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ON THE SIMPLICITY OF THE EIGENVALUES OF NON-SELF-ADJOINT
MATHIEU-HILL OPERATORS

O.A. VELIEV1

Abstract. Firstly, we analyze some spectral properties of the non-self-adjoint Hill operator
with piecewise continuous even potential. Then using this we find conditions on the potential
of the non-self-adjoint Mathieu operator, such that all eigenvalues of the periodic, antiperiodic,
Dirichlet, and Neumann boundary value problems are simple.
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1. Introduction and preliminary facts

Let P (q), A(q), D(q), N(q) be the operators in L2[0, π] associated with the equation

−y
′′
(x) + q(x)y(x) = λy(x) (1)

and the periodic
y(π) = y(0), y

′
(π) = y

′
(0), (2)

antiperiodic
y(π) = −y(0), y

′
(π) = −y

′
(0), (3)

Dirichlet
y(π) = y(0) = 0, (4)

Neumann
y
′
(π) = y

′
(0) = 0 (5)

boundary conditions respectively, where q is a piecewise continuous function. The domains of
definitions of these operators are the set of all functions f ∈ L2[0, π], satisfying the corresponding
boundary conditions and the conditions (−f

′′
+ qf) ∈ L2[0, π], f

′ ∈ AC[0, π], where AC[0, π] is
the set of all absolutely continuous functions on [0, π].

It is well known that [1], the spectra of the operators P (q) and A(q), consist of the eigenvalues
λ2n and λ2n+1, called periodic and antiperiodic eigenvalues, which are respectively the roots of

F (λ) = 2 & F (λ) = −2, (6)

where n = 0, 1, ..., F (λ) =: ϕ
′
(π, λ) + θ(π, λ) is the Hill discriminant, and ϕ(x, λ), θ(x, λ) are

the solutions of the equation (1), satisfying the initial conditions

θ(0, λ) = ϕ
′
(0, λ) = 1, θ

′
(0, λ) = ϕ(0, λ) = 0. (7)

The eigenvalues of the operators D(q) and N(q), called Dirichlet and Neumann eigenvalues, are
the roots of

ϕ(π, λ) = 0 & θ
′
(π, λ) = 0 (8)

respectively. The spectrum of the operator L(q) associated with (1), and the conditions

y(2π) = y(0), y
′
(2π) = y

′
(0) (9)
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are the union of the periodic and antiperiodic eigenvalues. In other words, the spectrum of L(q)
consists of the eigenvalues λn for n = 0, 1, .... which are the roots of the equation

(F (λ)− 2)(F (λ) + 2) = 0. (10)

The operators P (q), A(q), D(q), and N(q) are denoted respectively by P (a, b), A(a, b), D(a, b),
and N(a, b), if

q(x) = ae−i2x + bei2x, (11)
where a and b are complex numbers. If b = a, then, for simplicity of the notations, these
operators are redenoted by P (a), A(a), D(a), and N(a). The eigenvalues of P (a) and A(a) are
denoted by λ2n(a) and λ2n+1(a) for n = 0, 1, ....

We use the following two classical theorems (see p.8-9 of [4] and p.34-35 of [1]).
Theorem 1. If q is an even piecewise continuous function, then ϕ(x, λ) is an odd function,

and θ(x, λ) is an even function. Periodic solutions are either ϕ(x, λ) or θ(x, λ), unless all solutions
are periodic (with period π or 2π). Moreover, the following equality holds

ϕ
′
(π, λ) = θ(π, λ). (12)

Theorem 2. For all n and for any nonzero a, the geometric multiplicity of the eigenvalue
λn(a) of the operators P (a) and A(a) is 1 (that is, there exists one eigenfunction corresponding
to λn(a)) and the corresponding eigenfunction is either ϕ(x, λn(a)) or θ(x, λn(a)), where, for
simplicity of the notations, the solutions of the equation

−y
′′
(x) + (2a cos 2x)y(x) = λy(x) (13)

satisfying (7), are denoted also by ϕ(x, λ) and θ(x, λ).
In [1, 4] these theorems were proved for the real-valued potentials. However, the proofs pass

through for the complex-valued potentials without any change. The spectrum of P (a), A(a),
D(a), N(a) for a = 0 are

{(2k)2 : k = 0, 1, ...}, {(2k + 1)2 : k = 0, 1, ...}, {k2 : k = 1, 2, ...}, {k2 : k = 0, 1, ...}
respectively. All eigenvalues of P (0), except 0 and A(0), are double, while the eigenvalues of
D(0) and N(0) are simple. We also use the following result of [7].

Theorem 3. If ab = cd, then the Hill discriminants F (λ, a, b) and F (λ, c, d) (see (6)), for the
operators P (a, b) and P (c, d), are the same.

By Theorem 2, the geometric multiplicity of the eigenvalues of P (a) and A(a), for any nonzero
complex number a, is 1. However, in the non-self-adjoint case a ∈ C\R, the multiplicity (algebraic
multiplicity) of these eigenvalues, in general, is not equal to their geometric multiplicity, since
the operators P (a) and A(a) may have associated functions (generalized eigenfunctions). Thus,
in the non-self- adjoint case, the multiplicity (algebraic multiplicity) of the eigenvalues may
be any finite number when the geometric multiplicity is 1 (see Chapter 1 of [5]). Therefore
the investigation of the multiplicity of the eigenvalues for complex-valued potential is more
complicated.

In this paper, in Section 2 we first study some spectral properties of the non-self-adjoint Hill
operator with piecewise continuous even potential. In Section 3, we use it to find the conditions
on a, such that all eigenvalues of the operators P (a), A(a), D(a), and N(a) are simple. Namely
we prove the following

Theorem 4. All eigenvalues of the operators A(a), D(a) and P (a), N(a) are simple, if
0 < |a| ≤ 8√

6
and 0 < |a| ≤ 4

3 respectively.
This theorem with Theorem 3 implies
Theorem 5. All eigenvalues of the operators A(a, b) and P (a, b) are simple, if 0 < |ab| ≤ 32

3

and 0 < |ab| ≤ 16
9 respectively.

Note that the estimations of ab can be improved by using the numerical methods of [2] and
[3].
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2. On the even potentials

In this section we analyze, in general, the Hill operator with even piecewise continuous po-
tentials. In the paper [6] the following statements about the connections of the spectra of the
operators P (q), A(q), D(q), and N(q), where q is an even potential, were proven.

Lemma 1 of [6]. If λ is an eigenvalue of both operators D(q) and N(q), then

F (λ) = ±2,
dF

dλ
= 0, (14)

that is, λ is a multiple eigenvalue of L(q).
Proposition 1 of [6]. A number λ is an eigenvalue of L(q), if and only if λ is an eigenvalue

of D(q) or N(q).
Firstly, using (12) and the Wronskian equalities

θ(π, λ)ϕ
′
(π, λ)− ϕ(π, λ)θ

′
(π, λ) = 1 (15)

we prove the following improvements of these statements.
Theorem 6. Let q be an even complex-valued function. A complex number λ is both a

Neumann and Dirichlet eigenvalue, if and only if it is an eigenvalue of the operator L(q) with
geometric multiplicity 2.

Proof. Suppose λ is both a Neumann and Dirichlet eigenvalue, that is, both equality in (8)
hold. On the other hand, it follows from (12), (8), and (15) that

θ(π, λ) = ϕ
′
(π, λ) = ±1. (16)

Now using (8), (16), and (7), one can easily verify that both θ(x, λ) and ϕ(x, λ) satisfy either
periodic or anti-periodic boundary conditions, that is, λ is an eigenvalue of the operator L(q)
with geometric multiplicity 2.

Conversely, if λ is an eigenvalue of L(q) with geometric multiplicity 2, then both θ(x, λ)
and ϕ(x, λ) satisfy either periodic or anti-periodic boundary conditions. Therefore by (7), the
equalities in (8) hold, that is, λ is both Neumann and Dirichlet eigenvalue.

Theorem 7. Let q be an even complex-valued function. A complex number λ is an eigenvalue
of multiplicity s of the operator L(q), if and only if it is an eigenvalue of multiplicities u and v
of the operators D(q) and N(q) respectively, where u + v = s and u = 0 (v = 0) means that λ
is not an eigenvalue of D(q) (N(q)).

Proof. It is well-known and clear that λ0 is an eigenvalue of multiplicities u, v, and s of the
operators D(q), N(q), and L(q) respectively, if and only if

ϕ(π, λ) = (λ0 − λ)uf(λ), θ
′
(π, λ) = (λ0 − λ)vg(λ) (17)

and
(F (λ)− 2)(F (λ) + 2) = (λ0 − λ)sh(λ), (18)

where f(λ0) 6= 0, g(λ0) 6= 0, and h(λ0) 6= 0. On the other hand, by (12) and (15), we have

(F (λ)− 2)(F (λ) + 2) = 4θ2(π, λ)− 4 = 4(θ(π, λ)ϕ
′
(π, λ)− 1) = 4ϕ(π, λ)θ

′
(π, λ). (19)

Thus the proof of the theorem follows from (17)-(19).
To analyze the periodic and antiperiodic eigenvalues in detail, let us introduce the following

notations and definitions.
Definition 1. Let σ(T ) denote the spectrum of the operator T. A number λ is called PDN(q)

(periodic, Dirichlet and Neumann) eigenvalue if λ ∈ σ(P (q)) ∩ σ(D(q)) ∩ σ(N(q)). A number
λ ∈ σ(P (q)) ∩ σ(D(q)) is called PD(q) (periodic and Dirichlet) eigenvalue if it is not PDN(q)
eigenvalue. A number λ ∈ σ(P (q))∩σ(N(q)) is called PN(q) (periodic and Neumann) eigenvalue
if it is not PDN(q) eigenvalue. Everywhere replacing P (q) by A(q), we get the definition of
ADN(q), AD(q) and AN(q) eigenvalues.

Using Theorems 6, 7, Definition 1, and the equality σ(P (q)) ∩ σ(A(q)) = ∅, we obtain
Theorem 8. Let q be an even complex-valued function. Then
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(a) The spectrum of P (q) is the union of the following three pairwise disjoint sets: {PDN(q)
eigenvalues}, {PD(q) eigenvalues}, and {PN(q) eigenvalues}.

(b) A complex number λ is an eigenvalue of geometric multiplicity 2 of the operator P (q), if
and only if it is PDN(q) eigenvalue.

(c) A complex number λ is an eigenvalue of geometric multiplicity 1 of the operator P (q) if
and only if it is either PD(q) or PN(q) eigenvalue.

The theorem continues to hold if P (q), PDN(q), PD(q), and PN(q) are replaced by A(q),
ADN(q), AD(q), and AN(q) respectively.

Now we prove the main theorem of this section.
Theorem 9. Let q be an even complex-valued function, and λ be an eigenvalue of geometric

multiplicity 1 of the operator P (q). Then the number λ is an eigenvalue of multiplicity s of P (q),
if and only if it is an eigenvalue of multiplicity s either of the operator D(q) (first case), or of the
operator N(q) (second case). In the first case, the system of the root functions of the operators
P (q) and D(q) consists of the same eigenfunction ϕ(x, λ) and associated functions

∂ϕ(x, λ)
∂λ

,
1
2!

∂2ϕ(x, λ)
∂λ2

, ...,
1

(s− 1)!
∂s−1ϕ(x, λ)

∂λs−1
. (20)

In the second case, the system of the root function of the operators P (q) and N(q), consists
of the same eigenfunction θ(x, λ) and associated functions

∂θ(x, λ)
∂λ

,
1
2!

∂2θ(x, λ)
∂λ2

, ...,
1

(s− 1)!
∂s−1θ(x, λ)

∂λs−1
. (21)

The theorem continues to hold if P (q) is replaced by A(q).
Proof. Let λ be an eigenvalue of geometric multiplicity 1, and multiplicity s of the operator

P (q). By Theorem 1 there are two cases.
Case 1. The corresponding eigenfunction is ϕ(x, λ).
Case 2. The corresponding eigenfunction is θ(x, λ).
We consider Case 1 in the same way one can consider Case 2. In Case 1, θ(x, λ) is not a

periodic solution, that is, it does not satisfy the periodic boundary condition (2). On the other
hand, the first equality of (6) with (12) and (7) implies that

θ(π, λ) = 1 = θ(0, λ), (22)

that is, θ(x, λ) satisfies the first equality in (2). Therefore, θ(x, λ) does not satisfies the second
equality of (2), that is,

θ
′
(π, λ) 6= 0. (23)

This inequality means that v = 0, where v is defined in Theorem 7. Therefore, by Theorem 7
we have u = s, that is, λ is an eigenvalue of multiplicity s of the operator D(q).

Now suppose that λ is an eigenvalue of multiplicity s of D(q). Then by (8) and (7)

ϕ(π, λ) = 0 = ϕ(0, λ). (24)

On the other hand, using the first equality of (6), (12), and (7) we get

ϕ
′
(π, λ) = 1 = ϕ

′
(0, λ). (25)

Therefore, ϕ(x, λ) is an eigenfunction of P (q) corresponding to the eigenvalue λ. Then, by
Theorem 1, θ(x, λ) is not a periodic solution. This, as we noted above, implies (23) and the
equality u = s. Thus, by Theorem 7, λ is an eigenvalue of multiplicity s of P (q).

If λ is an eigenvalue of multiplicity s of the operators P (q) and D(q), then

F (λ) = 2,
dF

dλ
= 0,

d2F

dλ2
= 0, ...,

ds−1F

dλs−1
= 0 (26)

and

ϕ(π, λ) = 0,
dϕ(π, λ)

dλ
= 0,

d2ϕ(π, λ)
dλ2

= 0, ...,
ds−1ϕ(π, λ)

dλs−1
= 0. (27)
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Since ϕ(0, λ) = 0 and ϕ
′
(0, λ) = 1 for all λ, we have

ϕ(0, λ) = 0,
dϕ(0, λ)

dλ
= 0,

d2ϕ(0, λ)
dλ2

= 0, ...,
ds−1ϕ(0, λ)

dλs−1
= 0 (28)

and

ϕ
′
(0, λ) = 1,

dϕ
′
(0, λ)
dλ

= 0,
d2ϕ

′
(0, λ)

dλ2
= 0, ...,

ds−1ϕ
′
(0, λ)

dλs−1
= 0. (29)

Moreover, using (26) and (12), we obtain

ϕ
′
(π, λ) = 1,

dϕ
′
(π, λ)
dλ

= 0,
d2ϕ

′
(π, λ)

dλ2
= 0, ...,

ds−1ϕ
′
(π, λ)

dλs−1
= 0. (30)

Thus, by (27)-(30), ϕ(x, λ) and the functions in (20), satisfy both the periodic and Dirichlet
boundary conditions. On the other hand, differentiating s− 1 times in λ the equation

−ϕ
′′
(x, λ) + q(x)ϕ(x, λ) = λϕ(x, λ) (31)

we obtain

−(
1
k!

∂kϕ(x, λ)
∂λk

)
′′

+ (q(x)− λ)
1
k!

∂kϕ(x, λ)
∂λk

=
1

(k − 1)!
∂k−1ϕ(x, λ)

∂λk−1

for k = 1, 2, ..., (s−1). Therefore ϕ(x, λ), and the functions in (20) are the root functions of the
operators P (q) and D(q). Thus the first case is proved in the same way we proved the second
case. The proofs of these results for A(q) are similar.

3. Main results

In this section, we consider the operators P (a), A(a), D(a), and N(a) with potential

q(x) = 2a cos 2x, (32)

where a is a nonzero complex number. By Theorem 2, the geometric multiplicity of the eigen-
values of P (a) and A(a) is 1. Therefore, it follows from Theorem 8 that

σ(P (a)) = {PD(a) eigenvalues} ∪ {PN(a) eigenvalues}, (33)

σ(A(a)) = {AD(a) eigenvalues} ∪ {AN(a) eigenvalues}, (34)
where PD(q), PN(q), AD(q), and AN(q) (see Definition 1) are denoted by PD(a), PD(a),
PD(a), and PD(a) when the potential q is defined by (32). Moreover, Theorem 7, Theorem 2,
and Theorem 9 yield the equalities

σ(D(a)) = {PD(a) eigenvalues} ∪ {AD(a) eigenvalues}, (35)

σ(N(a)) = {PN(a) eigenvalues} ∪ {AN(a) eigenvalues} (36)
and the following theorem.

Theorem 10. For any a 6= 0 the eigenvalue λ of the operator P (a) or A(a) is a multiple, if
and only if it is a multiple eigenvalue either of D(a) or N(a). Moreover, the operators P (a),
A(a), D(a), and N(a) have associated functions corresponding to any multiple eigenvalues.

Clearly, the eigenfunctions corresponding to PN(a) eigenvalues, PD(a) eigenvalues, AD(a)
eigenvalues, and AN(a) eigenvalues have the forms

ΨPN (x) =
a0√
2

+
∞∑

k=1

ak cos 2kx, (37)

ΨPD(x) =
∞∑

k=1

bk sin 2kx, (38)

ΨAD(x) =
∞∑

k=1

ck sin(2k − 1)x, (39)
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and

ΨAN (x) =
∞∑

k=1

dk cos(2k − 1)x (40)

respectively. For simplicity of the calculating, we normalize these eigenfunctions as follows
∞∑

k=0

|ak|2 = 1,
∞∑

k=1

|bk|2 = 1,
∞∑

k=1

|ck|2 = 1,
∞∑

k=1

|dk|2 = 1. (41)

Substituting the functions (37)-(40) into (13), we obtain the following equalities

λa0 =
√

2aa1, (λ− 4)a1 = a
√

2a0 + aa2, (λ− (2k)2)ak, = aak−1 + aak+1, (42)

(λ− 4)b1 = ab2, (λ− (2k)2)bk, = abk−1 + abk+1, (43)
(λ− 1)c1 = ac1 + ac2, (λ− (2k − 1)2)ck, = ack−1 + ack+1, (44)

(λ− 1)d1 = −ad1 + ad2, (λ− (2k − 1)2)dk,= adk−1 + adk+1 (45)
for k = 2, 3, .... Here ak, bk, ck, dk depend on λ, and a0, b1, c1, d1 are nonzero constants (see [1]
p. 34-35).

By Theorem 10, if the eigenvalue λ corresponding to one of the eigenfunctions (37)-(40),
denoted by Ψ(x), is a multiple, then there exists associated function Φ satisfying

−(Φ(x, λ))
′′

+ (q(x)− λ)Φ(x, λ) = Ψ(x). (46)

Since the boundary conditions (2)-(5) are self-adjoint, the operators adjoint to P (a), A(a), D(a),
and N(a) are P (a), A(a), D(a), and N(a) respectively (see Chapter 1 of [5]). Therefore λ and
Ψ(x) are eigenvalue, and eigenfunctions of the adjoint operator. Using this, and multiplying
both sides of (46) by Ψ, we get (Ψ,Ψ) = 0, where (., .) is the inner product in L2[0, π]. Thus, if
the eigenvalues corresponding to the eigenfunctions (37)-(40), are multiple, then we have

∞∑

k=0

a2
k = 0,

∞∑

k=1

b2
k = 0,

∞∑

k=1

c2
k = 0,

∞∑

k=1

d2
k = 0. (47)

To prove the simplicity of the eigenvalue λ corresponding, for example to (40), we show that
there is no sequence {dk} satisfying the above 3 equalities: (45), (41) and (47), since these
equalities hold if λ is a multiple eigenvalue. For this we use the following proposition, which
readily follows from (41) and (47).

Proposition 1. If there exists n ∈ N = : {1, 2, ..., } such that

|dn(λ)|2 >
1
2
, (48)

then λ is a simple AN(a) eigenvalue, where a 6= 0. The statement continues to hold for AD(a),
PD(a), and PN(a) eigenvalues if dn is replaced by cn, bn, and an respectively.

To apply the Proposition 1, we use following lemmas.
Lemma 1. Suppose that λ is a multiple AN(a) eigenvalue corresponding to the eigenfunction

(40), where a 6= 0. Then
(a) For all k ∈ N, m ∈ N, k 6= m, the following inequalities hold

|dk|2 ≤ 1
2
, (49)

|dk ± dm|2 ≤ 1, (50)

|dk|2 ≤ |a|2
|λ− (2k − 1)2|2 . (51)

(b) If Reλ < (2p− 1)2 − 2 |a| for some p ∈ N, then |dk−1| > |dk| > 0, and

|dk+s| < |2a|s+1 |dk−1|
|λ− (2k − 1)2| |λ− (2(k + 1)− 1)2| ... |λ− (2(k + s)− 1)2| (52)
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for all k > p and s = 0, 1, ....
(c) Let I ⊂ N and d(λ, I) =: mink∈I

∣∣λ− (2k − 1)2
∣∣ 6= 0. Then

∑

k∈I

|dk|2 ≤ 4 |a|2
(d(λ, I))2

. (53)

(d) If λ is a multiple of the AD(a) eigenvalue corresponding to the eigenfunction (39), then
the inequalities (49)-(53) continue to hold if dj is replaced by cj .

Proof. (a) If (49) does not hold for some k, then by Proposition 1, λ is a simple eigenvalue
that contradicts the assumption of the lemma. Using the last equalities of (47) and (41), we
obtain

∣∣(dk ± dm)2
∣∣ =

∣∣∣∣∣∣
−

∑

n 6=k,m

d2
n ± 2dkdm

∣∣∣∣∣∣
≤

∑

n6=k,m

|dn|2 + |dk|2 + |dm|2 = 1,

that is, (50) holds. Now (51) follows from (45) and (50).
(b) Suppose that |dk| ≥ |dk−1| for some k > p > 0. By (45)

∣∣λ− (2k − 1)2
∣∣ |dk| ≤ |a| |dk−1|+ |a| |dk+1| .

On the other hand, using the condition on λ, we get
∣∣λ− (2k − 1)2

∣∣ > 2 |a| . Therefore |dk+1| ≥
2 |dk| − |dk−1| ≥ |dk| . Repeating this process s times, we obtain |dk+s| ≥ |dk+s−1| for all s ∈
N. But this means that {|dk+s| : s ∈ N} is a nondecreasing sequence. On the other hand,
|dk|+ |dk+1| 6= 0, since if both dk and dk+1 are zero, then using (45) we obtain that dj = 0 for
all j ∈ N, that is, the solutions (40) are identically zero. Therefore, dk does not converge to
zero being the Fourier coefficient of the square integrable function ΨAN (x). This contradiction
shows that {|dk+s| : s ∈ N} is a decreasing sequence. Thus |dk| > 0 for all k > p.

Now let us prove (52). Using (45) and the inequality |dk−1| > |dk| > 0, we get

|dk+s| < |2a| |dk+s−1|
|λ− (2(k + s)− 1)2| (54)

for all s = 0, 1, .... Iterating (54) s times, we obtain (52).
(c) By (45) we have

∑

k∈I

|dk|2 ≤
∑

k∈I

|a|2 (|dk−1|+ |dk+1|)2
(d(λ, I))2

≤
∑

k∈I

2 |a|2 (|dk−1|2 + |dk+1|2)
(d(λ, I))2

.

Note that in case k = 1, instead of dk−1, we take d1 (see the first equality of (45)). Now (53)
follows from (41).

(d) Everywhere replacing dk by ck, we get the proof of the last statement.
In a similar way, we prove the following lemma for P (a).
Lemma 2. Suppose that λ is a multiple PD(a) eigenvalue corresponding to the eigenfunction

(38), where a 6= 0. Then
(a) For all k ∈ N, m ∈ N, n ∈ N, n 6= m, the following inequalities hold

|bm|2 ≤ 1
2
, |bn ± bm|2 ≤ 1, |bk|2 ≤ |a|2

|λ− (2k)2|2 . (55)

(b) If Reλ < (2p)2 − 2 |a| for some p ∈ N, then |bk−1| > |bk| > 0 and

|bk+s| < |2a|s+1 |bk−1|
|λ− (2k)2| |λ− (2(k + 1))2| ... |λ− (2(k + s))2| (56)

for all k > p and s = 0, 1, ...
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(c) Let I ⊂ N and b(λ, I) = mink∈I

∣∣λ− (2k)2
∣∣ 6= 0. Then

∑

k∈I

|bk|2 ≤ 4 |a|2
(b(λ, I))2

. (57)

(d) If λ is a multiple PN(a) eigenvalue corresponding to (37) then the statements (a) and (b)
continue to hold for k > 1, m ≥ 0, and the statement (c) continues to hold for I ⊂ {2, 3, ...} if
bj is replaced by aj .

Introduce the notation Dn = {λ ∈ C :
∣∣λ− (2n− 1)2

∣∣ ≤ 2 |a| }.
Theorem 11. (a) All eigenvalues of the operator A(a) lie on the unions of Dn for n ∈ N.
(b) If 4n− 4 > (1 +

√
2) |a|, where a 6= 0, then the eigenvalues of A(a) lying in Dn are simple.

Proof. By (34), if λ is an eigenvalue of the operator A(a), then the corresponding eigenfunc-
tion is either ΨAN (x) or ΨAD(x) (see (39) or (40)). Without loss of generality, we assume that
the corresponding eigenfunction is ΨAN (x).

(a) Since dk → 0 as k → ∞, there exists n ∈ N, such that |dn| = maxk∈N |dk| . Therefore (a)
follows from (45) for k = n.

(b) Suppose that λ ∈ Dn is a multiple eigenvalue corresponding to the eigenfunction ΨAN (x).
By definition of Dn for k 6= n we have

∣∣λ− (2k − 1)2
∣∣ ≥| (2n− 1)2 − (2k − 1)2 | − |2a| ≥ ∣∣(2n− 3)2 − (2n− 1)2

∣∣− |2a| .
This, together with the condition on n and the definition of d(λ, I) (see Lemma 1(c)), gives
d(λ,N\{n}) > 2

√
2 |a| . Thus, using (53) and (41), we get

∑

k 6=n

|dk|2 <
1
2

& |dn|2 >
1
2

which contradicts Proposition 1.
Instead of Lemma 1, using Lemma 2 in the same way, we prove the following:
Theorem 12. (a) All PD(a) eigenvalues lie in the unions of B =: {λ : |λ− 4| ≤ |a| } and
Bn =: {λ :

∣∣λ− (2n)2
∣∣ ≤ 2 |a| } for n = 2, 3, ..... All PN(a) eigenvalues lie in the unions of

A0 = {λ : |λ| ≤ √
2 |a| }, A1 = {λ : |λ− 4| ≤ (1 +

√
2) |a| } and Bn for n = 2, 3, ....

(b) If 4n− 2 > (1 +
√

2) |a| and n > 1, where a 6= 0, then the eigenvalues of P (a) lying in Bn

are simple.
Now we prove the main result for A(a).
Theorem 13. If 0 < |a| ≤ 8√

6
, then all eigenvalues of the operator A(a) are simple.

Proof. Since 8 > 8√
6
(1 +

√
2), by Theorem 11(b), the ball Dn for n > 2 does not contain

the multiple eigenvalues of the operator A(a). Therefore, we need to prove that the ball Dn

for n = 1, 2 also does not contain the multiple eigenvalues. Since the balls D1 and D2 are
contained in the half plane {λ ∈ C : Re λ < 16 }, we consider the following two strips {λ ∈
C : 9 < Re λ < 16 }, {λ ∈ C : 6 < Reλ ≤ 9 } and half plane {λ ∈ C : Reλ ≤ 6 } separately.
We consider the AN(a) eigenvalues, that is, the eigenvalues corresponding to the eigenfunctions
(40). Consideration of the AD(a) eigenvalues are the same.

To prove the simplicity of the eigenvalues lying in the above strips, we assume that λ is a
multiple eigenvalue. Using Lemma 1 by direct calculate (see Estimation 1 and Estimation 2 in
Appendix), we show that (48) for n = 2 holds, which contradicts Proposition 1.

Investigating the half plane Reλ ≤ 6 is more complicated. Here we use the first two equalities
of (45)

(λ− 1)d1 = −ad1 + ad2, (λ− 9)d2, = ad1 + ad3. (58)
By direct calculating, we get (see Estimation 3 and Estimation 4 in the Appendix)

∞∑

k=3

|dk|2 < 0.03 415,
|d3|
|d2| < 0.174 32. (59)
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Then by (41) we have

|d1|2 + |d2|2 > 1− ε, (60)

where ε = 0.03 415. On the other hand, by (49), |d1|2 ≤ 1
2 , |d2|2 ≤ 1

2 . These inequalities and (47)
imply that

|d1|2 =
1
2
− ε1, |d2|2 =

1
2
− ε2, d2

2 = − d2
1 + ε3,

where ε1 ≥ 0, ε2 ≥ 0, ε1 + ε2 = ε, |ε3| < 0.03 415. Now, one can easily see that

(
d2

d1
)2 = −1 + α,

d2

d1
= ±(i + δ),

where |α| < 0.03 415
0.5−0.03 415 < 0.074, |δ| < 1

2 |0.074|+ 1
7 |0.074|2 < 0.0 4. Therefore we have

d2

d1
− d1

d2
= ±(i + δ)2 − 1

i + δ
= ±2i(i + δ) + δ2

i + δ
= ±2i + γ, (61)

where |γ| < (0.04)2

1−0.04 < 0.002. On the other hand, dividing the first equality of (58) by d1, and the
second by d2, and then subtracting second from the first and using (61), we get

8
a

= ±2i− 1 + γ − d3

d2
, (62)

where by assumption
∣∣ 8
a

∣∣ ≥ √
6. Therefore, using the second estimation of (59) in (62), we get

the contradiction 2. 449 5 <
√

6 ≤ ∣∣ 8
a

∣∣ <
√

5 + 0.174 32 + 0.002 < 2. 412 5.
In the same way we consider the simplicity of the eigenvalues of the operators P (a), D(a),

and N(a). First let us investigate the eigenvalues of D(a). Since the eigenvalues of D(a) are the
union of PD(a) and AD(a) eigenvalues, and the AD(a) eigenvalues are investigated in Theorem
13, we investigate the PD(a) eigenvalues.

Theorem 14. If 0 < |a| ≤ 5, then all PD(a) eigenvalues are simple. Moreover, if
0 < |a| ≤ 8√

6
, then all eigenvalues of the operator D(a) are simple.

Proof. The second statement follows from the first statement and Theorem 13. Therefore
we need to prove the first statement by using (43). Since 14 > 5(1 +

√
2), by Theorem 12, the

PD(a) eigenvalues lying in the ball Bn for n > 3 are simple.
If λ ∈ B3, then 26 ≤ Reλ ≤ 46. Using Lemma 2 and (41), we obtain the estimations (see

Estimation 5 in Appendix)
∑

k 6=3

|bk|2 <
1
2
, |b3|2 >

1
2
,

which, by Proposition 1, proves the simplicity of the PD(a) eigenvalues lying in B3.
Now we need to prove that the balls B and B2 do not contain the multiple PD(a) eigenvalues.

Since these balls are contained in the strip {λ ∈ C : Re λ ≤ 26 }, we consider the following cases:
16 < Reλ ≤ 26, 12 < Re λ ≤ 16 and Reλ ≤ 12.

In the first two cases, using Lemma 2, we get the inequality (see Estimation 6 and Estimation
7) obtained from (48) for n = 2, by replacing dn with bn, which proves, by Proposition 1, the
simplicity of the eigenvalues. Now consider the third case Reλ ≤ 12. Using Lemma 2, we obtain
(see Estimation 8 and Estimation 9 in Appendix)

∞∑

k=3

|bk|2 <
1
15

,
|b3|
|b2| < 0.213 1. (63)

The first inequality of (63) with (41) implies that

|b1|2 + |b2|2 > 1− β, (64)
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where β < 1
15 . Instead of (60), using (64), and repeating the proof of (61), we obtain

b2

b1
− b1

b2
=

(i + δ)2 − 1
i + δ

=
2i(i + δ) + δ2

i + δ
= ±2i + γ1, (65)

where |γ1| < 0.01. Now dividing the first equality of (43) by b1, and the second equality of (43)
for k = 2 by b2, and then subtracting the second from the first, and using (65), we get

12
a

= ±2i + γ1 − b3

b2
, (66)

where by assumption
∣∣12

a

∣∣ ≥ 2.4. Thus, using (63) in (66), we get the contradiction
2. 4 ≤ ∣∣12

a

∣∣ < 2 + 0.213 1 + 0.01 = 2. 223 1.

Theorem 15. If 0 < |a| ≤ 4
3 , then all eigenvalues of P (a) and N(a) are simple.

Proof. By Theorem 13 and Theorem 14, we need to prove that if |a| ≤ 4
3 , then all PN(a)

eigenvalues are simple. Since 6 > (1 +
√

2)4
3 , by Theorem 12, the PN(a) eigenvalues lying in

the ball Bn for n > 1 are simple.
Now we prove that the balls A0 and A1 do not contain the multiple PN(a) eigenvalues.

Since these balls are contained in {λ ∈ C : Re λ < 8 }, we consider the following cases:
Case 1: 3 ≤ Reλ < 8. Using (42) and Lemma 2, (see Estimation 10 in Appendix), we obtain

|a1|2 > 1
2 , which by Proposition 1, proves the simplicity of the eigenvalues.

Case 2: Reλ < 3. Using Lemma 2, we obtain ( see Estimations 11 and 12 in Appendix)
∞∑

k=2

|ak|2 <
1
58

,
|a2|
|a1| < 0.103 01. (67)

The first inequality of (67) with (41) implies that

|a0|2 + |a1|2 > 1− ρ, (68)

where ρ < 1
58 . Instead of (60), using (68) and repeating the proof of (61), we obtain

a1

a0
− a0

a1
= ±2i + γ, (69)

where |γ| < 0.0006. Now dividing the first equality of (42) by a0, and the second by a1, and
then subtracting the second from the first, and taking into account (69), we get

4
a

= ±2
√

2i +
√

2γ − a2

a1
, (70)

where by assumption
∣∣ 4
a

∣∣ ≥ 3. Therefore, using (67) we get the contradiction
3 ≤ ∣∣ 4

a

∣∣ <
√

2(2 + 0.0006) + 0.103 01 = 2. 932 3.

4. Appendix

Estimation 1: Let 9 < Reλ < 16 and |a| ≤ 8√
6
.Using (51), (53), and taking into account

that d(λ, {4, 5, ...}) < 33, we get

|d1|2 ≤ |a|2
|λ− 1|2 ≤

1
6
, |d3|2 ≤ |a|2

|λ− 25|2 ≤
32
243

,
∞∑

k=4

|dk|2 <
128
3267

,
∑

k 6=2

|dk|2 <
1
2
.

Estimation 2. Let 6 < Reλ ≤ 9 and |a| ≤ 8√
6
. By (51), (53), and by d(λ, {4, 5, ...}) ≤ 40 we

have

|d1|2 ≤ 32
75

, |d3|2 ≤ 1
24

,

∞∑

k=4

|dk|2 ≤ 2
75

,
∑

k 6=2

|dk|2 <
1
2
.
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Estimation 3. Let Re λ ≤ 6 and |a| ≤ 8√
6
. By (52) and (49), we have

|d4| ≤

∣∣∣2× 8√
6

∣∣∣
2
|d2|

|43| |19| ≤

∣∣∣2× 8√
6

∣∣∣
2 √

2
2

|43| |19| , |d5| ≤

∣∣∣2× 8√
6

∣∣∣
3
|d2|

|75| |43| |19| ≤

∣∣∣2× 8√
6

∣∣∣
3 √

2
2

|75| |43| |19| . (71)

Now using (51) and (53), and taking into account d(λ, {6, 7, ...}) ≤ 115, we obtain

|d3|2 ≤

∣∣∣ 8√
6

∣∣∣
2

|19|2 =
32

1083
&

∞∑

k=6

|dk|2 ≤
4

∣∣∣ 8√
6

∣∣∣
2

|115|2 ,
∞∑

k=3

|dk|2 < 0.03 415.

Estimation 4. Now we estimate |d3|
|d2| for Reλ ≤ 6 and |a| ≤ 8√

6
. Iterating (45) for k = 3,

we get

d3 =
ad2 + ad4

λ− 25
=

ad2

λ− 25
+

a

λ− 25
(
ad3 + ad5

λ− 49
) (72)

=
ad2

λ− 25
+

a3d2

(λ− 25)2(λ− 49)
+

a3d4

(λ− 25)2(λ− 49)
+

a2d5

(λ− 25)(λ− 49)
.

Therefore, dividing both sides of (72) by d2, and using (52), we obtain

|d3|
|d2| ≤

8√
6

19
+

∣∣∣ 8√
6

∣∣∣
3

|43| |19|2 +
4

∣∣∣ 8√
6

∣∣∣
5

|43|2 |19|3 +
8

∣∣∣ 8√
6

∣∣∣
5

|75| |43|2 |19|2 ≤ 0.174 32.

Estimation 5. Let 26 ≤ Reλ ≤ 46 and |a| ≤ 5. Using (56) and (58), we get

|b1|2 ≤ |a|2
|λ− 4|2 ≤

|5|2
|22|2 =

25
484

, |b2|2 ≤ |a|2
|λ− 16|2 ≤

|5|2
|10|2 =

1
4
,

|b4|2 ≤ |a|2
|λ− 64|2 ≤

|5|2
|18|2 =

25
324

,
∞∑

k=5

|bk|2 ≤ 4 |5|2
|54|2 =

25
729

,
∑

k 6=3

|bk|2 <
1
2
.

Estimation 6. Let 16 < Reλ ≤ 26 and |a| ≤ 5. By (55) and (57), we have

|b1|2 ≤ |a|2
|λ− 4|2 ≤

|5|2
|12|2 =

25
144

, |b3|2 ≤ |a|2
|λ− 36|2 ≤

|5|2
|10|2 =

1
4
,

∞∑

k=4

|bk|2 ≤ 4 |5|2
|38|2 =

25
361

,
∑

k 6=2

|bk|2 ≤ 25
144

+
1
4

+
25
361

=
25 621
51 984

<
1
2
.

Estimation 7. Let 12 < Reλ ≤ 16 and |a| ≤ 5. By (55) and (57), we have

|b1|2 ≤ |5|2
|8|2 =

25
64

, |b3|2 ≤ |5|2
|20|2 =

1
16

, |b4|2 ≤ |5|2
|48|2 =

25
2304

,

∞∑

k=5

|bk|2 ≤ 4 |5|2
|84|2 =

25
1764

,
∑

k 6=2

|bk|2 ≤ 25
64

+
1
16

+
25

2304
+

25
1764

=
53 981
112 896

<
1
2
.

Estimation 8. Let Reλ ≤ 12 and |a| ≤ 5. Using (55) and (57), we obtain

|b4|2 ≤ |5|2
|52|2 =

25
2704

, |b3|2 ≤ |5|2
|24|2 =

25
576

,

∞∑

k=5

|bk|2 ≤ 4 |5|2
|88|2 =

25
1936

,

∞∑

k=3

|bk|2 ≤ 25
2704

+
25
576

+
25

1935
=

30 495
465 088

<
1
15

.
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Estimation 9. Here we estimate |b3|
|b2| for Reλ ≤ 12 and |a| ≤ 5. Iterating (43) for k = 3, we

get

b3 =
ab2 + ab4

λ− 36
=

ab2

λ− 36
+

a

λ− 36
(
ab3 + ab5

λ− 64
) = (73)

=
ab2

λ− 36
+

a3b2

(λ− 36)2(λ− 64)
+

a3b4

(λ− 36)2(λ− 64)
+

a2b5

(λ− 36)(λ− 64)
.

Now dividing both sides of (73) by b2, and using (56) we obtain

|b3|
|b2| ≤

5
24

+
|5|3

|52| |24|2 +
4 |5|5

|52|2 |24|3 +
8 |5|5

|88| |52|2 |24|2 < 0.213 1.

Estimation 10. Let 3 ≤ Reλ < 8 and |a| ≤ 4
3 . By (42), Lemma 2(d), and (55), we have

|a0|2 ≤
∣∣√2aa1

∣∣2

|λ|2 ≤
∣∣4
3

∣∣2

|3|2 =
16
81

, |a2|2 ≤ |a|2
|λ− 16|2 ≤

∣∣4
3

∣∣2

|8|2 =
1
36

,

∞∑

k=3

|ak|2 ≤
4

∣∣4
3

∣∣2

|28|2 =
4

441
,

∑

k 6=1

|ak|2 ≤ 16
81

+
1
36

+
4

441
<

1
2
.

Estimation 11. Let Reλ < 3 and |a| ≤ 4
3 . By Lemma 2(d), (55), and (57), we have

|a2|2 ≤ |a|2
|λ− 16|2 ≤

16
1521

,
∞∑

k=3

|ak|2 ≤
4

∣∣4
3

∣∣2

|33|2 =
64

9801
,

∞∑

k=2

|ak|2 <
1
58

.

Estimation 12. Here we estimate a2
a1

for Reλ < 3 and |a| ≤ 4
3 . Iterating (42) for k = 2, we

get

a2 =
aa1 + aa3

λ− 16
=

aa1

λ− 16
+

a

λ− 16
(
aa2 + aa4

λ− 36
) = (74)

=
aa1

λ− 16
+

a3a1

(λ− 16)2(λ− 36)
+

a3a3

(λ− 16)2(λ− 36)
+

a2a4

(λ− 16)(λ− 36)
.

Now dividing both sides of (74) by a1, and using Lemma 2(d) and (56), we obtain

|a2|
|a1| ≤

4
3

13
+

∣∣4
3

∣∣3

|33| |13|2 +
4

∣∣4
3

∣∣5

|33|2 |13|3 +
8

∣∣4
3

∣∣5

|61| |33|2 |13|2 < 0.103 01.
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