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INTRODUCTION

The purpose of this paper is to present a complete proof of the
Brouwer Fixed Point Theorem, equivalent statements to the theorem,
extensions, and applications to all of these.

Brouwer's theorem deals with certain continuous mappings whose
domain is a subset of some Euclidean n-space, which we shall denote by
E'. That part of the domain of the mapping in which we are interested
is called a Euclidean n-cell, or merely an n-cell. In this paper we
define an n-cell as any set which is homeomorphic to the closed unit
ball in E', B = {x: x ¢ En, ”x”sl}. Observe that an n-cell is not
necessarily a set in £",

The Brouwer Fixed Point Theorem states that every Euclidean
n-cell has the fixed point property. To say that a set A has the fixed
point property, we mean that whenever a continuous function f maps A
into itself, there is at least one point x in A such that f(x) = =
Then x is called a fixed point of f.

Before proceeding to the discussion of Brouwer's theorem, we
need to mention a few pertinent facts that will be used in this paper.
The first is known as Tietze's extension theorem, the proof of which
can be found in Hocking and Young [7].

Tietze's Extension Theorem. Let X be & normal space, and let
£f: c—I" be a continuous mapping of the closed subset C of X into the

: n
unit cube I” in En, where I = {x: x=(x .,xn), Osxisl}. Then

19%p0e
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there is a continuous mapping f : x—I" such that f*(x) = f(x) for all
xe C.

In the generalizations of Brouwer's theorem we encounter a
linear topological space. This is a linear space (vector space) with a
topology which makes the vector operations of addition and scalar multi-
plication continuous (as functions of two variables). If X and Y are
two linear topological spaces, we say X and Y are linearly homeomorphic,

if there exists a homeomeorphism h of ¥ onto Y such that
h{ax+8y) = ah(x) + Bh(y)

for all %,y ¢ X, all scalars u,B.

The following theorem is extremely important in the study of
normed linear spaces. The proof can be found in Wilansky [13].

Theorem. Every finite dimensional real normed linear space is
linearly homeomorphic to some Euclidean n-space.

It is easily shown that if h is a linear homeomorphism, then
h—l is also a linear homeomerphism. It is also straightforward to show
that if X is a complete metric sp;ce, then any image of X under a
linear homeomorphism is complete. Two important consequences of these
statements and the theorem above are that every finite dimensional real
normed linear space X is complete, and every closed, bounded set in X
is compact.

In this paper we adopt some notation which may not be universal.

We use the symbol [ to indicate that a proof has been completed. We

let A denote the closure of the set A relative to the topology of the



space in which A lies. For two sets A and B, the nctation A-B means

AN BC, where B is the complement of B relative to the space which
contains B. When speaking of the composition of two mappings f and g,

we define fog(x) = f(g(x)). Other notaticn which is used will be

defined when it is used.



CHAPTER I
THE BROUWER FIXED POINT THEOREM

Before proceeding to the discussion of Brouwer's Fixed Point
Theorem in En, we first prove the thecrem for El. The proof for this
case igd quite easy and does not require the extensive structure neces-
sary in the general case.

In El let I be the closed unit interval [0,1]. Brouwer's

theorem can be stated:
Theorem 1.1. 1f f is a continuous mapping frem I into I, then
there exists an x_ ¢ I so that f(x ) = x_.
o} ° o)
Remark. Geometrically, this theorem says that the graphs of
f(x) and the identity mapping i(x) = % must intersect at some point in

I. The diagram indicates what is happening.

J
e

/ e

0 1

Proof. Consider the function g(x) = £(x)-r. Note that g is
continuous on [0,1]. If g(x) = 0 fcr some x ¢ I, then f{x) = x. So

assume g(0) # 0 and g(1l) # 0. Otherwise, we are finished. Since for



each x e I,0sf(x)sl, we must have g(0) = £(0)-0>0 and g(1l) = f(1)-1<0.
By the Intermediate Value Theorem, there is a point X between 0 and 1
such that g(xo) = 0. Thus, f(xo) = % 0

In order to prove the Brouwer Fixed Pcint Theorem, we first need
to develop the concept of an n-simplex and some of its basic properties.
Intuitively, an n-simplex in E" is a genera.ization of a triangle in EQ,

. e . : PR (] .
Definition. The points R <% in E ' (mzn) are said to be

l,co

in general position if the vectors x

—K 5 Ko-X_, "**, X_ =X are linearly
o o} n o

1 2

independent. The choice of X, 35 the "origin'" is arbitrary in deter-
mining their linear independence.

. e, . eos v oD
Definition. Let X o LR be in general positicn in E (mzn).

a

The n-simplex S associated with these points is

n
t.%., where each +,.>0 and 2 t, = 1}.
o L1 i oo T

V)]

1

—~—

"

e

1§
1~ 3

i "

The points X% “»x_ are called the vertices of 3, and we dencte

IS

this n-simplex by S = X sX < ,X

-

1777 n]

. . . s . n
Note that if x SN are in general position in E, then

HI
0712

every x in E? can be uniguely expressed as a linear ccombination of
n n

these points, say % = z tixi, with the stipulation that z Ty = 1.
1=0C 1=0

In such a representation, the ti's may be negative.

Recall that a peint x is an interior peoint of a set A in ET, if
s . m .
there exists an open set U In E such that x e U € A. If xe A is not
an interior of A, then x is a boundary point of A. Observe that if

. . . m
S = |xo,x =-,xn| is an n-simpiex In E , where m'n, there are no

1°°

interior points of S, by this definition. Instead, we shall define



"inner" points of S as points which are interior points of S when S is

viewed as a subset of En, rather than E*. Then it can be shown that x is
n po!

an inner point of S, where x = ) t.x, and ) t; = 1 if, and only if,
i=o i=o

each ti>0' We call x a boundary point of S if, and only if, at least

one ti = 0 and each tiZO. A thorough discussion of this can be found in
Bers {1]. One further step is to decompose the boundary of § into
faces (or sides).

-

Definition. A k-side (k-face) of an n-simplex S = |xo,xl,- n

is a k-simplex whose vertices are a subset of [xo,x1,v-=,xn}. A k-side
L
1s said to have dimension k.

Notice that if k+n, the k-side is a subset of the boundary of S.
n n
Alsc, if x is a beundary point of S, then x = Z t.ox, where Z t; = 1,
i=o i=o
each tizo, and at least one ti = 0. Without loss of generality, assume

ti = Q0 for k<is<n, and for 0<izk, tiHO. If this is not the case, reorder

the xi's to do this. Then x ¢ |xo,x -,% |, which is a k-side of S.

17 %

By construction, this is the side of S§ of least dimension which contains

x. We make the following definition.

Definition. Let x e S = |xo,x -,xn|. The carrier side of §

10

for the point x is the side of least dimension containing x.

I

For example, in the 2-simplex S |xo,xl,x2| shown belcw, the

1

carrier side of X is the O-simplex SO {xo}a The carrier side of p

is the l-simplex S, = {tx

N 1t (l-t)xg: 0<tsl}; that is, the side joining

Xy and Xy The carrier side of g 1is S.



Note tﬁat if % is an inner point of S, the carrier side of S for
x 1s all § and has dimension n. For a boundary point x of 5§, the dimen-
gion of the carrier side of S for x iz less than n.

Another concept we need is that of a simplical subdivision of an
n-simplex S. We are interested in a particular type of subdivision
calied a "barycentric subdivision.'" We first consider the notion of a
barycenter of a finite collecticon of points.

Definition. Let po,pl,---,pk(kzo) be points in E", where p:,i has
the Cartesian coordinate representation pj = (ajl’an’.Ec’ajn) for

j = 0,1,"*+,k. The barycenter x = (§1,§ v-,in) of the points

v

PsPys® Py has coordinates

The barycenter x of PosPya’ " aPy is denoted by x = B(po,pl,-‘*,pkl
This definition is suggestive of the center of gravity of particles of
mass 1 located at the points PysPys* " sy

Now consider an n-simplex § = -,xn[a We 1list all pos-

Ix _, "’
a’1

gible barycenters of all non-empty subsets of {xo,xl,“°',xn} as follows:



Stage 1: (using subsets consisting of one point)

B(xo),fol),---,B(xn) {Note that B(Xi) = {xi})

Stage 2: (using subsets consisting of two distinct points)
B(Xo,xl), B(XO,XQ), cee B(Xo’xn)’ B(Xl,xz),

B(xy5%4), =vvy Blx ,x ), -+-, Blx

n—l’xn)'

Stage k: ({using subsets consisting of k distinct points)

), s

B(x TSR Y

Stage n: (using subsets consisting of n distinct points)

)}, B(x WX WK ), o

B(xo’x st LX l’ . IPELS .

n-1

B(xo,xz,xa,--=,xn), B(Xl’XQ’ ':Xn)

Stage n+l: {(using subsets consisting of ntl distinct points)

B(X > l: ":xn)

Using these barycenters as vertices, we form a collection of
n-simplexes by cheosing a barycenter from each stage, starting with
stage 1 and procgeeding successively through stage n+l, so that the
points which are used to determine the barycenter in stage k are common
to the set of points used to determine the barycenter chosen from stage
k+l. We give an example to illustrate. The W-simplex [B(xo),

B(x »Xy ), B(x s X ), B(x ,X

0% )Y, B(x WX 5X3>x4)| is subsimplex

1°% 1272
of the type described for the UY-simplex S = |x S X.

1’

,XB,x The

1°%9 4



L-simplex ]B(xo), B(xo,xl), B(Xl’XQ’XS)’ B(xl,x ’XS’XH)’

2

B(x )%y 5 ”)l, however, is not one of the desired type, since %

2°

is not common to the set of points used to determine the third bary-

center.

,x_|. The first barycentric

Definition. Let S = |x or¥y st X

subdivision of § is the collection of n-subsimplexes as described
above.

It is easily seen that there are exactly (n+l)! subsimplexes in
the first barycentric subdivision of 5. Before proceeding further we
illustrate this process with a concrete example in E

Let x_ = (0,0}, x (1,0), and X, = (0,1). Let S = |xo,xl,x

1 2

be a 2-simplex in E2. {See diagram below. )

Stage 1: B(x )} = (0,0), B(xl) = (1,0), B(x,) = (0,1)

N |-

1 1
Stage 2: B(xo,xl) = (530), B(XO’XQ) = (O,EJ, B(Xl,xz) = (

Stage 3: B(x V%) ) = ('3—-

Choosing vertices in the prescribed manner, we get 6 subsimplexes,
namely, |B(x ), B(x 2%y ), B(x 2Ky [ lB(xo), B(xo,xz), B(xo’xl’XQ)l’
|B(x Y, B(x s%) ), B{x o 2% 2%y R IB(x Y, Bix ,x2), B(xo,xl,x2)|,

\BLX ), B(x s%, ), B(x »%y )L, and |B(x ), B(xl,x2), B(xo’xl’XQ)l'

Geometrically, we have S subdivided as follows:



10

Tor the =zecond barycentric subdivision of an n-simplex S, we
tgke a first barycentric subdivisicn of each subsimplex obtained in the
first barycentric subdivision of S. Likewise, we may define the kth
barycentric subdivision of S in a similar manner. In Bers [1] it is
shown that the diameter of the n-simplex S - ixo,xi,=-=,xni, which is
defined by d(5) = supi|x-yll: x,v ¢ S}, is precisely 4(s) =
max{"xi-xjH: i,j = G,1,++°,n}. Intuitively, it is the length of the
iongest 2-side. It i3 easily seen that in the kth barycentric sub-
divizion of 5, for any subsamplex T, d{(T) - igﬁii d(s). Thus, by
taking enough barycentric subdivisions of §, we create a grid in § of
n-subsimplexes so that the diameter of any subsimplex 1s as small as
desired. Henceforth, we shall refer to any xth barycentric subdivision
of S merely as a simplica: subdivision of S, unless we need a specific
barycentric subdivision.

The folliowing lemma will be useful 1n the proosf of Brouwer's
theorem.

Lemma 1. Let A be a side of dimension n-i of an n-subsimplex

in gome simplical subdivision K of § = ]xo,x v,xn|u Then A is

100
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shared by exactly two n-subsimpiexes in K, if A iz not on the boundary
of S; and A is common tc exactly cne n-subsimplex, if it is on the
beundary of S.

Proof. We prove this by induction on the number of barycentric

subdivisions. Let Kl be the first barycentric subdiv.sion of 5. Let A

o

be an (n-.)-side of 5, in Kl, where Sl 2 inxi”}, B(Xio,xil), ve s
~

B(x WX =u°,xn)| as des:ribed earlier. Witnout loss of generality, we

lB

may Sssume K. o o= Xj; ctherwise, renumber. Tor -implicity of notation,
3 |
let Vj = B\xo,xzav=ﬂ,xj_l)g l.e., the veriex of Sl chosen from stage j.

Then A = |vl | for zome 1-jsnri. First assume

Yoot eV 1V Varl

3 = nti. Then A - |v $V u,wr! and the points in A are convex linear
!

2’”

combinations ¢f the n po.nts K% By previous comments, A

N
1 *n-1

must be contained in the boundary of S. Since the (nti)-st vertex for

every subsimplex 1s B(xo,x -,xn), there can be no n-simplex other

1
than Sl which has A as an (n-1i)-side.
Now assume j # n+l. Then A is missing the verfex vJ =

B(x WX " L,®, .). We want o determine exactly how many n-simplexes

1% j-1

have A as an (n-1)-side. Every n-simplex which contains A must be of

the form

‘ka ) B(Xos ) +y B{x ’xl, “axj_Z): vj 2
B(x sxls ',x'j“i,xj)’ T B(XCSXJ—sa”aXn)I‘

By the method of constructing T, G] must involve all the previ-

Also v must nvolve all the vertices

ocus vertices x K, og°0" . -
i j-2 J+l
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of Gj' Thus, there are exactly two cheoices for ;j’ namely,

B(xo,xl,---,xj_z,xj_l) or B(xo,xl,-'-,xj_Q,xj). Moreover, since A con-

tains v there are points in A which are convex linear combinations

n+l’

of all n+l peints X2 X X with all non-zero coefficients. One, for

1

n

. 1 .

example, 1s vn+l = .z — xi. Thus, A is not on the boundary of S,
izo

We shall then say A& iz interior to S, and A is shared by exactly two
n-subsimplexes in Kl' We have proven the lemma for Kl.

Now assume the lemma is true for the kth barycentric subdivision
of 5, ecall it Kk' We want to show it is true for Kk+l' Recall that
Kk+l is just the first barycentric subdivision of Kk' Another way of

viewing Kk+l is the following: Let Sk be an n-simplex in Kk' Take

the first barycentric subdivision of Sk' He get (n+l1l)! subsimplexes of

Sk' The collection of all subsimplexes for each Sk in Kk is the set of

n-subsimplexes in Kk+l'
Let A be an (n-1)-side in Kk+l' Then A iIs an {(n-l)-side for

in K, . If A

an n-simplex T which is a subsimplex of some n-simplex $ K

k

is interior to S_, then A is an (n-1l)-side for exactly two n-subsimplexes

k’

of Sk and is, therefore, common to exactly two n-subsimplexes of §,

Alsc, A is interior to S. 1f A is on the boundary of Sk’ we must con-

sider two possibilities. If A is on a boundary of Sk which is interior

to S, then A is common teo exactly one subsimplex in S However, that

e
(n-1)-side of Sk which contains A is shared by one other n-simplex
1

X Thus, if A is interior

Sﬁ in Kk' The same argument holds for A iIn S

to 8, it fellows that A 1s shared by exactly two n-subsimplexes in
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K

Al If A iz on a boundary of SK which is.,a boundary of S, then A& is

, and the (n-1)-side of S, con-

common to exactly one n-simplex in S ”

k
taining A is common to Sk only in Kkh Thus, A is common TO exactly one
n-subsimpliex in Kk+1 if 1t is on the boundary of S. This proves the
inductive step. The lemma is, therefore, true for any simplical (bary-
centric) subdivision of S. [

We digress from our discussion of simplexes for a moment to men-
tion some other poilnts which are necessary for the background to the
procf c©f Brouwer's theorem. EKecarl that the theorem says every
Euclidean n-cell has the fixed point property. We shall prove the
thecrem is true for every n-simplex in E'. In order to establish the
result for any n-cell, we need to show that an n-cell 1s homeomorphic
to an n-simplex, and that under homeomorphisms, the fixed point
property is invariant.

Lemma £. A Euclidean n-cell is hcmeomorphic to an n-simplest.

Procf. All thatr iz rnecessary to show is that every n-simplex is

<1} in E”. Since every

homeomorphic to the unit bali B = {x: |x
Euclidean n-cell is homeomorphic 1o B and the composition of homeomor-
phisms is a homecmorphism, we shall have established our lemma,

. . oD .
Let § = |xo,x -ns,xn| be an n-simplex in E°. Let y_ be an

K
inner peint of 8. We are going to define a mapping on S which shrinks

S to a unit ball around Yo The diagram below will illustrate the idea.
Let ®x € 8. Consider the vector E“:f§;l Geometricaliliy, this vector

emanates from the point Y, in the direcrion x - Yo (see diagram).

Assume X ¥ Yo Then ”X-YO”"Ov
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Now consider a(x-yo) where o > 0. This is a vector in the same
directicn as (x~yo), There exists an R S =zuch that

X, = Vo ® o (x-y ) with a >1, and such that “xm—yo“ = max{”a(x~yo)”:
220 and a(x—yo) ty,E S}. This says there exists a furthest peint

X € S from Y along the pesitive directred segment x - Yo Such =

point exists since S is closed and bounded. Define h: S—B as

follows:
f 0 for x = y
] o
o - |
| -y,
| ——— for x € 8, x ¥ Yo
-y
Observe that lx-y || < wflxy |l = o Gy Il = Iz -y]l. so [nGo]

It is easy to check that h continuous on S, that h is cne-to-one and
onto, and that hml is continuous. Thus, § is homeomorphic to
“xH <1t 1
We now show that if a set C has the fixed point property, then

every homecmorphic image of C has that property, tco.
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Lemma 3, The fixed point property is a topological invariant;
i.e., is preserved under homeomorphisms. This proof is essentially that
of Whyburn [1a4].

Proof. Let C be a set with the fixed point property. Suppose C
is homecmorphic to D. Let h: C—D be a homeomorphism. (The dizgram
below may help in visualizing these statements ) Let f: D—D be a con-
tinuous mapping- Then the mapping h_l o £ o h 1s a continuous mapping
of C into C, and, hence, has a fixed point, say X That is,

RS f o h (x) - x.
o} o}

D D
o £ PR

y ;‘&1)
.

TN .
e/ ) ntefen ‘o

L’/zg‘/ T *'__'%'j. 2/ /,

Let h(xo) =y, where y, € D. We claim that f(yo) =Y Observe
that since h_i o f o h(xo) = X, We have f o h(xo) = h(xo), an
f(h(xo)) = h(x ). Thus, £y,) = Yo a

We have proven these previous lemmas in order that we need only
prove the Brouwer Fixed Psint Theorem for an n-simplex in %, We now
Drove two more lemmas which will aid IiIn the prcof for an n-simplex.
These lemmas and the proof of the theorem fer an n-simplex are essen-
tially those presented by Whyburn [1l4].

Lenma 4. Let K by any simplical subdivision of the n-simplex

S = xo,xl,~ﬂﬁ,xn|, and let v(e) be a mapping of the vertices of K into
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the vertices of S such that for any vertex e of K, v(e) is a vertex of
the carrier side of S for e, Then there exist an odd number of
n-simplexes in K whose vertices map in & one-to-one fashion onto the
vertices of S.

Proof. Each n-simplex in K whose vertices map in a one-to-one
fashion onto those of S shall be called an R-simplex. Also, call an
(n-1)-simplex in K an R-side provided its vertices map in & one-to-one

fashion onto the points XX ¥ under v.

1°°° i

The proof will be by induction on the dimensionality n of S.
For n=0, we have S = Ixo| = {xo]. There is exactly one n-simplex in
any simplical subdivision of S. That simplex is S itself, and the
lemma is trivially true. So assume the lemma is true for dimension
n-1l. We adopt the following notation:

N = the number of R-simplexes in K.

a(T) = the number of R-sides on an n-simplex T In K.

o = the number of R-sides of K lying on the boundary of S.

Let T be an n-simplex of K with vertices yo,yl,°",ynﬂ Then T

has n+l sides of dimension n-1. Denote the jth (n-1)-side of T by

Tj = |y09yls" n’yj—l’yj‘l'l" * '5yn' .

If T is an R-simplex, then one, and‘only one, vertex yj maps onto X

All (n~l)-sides of T containing yj are not R-sides. Only Tj is an

R-side. Thus afT) 1.

Assume that T is not an R-simplex. Then either the vertices of

T map onto the set {xo,xl,---,xn_l}, or they do not. If they do not,
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then no (n~1)-side of T meps its vertices onto the set, and a{T) = 0.
If they do map onte this set, we claim that o(T) = 2. We must have
exactly two of the vertices of T mapping onto some xj where 0sj<n-1l.
The remaining vertices of T map cnto the remaining Xy for i#j. By
relabeling the vertices of T, if necessary, we have that v(yo) =
v(yl) = xj, Thus only the sides TO and Tl ar: R-gides of T,
Resastating these results, we have that of(T) = 1 1f T is an

R-simplex and a(T) = 0 or «(T) = 2 zf T is not an R-simplex. Thus,

N: ) alT) (mod 2).
Tek
We now need to know how many times an R-side of K is counted
in the sum E a(T}. Referring back to Lemma 1, we see that an R-side
TeK

is counted only once if It lies on the boundary of S and twice 1if it

Is interior to S. So

@ = 3 alT) (mod 2).
TeK

Therefore,

According to () we need to count the number of R~sides lying on
the boundary of S, Let W be an (n-l)-simplex in K (i.e., an (n-i)-side).

_,iss’x

1f W lies on the boundary of 8, say W (:lxo,x1,‘ Ry 0%y

j-1 nt’
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then the mapping v takes the vertices of W into the set {xi: i#3}.

Thus, for W to be an R-side, it must be that W (:|x0,xl,---,xn_l .
Assume W is an R-side.
: n-1 . n-1 n-1
Setting S = ]xo,xl,---,xn_l , Wwe notice that K = KNS
is a simplical subdivision of gL, Furthermore, W is an (n-1)-simplex

. n-1 . . . .
in 8 whose vertices map in a one-to-one fashion onto the vertices of

n-1 1

S under v. Note that v restricted to st gti11 fulfills the

requirement that v(e) is a vertex of the carrier side of 521 for any

vertex e in Knﬁl. This makes W an R-simplex in Kn—l. Thus, W is an

R-side in K if and only if W is an R-simplex in Kn_l. By the induction
hypethesis, there exist an odd number of R-simplexes in Kn—l. So a is
an odd nurber, and by (¥#) we have that N is odd. [

We use this lemma to prove the following lemma.

Lemma &, If Ao’A --,An are non-empty closed sets of

1

S = |xo,xl,---,xn| such that for each set of distinct integers
io’il’.-"ik (OsianL the side |xio,xi 2Tty is contained in
n 1 k
AU AWV ..U A, then {1 A. is non-empty.
i i i .
o 1 k j=o

Proof. Let e¢>0 be given. Let KE be a simplical subdivision of
S such that each simplex in KE has diameter less than e.

Let e be a vertex of KE. Denote the carrier side of S for e
k
by S(e) = |xi K 57ty |. By hypothesis, S(e)C U Ai , and,
o) 1 lk j=o 7
hence, e ¢ Ai for at least cne j, 0sj<k. Pick one such set.
v}
Define v(e) = X s the vertex corresponding to the set Ai chosen
] ]
above. Having done this for each vertex e ¢ KE, we have a mapplng of

the sort described in Lemma 4. Consequently, the number of R-simplexes

in Ke is odd, and there is at least one n-simplex T in Ks whose vertices
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map in a one-to-one fashion onto the vertices of S, In order that a
vertex e of T map into Xj’ it is necessary that e ¢ Ajn Thus, T ) Aj
is non-empty for j = 0,1, -+,n. Recall that the diameter of T is
less than €.

Consider a sequence {K(m)} of simplical subdivizions of S where
the diameter of all simplexes in K{m) is less than %3 m=1,2,+++. Then
there exists a sequence of n-simplexes tTm} in § with the diameter of
Trn legs than %-and Tmf\ Aj non-empty for J = 0,1,*-+,n. For each m,
let p be a poipt in T . Then the sequence {pm} is contained in the
compact set S. So there is a subsequence {pm.} which converges to a
peint p € S. Using the notation d(y,A) to me;n the distance from the

point v to the set A, and recalling that for each j, there is a point

a; € Tmfﬂ Aj’ we have that
d(p ,A.) < d(p_,a.) 5 diameter of T_ < 5,
S I m*7y0 - m m

For a fixed set A, d{y,A) is a continuous function defined on S

then follows that

lim d(Pm_sAj) = d(P:Aj) j=0,1,°",n.

3o i

Combining these results, we have that

0 < }im d(Pmb’Aj) < lim = Q.

1 ] i 1
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Hence, d(p,Aj) = 0 for §=0,1,+++,n. Since each Aj is closed, p € Aj’

n
and, sope [} A.. T
jzo °
We are now ready to prove the Brouwer Fixed Point Theorem.

Theorem 1.2, Every Euclidean n-cell has the fixed point
property.

Proof., Let S =.|x0,x G"Xn‘ be an n-simplex. Let f be a

1*’

continucus mapping from S into S. Tor x ¢ S, % has a unique represen-

n n
tation as x = E o X, where each o, 20 and a; = 1. Denocte x by
izo i=zo
®x = (o ,al,---,an) (1)
and f(x)} by
f(x) = (a;,af, L0 ) (2)

Define the folleowing sets in S:
' X
A, = {x: 2 e S, ujzaj} 1=0,1,°++,n

We need to show that each Aj is non-empty and cliosed in S. For each

3=C,1,°--,n, define the projection mapping Pj by
P.(x) = o..
]( ) J

Then each Pj is continuous on 8, and the mapping Qj defined by
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Q LA X - P LU X - P . f X

-1
A‘ = : Sa r z = @ % .
3 {x: x ¢ Q](x) 0} Q:| ([0,=))

Being the inverse image of a closed set, Aj is closed, since Qj iz con-

tinuous. Clearly, xj e A.. So Aj is non-empty.

Now let S° = |%, ,X, .+»',%X, |. We want to show that
i *7i i
K k o 1 k
s C LJ Ai » in order to apply Lemma 5. In (1) and (2), each aiQO and
=0 7] n

'
t
each .20, and Z o, =

t k
) o; = 1. Let x e S, and let
1=0 i=o

I={i (o

n

+,i }. Letting x

X °',an), if 3¢ 1, aj = 0.

1,0 o,
O! 19 O’ lb

Thus,

n
1= E o, < Z o, < Z a .
iel 1 iel 7 i=

This is a contradiction. Thus % € Ai for at least one 1 € I, and

k
§<C: Lj Ai . Applying Lemma 5, it follows that there exists a point
i=o 3 n
X € S such that x_e [} A.. For x = (B ,R, ,***,B_) we have that
e} o S [} o'l n
, e o - Fa ,
Bi>Bi for i=0,1,-*+,n. Since L Bi = L Bi = 1, we get that Bi = Bi
i=o izo

for each 1. So f(x ) = % .
o o
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Reiterating our previous comments, by showing an n-simplex has
the fixed point property, we have that every n-cell has the fixed point

property. [
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CHAPTER II
EQUIVALENCES TO BROUWER'S FIXED PCINT THEOREM

We now present three statements which are equivalent to
Brouwer's Fixed Point Theorem and prove their equivalence. Often an
application of the theorem is more convenient if one of these alternate
forms 1s used. These equivalences are stated by Hurewicz and Wallman
[8].

Theorem .1, The following four statements are equivalent:

I. A continucus mapping from an n-cell in E? into
1tself has a fixed point. {Brouwer's theorem.)

1I. Let Bn be a closed convex ball in Bn, say
B, = {x: [x]|<l}. Let S_.y be the (n-1)-sphere associated with
Bn; in this case, Sn-l = {x: |x] = 1}. Then there exists no

continuous function f which maps Bn into Sn and keeps such

-1
i f£i .
peint of Sn-l ixed
ITI. Let Sn—l be as described in II. Then there exists

no function £(t,x) from [0,1] = Sn-l into Snml which is con-

tinuous in the pair (t,x®) and which has the boundary conditions

£{0o,%x)

X, (where ® € Sn—l)

1
>

f(laX)

for each x € S .
n-1".



24

IV. Let I_ be a cube in EV, say I_ = {x: |x,|<l,
n n i

i=1,2,+++,n}. Let Ci and C£ be the faces of In’ defined by

(@]
11

ix: xe I_, x.=1}
n® “i
and

C, = {x: we I, x,=-1}
n® "1

Let Ki be a closed set separating Ci and Ci; i.e., In--Ki =

Uikjiji where UifWiJi is empty, U, gnd Ui are open relative

to In’ and CiC:IJi, Cic: U;. Then ("} Ki is non-empty.

1=1

Remark., We could prove this in a cyclic fashion. However, the proofs
are interesting enough to prove their equivalence in the order
IV ISIISIII.

Proof. IV I. Let B = {x: xeE, ||x||5%—}. Let f: B—B be
continuous, and let g be a continuous mapping of In ontc B which
leaves each x ¢ B fixed. Then f o g: In—+B is a continuous mapping.

For x = {(x -,xn), define the projection Pi by Pi(x) = % Then

w e
1°72°

. . n . .
each Pi is continuous on E . Moreover, Pi(fog) is continuous on In.

Now define the continuous mapping Qi by Qi(x) = Pi(x) - Pi(fog(x)),

for x ¢ In’ i=1,2,--*.,n. Consider the sets

K; = {x: x e I, Qi(x) = 0} for i=1,2,***,n.
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Clearly Ki = Q;l[O]. Since the set {0} is closed and Qi is continuous,
K. is closed.
1
t
Let U, = {x: x ¢ In’ Qi(X)>O} and Ui = {x: x¢ In’ Qi(x)<0}.

. T _ ' . _
Obviously Uif\ U; is empty, and I - K. = Ui\J U,. Since U, =
le[(O,W)] and U, = QTl[(—m,O)], by continuity of Q,, both U, and U,

i i i i i i

are open in In. This is true for each i=1,2,«+:,n.

We now need to show that CiF: U; and Ci(: Ui. If x € C,, then
%, = 1, and | fog(x)| < %u So |Pi(fog(x))] <1, and Qi(x) > 0. Hence,

n
e . ' y .

CiC: Ui' Likewise, CiC:fUi. Thus, by IV there is an X, € !:! Ki'
Hence, £ o g(xo) = X, Since f o g: In~eB, we must have X, € B. 5o,
g(xo) = X and it follows that f(xo) = R Since every n-cell in
E” is homeomorphic to B, we have that IV implies I. [

I 1IV. Let Ki be a closed set which separates Ci and C;, for
i=1,2,**+-,n. Let U. and U! be open sets in I_ such that I - X, =

i i n n i

' t . T 1

U£\) U, Uif\ U; is empty, and C,C U,, C,CU.. For x e I, let v(x)

be the mapping whose ith component, vi(x), is defined by

~d(x,K,) if xe U,,
1 1

v, {x) d(x,K.) if x ¢ u.
i i i

0 iIf x ¢ K.
1

o

where d(x,Ki) = inf{|x-k|: k ¢ K;}. Now define

Fx) = x + v(x) for x ¢ In.

We want to show that f: In—->In and that £ is continuocus.
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Let x ¢ In' We Tirst show |%, + Vi(X)[ + 1 for i=1,2,«+,n.
We iliustratve this with the diagram betow. Fix i. Consider the

hyperplane

n .
P, = : . T X, ; P
i {y: yeL, Vi T % for § 7 1}
Since Ki separates Ci and Ci, Pif\ Kl mst be nonempty. Otherwise,
Ci and Ci can be connected by Pi and, hence, are not separated by Ki'
Thus, there is a point p ¢ Kl with p. =« Xj for 3 # 1, and d(x,Ki) =
J

d\XQP) = lxi_Pil N

Case 1. ©Suppose X & Ui Then %> Pp; and d(x,Ki) T RyPso 55,

D, = x, - (x.-p.) =~ %, - d(x,K,) = x, + v (x) ~ 2. That is,
1 1 1 1 1 1 1 i 1

Hence, |x, + v.(x)}| < 1.
'L 1



t
Case 2. Suppose X € Ui' Then By > s and d(x,Ki) <Py

So, X, SR T d(x,Ki) = kg ot Vi(x) $ Rt (pi~xl) =P That is,
-1 = Xe Syt vi(x) € Py < 1.

Hence, |x, + v.(x)| < 1.
i i
Case 3. Suppose x e XK. . Then x. + v {x) = x., and
1 i i i
R, + v, (%)) <« 1. Thus f: I_—I
i i n n
We now need to show that f is continuous. Notve that £(x) is
continuous if and only if eazh Vi(x) is continuous. We assume it is
. . . . .
known that for a fixed ncn-empty setv A in E, d(x,A) is a continuous

functicon defined on En°

Case 1. Let % & U,. Let {x7} be a sequence in In with xI—x.
L

]

For some integer N, for all k:N, %' ¢ Ui’ since Ui is open in Inu

Thus, for k:N
Iy o ) —_ A -
vi(x ) = —d(x ’Ki) d(x,Ki) = vi(x).
Case 2. Let x ¢ Uia This case iz similar tc Case L.
Case 3. Let x & Ki' Let €>0 be given., Let V = {y: vy e In’
d(x,y)<e}, and let y € V. Since x ¢ Ki’ d(y,Ki) < diy,x) « ¢, and

fvi(y) - Vi(X)| = |zd(y,Ki) -G d(y’Kl) e

Thus, each v (%} is continuous, and, hence, f(x) 1s continucus.
L



By I, there exists an X, € In such that f(xo) R Thus,
8!
v(xo) = 0, and x_ e K, for i=1,2,+- ,n. Hence, X € {?{ K, - 0
I =»II: Suppose there exists a continuous mapping f: Bn—-*Sn_l

such that

fx) = x for eath x < 5 .
Then let g(x) = -x be defined on Snml Nz:e that g iz continuous on
Snwl, 50 g ¢ £(x) = g(f(x)) is continuuug on Bn’ and g o f: Bn—*SnfE Bn“
Now for x € B, - S_ ., g © fix) # x. For x & CH = = 1. So x # ¢,
and g o £(x) = g(f(x)) = gixy = -x # %, Hence, g = £ has no fixed

point. This contradicts I. [

IT =9 1. Assume £: Bn—an 132 a contlnuous mapping and f(x} # x
for any x € B_. Consider the line L : {L{(t): L(t) = (1-t)x + tf(x),
-ectwo}, Clearly L is the line through x and £(x), and there exist
exactly two values of 1 so that |Lit)]| = L. (See diagram.) In proving

this, we use

. o ) : . . n
the notation <x,y> to mean the usual inner prcduct of x and v in E7,



and "x“

We have

0 =

li

1

Hi
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22 <X,X>. We want to solve the equation ||(1-t)x + tf(x)| = 1.

| (1-t)x + tf(x)“z— 1

{li-t)x + 1), (1-tx + tFOe - o

ll--t)zﬂinz + 2t (1-v) (x,f(xj} * t2||f(x)||2— L

P2 - 2 GLED « (5G] + 26D - |12 + (% - D

"x - f(x)“Qt2 + 2<k,f(x)—§>t + (”x"2 - 1)

Therefore,

CaE () = [t 2 - |x-g0] 242D

=T

ri

By assumption, |x-f(x)| > 0. If ||z = L1, the twe sociuticns are

1t = 0 and T = M{Z B

! YT

We want to show that t. > 0. By the Schwarz inequality and since

[i€3]

2
< 1,

IR P

GExP <« [ fxD ] L K £G) < x
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Furthermore, equality holds in the Schwarz inequality if, and only if,
x and f(x) are linearly dependent, or f(x} = #x. Since f(x) # x, if

f(x) = -x, then t, = 1. Otherwise, (x,f(x}) < ”x”z, and -{x,f(x)-x) =

I? - &.£(x) > 0. Sot, > O.

On the other hand, if |x]| < 1, then t = 0 is not a solution. We

then have the discriminant

<k,f(x)—ﬁ>2 - “x—f(x)HQ(HXHz-l) > <k,f(x)—ﬁ>2

and there exist solutions t, <0 and t, >0 which make [|L(t)] = 1.

We use the scolution tl in both cases, and define

gt 0= -/ GaEGo-D 2 - Ix-£G0) 2(lx] 1)

hx-£ ()|

t(x) =

Since the inner product, as a function of two wvariables, is continuocus

T

on EM x E , then t(x) is continuocus on Bn'

Now define g(x) = (1-t(x))x + t(x)f(x) on Bn' Clearly g is
continuous con Bn’ and for x e Sn-l’ or ”x" = 1, we have g(x) = x.

Thus, g leaves each point of Sn 1 fixed. This contradicts II. |

II =» III. Suppose there exists a function £(t,x): [0,1] x

Sn_l—+8n_l such that £(1,%} = % and £{0,x) = X where x  1is fixed in

Sn—l’ and f is continuous in the pair (t.,x).

Llet v ¢ Bn' Consider the mapping
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lxo ify =0
Fly) = |
’ﬂllyﬂ, <) ify ¥ 0,
| I
Clearliy T maps Bn inte Sn—l and leaves each poizt of Sn—l fired. Using

the properties of f, we want to show that F iIs continuous on Bn' It is
evident that F is continuous at all y # 0. S50 conszider a seguence

{yi} in B such that y —0 and y, # O for any {. Then yif"yin £ S

i

n-1

and HyiH—wDD By uniform continuity of f,

| SR i
Iy I, — - £, —)l~ o
™ Iy,
i
But for ail i, f(0, ) = . Thus, F is continuous at y = €, alsc.
A
i

However, we now have conditions on F which contradict II. So, there is
no such function £. [
IIl =p 1I. Suppose there exists a continuous mapping

F: B —5 guch that F(x) - x for each x € § .. TFTix 2 € S
n o n e

-1 n-1"

Define the mapping f by

f(t,x) = F((l—t)xO + tx)

for t £ [0,1] and x ¢ Sn—l' Continuity of f feolicws immediately from

the continuity of F. Furthermore,

F0,x)Y = F(x_ ) = x
o o



and

F{1,x) = F(x) = x

for all x e Xn This ceontradicts III. [

-1°

This completes the proof of the equivaiences

32
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CHAPTER III
EXTENSIONS OF BROUWER'S FIXED POINT THEOREM

Cne of the first generaligzations to the Brouwer FPixed Point
Theorem was due to Schauder. The Schauder FPixed Point Theorem deals
with a normed linear space with no restriction to finite dimensionality.
However, to compensate for this, Schauder requires that the mepping be
more than just continuous. Before stating this theorem, we need to
develop a few concepts.

Definition. A subset C in a topological space X is compact 1if,
and only if, for every set {Uu: @ e A, U, is open in X, CC L} Ua}

ok
-',Un} such that C¢ \j} Ui'

i=1
More briefly, every open covering of C has a finite subcovering.

there is a finite subcollection {Ul’UQ’"
Definition. A subset X of a topological spacze X is relatively
compact if and only if the closure of K in X, dencted by K, is compact.
Lemma. A compact set C in a normed linear space X is totally
bounded, i.e., given € > 0, there is a finite set of elements

v V. in C such that for each y ¢ C there is at least one A

l’v25..

such that ”y—vi” < g. The set {vl,v o-,vn} is called an e-net of C.

23"

Proof. Let & > 0 be given. ®r v ¢ C, define

N(vie) = {y: v e X, ||ly-v] < el.

Then {N(v;e): v ¢ C} is an open covering of C. So, there is a finite
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subcovering, say N(vl;e), N(vz;e), ey N(vn;E). Thus, CC gz_N(vi;g),
and for y € C, we have y € N(vi;s) for some l<izn, or Hy—viﬁlz e. 0

We now need to define a special type of continuous mapping in a
normed linear space.

Definition. Let E be a subset of a normed linear space X. The
transformation T: E—X is completely contivmous if

(i) T is continuous, and

(ii) for each bounded subset M of E, T(M) Is relatively compact.

Now suppose K is relatively compact in a normed linear space X.

let v, ,v.,++-,v_ be an e-net for K. For each x ¢ K, define
1°°2 n

_i=l
F (%) = =
3 mi(x)

i=1

e - |xv,| if ||x-v " < g
where m,{x) =
i

G if |x-v || > ¢

Lemma. Let T be a completely continucus transformation defined
on a bounded set E in a normed linear space X. Let K be a relatively
compact set in X, and let T(E)Z K. If FE(x) ig defined on K as

described above, then for each x € E, we have

() - F_o () < e.



35

Proof. Since ”T(x)uvi" < ¢ for some Vio then mi(T(x)) > 0.

n
Thus, z mi(T(x)) > 0, Hence,
i=1

n
mi(T(x)) - og mi(T(X))Vi”

[T(x) -
i=1 i=1

1

[{N = elel

J7(x) - F_ o T(x)]

m {T(x))
o
1

IF i~

&L

n
Zl mi(T(x))HT(x)ﬂvi“

1

1A

mi(T(x))

N utyle]

1=i

m, (T{x) e
i

e
l_l

A

m. (T(x))
1

He~=ad ] =113

[
—

We now state the Schauder Fixed Point Theorem. The proof pre-
sented here is basically that of Cronin [4].

Theorem 3.1. Let K be a closed bounded convex set in a real
normed linear space X, and let T be 2 completely continuous transforma-
tion on K such that T(K) C K. Then T has a fixed point.

Proof. Since K is bounded, we have that T(K) is relatively

compact, or T(K) is compact. Furthermore, since K is closed and
T(K)C K, it follows that T(K) ¢ K.

Let {en} be a monctonic decreasing sequence with € —0. Since

n

— . . . n .n n

T(K) is compact, there exists an € "het, Vo, Vo,V of T(K) for
n
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each n > 1. We may now define FE (y), as described above, for each
n
y € T(K) and each n > 1. It is easy to check that each Fe is con-
n

tinuous on T(K). Now define

Tn(x) = FE @ T{x}
n

for each x ¢ K. <{Clearly each Tn is continuous on K. Letting M(x) =
i, mi(T(x)) 1, mi(T(x))
Z m, (T(x)), since —+—— 2> 0 for each i and —_
jop 4 M(x) M(x)
convexity of K we have that

=1, by
i=1

1

T (x) = ' (T(x)) = .E
n i=1

n mi(T(x))
M(x) Vi

for each x ¢ K. That is, Tn(K) C K.

Consider the finite dimensional subspace Xn of ¥ which i1s spanned
n’__.’v? , the £_-net of T(K). Then ¥_ 1is linearly homeomorphic
2 ln n n

to some Ek, and is complete and, hence, closed. Define

by v?,v

K = KM Xn‘

Since both K and Xn are closed and convex, Kn is azlso closed and con-

vex. The fact that K is bounded in X implies Kn is bounded in Xn.

Thus, Kn is homeomorphic to the eclosed unit ball B = {x: % ¢ Xn,

[x} < 1} in Xn’ which is, in turn, homeomorphic to the cleosed unit

ball Bk in Ek. So, 5n has the fixed point property. Observe that for
i

y e X , and M(y) = .El m. (T(y))
i=
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n m_,.L(T(y))v'i y

i
Tn(Y) = FE(T(}/)) = iz __M(_;)—_ n

1
Thus, T_(X_ )¢ X_. It then follows that
n'n n

Tn(Kn) = Tn(KﬂXn)c Tn(K) M Tn(Xn) C K('\Xn = Kn

We now have T continuous on X and Tn(Kn) C K . Hence, there exists

a peint x e K_ such that T (x ) = x . This is true for each n 2z 1.
n n n'n bl

The sequence {xn} is in K, so the sequence {T(xn)} is in T(X), which is
compact. Hence, there exists a subsequence of {T(xn)} which converges
to some point Xy in T(K), and hence, in K. For simplicity of notation
assume the sequence {T(xn)} itself converges to X Qur aim is to show
that T(xo) = X

Given € > 0, there exists an integer N so that if n > N, then
IT(x ) - x| <& (1)
n fs) 27

and e (from above) is less than % Hence, by the previous lemma,

IT(x ) - T (x )] <e_ <% (2)

Adding (1) and (2), we have that for n > N,

IT ()~ = | <.
n ‘n )
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Since T (x_)} = x_, for such n,
nn n

”Xn - XOH < g,

Thus, X K By continuity of T, we have T(xn)—*T(xo). Previously,
we had T(xn)—*xc. By uniqueness of limits 1n a Hausdorff space, we
must have T(xo) = X e 0

It is interesting to note that in dropping the restriction that
the normed linear space be of finite dimension, we possibly lose com-
pactness of the closed unit ball. To compensate, Schauder needs fthe
mapping to be completely continucus to prove his generalization.

Another generalization of Brouwer's Fixed Point Theorem, which
requires less structure on the space on which the continuous mapping
is defined, is due to Tychonoff. The proof used here was furnished by
W. J. Kammerer. We first review three concepts which shall arise in
the ensuing discussion.

Definition. A non-negative real-valued function p(x) defined
on a linear space X over a field F is a semi-norm if the following
conditiong hold:

(i) plox) = |a|p(x) for all o ¢ F, ail x £ X.

(ii) plxty) s p(x) + p(y) for all x,y & X.

If, in addition, p(x) = 0 if and only if x = 0, then p(x) is a norm.

Definition. A linear topological space X is loeally convex if
for every open set N containing the corigin, there is a convex open set

U containing the origin with U N,
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It can be shown that a linear topological space X is locally
convex, if and only if, there is a family of semi-ncrms defined on X
which generates the topology on X. To ciarify this, let Py be a semi-
norm on X, and let Tu be the topology generated by Pa' The topology
generated by a family of semi-norms {pa: @ ¢ A} has as a subbase the
union of all sets in each Tu’ i.e., U{Ta; o e 4} A thorough discussion
of the equivalence above can be found in Yosida [15]. With this back-
ground, we are ready to state Tychonoff's thesrem.

Theorem 3.2. Let X be a localiy convex Hausdorff linear
topological space. If K 1s a non-empty compact convex set in X, then
every continuous mapping from K inte K has a fixed point.

Before proceeding directly to the proof, we prove a helpful
lemma,

Lemma. Let X and X be as stated in the above thecrem. If f is
a continucus real-valued function defined on K x K such that for every
fixed y & K, f(x,y) is a convex function of x, then there exists a point

¥ ¢ K such that

fly,y) ¢ f{x,y) for ail x &£ K.

Remark. To say that f(x,y) is a convex function of x for each

Fixed y means that for x,,x. € K and 0O<t<l,

1°72

f(‘tx.l + (l-t)xz,y) < tf(xl,y) + (l—t)f(xQ,y).

It is easy tec show that under such conditions, for any
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+++,x € K, and any real numbers t --,t_ such that each
X ) y n

1°%9s”

1ne~—1s

i
£ ] t,x,t) <

. tif(xi aY).
1=1 i

1
Proof of the Lemma. For x € K, define C, = {y: v € K and
fly,y) - f(x,y) € 0}. We want to show that M Cx is non-empty.
reK
Since X ¢ Cx’ each CX is non-empty. To show each CX is closed, let

{yk} be a convergent sequence in CX with Y TV Then for each k,
By the continuity of f,

lim f(yk,yk) - f(x,yk) < 0.

koo

Thus,
fly,y) - £(x,y) < 0.

o, y € C_, and C_ is closed. The collection {Cx: x € K} is, therefore,
a family of non-empty closed setz in K. We now appeal to a condition
which is equivalent to that of K being compact, namely the finite inter-
section property. This states that if {Aa: a e A} is a collection of

non-empty closed sets in K such that for any finite subcollection



Ll

n

m,An, their intersection (M) Ai is non-empty, then fh\ Au is
i=1 del

non-empty. We proceed tc show that {CX: x € K} is such a collectiom.

A_LA

1720

Let {xl,x2,-=o,xn} C K. Let H be the convex hulli of

{xl,x2,°°°,xn}. Since X is convex, then HC K, We will show there is
n n
a point vy € H such that y ¢ /M) C,- ForanyyeH,ys= ) % where
n 1=1 i i=1
each t. > 0 and 7 Ty o= L. Define for each y ¢ H

i=1

gi(y) = max{f(y,y) - f(xi,y),OJ for i=1,2,""°,n.

Clearly each 8 is continuous on H. Also, observe that the following

three conditicns are equivalent:

(a) flysy) @ £y ,y) for 1=1,2,°,n

(&) Ei(Y) =0 for i=1,2,° «,n
o

(e) tj_ 1\:‘_ gk(y);gl(y) for 1=1,2,-::,n
k=1

Clearly {(a) is eguivalent to (b), and (&) implies (c). The only diffi-
n
culty arises in showing (c) impliez (b). Lety = } (R where each
n i=1 ~
t, » 0, and } t, = 1. Then
i . 1
1=1
n n
fly,y) = fiif_ti“i’y) < imtif‘xlay)-
171 1=1

n
Note that f(y,y) = Z tif(y,y). Therefore,
i=1
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n
Tt (Fly,y) - £(x.,y)) < Q. (%)
=1 7 *

Consider those t, > 0. If f(y,y) - f(xi,y) > 0 for each such t;, we

then have a contradiction with (#). Thus, for some t. > 0,

in
lai
—l

F(y,y) - f(%,,y) £ 0. Thus g.(y) = 0. By (c), t.«} g (y)=g.(y)=0.
J J Tyiy K i

Since each gk(y) 0, we have that g ly) ® 0 for each k.

Ev

. Now consider the (n-l)simplex S = 1(tl,t2,°n°,tn): to o2 0,
E T8 1}. Define the mapping ¢: 5—5 as fellows: Letting
1=l 1
y = Z tjxi:
321
. tot '
¢(t1,T2,= =,tn) z (tl,t2,°‘°,tn)
where
1 ti t gi(y) .
L, - - for 1-1,2,++*,n-
1+ ) g
Wil ©
It is easily verified that (ti,t%,v=f,t$) € S. Since each g, is con-

tinuous, ¢ is continuocus. So by Brouwer's Fixed Point Theorem there

is a point ({l,f2,=“0,fn) in S such that

t. + g (y)
= = for each i,

2
ii

n ~
1+ 0 gy
k=1

where
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Therefore,

-~ n —~ -

T, 1 g9 = g(y) for i=1,2,7<,n
This is condition (¢). Consequently,

gi(§) = 0 for i=1,2, '*,n

n
This says y € C_ for each 1. 8o, y M C . By the finite inter-
i i=1 i
section property, we have there is a y ¢ f} Cx, or
xeK

fly,y) ¢ fix,y) for all % ¢ K.

This proves the lemma.

Proof of Tychonoff's Fixed Point Theorem. Let {pa: a e A} be a
family of semi-norms which generate the topoicgy on X. Then each P, is
continuous on X. Define Ca = {y £ K: pa(y~f(y)) = 0}. Clearly each Ca
is closed since P, and f are continucus. Since X is Hausdorff, if
% # v, there exists a P, S° that pa(x—y) + 0. Thus, if pa(y-f(x)) = 0
for all o ¢ A, theny = f(y). So, we want to show(\{ca: o e A} is non-
empty. Again we appeal tc the finite intersection property since K is

compact. Let {al,u -o,an} C A. Define

2"

n
g(x,y) = E 1 (x-£(y))-
1=1 i
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Then g(x,v) is continuous on K = K and convex in x. This follows,
since for X12%, € K and 0stel, Pu(txl + (l—t)x2 - f(y)) =
tpa(xl—f(y)) + (l—t)pa(xz—f(y)). The conditicns of the lemma are
satisfied. Hence, there is a y € K such that gl(y,y) < g(x,y) for all

x £ K. That is,

L 2 b

n
pan(ymf(y)) < PZ pan(xxf(y)) for all x ¢ K.

i=1 1 i=1 1

Note that f(y) ¢ K. So for x = f(yJ, paa(x“f(y)) = Q for i=1,2,-°,n.
Thus, pu.(y—f(y)) = 0 for i=1,2,-*°,n, o; v € [21 C, - Ve, therefore,
concludelthat there exists a peint y ¢ f\{ca: ;_é A}T So, f(y) = vy. [0

The generalizations presented up teo this point have dealt with
changes in the hypotheses concerning the structure of the space and
the properties of the function. We now present an extension which con-
siders changes in the hypotheses concerning the set on which the mapping
is defined. This theorem is due to Brown [2].

Theorem 3.3. Let S be a compact set in En, and let C be an
n-cell or a single point in E” with C (C §. Let f be a continucus map
from S into ET which carries the boundary B of B into C. Then f has a
fixed point.

Procf., Let T be a Fuclidean n-cell containing S and £(8), and
let T, = T minus all interior points of S. Now B Is a compact subset

1

of Tl’ and f maps B into C. Applying Tietze's extension thecrem we

sla
can extend f to a continucus mapping f from T, into C. Now define
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f on S

It is easy to show that £' is continuous cn T, and £'(TYC T. By
Brouwer's theorem, there is a point ®, € T such that f'(xo) = X
Note that if x 4 3, £ (x) e C CS. Thus, xo e S, and on S, f' = £,
So f(xo) = X I

Our next generalization actually generalizes both the Banach
Tixed Peint Theorem for contraction mappings and the Schauder FTixed
Point Theorem. This theorem is due to Krasnosel'skii [11,127.

We first state the Banach Fixed Point Theorem and prove a lemma
which will be useful in the proof of the generalization.

Banach Fixed Point Theorem. If g is a contraction mapping with
domain D, a closed subset of a Banach space X, such that g(D)<C D,
then g has a unique fixed point.

Recall that g is a contraction mapping on D if, and only if,
there is a number «¢ ¢ [0,1) such that for any pair =,y ¢ D, it follows

that

leGxy-g(y) < of x-v| .
The following lemma gives an equivalent statement to the defini-
tion of & completely continuous coperator. ERecall that in & normed

linear space X if E (C ¥, an operator h: E—X is completely continuocus
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if h iz continucus and for each bounded subset M of E, h(M) is rela-
tively compact.

Lemma. Let E be a subset of a normed linear space X. An
operator h: E—X is completely continuous on E if, and only if,

(i) h is continuous, and

(ii) for every bounded sequence {xk} in E, the sequence

{h(xk)} contains a subsequence converging to some point
in X.

Proof. This lemma follows easily if we use the fact that in a
normed linear space compactness is equivalent to sequential compact-
ness. We say that a set C iIs sequentially compact if every sequence in
C contains a subsequence which converges to a point in C.

Assume h is completely continuous on E. Let {xk} be a bounded
sequence in E. Then {xk} is contained in some bounded set M in E. We
know that h(M) is compact. So the sequence{h(xk)} contains a subse-
quence which converges to a point in h(M), by sequential compactness.

Now assume conditions (i) and (ii) above hold. We need to show
that the image of every bounded subset of E is relatively compact.

Let M be a bounded subset of E. We will show that h{M} 1s sequentially

compact. Let {yk} be a sequence in h(M). We consider two cases.

Case 1. If there is a subsequence {ykﬂ} such that each Yy | e h(M),
then V. = h(xi) for some x, e M, for i=l,2,'%'. By condition (ii),
since t;e sequence {xi} is bounded in E, there is a subseguence of

{yk } which converges to some peint v in X. Since h(M) is closed,
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Case 2. If there is a subsequence {yk } in h(M), but not in
i
h(M), for each i there is a point X, € M such that

1
I, = B0l < b

Now by condition (ii) there is a subsequence th(xi }} which converges

]
tc a peint yv in X. Again, v & h{(M). Then given ¢ > 0, there is an

integer J such that for all § - J,

”h(Xl]) - Y” < % .

Choosing an integer iﬁ such that ij : %-and j » J, we have

|3 £
Ivie =yl = ly, =BG Ol +lhlx, ) -yl < 5+ 5= ¢,
i, i. 5 i

] ]

50, ka -y.

] -

Thus, h{M) is sequentially compact, and h is completely
continuous. [

We are now ready to prove the generalization due to Krasnosel'-
skil.

Theorem 3.4. Let X be a Banach space and B be a closed, bounded,
convex set in X. Let f: B—B be a mapping such that £ = g + h, where g

is contractive on B and h 1s completely continuous on B, and such that

for every %,v ¢ B, g(x) + h{y) ¢ B. Then f has a fixed point.
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Proof. Fix X, € B. Consider the mapping g“ given by
g*(x) = g(x) + h(xo) for x ¢ B. Since g is contractive on B, there
exists an o (0<a<l) such that |g(x) - g(y)| < af[x - yl| for all x,y e B.
Then it is easy to see that g* is also contractive on B, and the same
o works for it. Thus, by the Banach Fixed FPoint Theorem, there is a
unique fixed point for g*, call it W(xo). That is, W(XO) =
g(w(xo)) + h(xo), and by the hypotheses, W(xo) e B, This procedure
defines a mappingr? on B such that ¥(B) € B. We want to show that Y

is a completely continuous operator.

To show ¥ is continuous on B, let x be an arbitrary point in
B. By continuity of h, given € > 0, there exists a § > 0 so that 1if
|y - x| <8 and y € B, then Inty) - h(xo)n < g(l-a). Note 1-a>0.

o

Then

n

Iv(y) - ¥ I = lay)) + hiy) - [eC¥(x ) + alx )l

1A

legC¥(y)) - g(W(xo))H + |h(y) - h(xO)H

Ial

o ¥(y) - ¥ix M + e(l-0).

Therefore,

(1-e)|¥(y) - W(XO)” < g(l-a),

or
vy - vl < e
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Hence, ¥ is continucus on B.

Recalling the condition which is equivalent to the definition of
a completely continucus coperator, we want to show that for every bounded
sequence {Xk} in B, the sequence {T(xk)} has a convergent subsequence.
Note that by the completeness of X, any Cauchy sequence in X converges

to a point in X. Thus, any Cauchy sequence in ¥(B) converges to a

point in ¥(B). Also observe that every sequence in B is bounded,

because B is bounded.
Let {xk} be a sequence in B. Consider the sequence {W(xk)} in

¥(B). Then for each k,

i

?(xk) : g(W(xk)) + h(xk).

So,

n(x,) = ¥(x) = g(¥(x)).

Since h is completely continucus on B, the sequence {h(xk)} has a

convergent subseguence, say {h(xk J}. We show this implies that the
i

sequence {‘P(xk )} is convergent in ¥{B). Let ¢ > 0 be given. There
i ,
exists an integer N so that if k,,k. > N, then ||h(xk ) - hix i <
i) i 3

£(l-a). Thus, for ki’kj > N,
(1-a)e > [[[¥(x_) - g(¥x NI - [¥(xy) - gz NI
i i 3

> "W(ka) - W(xk,)” - "g(?(xk“)) - g(W(xkk))H
i J 1 J
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S I ) I R C o IR T |
i ] i ]

(1_u)”T(Xk~) - vix .
1 J

Theretore,

“W(xk ) - W(xkl)ﬁ e
1 ]

Sa, {Y(xk )} iz a conyergent sejuznce .n Y(B). By previous remarks,

the sequence converges tc a point in w(B). This proves that ¥ is
completeiy continuous.

Now applying the Schauder Fixed Point Theorem to ¥, we have
that there 1s a peint % € B such that ?(xo) = ®_. Thus,

-

% - ?(xo) = g(*(xo)) + h(xo) z g(xo) + h(xo)

o

The fixed point thecrem cof Brouwer has been further generalized
10 certain point-to-set mappings by 8. Kakutani [9], who uses his
generallization to prove some theorems due to J. von Neumann which are
applicable to the theory of games. We wili present the generalization
here, and in the follewing chapter present the theorems due to von

Neumann, with proofs essentialiy those of Kakurani.
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In the course of this discussion, we adopt the following nota-
tion. If § is a cleosed bounded convex set In En, let K(S) denote the
set of all ncn-empty closed convex subsets of 5. We also need the

following definition.

Definition. A mapping ¢: S—K(S) is called upper semi-continuous
if given a sequence {xn} in $§ with e S @(xn), and y v, it
follows that y_ ¢ &(x ).

o o

Kakutani's generalization may then be staved as follows:

Theorem 3.5, I1f S 1s an r-dimensicnal clcsed simplex and
¢: S—K(S) is an upper semi-continuous point-to-set mapping, then there

exists an X £ S such that x € &(x ).
o) o fo)

(n)

Proof. Let & be the nth barycentric simplical subdivision of

S. We want to define a continuocus mapping from $ into S in terms of

(n). n ¢ S(n)

the vertices of § For each vertex e define ¢n(en) to be

. . n \ .
some arbitrary peint y =€ @(en). Now if x ¢ 5, then x is iIn at least

one r-subsimplex in S(n). If % is in only one such r-subsimplex T
n n T ol
whose verrices are & ,e ,---,e , the x may be written as x = E a, {x)e.,
r o’ 1 r iap * 1
where ui(x) = 1 and each ui(x) 2 0. Since o 1s already defined on
=0

. n n
the vertices e

o’el’“""ez’ we can extend ¢n linearly to all of T. That

is, let

H [~

¢n(x) =

; ai(x)¢n(e2)e

1
This mapping is clearly weil-defined and continuocus on the interior of

(n)_

each subsimplex of S Suppose, however, that x is contained in two

subsimplexes Tl and T2¢ Then x must be on a boundary (or face) shared
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by both simplexes, whose vertices are, say, eg,e;,"',ei, k<r. These
vertices are common to both T. and T So, if T, = len el o-v el
1 2° ? 1 0*71? Tk
non n

a5 ’ar—k and T2 = |eo,el, ,ek, bl’ ’br—k|’ then x has the

k n r-k r
representation x = ) a.(x)e, + )} a _.(x)a, where } a.(x) = 1 and

32p 1 i $21 k+i i 1o 1

each ui(x) > 0, Moreover, for i > k + 1, ai(x) = ¢, Similarly,

e
I
H 15

r-k
n . _
By (x)e, + izl B4 ()b, and for each i 2 k + 1, B,(x) = 0.

i=0

Thus, by linear indépendence of the eV, a,(x) = B,(x) for i=0,1,---,r.
i’ i i

Therefore, ¢n(x) is well-defined and continuous on all of S,

We may now apply Brouwer's fixed point theorem to ¢n for each
n 2 1 and conclude that there exists an x € S such that ¢n(xn) = R
The sequence {xn} which is in the compact set § must have a convergent

subsequence {xn }, where X —+xo, and X, € 5. We will show that
v v
X, € @(xo).

(n)

Let Tn be an r-dimensicnal subsimplex in S which contains the

point X and has vertices eg,e;,"',eg. Recall that for any set A, the

diameter of A, d(A), is defined by d(A) = sup{||x-v|: x,y ¢ A}. Thus, it

n
is certainly true that d(Tn) _ [E%l] d(s) for n=1,2,-++. We use this
n
fact to show that e.u — X for each i=0,1,*+-,r. Let € > 0 be given,
: r-1 nu E
Choose an integer N so that if n, oz N, then (—;—J d(s) <7 and
n n
£ v v
- < — — - -
”xn Xo" >« Then Hei Xo” < ||ei X I + Mxn Xo” < d(Tn )+
v v v v
E _ € £ : oy
§-< §-+ 5= € when n > N. Consequently, e, X, for each i=0,1,-+-,r.
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. . n . .
For each X s there exist unique scalars li > 0, i=0,1,+++,r with

T T

z A = 1 such that x_ = E Aet.  Let y? = ¢ (') for i=0,1," ",

. n . i7i i n i

i=0 i=0

n=1,2,--+. Since each e? is a vertex in S(n), then y? £ ¢(e2). Also,
T .nn ¥ .n n Y on

X = ¢n(xn) =9 .Z Ajes| = ‘Z Ai¢n(ei) = .z .y, for each n 2 1.
i=0 1=0 1=0

Now consider a further subsequence {xn,} of {xn } such that the

v v
n' n'
sequences {yiv} and {Aiv} for i=0,1,--+,r converge. Dencte their
n' n'
limits by 1lim vy, Vo y? and lim A, V= A?, i=0,1,+--,r. Then e > 0
oo 1 1 N 1 1 1
T o T n'u T n'U
and E Ai = Z lim Ai = lim Z Ai = 1. Consequently,
i=0 i=0Q v v =0
T n'v n'v T n'\J n'v roo.
x = limx, = 1lim ] X, 'y, ~ = ] lim(x, y. )= ¥ Ay..
o n . i i . i i . i’i
Vo v v 120 i=Q o 1i=0

n'v n'v n‘v
Gathering conclusions, we have e, YR, ¥ € <b(ei Y, and

n!

v
Vs

3 —»y? for i=0,1,-++*r. By upper semi-continulty of %, these imply

y? £ @(xo) for i=0,1,--+,r. Since ¢(xo) is a convex set, and
T oo
X = Z Aiyi’ it follews that X € ¢(xo). 0

Corollary. Theorem 3.5 is true for any closed bounded convex
gset 5 in a Euclidean space.

Proof. Let S be a closed bounded convex set in E'. Let S' be
a closed simplex which contains S. Let ¥ be a mapping of S' onto S

defined by the following procedure.



54

\ : . . n n o .
Since S is a compact convex set in E7, for each yv € E7 there is

a unique closest point x € 8 to y. That is,
d(y,x) < dly,s) for all s # x, s € S.

We define the mapping ¥ on S' to take a point y € 3' into its unique

clcsest point in 8. Note that for v € 5, ¥{y) = y. We want to show

that ¥ is continuous on S'. Let y, & 8' and let ?(yo) = X Let {yn}

be a sejuence in 8' such that d\yo,y“) é—for n=l,2,*<°. Let

?(yn) = K Then {xn} 1s a seguence in the compact set 8. Thus, there

iz a convergent subseguence. For simpiicity of notation, assume {xn}
e

itself converges to some point z £ S. We will show that z = x> Since

e R and X, T7E continuity of the distance function impliies that
d(ynsxn)_’d(yoaz)= (l)

We now zhow that d(yn,xn)—*d(yh,xo). By definiticn -f ¥ and by the

triangle inequaiity, we have that
d(yo,xo) < d(yc,xn) < d(yo,yn) t d(yn,xn).
Therefore,

d(yo,xo) - d(yn,xn) % d(yo,'yn) <=

Similarily,
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d(yn,xn) < d(yn,xo) < d(yn,yo) + d(yo,xo),
and
d(y,x)-d(y,x)sd(y,yh:i@
n’’n 0o n’’o n
Hence,

for each n-1.

S

]d(yn,xn) - dly_.x )| <
So, d(yn,xn)—*d(yo,xo). Corbining this with (1), we have that
d(yo,xo) = d(yo,z).

Since x, € S and z ¢ 5, and there is a unique closest peoint to Yo in 8,
we mist have z = X Hence, ¥ 1s continucus on S' and leaves each
point in 8 fixed.

Now & o ¥: S'—K(S)C K(5'), where ¢ o ¥{x) = ®{¥(x)). Our aim
is to show ¢ o ¥ 1is upper semi-continuous con 5'. Let {xn} be a
sequence in S' such that ® TR with Y, € ¢ oV (Xh) and YT
We need to show these conditions imply Vg ¢ % a W(xo). By continuity
of ¥ on*8?', xn—+xo implies ¥(xn)—+?(x0). Sinece ¢ is upper semi-
continuous on S, this sequence {W(xn)} and the previous conditions on
{yn} imply y € @(W(xo)) =% o *P('xo)° So ® o ¥ i3 an upper semi-

continuous mapping from S' into K(S'). Thus, by Theorem 3.5 there
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exists an X, € S' such that Ko € % o W(XO). Looking back at the defi-
nition of ¥, since ¢ » Y(xo) e K(S8) implies x, € S, we have that ?(xo) =

X - Hence, X € ¢(xo). It
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CHAPTER IV
APFLICATIONS

Our first consideration invelves a direct applicaticn of the
Brouwer Fixed Point Theorem. Let C and D be two n-cells in En, and let
f: C—D be a continucus mapping. If u is an intericr of D, we are
interested in the conditions we might impose upcn £ in order to assure
a solution X, € C to the equation fix) = U Using Brouwer's theorem
we have determined some conditions on f to insure such a solution. The
next three theorems, which deal with tossible conditions for £, were
suggested by R. H. Kasriel.

Theorem 4.1. Let B = {x: |x]| ¢ 1} be the unit ball in E", and
let U be an intericr point of B. Let i: B—B be the identity mapping.
Then there exists a & > 0 such that wherever a continuous mapping
f: B—B satisfies the condition that |f(x) - i(x){ < & for all x ¢ B,
there exists a point Xo £ B such that f(xo) = u_-

Proof. GSuppose that for every § » 0 there exists at least one
continuous mapping f: B—B which savisfies [f(x) - i(x}” < § for all
x £ B, but for which there is no soiution in B to the equation

f(x) = u_. In particular for & = }-d(u 5 ), where 8
o 0 3 o

n-1 n-1 B

n . . . . o
{x: xe B, ”x” = 1t, there must be such a function f. Using this
function, we aim to construct a continuous mapping from B into B which

has no fixed point.



58

We first project the polint fix) onto the zphere Sn-l in the
manner we shall describe below. Ccnzider the "half-line' through ug
and f(x) described by tha set {y: y ¢ £l yorou * A(f(x)muo)}. (See
the diagram.) We shall show for eazh x, there is a unigue A» > 0 such

that flug + *(£(x)-u ) = 1

We use the noTation u, - (ul,uz,'“',un) and f(x} = (gvyz,"‘,yn)a

Then
. . : y 2
= jlu + ali(x) - u )
[ O

. Z
=) lu, ot aly -a )
- 1

e

1-4
n
v 2 L2 2
Y . - L .
L LA (yl ug )t ot A(zui(yi ui)) u, |
1=z1
n , n n
S (y;~u‘)2 + a2 Y udyeu ) ) u?
L 171 P A R § L i
i=1 121 inl
n
L2 : 2 . v . 2
A£G - a 1T s ate p u Ky u ) a1
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Hence,
n
2 ii2 ‘ 2
N E(x) - uO” + 4(2 OE. u(yg-u ) v Huou - 1=0.
izl
Let & = \ 2 . ., 5 . g2
et a=|f(x) ~uf“,b=2 ) uiy -u),and ¢ = fufl® ~ 1. The
o b 174 71 o
i=1
equation
aAQ tha v+ o2 0
implies that
. . b 1‘Jb2 - 4ac
. ~ .
Clearly a » 0 and ¢ < O Thus,
b2 - 4ac b

1 subject to the condition

To solve the eguation Huo + A(f(x)—uO)H
that A * 0, we must choose the particular i, catl it A{x), defined by

"(X):Abfzz - .

Thus, A(x)

Cleariy a, b, and ¢ are continucus functions defired cn B.

is continucus on B,
Now define the mapping g: B—B by g{x) = u, ot A(x)(f(x)—uo).
= 1 for all x € B, The effect of

Then g is continucus on B and |g{xi
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g is to project f(x) radially outward from ug onto the sphere Sn—l'

The diagram abeove indicates this.

Next consider the continuous mapping h: Sn —+Sn_l defined by

-1
h{y) = -y. Then the composite mapping h o g(x) = h{g(x)) is defined

and continuous from B into Sn We shall show that h o g has no fixed

-1
peint. Let L(x) be that part of the line through X s f(x), and g(x)
which is interior to B. (See diagram below.) Let ||L(x)| denote its

length. Note that [[L(x)|< diameter of B = 2.

We have

letx) - £l + €60 - ull + 38 < Lol < 2.
Thus,

lgt) - £ < (2-38) - [€0x) - u ]l <2 - 36

Recalling that [|£(x) ~-xH <8 it follows that



Ne(x) - o < |lelx) - £(x)| + |[£(x) - x| <« (2—360) + 60 = 2 - 260.

Now

In o g(x) - glx) + g(x) -

Ih o g(x) - x|

In(g(x}) - g - lg(x) ~ |

(A%

[~2eCo - letx) - |

2 - Jlgx) - |

2 - (2 -250)

28

1]

This says that h ¢ g has no fixed points, which contradicts
Brouwer's Fixed Point Theorem. Hence, there exists a § » 0 so that if
f: B—B is continuous and [f(x) - i(x)}]| < & for ail x ¢ B, then there
ig a solution X, € B for the equation f(x) = u - 1]

Using Theorem L.l we can get some less restrictive conditions
on the mapping to insure the desired solution. In order to prove our
next theorem, we need to appeal to a theorem on invariance of domain,

which may be found in Bers [1].
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Theorem. (Invariance of an interior point.) Let A be a set

. n
in E.

If £f: A—E" is continuous and one-to-ocne, then an interior
point of A is mapped into an interior point of £(A).

Theorem 4.82. Let C and D be twe n-cells in En, and let h be a
homeomorphism from C onto D. If u, is an interior point of D, there
exists a § > 0 such that for each continuous mapping f: C—D which
satisfies |f(x) - h(x)|| < 6§ for all x ¢ C, there is a point %, € C such
that f(xo) = u,-

Prosf. Let B = {x: x e E', |x| ¢ 1}, From the definition of an
n-cell, there exist homeomorphisms g and k where g: C—B, k: B—D, and

i is the identity mapping on B such that h = k o 1 o g. (See diagram

below. )

Now let u_ be an interior point of D, and assume f: C—D is
continuous. Since k is a homeomorphism, k—l is continucus and one-to-
one. By the theorem stated above, kml(uo) is an interior polint of B.

. . -1 -1 ) )
Moreover, the mapping k o f o g ": B—B is continucus. Thus, by

Theorem 4.l there exists a § » 0 such that if
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1

”k_ o fo g-l(y) - i(y)”<6 for ally e B

then there exists a Vo € B such that k_l o fo g_l(yo) = k—l

(u ).

Q
Hence, f o g—l(yo) = u. Letting X, = g*l(yo), which is in C, we have
f(xo) = u.

We now must find a GO such that if |£(x) - h(x)| < 60 for all
xeC, then kY o £ 0 g 2(y) - i(y) < & for all y € B. The mapping

k 1 is continuous on the compact set D and is, therefore, uniformly

continuous. So, there exists a Bo > 0 such that if, for x e C
I£(x) - nx)| < 8

then

-1

Ik o £(x) - k™ o h(x)| < 5.

Note that if yv & B, there is a unique x ¢ C with x = g—l(y). Assuming

A
(=2

| £(x) - n(x)]

for all x e C,

we have

-1 1

Ikt ofog ™y -xtono gty

1Ko £0 g7ty - ity

”k—l o Fx) - k-l o h(x)”
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< 6 for all y = B.

Thus, if | £f(x) - h(x)]] « §, for all x € C, we are guaranteed a solution
X, E C to the equation f(x) = u,- [}

Cur final result in this direction reads as follows.

Theorem 4.3. Let C and D be n-ceils in En, and let h be a
homeomorphism from C onto D. Let {fn} be a sequence of continuous
mappings from C into D such thar fn—ﬂh uniformly. If U is an interior
peint of D, then there exists an integer N such that if n : N,
fn(x) = u_ has a solution in C.

Proof. Since ug is Interior to D, by Theorem 4.2 there exists
a 6 + 0 such that if an(x) - n(x)| <« 6 for all x € C, then fn(x) = u
has a solution in C. By uniform convergence, there exists an integer
N such that if n > N, then ”fn(x) - h(x)|| < 6 for all x ¢ C. Thus,
for all n 2z N, fn(x) = ug has a solution in C. ]

Continuing in the vein ot trying to find solutions to functional
equations, we consider an application of the Schauder Fixed Point
Theorem in proving a theorem due to Peano dealing with differential
equations. We first discuss some facts which will be used in the proof.

Let X be a topological space and (Y,d) be a metric space. A
set F of continuous mappings of ¥ into Y is called equicontinuous at
X £ X i1f for every £ » 0, there is an open set U X containing x such
that the image of U under each f e ¥ iz a subset of the ball
B={y:veY, dly,f(x)) < €}. If F is equicontinucus at each point

of X, we zay that F is equicontinuous on X.
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We shall be interested in knowing if a set ¥ of continuous map-
pings of a compact interval I in El into a Banach space b is a compact
subset of the set of all continucus mappings of I into ', which we
denote by C[I,F]J. The use the topoiogy on C[1,I] generated by the norm
J£] = maxi[|£(x)f|: % ¢ 1}. The following theorem gives us one criterion
for determining if Fis compact in C[I,F]. A proof of this may be
found in Yosida [151].

Theorem (Ascoli-Arsela). Let I be a closed bounded interval in
E:L and let F be a Banach spaze. If a set F ¢ CLI,Fius closed,
bsunded, and equicontinusus, then F is compact.

With this as background we proceed to our second application.
The proof is esgentially that found in Edwards [&].

Theorem 4.4 (Peanci. Let T be a closed beounded interval in El,
and let F be a finite dimensiocnal normed linear space. Let r > 0 and

y € F; Let B = {y: y e F, Hy—yOH <rtandt_ e T. Let £f: T x B—F be

0
a continuous mapping. Then there exists a salution to the differential

equation

dx . ‘
— = f(1,x = .
= (T,%), x(tOJ Y,
Proof. Since T is @ finite dimensional normed linear space, [
e s . s k . j ,
is linearly homecmorphiz tc some Euclidean space B and 1s, therefore,
complete. Also, every closed oounded set .n I is compact. Thus, B is
- - i 1 ;
cempact in F, and since T is compact in E7, we have that T = B 13

compact in gl « F. Furthermcre, the continuity of £ on T » B implies



there exists an M > 0 such that ||f(t,x)||
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< M for all t ¢ T, all x ¢ B.

In the course of this proof it will beccme evident that the smaller we

can get the bound M, the "wider" the interval is on
exists.

Let ¢ =

W Denote

= - + .
and Tl M Lto c, to c]
tinuous functions defined odéTl with values in F by

that if x ¢ C[TI,F], then {x(t)}] takes cn a maximum

since T

1 iz compact.

We first show that C[Tl,F] is

norm || x| =

which a solution

the set of con-
C[Tl,F]. Note

value (finite),

a Banach space with

sup{jlx(t)]: t ¢ Tl}r It is easily wverified that C[Tl,F] is

a normed linear space. The only real issue is to show that C[Tl,F] is

complete.
Let {Xk} be a Cauchy sequence in C[Tl,F]“

Fix t e T, .

“Xn © x I — 0 as mn->. 1

That is,

Then since Hxn(t) - xm(t)H g

"Xn - Xm", the sequence {xk(t)} is a Cauchy sequence in F, which is

complete. This is true for each t ¢ Tln

x(t) = for © ¢ Tl'

lim %, (t)
k—»ka

We must show that x € C[Tl,F] and kanx“ + 0

be given. Then there exists an integer N such that

S x )«
m

N. Then

. _ - ‘ €
”Xn . Therefore , ”xn(t) - xm(t)H < 7 for

n oz

E

T for all t

1im Hxn(t) - xm(t)H 4
TN-»c0

Let tl e T,

N By continuity of % {n is still fixed

Now define x by

as k-=, Let ¢ > 0
if m,n 2 N, then

all + € T..

1 Fix

e T (:'.‘.)

here), there exists
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a § » 0 such that whenever |t-t < ¢ and t € Tl’ then

1!
i e
Hxn(t) - xn(tl)H <3

To show that x is continuous at t., ler T € T, with ]t—tll < 8.

l!

We have
Hx(t)wx(tl)u < Hx(t)—xn(t)" ¥ "xn(r)—xn(tl)n + Hxn(tl)—x(tl)n

+ + = E.

£
3

wim

£
3

Therefore, x is continucus on T So % e C[Tl,F].

1"

By (%), ”xn(t)—x(t)N < %—for ali t e T,, which implies that

”xn—xu < %-. Thus, “xn—xu » 0 as n», and we have shown that C[T ,F]

is complete and, therefore, a Banach space.

Define the set A

{%: » e C[T,,F], ”x(t)—yoﬂ < p for all t e TlL

PN

Clearly, for x € A, |x| ”yOH + r. So A is bounded. Also, observe
that the set A is closed. That is, if {xn} is a sequence in A and

ﬂxn—x“ =+ 0 as n>o, then given ¢ » 0, there exists an N such that if

n z N, one has

Ix(e)-y | < I=(e)-x (O + 2 (t)-y I < e + r.

This is true for every ¢ = 0. So Hx(t)*yOH <r, and x £ A,

That A is convex follows easily. Let x,y € A and 0Oza<l. Then
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A

lax(t) + (1-a)y(t) - yOH o (x(t) - yo)ﬂ + || (L-a)(y(t) - yé)”

ol x(t) -y |l + (1-o)lly(t) -y |l

1A

or + (l-g)r

"
H

and we have ax + (1-a)y € A,
Now consider the mapping u defined on A as follows:
t

u(x) (1) =y + [ £(s,x(s))ds

t
o]

where t € Tl, x e A, Since x(s) ¢ B for all s ¢ Tl, then ||£(s,x(s))| <M

for all s ¢ Tl. It then fecllows that for t ¢ Tl’

s

T
lut=)(t) - yOH = | f(s,x(s))ds| = M‘t—to| < Mc = r.

t
0

Thus, u({x) e A for each % ¢ A.

We aim to show that u: A—*A has a fixed point in A. We do so by
showing that u is a completely continucus operator on A. We will then
have all the conditions necessary to appeal to the Schauder Fixed Point
Theorem. .

Let {xn} be a sequence in A and let x & A with X X as n—e;

i.e., ”xn—x"—* 0 as n»*~. Since f is continuous on T x B, given ¢ > 0,
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there exists a & > 0 so that whenever |tl-t2| < § and HxQ-xﬂ|< §, then
”f(tl,xl) - f(t2,x2)" < %—. Choose an integer N so that if n = N,
“xn—x" < §. Letting n 2 N, it follows that "f(s,xn(s)) - f(s,x(s))|< %

for all s € T,, and for all t € T

1 1?

N

t t
Jlutz Y(£) ~ uG(E)) = || £(s,x (s))ds - [ £(s,x(s))dsl
" * n t

O

t
IS [£(s,x () - £(s,x(s))]ds|
t n

e}

< ‘t-tol . %

1A

0

.
o

Thus, ”u(xn) - u(x)|| < e, and u is continuous on A.

Finally we need tc show that u takes bounded subsets of A into
relatively compact sets in A. Since A i1s bounded, every subset cf A
is bounded. Moreower, if D is any subset of A, then u(D) C u(A), and
u(D) C u(A). If we show u(A) is compact, then u(D} is compact, since a
closed subset of a compact set is compact.

We have that u(A)C A, and A is closed and bounded. Therefore,

u{A) C A is bounded. To show u(A) is compact, by the Ascoli-Arzela
theorem it suffices tc show that u(A) 1s equicontinuous. Note that

y £ u(A) if, and only if, there is an x € A such that y = u{x). Thus,
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v & u(A) if, and only if, there exists a seguence {xn} in A such that

[utx) - vl= o.

‘ : . £ .
Let € » 0 be given. Choose § = TR Let tl,t2 € Tl with
Itl*t2| < 8. Lety e u(d) and {xn} be a sequence in A such that

u(xn)~*y. Then there exists an integer N such that If n > N, we have

"u(xn) -y < %-. Hence,

A

Iy (e D=y el < llytrp-ulx D D+ lutx, ) e d-ulx ) (e,)]]

+ lutx (e )=y (e )]

L
<5l flxtenas| + 5
T
2e
<& —_— . -
-t [‘tl t2|
2€ £
< rM gy
= €.

This shows that u(A) is equicontinuous., So u is a completely continucus
operator mapping the closed, bounded, convex set A into itself. By the
Schauder Tixed Point Theorem, there exists an ® € A such that u(xo) =

X o Therefore, for all t ¢ Tl’

.
x (1) = ulx () =y + [ £ls,x(s))ds

t
e}
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or equivalently,

—_—= f(t,xo(t)), xo(to) =V, il

This completes our discussion of soluticns to functional equa-
tions. We now proceed to applicartions of Kakutani's generalization of
Brouwer 's thecrem. The following two theorems are due to J. von
Neumann with the proofs, presented here, essentially those of Kakutani
[9]. After proving these theorems, we shall interpret the second one
in terms of game theory.

Theorem 4.5. Let K and L be two non-empty closed bounded convex
sets in E" and En, respectively, and censider their Cartesian product
Kx L in E"' 7. Let U and V be two closed subsets of K x L such that
for any x_ € K the set UX = {y: y ¢ L and (xo,y) e U} is non-empty,
closed, and convex, and ssch that for any Vo € L the set Vy =

o
{%: ¥ ¢ K and (x,yo) ¢ Vi is non-empty, c¢losed, and convex, Under

these assumpticns, U and V have a point in common.
Proof. Let § = K » L. We define a point-to-set mapping ¢ on S

by the following: For z - (x,y) & S wnere x e K, y ¢ L

=V x U
e(z) «

We want to show that @(8) C K(§) and that ¢:5—K(5) is upper semi-

continuous on S.
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To show &(z) € K(S) where z = (x,y), we must show that Vy x Ux
is non-empty, closed, and convex. Since Vy and Ux are non-empty and
closed in K and L, respectively, for each (x,y) ¢ S, then Vy x Ux is
noen-empty and closed in 8. For convexity, let (gfyl) and (xQ,YQ) be in
Vo ox Ux’ and 0<t<l. Consider (xt,yt) = t(xl,yl) + (l—t)(xg,yQ). Since

y

X 3%, € Vy’ which is convex, then X, = tx, ot (l--t)x2 € Vy' Likewise,

Y sY, € Ux implies Vi € Ux' So, (Xt’yt) € Vy x Ux'
To show that ¢ is upper semi-continuocus, let {zn} be a sequence
in Swith z —z , w_e ¢(z ), and w —w_. We must show w_ e ¥(z ).
n "o’ "n n n o o o
Let z, = (xn,yn), z, = (xo,yo), L = (rn,sn), and w = (ro,so). Then
w_e ¥z )=V, =xU_if and only if r e V and s_ ¢ U_ . Thus,
n n v b4 o v n X
n n n ol
{r ,v ) ¢ Vand (x_,s_) € U. Furthermore, w —w_ 1if and only if
n’’n n’’n n o
r —r and s —S 3 z —z if and only if x —x and y_—vy_. Since U
n o n o’ n o n ‘o n "o
and V are closed, we have that (ro,yo) e V and (xo,so) e U. So,
(ro,so) £ Vyo x UXO, or, equivalently, w € @(zo).

Having satisfied all the conditions of Theorem 3.5, we know
there exists a point zZ, € S such that z, € ¢(zo). That is, there
exist X, € K, Y, € L so that X, € Vyo and Y, € UXD. Equivalently,
(xo,yo) £ V and (xo,yo) g U. Thus, UMV is non-empty. ]

We now use Theorem 4.5 to prove

Theorem 4.6. Let f(x,y) be a continucus real-valued function
defined for x ¢ K and v ¢ L, where K and L are arbitrary closed bounded
convex sets in two Euclidean spaces E” and E*. If for every x ¢ K and
for every real number o, the set {y: y ¢ L and f(xo,y) < a} is convex,

and if for every Y, E L and for every real number B, the set

{x: ® € K and f(x,yo) > R} is convex, then we have
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max min £{x,y) = min max f(x,y).
xel yel yel xeK

Proof. Let U and V be subsets of K x L defined as fcllows:

J = {(xo,yc): X € K, Vg € L, and f(xo,yg) - ;iz f(xo,y)}

V = {(xo,yo): X & K, ¥

o ¢ L, and f(xo,yoJ S max f(x,yo)}

e}
RKeK

We wi1ll show that U and V satisfy the condi:zions of Theorem 3.2.
First we need to show U and V are closed in K » L. Let {(xn,yn)} be a

sequence in U with X TVR Y TV Let v be any point in L. Then
f(xn,yn) < f(xn,y) fer ail n.
Therefore, by continuity of f,

f(xo,yo) = 1lim f(xn,yn) < 1lim f(xn,y) = f(xo,y).
e e

This is ftrue for zii y ¢ L. So, on,yo) £ U, and U is closed. A
similar argument holds for V being ciosed.

Now let x ¢ Kand U = iy: vy ¢ L and (xo,y) € U}. We need to

e

shew Ux is non-empty, closed, and convex. Since f(x,y) 1s a contvinu-
ocus fungtion cf two variables, f(xb,y) is continusus in the second

variable and is defined on the compact ser L. Therefcre, f(xo,y) takes

on a minimum value in L. Thar i¢, there exisis a point ¥, € L such



that f(xo,yo) = ﬁiz f(xo,y). So, (xo,yo) ¢ U, and UXO is non-empty,
Let {yn} be a sequence in UXO such that y —y. Then {(xo,yn)}
is a sequence in U, and (xo,yn)—+(xo,§). Since U is closed,

(xo,§) e U, which impiies § E Ux . Thus, Ux is closed,
o} o)
For convexity of Ux , let Yys¥y € Ux , and 0<t.l, Let
o o}
Vi ty + (l—t)yg, and let o = min f(xo,y). Then by the assumption
1 vel

that the set {y: v ¢ L and f(xo,y) < a} is convex, and since

f(xo,yl) = f(xo,yz) = a, we have that f(xo,yt) < a. However,
f(xo,y) > a for ally ¢ L. So, f(xo,yt) = a, and Yy € Uxo.
Now let y_ e L and define VyO = {x: ®x g K and (x,yo) e V}. By
arguments similar to those above, using the condition that for
B = max f(x,yo) the set {x: x ¢ K and f(x,yo) > B} is convex, we
concfige that Vy is non-empty, closed, and convex.
Hence, byOTheorem 4.5, there exists a point (xo,yo) € K x L

such that (xo,yo) e U/\VY, or equivalently,

f(xo’yo) = min f(xo,y) = max f(x,yo).
yel xeX

Consequently, we have

min max f(x,y) < max f(x,yo) = min f(x ,y) < max min f(x,y).
yel xeK xeK yeL xeK yel

That is,

74

min max f(x,y} < max min f(x,y). (1)

yel xeK xel yel



To show the ineguality in the opposite direction, fizx y e L.

We then have for each x ¢ K

fFix,y) < max f(x,y}-

xe K
Therefore,
min £(x,y) < min max f(x,y). (%)
vel volo xeK

This is true for all x ¢ K. Thus, the right side of the inequaiity (%)

is an upper bound for the guantity min f(x,y) for each x ¢ K. Hence,

yel
max min £f{x,y) ¢ min max £f(x,y). {(2)
e K yeL yel xeK

Combining (1) and (2) we have

max min £f(x,y) = min max £{x.y). i
®eK yel yel xeK

In order to 1liustrate the meaning of Theorem 4.5 in the setting
of game thecry, we introduce a simple game known 4s a two-person zZero-
sum game. This is a game in which there are exactly twe participants
with one particivant gaining what the cther 12ses. TFor a more complete
discussicn, we refer the reader to Karlin [10], on which the present

discussion is based.
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Let A and B be the two players involved in the game. A funda-
mental concept in game theory is that of strategy. A strategy for A
is a complete enumeration of all moves A will make for any possible
situation which might arise, whether the situation arises accidentally
or is due to a move by B. Moreover, A's strategy is a rule which
determines A's next move by taking into account all that has happened
previously.

We now give a formal definition of a two-~person zero-sum game.
This game is defined to be a triplet {K,L,f}, where X denotes the
space of strategies for A, L denotes the space of strategies for B, and
f is a real-valued function defined on K x L. Assume A selects a
strategy x from K, and B chooses a strategy v from L. TFor the pair
(%,y) the pay-off to A is f(x,y), and the pay-off to B is -f(x,y).

We make the further assumption that K and L are closed, bounded,
convex sets in ET and Em, respectively. We then have a strategy repre-
sentable as a point in a finite dimensional space. Justification for
such an assumption lies in the fact that many actual games fall in this
category. Restrictions on f, such as those in Theorem 4.6, also arise
in actual games.

We now face the problem cf choosing strategies. Suppose the
rules require B to tell A the strategy he is going to use; call it Voo
Then A will try to maximize his own pay-off by choosing a strategy
X, € K so that f(xo,yo) = max f(x,yo). Realizing that A will do this,

xeK
B should have chosen Y, ¢ L so that
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max f(x,y_ ) = min max f(x,y) = v.
xekK 7 yel xeK
Then v is the most that A can benefit, if B chooses strategy Yo
Suppose, on the other hand, that A must announce his strategy X,
to B. Then B is certain to choose a strategy Y, tc maximize his

vreturns and minimize his pay-off tc¢ A. That is, B wants

f(xo,yo) Somin f(xo,y).
yeli

So A can best protect his pcssibic profit by announcing X, SO that

min f(xo,y) = max min f(x,y) = v,

yeli xeK yel
Then v is the most that A can guarantee himself independent of B's
choice ¢f strategy.

Assuiming f satisfies the conditions imposed in Thecrem 4,6,
we have that v = v = v. This common value v is called the value of
the game to A, and -v iz the value of the game to B. That is, by an
appropriate cheoice of strategy, A can guarantee winning at least the
amount v = v, and by judicious piay B can prevent A from gaining more

than v = v.



(1]

£2]

(%]

[8]

s]

(10]

1]

L1213

(13]

[14]

78

RETERENCES

L. Bers, Topology, New York Universirty Press, 1856-1957,
pp. 28-32, B7.

A. B. Brown, "Extensions of the Brcuwer Pixed Point Theorem,"
Ameriean Mathematical Mownthly, 1962, Vo:L. ©9, p. 6U3.

5. 5. Calirns, Introductory Topoisgy, The Ronald Press Company,
New York, 1981, pp. 7i~73.

J. Cronin, Fixed Points and Topological Degree in Nonlinear
Analysis, American Mathematical Society, Providence, Rhode
lsiand, 186+, pp. 130-1s2

J. Dugundii, Topology, A.lya and Bacon, Inc., Boston, 1966.

R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston,
New York, 1965, pp. 184-165.

J. Hocking ana G. Young, Topology, Addison-Wesliey Publishing Co.,
Inc., Reading, Massachusetts, 1961, p. B2.

W. Hurew:zz and H. Waiiman, Dimension Theory, Princeton Univer-
2ity Press, Princeton, 1948, pp. 37-Ll.

5. Kakarani, "A Generalization of Brouwer's Fixed Point Thecrem,"”
Duke Math Jourval, Durham, N. C., 154l, Vol. 8, pp. 457-459.

S. Xarlin, Mathematical Methods and Theosry in Games, Programming,
and Eeoncmics, Addison-Wesley Publishing Ce., Inz., Reading,
Mass., 1959, Vol. %2, pp. 1-B.

M. A. Krasnosel'skii, "Two Remarks on the Method of Successive
Approximations," Usephi Mat. Nauk., 1955, Vol. 10, pp. 123-127.

M. Z. Nashed and J. S. W. Wong, Some Variants of a Fixed Point
Theorem of Krasnolselskii and Applications to Nonlinear
Integral Equations, Mathematics Research Center, United States
Army, The Univers.ity of Wiscensin, Madisen, Wisconsin, 1967,

A. Wilansky, Funczional Analysis, Blaisdell Publishing Co.,
New York, 1964, p. 106.

G. T. Whyburn, Analytic Topology, American Mathematical Society,
New York, 1842, pp. 242-245.



[15]1 K. Yosida, Funetional Analysis, Academic Press, Inc., New York,
1965, pp. 26, 85.

79



