5 v1.3.33 [69], and vector-boson scattering (WWjj

and WZjj) is simulated with SHERPA v1.4.1 [70].

Samples of W → ℓν and Z/γ∗ → ℓℓ produced with accompanying jets (including

light and heavy flavours) are obtained with a combination of SHERPA v1.4.1 and ALPGEN

v2.14 [71]. The inclusive W and Z/γ∗ production cross-sections are normalized to the

NNLO cross-sections obtained using DYNNLO v1.1 [72]. QCD production of bb̄ and cc̄ is

simulated with PYTHIA v8.165.

Finally, production of the SM Higgs boson with mH = 125 GeV is considered. The

gluon fusion and vector-boson fusion production modes are simulated with POWHEG-BOX

v1.0, and the associated production (WH and ZH) with PYTHIA v8.165.

Fragmentation and hadronization for the MC@NLO and ALPGEN samples are performed

either with HERWIG v6.520 [73] using JIMMY v4.31 [74] for the underlying event, or with

– 5 –
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PYTHIA v6.426. PYTHIA v6.426 is also used for MADGRAPH samples, whereas PYTHIA v8.165

is used for the POWHEG-BOX samples. For the underlying event, ATLAS tune AUET2B [75]

is used. The CT10 NLO [76] and CTEQ6L1 [77] parton-distribution function (PDF) sets

are used with the NLO and LO event generators, respectively.

Simulated signal samples are generated with HERWIG++ v2.5.2 [78] and the CTEQ6L1

PDF set. Signal cross-sections are calculated to NLO using PROSPINO2.1 [79]. They are

in agreement with the NLO calculations matched to resummation at the next-to-leading

logarithmic accuracy (NLO+NLL) within ∼ 2% [80–82].

5 Event reconstruction

Events are selected in which at least five tracks, each with transverse momentum pT >

400 MeV, are associated to the primary vertex. If there are multiple primary vertices in

an event, the one with the largest
∑

p2T of the associated tracks is chosen. In each event,

‘candidate’ electrons, muons, hadronically-decaying τ leptons, and jets are reconstructed.

After resolving potential ambiguities among objects, the criteria to define ‘signal’ electrons,

muons and jets are refined. Hadronically-decaying τ leptons are not considered as signal

leptons for this analysis, and events containing them are removed (see section 6) so that

the data sample is distinct from that used in the ATLAS search for electroweak SUSY

production in the three-lepton final states [83].

Electron candidates are reconstructed by matching clusters in the EM calorimeter with

tracks in the ID. The magnitude of the momentum of the electron is determined by the

calorimeter cluster energy. They are required to have pT > 10 GeV, |η| < 2.47, and satisfy

shower-shape and track-selection criteria analogous to the ‘medium’ criteria in ref. [84].

Muon candidates are reconstructed by matching an MS track to an ID track [85]. They

are then required to have pT > 10 GeV and |η| < 2.4.

Jet candidates are reconstructed from calorimeter energy clusters using the anti-kt
jet clustering algorithm [86, 87] with a radius parameter of 0.4. The jet candidates are

corrected for the effects of calorimeter response and inhomogeneities using energy- and η-

dependent calibration factors based on simulation and validated with extensive test-beam

and collision-data studies [88]. Energy deposition due to pile-up interactions is statistically

subtracted based on the area of the jet [89]. Only jet candidates with pT > 20 GeV and

|η| < 4.5 are subsequently retained. Events containing jets that are likely to have arisen

from detector noise or cosmic rays are removed [88].

A b-jet identification algorithm [90] is used to identify jets containing a b-hadron decay

inside a candidate jet within |η| < 2.4, exploiting the long lifetime of b- and c-hadrons. The

mean nominal b-jet identification efficiency, determined from simulated tt̄ events, is 80%.

The misidentification (mis-tag) rates for c-jets and light-quark/gluon jets are approximately

30% and 4%, respectively. Small differences in the b-tagging performance observed between

data and simulation are corrected for as functions of pT of the jets.

Hadronically-decaying τ leptons are reconstructed by associating tracks with pT >

1 GeV passing minimum track quality requirements to calorimeter jets with pT > 10 GeV

and |η| < 2.5. A multivariate discriminant is used to identify the jets as hadronic τ
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decays [91]. Their energy is determined by applying a simulation-based correction to the

reconstructed energy in the calorimeter [92], and pT > 20 GeV is required.

Object overlaps are defined in terms of ∆R =
√

(∆η)2 + (∆φ)2, where ∆η and ∆φ are

separations in η and φ. Potential ambiguities among objects are resolved by removing one

or both of nearby object pairs in the following order: if two electron candidates are within

∆R = 0.05 of each other, the electron with the smaller pT is removed; any jet within ∆R =

0.2 of an electron candidate is removed; any τ candidate within ∆R = 0.2 of an electron or

a muon is removed; any electron or muon candidate within ∆R = 0.4 of a jet is removed; if

an electron candidate and a muon candidate are within ∆R = 0.01 of each other, both are

removed; if two muon candidates are within ∆R = 0.05 of each other, both are removed; if

the invariant mass of a SF opposite-sign lepton pair has an invariant mass less than 12 GeV,

both are removed; and finally any jet within ∆R = 0.2 of a τ candidate is removed.

Signal electrons are electron candidates satisfying the ‘tight’ criteria [84] placed on the

ratio of calorimetric energy to track momentum, and the number of high-threshold hits in

the transition radiation tracker. They are also required to be isolated. The pT scalar sum

of tracks above 400 MeV within a cone of size ∆R = 0.3 around each electron candidate

(excluding the electron candidate itself) and associated to the primary vertex is required

to be less than 16% of the electron pT. The sum of transverse energies of the surrounding

calorimeter clusters within ∆R = 0.3 of each electron candidate, corrected for the depo-

sition of energy from pile-up interactions, is required to be less than 18% of the electron

pT. The distance of closest approach of an electron candidate to the event primary vertex

must be within five standard deviations in the transverse plane. The distance along the

beam direction, z0, must satisfy |z0 sin θ| < 0.4mm.

Signal muons are muon candidates satisfying the following criteria. The pT scalar sum

of tracks above 400 MeV within a cone of size ∆R = 0.3 around the muon candidate and as-

sociated to the primary vertex is required to be less than 16% of the muon pT. The distance

of closest approach of a muon candidate to the event primary vertex must be within three

standard deviations in the transverse plane, and |z0 sin θ| < 1mm along the beam direction.

The efficiencies for electrons and muons to pass the reconstruction, identification and

isolation criteria are measured in samples of Z and J/ψ leptonic decays, and corrections

are applied to the simulated samples to reproduce the efficiencies in data.

Signal jets are jet candidates that are classified in three exclusive categories. Central

b-jets satisfy |η| < 2.4 and the b-jet identification criteria. Central light-flavour jets also

satisfy |η| < 2.4 but do not satisfy the b-jet identification criteria. If a central light-flavour

jet has pT < 50 GeV and has tracks associated to it, at least one of the tracks must

originate from the event primary vertex. This criterion removes jets that originate from

pile-up interactions. Finally, forward jets are those with 2.4 < |η| < 4.5 and pT > 30 GeV.

The missing transverse momentum, pmiss
T , is defined [93] as the negative vector sum of

the total transverse momenta of all pT > 10 GeV electron, muon and photon candidates,

pT > 20 GeV jets, and all clusters of calorimeter energy with |η| < 4.9 not associated to

such objects, referred to hereafter as the ‘soft-term’. Clusters associated with electrons,

photons and jets make use of calibrations of the respective objects, whereas clusters not

associated with these objects are calibrated using both calorimeter and tracker information.

– 7 –
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The quantity Emiss,rel
T is defined from the magnitude, Emiss

T , of pmiss
T as

Emiss,rel
T =

{

Emiss
T if ∆φℓ,j ≥ π/2

Emiss
T × sin∆φℓ,j if ∆φℓ,j < π/2

,

where ∆φℓ,j is the azimuthal angle between the direction of pmiss
T and that of the nearest

electron, muon, central b-jet or central light-flavour jet. Selections based on Emiss,rel
T aim to

suppress events where missing transverse momentum arises from significantly mis-measured

jets or leptons.

6 Event selection

Events are recorded using a combination of two-lepton triggers, which require identification

of two lepton (electron or muon) candidates with transverse momenta exceeding a set of

thresholds. For all triggers used in this measurement, the pT thresholds are 18–25 GeV for

the higher-pT lepton and 8–14 GeV for the other lepton. After event reconstruction, two sig-

nal leptons of opposite charge, with pT > 35 GeV and> 20 GeV, are required in the selected

events. No lepton candidates other than the two signal leptons are allowed in the event.

The two signal leptons are required to match those that triggered the event. The trigger ef-

ficiencies with respect to reconstructed leptons with pT in excess of the nominal thresholds

have been measured using data-driven techniques. For events containing two reconstructed

signal leptons with pT > 35 GeV and > 20 GeV, the average trigger efficiencies are approxi-

mately 97% in the e+e− channel, 75% in the e±µ∓ channels, and 89% in the µ+µ− channel.

The dilepton invariant mass mℓℓ must be greater than 20 GeV in all flavour combina-

tions. Events containing one or more τ -jet candidates are rejected.

Seven signal regions (SRs) are defined in this analysis. The first three, collectively

referred to as SR-mT2, are designed to provide sensitivity to sleptons either through direct

production or in chargino decays. The next three, SR-WW , are designed to provide sensi-

tivity to chargino-pair production followed by W decays. The last signal region, SR-Zjets,

is designed specifically for chargino and second lightest neutralino associated production

followed by hadronic W and leptonic Z decays. The SF and DF event samples in each

SR are considered separately. When a scenario that contributes to both SF and DF final

states is considered, a simultaneous fit to the SF and DF samples is employed. All SRs of

the same lepton flavour combination, except for SR-Zjets, overlap with each other and are

not statistically independent. Table 1 summarizes the definitions of the SRs.

Five of the SRs exploit the ‘stransverse’ mass mT2 [94, 95], defined as

mT2 = min
qT

[

max
(

mT(p
ℓ1
T ,qT),mT(p

ℓ2
T ,p

miss
T − qT)

)]

,

where pℓ1
T and pℓ2

T are the transverse momenta of the two leptons, and qT is a transverse

vector that minimizes the larger of the two transverse masses mT. The latter is defined by

mT(pT,qT) =
√

2(pTqT − pT · qT).
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For SM tt̄ and WW events, in which two W bosons decay leptonically and pmiss
T originates

from the two neutrinos, the mT2 distribution has an upper end-point at the W mass. For

signal events, the undetected LSP contributes to pmiss
T , and the mT2 end-point is correlated

to the mass difference between the slepton or chargino and the lightest neutralino. For large

values of this difference, the mT2 distribution for signal events extends significantly beyond

the distributions of the tt̄ and WW events.

6.1 SR-mT2

SR-mT2 targets χ̃+
1 χ̃

−
1 production followed by slepton-mediated decays (figure 1a) and di-

rect slepton pair production (figure 1d). Events are required to contain two opposite-sign

signal leptons and no signal jets. Only SF channels are used in the search for direct slepton

production, while the chargino-to-slepton decay search also uses DF channels. In the SF

channels, the dilepton invariant mass mℓℓ must be at least 10 GeV away from the Z boson

mass.

The dominant sources of background are diboson and top production (tt̄ and Wt).

Three signal regions, SR-m90
T2, SR-m120

T2 and SR-m150
T2 , are defined by requiring mT2 >

90 GeV, 120 GeV and 150 GeV, respectively. Low values of mT2 threshold provide better

sensitivity to cases in which the ℓ̃ or χ̃±
1 mass is close to the χ̃0

1 mass, and high values

target large ℓ̃–χ̃0
1 or χ̃±

1 –χ̃
0
1 mass differences.

6.2 SR-WW

Direct χ̃+
1 χ̃

−
1 production followed by W -mediated decays (figure 1b) is similar to the

slepton-mediated scenario, but with smaller visible cross-sections due to the W → ℓν

branching fraction. Three signal regions, SR-WWa, SR-WWb and SR-WW c, are de-

signed to provide sensitivities to this scenario for increasing values of χ̃±
1 –χ̃

0
1 mass differ-

ence. Events are required to contain two opposite-sign signal leptons and no signal jets.

Both SF and DF channels are used in these signal regions. In the SF channels, the dilepton

invariant mass mℓℓ must be at least 10 GeV away from the Z boson mass.

For large χ̃±
1 –χ̃

0
1 mass splitting, themT2 variable provides good discrimination between

the signal and SM background. Two signal regions, SR-WWb and SR-WW c, are defined

by mT2 > 90 GeV and 100 GeV, respectively. The mT2 thresholds are lower than in SR-

mT2 because the smaller visible cross-sections limit the sensitivity to large χ̃±
1 masses. For

SR-WWb, an additional requirement of mℓℓ < 170 GeV is applied to further suppress the

SM background.

For cases in which the χ̃±
1 –χ̃

0
1 mass splitting is close to theW boson mass, themT2 vari-

able is not effective in distinguishing signal from the SMWW production. The signal region

SR-WWa is defined by Emiss,rel
T > 80 GeV, pT,ℓℓ > 80 GeV andmℓℓ < 120 GeV, where pT,ℓℓ

is the transverse momentum of the lepton pair. These selection criteria favour events in

which the di-lepton opening angle is small, which enhances the difference in the Emiss,rel
T

distribution between the signal and the background due to the two LSPs in the signal.
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SR m90
T2 m120

T2 m150
T2 WWa WWb WW c Zjets

lepton flavour DF,SF DF,SF DF,SF DF,SF DF,SF DF,SF SF

central light jets 0 0 0 0 0 0 ≥ 2

central b-jets 0 0 0 0 0 0 0

forward jets 0 0 0 0 0 0 0

|mℓℓ −mZ | [GeV] > 10 > 10 > 10 > 10 > 10 > 10 < 10

mℓℓ [GeV] — — — < 120 < 170 — —

Emiss,rel
T [GeV] — — — > 80 — — > 80

pT,ℓℓ [GeV] — — — > 80 — — > 80

mT2 [GeV] > 90 > 120 > 150 — > 90 > 100 —

∆Rℓℓ — — — — — — [0.3,1.5]

mjj [GeV] — — — — — — [50,100]

Table 1. Signal region definitions. The criteria on |mℓℓ −mZ | are applied only to SF events. The

two leading central light jets in SR-Zjets must have pT > 45 GeV.

6.3 SR-Zjets

The last signal region, SR-Zjets, differs from the previous six in that it requires the

presence of at least two central light jets. This signal region is designed to target the

pp → χ̃±
1 χ̃

0
2 → W±χ̃0

1Zχ̃
0
1 process in which the W boson decays hadronically and the Z

boson decays leptonically (figure 1c).

The two highest-pT central light jets must have pT > 45 GeV, and have an invariant

mass in the range 50 < mjj < 100 GeV. There must be no central b-jet and no forward jet

in the event. The two opposite-sign leptons must be SF, and their invariant mass must be

within 10 GeV of the Z boson mass.

To suppress large background from the SM Z + jets production, Emiss,rel
T > 80 GeV is

required. Events are accepted only if the reconstructed Z boson is recoiling against the

rest of the event with a large transverse momentum pT,ℓℓ > 80 GeV, and the separation

∆Rℓℓ between the two leptons must satisfy 0.3 < ∆Rℓℓ < 1.5.

7 Background estimation

For SR-mT2 and SR-WW , the SM background is dominated byWW diboson and top-quark

(tt̄ and Wt) production. Contributions from ZV production, where V =W or Z, are also

significant in the SF channels. The MC predictions for these SM sources are normalized in

dedicated control regions (CR) for each background, as described in section 7.1. For SR-

Zjets, the dominant sources of background are ZV production and Z/γ∗+jets. The former

is estimated from simulation, validated using ZV -enriched control samples, and the latter

is estimated by a data-driven technique, as described in section 7.2. The top-quark back-

ground in SR-Zjets is estimated using a dedicated CR. Background due to hadronic jets

mistakenly reconstructed as signal leptons or real leptons originating from heavy-flavour
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SR mT2 and WWb/c WWa Zjets

CR WW Top ZV WW Top ZV Top

lepton flavour DF DF SF DF DF SF SF

central light jets 0 0 0 0 0 0 ≥ 2

central b-jets 0 ≥ 1 0 0 ≥ 1 0 ≥ 1

forward jets 0 0 0 0 0 0 0

|mℓℓ −mZ | [GeV] — — < 10 — — < 10 > 10

mℓℓ [GeV] — — — < 120 < 120 — —

Emiss,rel
T [GeV] — — — [60, 80] > 80 > 80 > 80

pT,ℓℓ [GeV] — — — > 40 > 80 > 80 > 80

mT2 [GeV] [50, 90] > 70 > 90 — — — —

∆Rℓℓ — — — — — — [0.3, 1.5]

Table 2. Control region definitions. The top CR for SR-Zjets requires at least two jets with

pT > 20 GeV in |η| < 2.4, at least one of which is b-tagged.

decays or photon conversions, referred to as ‘non-prompt leptons’, is estimated using a data-

driven method described in section 7.3. Contributions from remaining sources of SM back-

ground, which include Higgs production and Z/γ∗+jets (except in SR-Zjets), are small and

are estimated from simulation. Table 2 summarizes the definitions of the control regions.

7.1 Background in SR-mT2 and SR-WW

The normalization factors for the background in SR-mT2 and SR-WW due to the SMWW ,

top and ZV production are constrained using dedicated CRs for each background. Each

CR is dominated by the background of interest and is designed to be kinematically as close

as possible to a corresponding signal region. The normalization factors are obtained from

the likelihood fit described in section 7.4.

The WW control region for SR-mT2 and SR-WWb/c is defined by requiring 50 <

mT2 < 90 GeV and the events must contain no jets. Only the DF sample is used in

this CR because the corresponding regions in the SF samples suffer from contamination

from Z/γ∗ + jets background. Appropriate ratios of electron and muon efficiencies are

used to obtain the SF background estimations from the corresponding DF CR. For SR-

WWa, the CR is defined by lowering the Emiss,rel
T and pT,ℓℓ requirements so that 60 <

Emiss,rel
T < 80 GeV and pT,ℓℓ > 40 GeV. Figure 2(a) shows the mT2 distribution in this

CR. The normalization factors are not applied to the MC predictions in all four plots of

figure 2. Predicted signal contamination in this CR is less than 10% for the signal models

χ̃±
1 χ̃

∓
1 →W±W∓χ̃0

1χ̃
0
1 with mχ̃±

1
> 100 GeV.

The top control region for SR-mT2 and SR-WWb/c is also defined using the DF sample,

and by requiring at least one b-tagged jet and vetoing central light jets and forward jets.

The events must also satisfy mT2 > 70 GeV. Figure 2(b) shows the Emiss,rel
T distribution

in this CR. For SR-WWa, the CR is defined using the DF sample and requiring at least

– 11 –
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Figure 2. Distributions of (a) mT2 in the WW CR for SR-WWa, (b) Emiss,rel
T

in the top CR for

SR-WWb/c and SR-mT2, (c) E
miss,rel
T

in the ZV CR for SR-WWb/c and SR-mT2, and (d) mjj

in the top CR for SR-Zjets. No data-driven normalization factor is applied to the distributions.

The hashed regions represent the total uncertainties on the background estimates. The rightmost

bin of each plot includes overflow. The lower panel of each plot shows the ratio between data and

the SM background prediction.

one b-tagged jet, with all the other SR criteria unchanged. The predicted contamination

from SUSY signal is negligible for the models considered.

The ZV control region for SR-mT2 and SR-WWb/c is defined identically to the SF

SR-m90
T2, but with the Z veto reversed. Figure 2(c) shows the Emiss,rel

T distribution in this

CR. The contamination due to non-ZV sources is dominated by WW events (4.5%). For

SR-WWa, the CR is defined by reversing the Z veto in the SF sample. The predicted

contamination from SUSY signal is less than 5% in these CRs.

7.2 Background in SR-Zjets

The top CR for SR-Zjets is defined by reversing the Z veto and requiring at least one

b-tagged jet. To increase the statistics of the sample, the pT threshold for the central jets
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is lowered to 20 GeV, and no cut on mjj is applied. Figure 2(d) shows the mjj distribution

in this CR. The predicted contamination from SUSY signal is negligible.

The ZV background in SR-Zjets consists of diboson production accompanied by two

light-flavour jets, that is, WZjj → ℓνℓ′ℓ′jj, where the lepton from the W decay was

not reconstructed, and ZZjj → ℓℓννjj. The contribution from ZV → ℓℓqq̄ is strongly

suppressed by the Emiss,rel
T requirement. This background is estimated from simulation, and

validated in control samples ofWZjj → ℓνℓ′ℓ′jj and ZZjj → ℓℓℓ′ℓ′jj where all leptons are

reconstructed. The WZjj enriched control sample consists of events with three leptons, at

least two of which make up a SF opposite-sign pair with an invariant mass within 10 GeV of

the Z boson mass. In addition, events must have Emiss
T > 30 GeV, mT > 40 GeV computed

from the pmiss
T and the lepton that was not assigned to the Z boson, at least two central

light jets, and no central b-jet. The predicted contamination from SUSY signal is less than

10% in this region. The ZZjj enriched control sample consists of events with two pairs

of same-flavour opposite-sign leptons, each with an invariant mass within 10 GeV of the

Z boson mass, Emiss
T < 50 GeV, at least two central light jets, and no signal b-jet. The

data in these control samples are compared with the simulation to assess the systematic

uncertainties of the ZV background estimation, as reported in section 8.

In SR-Zjets, Z/γ∗ + jets events are an important source of background, where sig-

nificant Emiss
T arises primarily from mis-measurement of jet transverse momentum. A

data-driven approach called the ‘jet smearing’ method is used to estimate this background.

In this method, a sample enriched in Z/γ∗+ jets events with well-measured jets is selected

from data as seed events. The seed events are selected by applying the SR-Zjets event

selection, but reversing the Emiss,rel
T cut. To ensure that the events only contain well mea-

sured jets, the ratio Emiss
T /

√

Esum
T , where Esum

T is the scalar sum of the transverse energies

of the jets and the soft-term, is required to be less than 1.5 (GeV)1/2. Each seed event is

smeared by multiplying each jet four-momentum by a random number drawn from the jet

response function, which is initially estimated from simulation and adjusted after compar-

ing the response to data in a photon+ jet sample. In addition, the contribution to Emiss
T

due to the soft-term is also modified by sampling randomly from the soft-term distribu-

tion measured in a Z → ℓℓ sample with no reconstructed jets. The smearing procedure is

repeated 10,000 times for each seed event. The resulting pseudo-data Emiss,rel
T distribution

is then normalized to the data in the region of Emiss,rel
T < 40 GeV, and the migration into

the signal region is evaluated.

To validate the jet-smearing method, a control sample is selected with the same selec-

tion criteria as SR-Zjets but reversing the pT,ℓℓ requirement, and removing the ∆Rℓℓ and

mjj criteria to increase the number of events. The seed events are selected from the control

region events by requiring Emiss,rel
T < 40 GeV and Emiss

T /
√

Esum
T < 1.5 (GeV)1/2. Results

are validated in a region with 40 < Emiss,rel
T < 80 GeV, which is dominated by Z/γ∗ + jets.

The method predicts 750± 100 events, where both statistical and systematic uncertainties

are included, in agreement with the 779 events observed in data.
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7.3 Non-prompt lepton background estimation

The term ‘non-prompt leptons’ refers to hadronic jets mistakenly reconstructed as sig-

nal leptons or leptons originating from heavy-flavour decays or photon conversions. In

this context, ‘prompt leptons’ are leptons produced directly in decays of sparticles or

weak bosons. The number of non-prompt lepton events is estimated using the matrix

method [96], which takes advantage of the difference between the prompt efficiency ǫp and

non-prompt efficiency ǫn, defined as the fractions of prompt and non-prompt candidate

leptons, respectively, that pass the signal-lepton requirements.

The prompt and non-prompt efficiencies are evaluated as functions of the pT of the

lepton candidate in simulated events using MC truth information. Differences between data

and MC are corrected for with normalization factors measured in control samples. Since

the efficiencies depend on the production process, average ǫp and ǫn values are calculated

for each SR and CR using the fraction of each process predicted by the simulation as the

weights. The data/MC normalization factors for ǫp are derived from Z → ℓℓ events. The

normalization factors for ǫn depend on whether the non-prompt lepton originated from jets

or from photon conversion. The normalization factors for misidentified jets or leptons from

heavy-flavour decays are measured in a control region enriched in bb̄ production. Events

are selected with two candidate leptons, one b-tagged jet and Emiss,rel
T < 40 GeV. One

of the two lepton candidates is required to be a muon and to lie within ∆R = 0.4 of the

b-tagged jet, while the other lepton candidate is used to measure the non-prompt efficiency.

For measuring the normalization factor for photon conversions, a Z → µµγ control sample

is defined by selecting events with two muons, Emiss,rel
T < 50 GeV, at least one candidate

electron (which is the conversion candidate) with mT < 40 GeV, and requiring that the

invariant mass of the µ+µ−e± system is within 10 GeV of the Z boson mass.

Using ǫn and ǫp, the observed numbers of events in each SR and CR with four possible

combinations (signal-signal, signal-candidate, candidate-signal and candidate-candidate)

of leptons are expressed as weighted sums of the numbers of events with four combinations

of prompt and non-prompt leptons. Solving these equations allows determination of the

non-prompt lepton background. The contribution of non-prompt-lepton background in the

signal regions is less than 5% of the total background in all signal regions.

7.4 Fitting procedure

For each SR, a simultaneous likelihood fit to the corresponding CRs is performed to normal-

ize the top, WW and ZV (in the case of SR-Zjets only top is fitted) background estimates.

The inputs to the fit are the numbers of observed events in the CRs, the expected con-

tributions of top, WW and ZV from simulation, and the expected contributions of other

background sources determined as described in sections 7.1–7.3.

The event count in each CR is treated as a Poisson probability function, the mean

of which is the sum of the expected contributions from all background sources. The free

parameters in the fit are the normalization of the top, WW and ZV contributions. The

systematic uncertainties on the expected background yields are included as nuisance param-

eters, constrained to be Gaussian with a width determined from the size of the uncertainty.
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SR mT2 and WWb/c WWa Zjets

CR WW Top ZV WW Top ZV Top

Observed events 1061 804 94 472 209 175 395

MC prediction 947 789 91 385 215 162 399

Normalization 1.14 1.02 1.08 1.12 0.97 1.04 0.99

Statistical error 0.05 0.04 0.12 0.08 0.08 0.12 0.06

Composition

WW 84.6% 1.4% 5.0% 86.8% 1.7% 10.5% 1.3%

Top 10.4% 98.5% <0.1% 7.3% 98.1% 2.8% 98.0%

ZV 2.0% 0.1% 94.9% 1.9% <0.1% 82.9% 0.3%

Non-prompt lepton 1.9% <0.1% <0.1% 2.7% <0.1% <0.1% <0.1%

Other 1.1% <0.1% 0.1% 1.3% <0.1% 3.7% 0.3%

Table 3. Numbers of observed and predicted events in the CRs, data/MC normalization factors

and composition of the CRs obtained from the fit. Systematic errors are described in section 8.

Correlations between control and signal regions, and background processes are taken into

account with common nuisance parameters. The free parameters and the nuisance param-

eters are determined by maximizing the product of the Poisson probability functions and

the constraints on the nuisance parameters.

Table 3 summarizes the numbers of observed and predicted events in the CRs, data/MC

normalization and CR composition obtained from the simultaneous fit. The normalization

factors agree within errors between different SRs for each of the WW , Top and ZV contri-

butions. Results of the background estimates in the SRs can be found in tables 5, 6 and 7.

8 Systematic uncertainties

Systematic uncertainties affect the estimates of the backgrounds and signal event yields

in the control and signal regions. A breakdown of the different sources of systematic

uncertainties and their size is shown in table 4.

The ‘CR statistics’ and ‘MC statistics’ uncertainties arise from the number of data

events in the CRs and simulated events in the SRs and CRs, respectively. The largest

contributions are due to the simulated background samples in the signal regions.

The dominant experimental systematic uncertainties, labelled ‘Jet’ in table 4, come

from the propagation of the jet energy scale calibration [97] and resolution [98] uncertain-

ties. They were derived from a combination of simulation, test-beam data and in situ

measurements. Additional uncertainties due to differences between quark and gluon jets,

and light and heavy flavour jets, as well as the effect of pile-up interactions are included.

The ‘Lepton’ uncertainties include those from lepton reconstruction, identification and

trigger efficiencies, as well as lepton energy and momentum measurements [84, 85]. Un-

certainties due to τ reconstruction and energy calibration are negligible. Jet and lepton
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m90
T2 m120

T2 m150
T2 WWa WWb WW c Zjets

SF DF SF DF SF DF SF DF SF DF SF DF SF

CR statistics 5 3 6 4 8 4 5 5 5 3 6 4 1

MC statistics 5 7 7 12 10 23 3 4 5 8 6 10 14

Jet 4 1 2 1 5 7 3 6 4 2 4 3 11

Lepton 1 2 1 1 4 1 1 3 2 3 1 8 4

Soft-term 3 4 1 1 2 8 < 1 2 3 5 1 6 5

b-tagging 1 2 <1 <1 <1 <1 1 1 1 2 <1 1 2

Non-prompt lepton <1 1 <1 <1 1 <1 1 1 1 2 <1 1 <1

Luminosity <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 2

Modelling 11 13 21 31 18 40 6 6 8 10 15 19 42

Total 13 16 24 34 23 47 9 11 12 14 17 24 47

Table 4. Systematic uncertainties (in %) on the total background estimated in different signal

regions. Because of correlations between the systematic uncertainties and the fitted backgrounds,

the total uncertainty can be different from the quadratic sum of the individual uncertainties.

energy scale uncertainties are propagated to the Emiss
T evaluation. An additional ‘Soft-

term’ uncertainty is associated with the contribution to the Emiss
T reconstruction of energy

deposits not assigned to any reconstructed objects [93].

The ‘b-tagging’ row refers to the uncertainties on the b-jet identification efficiency and

charm and light-flavour jet rejection factors [99]. The ‘Non-prompt lepton’ uncertainties

arise from the data-driven estimates of the non-prompt lepton background described in

section 7.3. The dominant sources are η dependence of the non-prompt rates, differences

between the light and heavy flavour jets, and the statistics of the control samples. The

uncertainty on the integrated luminosity is ±2.8%, and affects the normalization of the

background estimated with simulation. It is derived following the methodology detailed in

ref. [100].

The ‘Modelling’ field of table 4 includes the uncertainties on the methods used for

the background estimate, as well as the modelling uncertainties of the generators used to

assist the estimate. For SR-Zjets an additional 20% uncertainty is assigned to the ZV

background estimate to account for the variations between data and simulation in the

ZV control regions with two or more jets, as described in section 7.2. Uncertainties on

the Z/γ∗ + jets background estimate in SR-Zjets include the systematic uncertainties as-

sociated with the jet smearing method due to the fluctuations in the non-Gaussian tails

of the response function and the systematic uncertainty associated with the cut value on

Emiss
T /

√

Esum
T used to define the seed region. The effect of using each seed event multi-

ple times is also taken into account. Generator modelling uncertainties are estimated by

comparing the results from POWHEG and MC@NLO generators for top events, and POWHEG and

aMC@NLO for WW events, using HERWIG for parton showering in all cases. Parton showering

uncertainties are estimated in top and WW events by comparing POWHEG plus HERWIG with

POWHEG plus PYTHIA. Both generator modelling and parton showering uncertainties are es-
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timated in ZV events by comparing POWHEG plus PYTHIA to SHERPA. Special tt̄ samples are

generated using AcerMC with PYTHIA to evaluate the uncertainties related to the amount

of initial and final-state radiation [101]. Impact of the choice of renormalization and fac-

torization scales is evaluated by varying them between 0.5 and 2 times the nominal values

in POWHEG for top events and aMC@NLO for diboson events. The uncertainties due to the

PDFs for the top and diboson events are evaluated using 90% C.L. CT10 PDF eigenvectors.

Effects of using different PDF sets have been found to be negligible. The dominant con-

tribution among the ‘Modelling’ uncertainties comes from the difference between POWHEG

and aMC@NLO for diboson production.

Signal cross-sections are calculated to NLO in the strong coupling constant. Their un-

certainties are taken from an envelope of cross-section predictions using different PDF sets

and factorization and renormalization scales, as described in ref. [102]. Systematic uncer-

tainties associated with the signal selection efficiency include those due to lepton trigger,

reconstruction and identification, jet reconstruction and Emiss
T calculation. Uncertainties

on the integrated luminosity affect the predicted signal yield. The total uncertainty on the

predicted signal yield is typically 9–13% for SUSY scenarios to which this measurement is

sensitive.

9 Results

Figures 3 and 4 show the comparison between data and the SM prediction for key kinematic

variables in different signal regions. In each plot, the expected distributions from theWW ,

tt̄ and ZV processes are corrected with data-driven normalization factors obtained from

the fit detailed in section 7. The hashed regions represent the sum in quadrature of sys-

tematic uncertainties and statistical uncertainties arising from the numbers of MC events.

The effect of limited data events in the CR is included in the systematic uncertainty. All

statistical uncertainties are added in quadrature whereas the systematic uncertainties are

obtained after taking full account of all correlations between sources, background contri-

butions and channels. The rightmost bin of each plot includes overflow. Illustrative SUSY

benchmark models, normalized to the integrated luminosity, are superimposed. The lower

panel of each plot shows the ratio between data and the SM background prediction.

Tables 5, 6 and 7 compare the observed yields in each signal region with those predicted

for the SM background. The errors include both statistical and systematic uncertainties.

Good agreement is observed across all channels.

For each SR, the significance of a possible excess over the SM background is quantified

by the one-sided probability, p0, of the background alone to fluctuate to the observed

number of events or higher, using the asymptotic formula [103]. This is calculated using a

fit similar to the one described in section 7.4, but including the observed number of events

in the SR as an input. All systematic uncertainties and their correlations are taken into

account via nuisance parameters. The accuracy of the limits obtained from the asymptotic

formula was tested for all SRs by randomly generating a large number of pseudo data sets

and repeating the fit. Upper limits at 95% CL on the number of non-SM events for each

SR are derived using the CLs prescription [104] and neglecting any possible contamination
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Figure 3. Distributions of mℓℓ in the (a) SF and (b) DF samples that satisfy all the SR-WWa

selection criteria except for the one on mℓℓ, and of Emiss,rel
T

in the (c) SF and (d) DF samples

that satisfy all the SR-WWa selection criteria except for the ones on mℓℓ and Emiss,rel
T

. The lower

panel of each plot shows the ratio between data and the SM background prediction. The hashed

regions represent the sum in quadrature of systematic uncertainties and statistical uncertainties

arising from the numbers of MC events. Predicted signal distributions in a simplified model with

mχ̃
±

1
= 100 GeV and mχ̃0

1
= 0 are superimposed. Red arrows indicate the SR-WWa selection

criteria. In (a), the region 81.2 < mℓℓ < 101.2 GeV is rejected by the Z boson veto.

in the CRs. Normalizing these by the integrated luminosity of the data sample they can

be interpreted as upper limits, σ95vis, on the visible non-SM cross-section, defined as the

product of acceptance, reconstruction efficiency and production cross-section of the non-

SM contribution. The results are given in tables 5, 6 and 7.

10 Interpretation

Exclusion limits at 95% confidence-level are set on the slepton, chargino and neutralino

masses within the specific scenarios considered. The same CLs limit-setting procedure as in
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Figure 4. Distributions of mT2 in the (a) SF and (b) DF samples that satisfy all the SR-mT2

selection criteria except for the one on mT2, and of (c) Emiss,rel
T

in the sample that satisfies all

the SR-Zjets selection criteria except for the one on Emiss,rel
T

. The lower panel of each plot

shows the ratio between data and the SM background prediction. The hashed regions represent

the sum in quadrature of systematic uncertainties and statistical uncertainties arising from the

numbers of MC events. Predicted signal distributions in simplified models with mχ̃
±

1
= 350 GeV,

mℓ̃ = mν̃ = 175 GeV and mχ̃0

1
= 0 are superimposed in (a) and (b), mℓ̃ = 251 GeV and

mχ̃0

1
= 10 GeV in (a), and mχ̃

±

1
= mχ̃0

2
= 250 GeV and mχ̃0

1
= 0 in (c). Red arrows indicate the

selection criteria for SR-mT2 and SR-Zjets.

section 9 is used, except that the SUSY signal is allowed to populate both the signal region

and the control regions as predicted by the simulation. Since the SRs are not mutually

exclusive, the SR with the best expected exclusion limit is chosen for each model point.

The results are displayed in figures 5 through 9. In each exclusion plot, the solid

(dashed) lines show observed (expected) exclusion contours, including all uncertainties ex-

cept for the theoretical signal cross-section uncertainty arising from the PDF and the renor-

malization and factorization scales. The solid band around the expected exclusion contour

shows the ±1σ result where all uncertainties, except those on the signal cross-sections, are
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E
P
0
5
(
2
0
1
4
)
0
7
1

SR-m90
T2 SR-m120

T2 SR-m150
T2

SF DF SF DF SF DF

Expected background

WW 22.1± 4.3 16.2± 3.2 3.5± 1.3 3.3± 1.2 1.0± 0.5 0.9± 0.5

ZV 12.9± 2.2 0.8± 0.2 4.9± 1.6 0.2± 0.1 2.2± 0.5 < 0.1

Top 3.0± 1.8 5.5± 1.9 0.3+0.4
−0.3 < 0.1 < 0.1 < 0.1

Others 0.3± 0.3 0.8± 0.6 0.1+0.4
−0.1 0.1± 0.1 0.1+0.4

−0.1 0.0+0.4
−0.0

Total 38.2± 5.1 23.3± 3.7 8.9± 2.1 3.6± 1.2 3.2± 0.7 1.0± 0.5

Observed events 33 21 5 5 3 2

Predicted signal

(mχ̃
±

1

,mχ̃0

1

) = (350, 0) 24.2± 2.5 19.1± 2.1 18.1± 1.8 14.7± 1.7 12.0± 1.3 10.1± 1.3

(mℓ̃,mχ̃0

1

) = (251, 10) 24.0± 2.7 — 19.1± 2.5 — 14.3± 1.7 —

p0 0.50 0.50 0.50 0.27 0.50 0.21

Observed σ95
vis [fb] 0.63 0.55 0.26 0.36 0.24 0.26

Expected σ95
vis [fb] 0.78+0.32

−0.23 0.62+0.26
−0.18 0.37+0.17

−0.11 0.30+0.13
−0.09 0.24+0.13

−0.08 0.19+0.10
−0.06

Table 5. Observed and expected numbers of events in SR-mT2. Also shown are the one-sided p0
values and the observed and expected 95% CL upper limits, σ95

vis, on the visible cross-section for

non-SM events. The ‘Others’ background category includes non-prompt lepton, Z/γ∗ + jets and

SM Higgs. The numbers of signal events are shown for the χ̃+
1 χ̃

−

1 → (ℓ̃ν or ℓν̃)χ̃0
1(ℓ̃

′ν′ or ℓ′ν̃′)χ̃0
1

scenario and for the ℓ̃+ℓ̃− → ℓ+χ̃0
1ℓ

−χ̃0
1 scenario with different χ̃±

1 , χ̃
0
1 and ℓ̃ masses in GeV.

considered. The dotted lines around the observed exclusion contour represent the results

obtained when varying the nominal signal cross-section by ±1σ theoretical uncertainty. All

mass limits hereafter quoted correspond to the signal cross-sections reduced by 1σ.

Figure 5 shows the 95% CL exclusion region obtained from SR-mT2 on the simplified

model for direct χ̃+
1 χ̃

−
1 pair production followed by slepton-mediated decays. For mχ̃0

1
= 0,

chargino masses between 140GeV and 465GeV are excluded. The exclusion in this scenario

depends on the assumed slepton mass, which is chosen to be halfway between the χ̃±
1 and χ̃0

1

masses in this analysis. Studies performed with particle-level signal MC samples show that

the signal acceptance in SR-mT2 depends weakly on mℓ̃, and the choice of mℓ̃ = (mχ̃±

1
+

mχ̃0
1
)/2 minimizes (maximizes) the acceptance for small (large) χ̃±

1 –χ̃
0
1 mass splitting.

Figure 6(a) shows the 95% CL exclusion regions obtained from SR-WW on the

simplified-model χ̃+
1 χ̃

−
1 production followed by W -mediated decays. Figure 6(b) shows

the observed and expected 95% CL upper limits on the SUSY signal cross-section nor-

malized by the simplified-model prediction as a function of mχ̃±

1
for a massless χ̃0

1. For

mχ̃0
1
= 0, chargino mass ranges of 100–105 GeV, 120–135 GeV and 145–160 GeV are ex-

cluded at 95% CL.

Figure 7(a) shows the 95% CL exclusion region obtained from SR-Zjets in the

simplified-model χ̃±
1 χ̃

0
2 production followed by W and Z decays. For mχ̃0

1
= 0, degenerate

χ̃±
1 and χ̃0

2 masses between 180GeV and 355GeV are excluded. Figure 7(b) shows

the exclusion region obtained by combining this result with results from the relevant

signal regions (SR0a/SR1a/SR1SS/SR2a) in the ATLAS search for electroweak SUSY

– 20 –



J
H
E
P
0
5
(
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0
1
4
)
0
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1

SR-WWa SR-WWb SR-WW c

SF DF SF DF SF DF

Background

WW 57.8± 5.5 58.2± 6.0 16.4± 2.5 12.3± 2.0 10.4± 2.7 7.3± 1.9

ZV 16.3± 3.5 1.8± 0.5 10.9± 1.9 0.6± 0.2 9.2± 2.1 0.4± 0.2

Top 9.2± 3.5 11.6± 4.3 2.4± 1.7 4.3± 1.6 0.6+1.2
−0.6 0.9± 0.8

Others 3.3± 1.5 2.0± 1.1 0.5± 0.4 0.9± 0.6 0.1+0.5
−0.1 0.4± 0.3

Total 86.5± 7.4 73.6± 7.9 30.2± 3.5 18.1± 2.6 20.3± 3.5 9.0± 2.2

Observed events 73 70 26 17 10 11

Predicted signal

(mχ̃
±

1

,mχ̃0

1

) = (100, 0) 25.6± 3.3 24.4± 2.2

(mχ̃
±

1

,mχ̃0

1

) = (140, 20) 8.3± 0.8 7.2± 0.8

(mχ̃
±

1

,mχ̃0

1

) = (200, 0) 5.2± 0.5 4.6± 0.4

p0 0.50 0.50 0.50 0.50 0.50 0.31

Observed σ95
vis [fb] 0.78 1.00 0.54 0.49 0.29 0.50

Expected σ95
vis [fb] 1.13+0.46

−0.32 1.11+0.44
−0.31 0.66+0.28

−0.20 0.53+0.23
−0.16 0.52+0.23

−0.16 0.41+0.19
−0.12

Table 6. Observed and expected numbers of events in SR-WW . Also shown are the one-sided

p0 values and the observed and expected 95% CL upper limits, σ95
vis, on the visible cross-section

for non-SM events. The ‘Others’ category includes non-prompt lepton, Z/γ∗ + jets and SM Higgs.

The numbers of signal events are shown for the χ̃+
1 χ̃

−

1 → W+χ̃0
1W

−χ̃0
1 scenario with different χ̃±

1

and χ̃0
1 masses in GeV.
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Figure 5. Observed and expected 95% CL exclusion regions in the (mχ̃
±

1
,mχ̃0

1
) plane for simplified-

model χ̃+
1 χ̃

−

1 pair production with common masses of sleptons and sneutrinos at mℓ̃ = mν̃ =

(mχ̃
±

1
+mχ̃0

1
)/2. Also shown is the LEP limit [36, 37] on the mass of the chargino. The blue line

indicates the limit from the previous analysis with the 7TeV data [34].

production in the three-lepton final states [83]. The fit is performed on the combined

likelihood function using all signal regions. The uncertainties are profiled in the likelihood
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SR-Zjets

Background

WW 0.1± 0.1

ZV 1.0± 0.6

Top < 0.1

Z + jets and others 0.3± 0.2

Total 1.4± 0.6

Observed events 1

Predicted signal

(mχ̃0
2,χ̃

±

1
,mχ̃0

1
) = (250, 0) 6.4± 0.8

(mχ̃0
2,χ̃

±

1
,mχ̃0

1
) = (350, 50) 3.7± 0.2

p0 0.50

Observed σ95vis [fb] 0.17

Expected σ95vis [fb] 0.19+0.11
−0.06

Table 7. Observed and expected numbers of events in SR-Zjets. Also shown are the one-sided

p0 value and the observed and expected 95% CL upper limits, σ95
vis, on the visible cross-section for

non-SM events. The numbers of signal events are shown for the χ̃±

1 χ̃
0
2 → W±χ̃0

1Zχ̃
0
1 scenario with

different χ̃±

1 , χ̃
0
2 and χ̃0

1 masses in GeV.
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Figure 6. (a) Observed and expected 95% CL exclusion regions in the (mχ̃
±

1
,mχ̃0

1
) plane for

simplified-model χ̃+
1 χ̃

−

1 production followed byW -mediated decays. Also shown is the LEP limit [36,

37] on the mass of the chargino. (b) Observed and expected 95% CL upper limits on the cross-

section normalized by the simplified-model prediction as a function of mχ̃
±

1
for mχ̃0

1
= 0.

and correlations between channels and processes are taken into account. The combination

significantly improves the sensitivity. As a result, degenerate χ̃±
1 and χ̃0

2 masses between

100GeV and 415GeV are excluded at 95% CL for mχ̃0
1
= 0.
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Figure 7. (a) Observed and expected 95% CL exclusion regions in the (mχ̃0

2
,χ̃

±

1
,mχ̃0

1
) plane for

simplified-model χ̃±

1 χ̃
0
2 production followed by W and Z-mediated decays obtained from SR-Zjets;

and (b) the exclusion regions obtained by combining with the ATLAS three-lepton search [83]. The

green lines in (b) indicate the regions excluded by ATLAS using 4.7 fb−1 of
√
s = 7 TeV data [105].

Figure 8 shows the 95% CL exclusion regions obtained from SR-mT2 for the direct

production of (a) right-handed, (b) left-handed, and (c) both right- and left-handed selec-

trons and smuons of equal mass in the mχ̃0
1
–mℓ̃ plane. For mχ̃0

1
= 0, common values for left

and right-handed selectron and smuon mass between 90GeV and 325GeV are excluded.

The sensitivity decreases as the ℓ̃–χ̃0
1 mass splitting decreases because the mT2 end point

of the SUSY signal moves lower towards that of the SM background. For mχ̃0
1
= 100 GeV,

common left and right-handed slepton masses between 160GeV and 310GeV are excluded.

The present result cannot be directly compared with the previous ATLAS slepton lim-

its [34], which used a flavour-blind signal region and searched for a single slepton flavour

with both right-handed and left-handed contributions.

Figure 9(a)–(c) show the 95% CL exclusion regions in the pMSSM µ −M2 plane for

the scenario with right-handed sleptons with mℓ̃R = (mχ̃0
1
+mχ̃0

2
)/2. The M1 parameter

is set to (a) 100 GeV, (b) 140 GeV and (c) 250 GeV, and tanβ = 6. At each model point,

the limits are obtained using the SR with the best expected sensitivity. Figure 9(d) shows

the exclusion region for M1 = 250 GeV obtained by combining the results of this analysis

with the ATLAS three-lepton results [83]. Figure 10(a) shows the 95% CL exclusion region

in the pMSSM µ −M2 plane for the scenario with heavy sleptons, tanβ = 10 and M1 =

50 GeV, using the SR with the best expected sensitivity at each model point. The island

of exclusion near the centre of figure 10(a) is due to SR-Zjets, and is shaped by the

kinematical thresholds of the χ̃±
1 → Wχ̃0

1 and χ̃0
2 → Zχ̃0

1 decays. Figure 10(b) shows the

exclusion region obtained by combining the results from SR-Zjets with the three-lepton

results. These results significantly extend previous limits in the pMSSM µ−M2 plane.

The CLs value is also calculated from SR-WWa for the GMSB model point where the

chargino is the NLSP with mχ̃±

1
= 110 GeV, mχ̃0

1
= 113 GeV and mχ̃0

2
= 130 GeV [47].

The observed and expected CLs values are found to be 0.19 and 0.29, respectively. The
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Figure 8. 95% CL exclusion regions in the (mℓ̃,mχ̃0

1
) plane for (a) right-handed, (b) left-handed,

and (c) both right- and left-handed (mass degenerate) selectron and smuon production. Also

illustrated are the LEP limits [36, 37] on the mass of the right-handed smuon µ̃R.

observed and expected 95% CL limits on the signal cross-section are 1.58 and 1.90 times

the model prediction, respectively.

11 Conclusion

Searches for the electroweak production of charginos, neutralinos and sleptons in final states

characterized by the presence of two leptons (electrons and muons) and missing transverse

momentum are performed using 20.3 fb−1 of proton-proton collision data at
√
s = 8 TeV

recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess

beyond Standard Model expectations is observed. Limits are set on the masses of the

lightest chargino χ̃±
1 , next-to-lightest neutralino χ̃

0
2 and sleptons for different masses of the

lightest neutralino χ̃0
1 in simplified models. In the scenario of χ̃+

1 χ̃
−
1 pair production with

χ̃±
1 decaying into χ̃0

1 via an intermediate slepton with mass halfway between the χ̃±
1 and

χ̃0
1, χ̃

±
1 masses between 140GeV and 465GeV are excluded at 95% CL for a massless χ̃0

1. In

the scenario of χ̃+
1 χ̃

−
1 pair production with χ̃±

1 decaying into χ̃0
1 and a W boson, χ̃±

1 masses
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Figure 9. 95% CL exclusion regions in the µ–M2 mass plane of the pMSSM with right-handed

slepton mass mℓ̃R = (mχ̃0

1
+mχ̃0

2
)/2. The areas covered by the −1σ expected limit are shown in

green. The M1 parameter is (a) 100 GeV, (b) 140 GeV and (c) 250 GeV, and tanβ = 6. The

exclusion region for M1 = 250 GeV (d) is obtained by combining the results of this analysis with

those from the ATLAS three-lepton search [83]. The dash-dotted lines indicate the masses of χ̃±

1

and χ̃0
1. Also shown are the previously reported exclusion regions by ATLAS [105] and the LEP

limits [36, 37] on the mass of the chargino.

in the ranges 100–105 GeV, 120–135 GeV and 145–160 GeV are excluded at 95% CL for a

massless χ̃0
1. This is the first limit for this scenario obtained at a hadron collider. Finally,

in the scenario of χ̃±
1 χ̃

0
2 production with χ̃±

1 decaying into Wχ̃0
1 and χ̃0

2 decaying into Zχ̃0
1,

common χ̃±
1 and χ̃0

2 masses between 180GeV and 355GeV are excluded at 95% CL for a

massless χ̃0
1. Combining this result with those from ref. [83] extends the exclusion region

to between 100GeV and 415GeV. In scenarios where sleptons decay directly into χ̃0
1 and

a charged lepton, common values for left and right-handed slepton masses between 90GeV

and 325GeV are excluded at 95% CL for a massless χ̃0
1. Improved exclusion regions are

also obtained in the pMSSM µ–M2 plane for four sets of slepton mass,M1 and tanβ values.
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Figure 10. (a) 95% CL exclusion regions in the µ–M2 mass plane of the pMSSM with very large

slepton masses, M1 = 50 GeV and tanβ = 10. (b) The exclusion region obtained by combining the

results form SR-Zjets with those from the ATLAS three-lepton search [83]. The areas covered by

the −1σ expected limit are shown in green. The dash-dotted lines indicate the masses of χ̃±

1 and

χ̃0
1. Also shown are the LEP limits [36, 37] on the mass of the chargino.
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L. Gonella21, S. González de la Hoz168, G. Gonzalez Parra12, M.L. Gonzalez Silva27,

S. Gonzalez-Sevilla49, L. Goossens30, P.A. Gorbounov96, H.A. Gordon25, I. Gorelov104,

G. Gorfine176, B. Gorini30, E. Gorini72a,72b, A. Gorǐsek74, E. Gornicki39, A.T. Goshaw6,
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V.S. Lang58a, C. Lange42, A.J. Lankford164, F. Lanni25, K. Lantzsch30, S. Laplace79,

C. Lapoire21, J.F. Laporte137, T. Lari90a, M. Lassnig30, P. Laurelli47, W. Lavrijsen15,

A.T. Law138, P. Laycock73, B.T. Le55, O. Le Dortz79, E. Le Guirriec84, E. Le Menedeu12,

T. LeCompte6, F. Ledroit-Guillon55, C.A. Lee152, H. Lee106, J.S.H. Lee117, S.C. Lee152,

L. Lee177, G. Lefebvre79, M. Lefebvre170, F. Legger99, C. Leggett15, A. Lehan73,

M. Lehmacher21, G. Lehmann Miotto30, X. Lei7, A.G. Leister177, M.A.L. Leite24d,

R. Leitner128, D. Lellouch173, B. Lemmer54, K.J.C. Leney77, T. Lenz106, G. Lenzen176,

B. Lenzi30, R. Leone7, K. Leonhardt44, S. Leontsinis10, C. Leroy94, C.G. Lester28,
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G. Zevi della Porta57, D. Zhang88, F. Zhang174, H. Zhang89, J. Zhang6, L. Zhang152,

X. Zhang33d, Z. Zhang116, Z. Zhao33b, A. Zhemchugov64, J. Zhong119, B. Zhou88,

L. Zhou35, N. Zhou164, C.G. Zhu33d, H. Zhu33a, J. Zhu88, Y. Zhu33b, X. Zhuang33a,

A. Zibell175, D. Zieminska60, N.I. Zimine64, C. Zimmermann82, R. Zimmermann21,

S. Zimmermann21, S. Zimmermann48, Z. Zinonos54, M. Ziolkowski142, G. Zobernig174,

A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo103a,103b, V. Zutshi107 and L. Zwalinski30

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Department of Physics, Gazi University,

Ankara; (c) Division of Physics, TOBB University of Economics and Technology, Ankara; (d)

Turkish Atomic Energy Authority, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America

– 45 –



J
H
E
P
0
5
(
2
0
1
4
)
0
7
1

8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of

America
9 Physics Department, University of Athens, Athens, Greece

10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de F́ısica d’Altes Energies and Departament de F́ısica de la Universitat Autònoma de
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