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Abstract. The shifts in the masses and decay constants of B and D mesons in nuclear

medium are calculated in the frame work of QCD sum rules. The results obtained are

compared with the existing theoretical predictions.

1 Introduction

To better analyze the results of heavy ion collision experiments and understand the internal structures

of the dense astrophysical objects like neutron stars, we need the study of the in-medium properties

of hadrons. Moreover, it can be useful for understanding the non-perturbative dynamics as well as

the vacuum structure of QCD. In the literature, both the experimental and theoretical studies on the

properties of hadrons in-medium have received considerable attention [1–8]. In the present work, we

calculate the shifts in the masses and decay constants of B and D mesons in nuclear medium in the

framework of QCD sum rules.

2 QCD sum rules for modifications of the masses and decay constants of
the D and B mesons in nuclear medium

In this section, we obtain QCD sum rules for the shifts in the masses and decay constants of D and B
mesons in nuclear matter. We start with the following two-point correlation function:

Π(q) = i
∫

d4xeiq·x〈T [JB[D](x)J†B[D]
(0)]〉ρN = Π0(q) + ΠN(q) � Π0(q) +

ρN

2MN
TN(q), (1)

where Π0(q) and ΠN(q) are vacuum and the static one-nucleon parts in Fermi gas approximation for

the nuclear matter, respectively. Here, T is the time ordering operator, ρN is the density of the nuclear

matter, MN is the mass of the nucleon and JB[D](x) denotes the interpolating current of the B[D]

meson. In order to calculate the shifts in the values of the masses and decay constants, we consider

the following forward scattering amplitude TN(q)

TN(q0 = ω,q) = i
∫

d4xeiq·x〈N(p)|T [JB[D](x)J†B[D]
(0)]|N(p)〉, (2)
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where qμ = (ω, q) is the four-momentum of the meson and |N(p)〉 represents the isospin and spin

averaged static nucleon state. The interpolating current of the pseudoscalar B[D]-meson can be written

in terms of the quark fields as

JB[D](x) =
ū(x)iγ5b[c](x) + b̄[c̄](x)iγ5u(x)

2
. (3)

where u(x), b(x) and c(x) are quark fields.

Following the general philosophy of the QCD sum rule method, the aforementioned correlation

function can be calculated both in terms of the hadronic parameters called the physical or phenomeno-

logical side, and in terms of the QCD parameters called the theoretical or QCD side. These two

representations are matched using dispersion relations to obtain QCD sum rules for the shifts in the

masses and leptonic decay constants of the B and D mesons. Finally we apply Borel transformation

to suppress the contribution of the higher states and continuum.

In the physical side, the forward scattering amplitude TN(ω, q) is calculated in the limit q → 0,

around ω = mB[D]. Near the pole position of the pseudoscalar meson, the TN(ω, 0) is related to the

T-matrix for the forward B[D]−N scattering amplitude and can be written as the following dispersion

integrals [11]:

TN(ω, 0) =

∫ +∞
−∞

du
ρ(u,q = 0)

u − ω − iε
=

∫ ∞

0

du2 ρ(u,q = 0)

u2 − ω2
, (4)

where ω2 �positive real number and ρ(u,q = 0) is the spin-averaged spectral density. After some

straightforward calculations (see also [12]), the physical side of correlation function is obtained :

ΠPHYS (ω, 0) ∝
f 2
B[D]

m4
B[D]

m2
b[c]

(m2
B[D]

− ω2)
+
ρN

2MN

{ a
(m2

B[D]
− ω2)2

+
b

m2
B[D]

− ω2

}

�
2MN f 2

B[D]m
4
B[D] + ρNm2

b[c]
b

2MNm2
b[c]

[(
m2

B[D]
− ρN m2

b[c]

2MN f 2
B[D]

m4
B[D]

a
)
− ω2
] (5)

where fB[D] is the leptonic decay constant of the B[D]−meson, a and b are the phenomenological

parameters.

Using the modified mass in nuclear matter, m∗
B[D] = mB[D]+δmB[D] =

√
m2

B[D]
+ Δm2

B[D]
, we obtain

the shifts in the mass and leptonic decay constant of B[D] meson as:

δmB[D] = 2π
MN + mB[D]

MNmB[D]

ρNaB[D],

δ fB[D] =
m2

b[c]

2 fB[D]m4
B[D]

( ρN

2MN
b −

4 f 2
B[D]m

3
B[D]

m2
b[c]

δmB[D]

)
, (6)

where the parameter aB[D] is the B[D]− N scattering length [11]. In order to calculate the shifts in the

mass and decay constant, we need to calculate the phenomenological parameters a and b using the

forward scattering amplitude calculated both in hadronic and QCD sides.

In the low energy limit ω → 0, the T HAD
N (ω, 0) is equivalent to the Born term T Born

N (ω, 0). Hence,

we can write the forward scattering amplitude in hadronic side as:

T HAD
N (ω, 0) = T Born

N (ω, 0) +
a

(m2
B[D]

− ω2)2
+

b
m2

B[D]
− ω2

+
c

s2
0
− ω2

, (7)
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with the condition

a
m4

B[D]

+
b

m2
B[D]

+
c
s0

= 0. (8)

The Born term can be determined by the Born diagrams at the tree level [9, 11]. To calculate it, we

consider the contributions of the baryons Λb[c] and Σb[c] in the medium produced by the interaction of

B[D] with the nucleon, i.e.

B−(bu) + p(uud) or n(udd) → Λ0
b(udb) or Σ−b (ddb),

D0(cu) + p(uud) or n(udd) → Λ+c ,Σ
+
c (udc) or Σ0

c(ddc) (9)

We obtain the Born term T Born
N (ω, 0) as [9]:

T Born(ω, 0) =
2MN(MN + MB)m4

B[D] f 2
B[D]

[ω2 − (MN + MB)2](ω2 − m2
B[D]

)2(mu + mb[c])2
g2

NB[D]B(ω2). (10)

where B denotes the Λb[c] or Σb[c] baryon and gNB[D]B(ω2) is the strong coupling constant among the

B[D] meson, nucleon and B baryon.

The final form of the hadronic side of the current-nucleon forward scattering amplitude is obtained

after double Borel transformation as (see also [9, 12])

B̂T PHYS
N = a

( 1

M2
e−m2

B[D]
/M2

−
s0

m4
B[D]

e−s0/M2
)
+ b
(
e−m2

B[D]
/M2

−
s0

m2
B[D]

e−s0/M2
)

+
2 f 2

B[D]m
4
B[D]MN(MN + MB)

[(MN + MB)2 − m2
B[D]

](mu + mb[c])2
g2

NB[D]B

×
[
−

e−(MN+MB)2/M2

(MN + MB)2 − m2
B[D]

+
( 1

(MN + MB)2 − m2
B[D]

−
1

M2

)
e−m2

B[D]
/M2
]
.

(11)

In the QCD side, we obtain the forward scattering amplitude by inserting the explicit form of the

interpolating current JB[D] into Eq. (2) as:

T OPE
N =

i
4

∫
d4xeiq.x

〈
N(p)

∣∣∣∣∣∣Tr
[
S Q(−x)γ5S u(x)γ5 + S u(−x)γ5S Q(x)γ5

]∣∣∣∣∣∣N(p)

〉
,

(12)

where S u is light quark and S Q with Q = b or c is the heavy quark propagator. The next step is

to use the expressions of the quark propagators and perform the trace and integrals. After lengthy

calculations, we get the QCD side of the TN function in the rest frame of the nuclear matter in Borel
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scheme as:

B̂T QCD
N =

1

3

e−m2
Q/M

2

M4

{
− mQ

(
− 2m2

Q + M2 + 2p2
0

)
〈q̄gsσGq〉N

−4mQ

(
m2

Q − 2M2 + 4p2
0

)
〈q̄D0D0q〉N

+4M2
(
− m2

Q + M2 + 4p2
0

)
〈q†iD0q〉N

+2M2

[
2m2

Qmu − 3mQM2 + mu

(
M2 − 2p2

0

)]
〈q̄q〉N

}

+
1

12π2
〈g2

sG
2〉N

∫ ∞

0

dα
em2

Q/(4α−M2)mQ(
4α − M2

)4
{

16α2
(
mQ + 3mu

)

+M2
(
− m2

Qmu + 3mQM2 + 3muM2
)

−4α
(
m3

Q − m2
Qmu + 4mQM2 + 6muM2

)}
θ

[
1

−4α + M2

]

−
mQe−m2

Q/M
2

M2
〈q̄gsσGq〉N . (13)

where M is the Borel mass parameter.

Finally, we equate the Borel transformed physical and QCD sides of the B̂TN function to find

QCD sum rules for the parameters a and b. Since the functions a and b are very lengthy functions, we

do not present their explicit expression here.

3 Numerical results

The sum rules for the parameters a and b contain two auxiliary parameters: the Borel parameter M2

and the continuum threshold s0. Since these are not physical parameters, the results of the parameters

a and b should be practically independent of them. Therefore, we shall find their working regions such

that these parameters weakly depend on these auxiliary parameters. Our numerical analysis show that

in the intervals 25 GeV2 ≤ M2 ≤ 40 GeV2 and 4 GeV2 ≤ M2 ≤ 8 GeV2 respectively in the B and

D channels, the dependence of the shifts in the physical quantities are weak. Also, we see that in

the intervals 34 GeV2 ≤ s0 ≤ 38 GeV2 and 5.6 GeV2 ≤ s0 ≤ 6.4 GeV2 respectively for the B and

D mesons, the results demonstrate weak dependence on the continuum threshold. To see how the

results depend on the Borel mass parameter, we plot the dependence of the shift of the decay constant

of the B[D]−meson under consideration versus M2 for different values of the continuum threshold

in figure 1. Making use of the working regions for auxiliary parameters and taking into account all

systematic uncertainties, we obtain the numerical results of the shifts in mass and decay constant for

B[D]−meson as presented in table 1. We also compare our results on the mass shifts with the existing

theoretical predictions. Our result on the mass shift in D channel is in a good consistency with the

result of [9]. On the other hand, we see that our result in this channel is the same in magnitude with the

prediction of [10], but with opposite sign. As far as the shift in the mass of B channel is considered,

our result is different in both sign and magnitude with the only existing prediction [10]. Our results

on the leptonic decay constant shifts in B and D channels can be checked in future experiments.

In summary, we calculated the shifts in the masses and decay constants of the pseudoscalar B and

D mesons in nuclear matter via the QCD sum rules. Our results obtained in the present work can help

us not only analyze the future experimental data at different heavy ion collision experiments, but also
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Figure 1. The shift of B meson’s decay constant in nuclear matter versus Borel mass M2 at three different values

of continuum threshold (left panel). The same, but for shift in decay constant of the D meson (right panel).

Table 1. Average values of the shifts in the masses and decay constants of the B and D mesons.

δmB(GeV) δmD(GeV) δ fB (GeV) δ fD(GeV)

Present Work −0.242 ± 0.062 −0.046 ± 0.007 −0.023 ± 0.007 −0.002 ± 0.001

[9] − −0.048 ± 0.008 − −
[10] ∼ 0.060 ∼ 0.045 − −

better understand the perturbative and non-perturbative natures of QCD. The results obtained for the

shifts in masses especially for those in the decay constants can also be used in theoretical calculations

of the electromagnetic properties of the considered mesons as well as their strong couplings with other

hadrons in nuclear medium.
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