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In this paper, we consider optimum channel/frequency allocation prob-
lem in wireless networks by reducing total network interference signal 
powers, which is an NP-complete problem. Its optimum solution for gen-
eral wireless networks for even 2-channel case is not known. Turning the 
channel/frequency allocation problem into a maxCut graph partitioning 
problem, we i) propose a spectral clustering based channel allocation 
algorithm, called SpecPure, and ii) propose and analyze a novel Non-
Greedy Asynchronous Interference Reduction Algorithm for Wireless 
Networks, called N-GAIR, and iii) extend the results in [1] to the case 
where the number of channels is arbitrary. By simulating various CDMA 
based ad-hoc networks, we examine various scenarios to compare the 
performances of the proposed algorithms with the reference algorithm. 
We draw various conclusions for different network scenarios. For exam-
ple, the results show that the SpecPure algorithm performs well for “sym-
metric” base locations scenarios, while the N-GAIR performs best for 
random base locations scenarios. The results confirm the effectiveness of 
the proposed algorithms, which can be adopted by any cellular, cognitive, 
ad-hoc or mesh type radio networks. 

Keywords: Mobile radio systems; optimum channel/frequency allocation; max 
cut, weighted graph partitioning; spectral clustering; minimum-interference-
channel-allocation algorithm.

I. INtRoductIoN

Channel/frequency allocation is an important and essential mechanism in 
order to mitigate the interference in a wireless network, and has been a focus 
of intensive research in both academia and industry in the last two decades. 
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As various new types of wireless networks with/without infrastructure, like 
cognitive, ad-hoc or mesh type radio systems, among others, are about to 
emerge in the coming decade, the optimum channel allocation problem 
remains to be a hot research topic in both academia and industry. However, 
the channel/frequency allocation problem in wireless cellular system is 
known to be NP-complete (see e.g. [2], [3], among others). This means that 
no polynomial-time algorithms are available for that. The optimum general 
solution for any mobile network for even 2-channel case is not known. 

There is a vast literature in the area of channel/frequency allocation/
assignment in various wireless radio systems. For a survey, and further refer-
ences see e.g. [4], [5], among others. Various algorithms used in practical 
systems are based on a simple heuristics that the mobile/base is assigned to 
the channel in a distributed fashion where it experiences minimum interfer-
ence (e.g. [6-8], etc).  Although these algorithms perform well in practice in 
general, their solutions do not give any guarantee on the global performance 
because their performance may typically depend on the initial states and may 
suffer from local minima problem for many various location distributions. 
Two asynchronous minimum-interference algorithms, called basic GADIA 
and soft GADIA, are examined in details in [9] for symmetric link matrix 
case by Babadi and Tarokh. They analytically prove in [9] that the perfor-
mance of the GADIA is close to that of an optimum centralized frequency 
allocation algorithm for symmetric case. Re-investigating the GADIA from a 
game-theoretic perspective, Wu et.al. show in [10] that the soft GADIA is 
shown to converge to a global minimum with arbitrarily high probability for 
a sufficiently large learning parameter (and for symmetric case).

Channel allocation problem is also examined as a graph multi-coloring 
problem, which is NP-complete as well. For various algorithms used in graph 
multi-coloring and further references see e.g. [7] and [3] among others. The 
multi-coloring problem for channel allocation can be summarized as follows 
[7]: Let G = (V, E) denote an interference graph, where the node set V denotes 
cells or base stations, and the edge set E represents geographical proximity of 
cells and therefore the possibility of co-channel interference. A static snap-
shot of the network at a fixed instant of time is given by a weighted graph. 
The goal of an algorithm for the channel allocation problem, at that instant in 
time, is to be able to allocate distinct channels to each node such that no two 
adjacent nodes have channels in common. In graph-theory terminology, what 
is required is a proper multi-coloring of G with distinct colors representing 
distinct channels. In this paper, we follow this path which formulates the 
average network/channel interference minimization problem as a graph par-
titioning problem, in general. However, in this paper, our main contribution is 
that turning the channel allocation problem into a maxCut problem, we pro-
pose and examine two channel allocation algorithms. Furhermore, while 
typically in literature, set E represents geographical proximity of the base 
stations which yields symmetric adjacency matrix, in our approach in this 
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paper set E represents link gains (received-signal-strength) yielding asym-
metric system matrix. One of the proposed solutions is based on the maxCut 
approximation, while the other one is a hybrid algorithm which first finds the 
maximum eigenvector of network link gain matrix followed by a novel inter-
ference-reduction algorithm. We examine the advantages and drawbacks of 
the proposed solutions with respect to the minimum-interference algorithm 
as the main reference algorithm. 

The rest of the paper is organized as follows: Section II gives the formula-
tion of the problem. The spectral based solutions for 2-channel case and arbi-
trary number of channel case are presented in section III and IV, respectively. 
The proposed method called N-GAIR is presented and analyzed in section V. 
The computer simulations are shown in section VI, followed by the conclu-
sions in section VII. 

II. PRoblem FoRmulAtIoN 

In this section, we formulate the total and average network interference to be 
minimized by channel/ frequency allocation. We would like to formulate it on 
a general level so that the results can be adopted by different cellular, cogni-
tive, ad-hoc, sensor, etc type radio networks: Let us consider a general mobile 
radio system consisting of N transmitters which are possibly mobile. Let’s 
call the transmitter as Mobile Base (MB), and the receiver as Mobile Station 
(MS). Downlink is considered without loss of generality. We assume the flat 
fading and slow fading channel case, which means the channel coherence 
time is much higher than the channel allocation algorithm runtime. In prac-
tice, this includes, for example a scenario where MBs are either resting or are 
moving with relatively small speed, or pedestrian speed. 

Let the number of co-channel MB’s be N. Then the received Signal-to-
Noise-Ratio (SINR) at receiver i is given by (see. e.g. [8], [9], [10]) 

 θ
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where qi k( ) denotes the received SINR at receiver i at time k; p ki ( )  is the 
transmit power of transmitter i at time k; gij  is link gain from transmitter j 
to receiver i (involving path loss, shadowing, etc), and fi  is the thermal 
noise at receiver i. The matrix whose entries are the link gains, i.e. G[ ] = ij ijg  
is called as system link gain matrix. The link gain gij  can be modeled as 
follows
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where sij  is the shadow fading term, dij
b  is propagation loss with pathloss 

exponent b, and cij  is multipath fading factor [8]. For information about 
modeling of radio wave propagation, see e.g. [8], [11]. Since, in this paper, 
we focus on the optimum channel allocation problem, we assume that the 
powers of the transmitters are fixed. Let the number of MBs is N and that of 
channels/frequencies be L (where N> L). So, we need to allocate the N MB’s 
to L channels/frequencies. Without loss of generality and for the sake of brev-
ity, we assume that N is an integer multiple of L. Once allocation of N MB’s 
to L channels is performed, then total co-channel interference in the network, 
denoted as Itot

ntw , is given by 
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Where ptx  is MB’s fixed transmit power, CS  represents the set of MBs 
assigned to channel/frequency s; NS  is the length of the set CS  (i.e., the 
number of MBs in channel s), and gij  represents the corresponding link 
gains, IS  is the sum of the interference signal powers experienced by those 

MBs using the same channel s, and N NS
s
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=
∑ =

1
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ntw , as
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where NS  is the number of MBs in channel s. The lower the interference, the 
better the performance (e.g. data rate) of the wireless network for the same 
radio resources. It’s also expected that the lower the interference in (3)-(4), 
the higher the SINR in (1). Therefore it is aimed to minimize the total/average 
interference in (3)-(4) by improving the channel allocation mechanism: Thus, 
from (1)-(3), we formulate the channel allocation problem as determining the 
sets CS  of mobiles (s = 1, …, L) which minimizes the total network interfer-
ence Itot

ntw  in (3), i.e.: 

 
determine ,  ( 1, ,
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Similarly, for the average co-channel interference, Iave
ntw  in (4), channel alloca-

tion problem is 

 
determine  ,  ( 1, ,

 
C s L
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S

I
=  )

min  (6)

Let’s assume that there should be at least one mobile in each channel due to 
the assumption N>L, and assume that neighboring channel interference can 
be omitted. Once the channel allocation determines the sets CS

, then for each 
channel, we have an N NS S´  dimensional L different co-channel link gain 
matrices for calculating the (total/average) network interference. For exam-
ple, let N = 6, and L = 2: In this case, if the channel allocation algorithm 
allocates one MB into one channel, and the remaining 5 MBs into the other 
channel, then it means we have 1 1´  and 5 5´  dimensional two different link 
gain matrices to calculate the network interference. If the allocation were 3 
MBs into one channel and other 3 MBs into the other channel, then we would 
have 3 3´  and 3 3´  dimensional two different link gain matrices. The total 
network interference in (5) would have 20 entries (because in one channel 
zero interference, and in the other ( )5 5 5× −  = 20 nondiagonal elements) in 
the first case, and would have only 12 entries in the latter case (because 
( )3 3 3× −( )  +  ( )3 3 3× −( )  = 12). 

Channel allocation procedure determines which gij ’s to be chosen in min-

imizing the total network interferences Itot
ntw  or Iave

ntw  in (3) and (4), respec-

tively, and this is an NP-complete problem for even L = 2 case. The amount 
of time for exhaustive search goes roughly exponentially by the network size 
N (for proof, see e.g. p.359 of [12]). In what follows in section III, we exam-
ine the L = 2 case. 

III.  SPectRAl cluSteRING bASed SolutIoNS FoR  
L = 2 cASe

In this section, we examine the optimization problem defined in section 2 for 
the case L = 2, because i) it’s general solution is not known (NP-complete), 
and ii) for L qq= ≥2 2,  , the same algorithm can be iteratively applied 
2q - 1 times to find to solution. 

A. maxCut Solution: Approximation by Maximum-Eigenvector (SpecPure 
Algorithm)

Let’s first define the following matrices: 

definition: Denoting the received signal strength (RSS) at MS i of the pilot 
signal from MB j as rij , we define so-called received-signal-strength (RSS) 
based adjacency system matrix as follows
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 R= 

 = 


×

r g pij N N ij tx  (7)

where gij is given by (2), and ptx is the fixed transmit power of MB j. 
Because we assume that all the (downlink) transmit powers are fixed and 
the same, the rij  and gij gives the same information. So, the link matrix G 
obtained from (2) and the matrix R in (7) gives the same information. The 
RSS info is readily available in current cellular radio systems (GSM, 3G, 
etc). Every mobile measures the pilot signals of all the neighboring base 
stations, and reports the sorted measurement list to its serving base. This 
info is used for e.g. handover process. We assume that the bases can 
exchange the RSS info so that the RSS based system matrix can be avail-
able in a centralized base. 

In graph partitioning literature, the similarity (or dissimilarity) matrix is 
symmetric because a metric applied when constructing the matrix. As in [7], 
in most of the works treating the channel allocation problem as a graph multi-
coloring problem, the edges represent geographical adjacency of the cells. In 
this paper, our approach is based on the link gain matrix (i.e., RSS info 
because the transmit powers are fixed), which is naturally asymmetric. 
Indeed, in the wireless network case, the defined RSS based non-adjacency 
matrix in (7), and thus the matrix G, is naturally and may be highly asym-
metric because of the random MB and MS locations as well as the random-
ness in the channel. 

Laplacian matrix, sometimes called admittance matrix or Kirchhoff 
matrix, is a matrix representation of a graph, and has various interesting 
mathematical properties (see e.g. [13]). Unnormalized Laplacian matrix (e.g. 
[13], [14]) for the link matrix is defined as 

 L D G= −  (8)
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lemma 1. Let’s define a discrete-value vector x=[ ]x xN1     such that
x xi j,  -1, 1∈ +{ }. For the defined (asymmetric) link-gain matrix G by (2) and 
the Laplacian matrix in (8), we obtain 
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Proof: Examining x LxT  using the matrix G and the diagonal matrix d gives 
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Introducing the constraint that x xi j
2 2    =  (because x xi j,  -1, 1∈ +{ }) for i, 

j = 1,2,…,N, in eq.(11) yields 
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The equation (12) is obtained using the fact that if x xi j,  -1, 1∈ +{ }, then 

x x x x xi j i i j−( ) = −( )2 22 . This completes the proof. 
<

In graph theory, a cut means a partition of the vertices of graph into two 
sets; the size of the cut is the sum of the edges with one vertex on either side 
of the partition. A maximum cut is a cut whose size is not smaller than the 
size of any other cut. The problem of finding a maximum cut in a graph is 
known as the max-cut problem, which is NP-complete. 

Proposition 1. The optimum channel/frequency allocation defined above: 

i) is equal to optimum maxCut solution of the proposed RSS-based 
adjacency matrix with zero diagonal (i.e., gii = 0) in (7); and 

ii) can be approximated by the maximum eigenvector computation of the 
matrix l in (8) after relaxation. 

Proof. Excluding the own channel gains from the system link gain matrix G 
(i.e., making the main diagonal zero, gii = 0), we write the 1-norm of G with 
zero diagonal as 

 G
1

11

=
==
∑∑   gij
j

N

i

N

 (13)

Then, considering the grouping of MBs into two sets C1 and C2, we write 
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Eq.(14) can be written as 
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1 1 1 2 2= = + + + constant I J I J  (15)
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∑∑  , represents the total interfer-

ence which is eliminated once C1 and C2 are determined by the channel allo-
cation process. As a brief example for the notation C1 and C2, let N = 6, and 
let MB 1, 2 and 3 be in C1, and let MB 4, 5 and 6 be in C2. In this  

case C1 1 2={ }, ,  3 , C2 4 5={ }, ,  6 ; I g g g g g g1 12 13 21 23 31 32= + + + + + ; 

I g g g g g g2 45 46 54 56 64 65= + + + + + ; J g g g g g g g g g1 14 15 16 24 25 26 34 35 36= + + + + + + + + 
J g g g g g g g g g1 14 15 16 24 25 26 34 35 36= + + + + + + + + ; and J g g g g g g g g g2 41 42 43 51 52 53 61 62 63= + + + + + + + + .  

Note that we treat own link gains gii = 0  in this formulation because we only 
consider minimizing the total/average network interference. 

In graph theory, a cut means a partition of the vertices of graph into two 
sets (C1 and C2); and the size of the cut is the sum of the edges with one vertex 
on either side of the partition. This means 
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Volume (vol) of a set is equal to the sum of all the edges whose vertices are in 
the same set (e.g. [13], [16]). This means 

 vol C g vol C gij
j C

N

i C

N

ij
j C

N

i C

( ) ( ). ..
1 2

1

1

1

1

2

2

= =
∈∈ ∈∈
∑∑ ∑  and   

22

2N

∑  (17)

So, from (13)-(17) and vol G gij
j

N

i

N

( )=
==
∑∑  

11

, we can write 

 G
1 1 1 2 2 2 1= = + + +vol G vol C cut C C vol C cut C C( ) ( ) ( , ) ( ) ( , )  (18)

where vol C I( )1 1=  , vol C I( )2 2=  , and J cut C C1 1 2= ( , )  and J cut C C2 2 1= ( , ).
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Let’s define a discrete-value vector x=[ ]x xN1     such that, x
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From (14)-(15) , 
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This is equal to well-known weighted maxCut problem in graph theory 
(e.g. [13]). From eq.(12) (Lemma 1), eq.(19) and (20), we obtain 
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Let’s denote the eigenvector corresponding the maximum eigenvalue of 
matrix l in (8) as emax . Relaxing the optimization in (21) such that x ∈ℜ ×N 1

(instead of being integers), we know from linear algebra theory that the opti-
mum solution which maximizes x LxT  in (21) with unit norm constraint is 
equal to 

 x eopt sign     = ( )max  (22)

which completes the proof. 
<

It should be noted that the unnormalized Laplacian matrix in (8) is not the 
only choice in implementation. Different normalized Laplacian matrices can 
be used in practice after defining symmetric link gain matrix G G G= +( )0 5. ,T  

i.e., g g gij ij ji= ( )+0 5. . In Lemma 1 and Proposition 1 above, we proceed 

with asymmetric link gain matrix G for the sake of clarity and brevity. Equiv-

alently, we may alternatively define the matrix in (8) as L D G= − , where 



102 Zekeriya Uykan

d=[ ]=
=

= ≠
∑

d
g m n

mn

ij
j j i

N

 ,  if 

              otherwis

  1

0

, ( )

, ee










, and obtain the same results. This is 

because G G
1 1
=   and     g g gij

j C

N

i C

N

ij
j C

N

i C

N

ij
j C

N

i C

N

∈∈ ∈∈ ∈∈
∑∑ ∑∑ ∑∑+ = +

1

1

1

1

2

2

2

2

1

1

1

1

ggij
j C

N

i C

N

∈∈
∑∑

2

2

2

2

,

and     g g gij
j C

N

i C

N

ij
j C

N

i C

N

ij
j C

N

i C

N

∈∈ ∈∈ ∈∈
∑∑ ∑∑ ∑∑+ = +

2

2

1

1

1

1

2

2

2

2

1

1

ggij
j C

N

i C

N

∈∈
∑∑

1

1

2

2

. In this paper, we only 

use the Laplacian matrix in (8) for the sake of its simplicity. Alternatively, 
some of the Laplacian matrices which can be used in practice are “symmet-

ric” Laplacian L D LDsym =
− −1 2 1 2/ / , or “random-walk” Laplacian L D Lrw =

−1  

(e.g. [13], [14]). It’s reported that the results may depend on the choice of the 
Laplacian matrix. 

corollary 1. The solution in Proposition 1 which minimizes the total co-
channel interference in the network Itot

ntw  in (3) also minimizes the average 
co-channel interference Iave

ntw  in (4) if it’s required that the total number of 
MBs should be evenly distributed over the channels. 

Proof: If N N N1 2 2= = ( / ) , from eq.(3), (4) and Proposition 1, it’s straight-
forward to obtain 

 min min ( , ) ( , )I
N

cut A B cut B Aave
ntw{ }= − +( )( )










2
1

  G  (23)

which gives Corollary 1.
<

In Proposition 1, we turn the the channel allocation problem into a maxCut 
graph partitioning problem. Therefore, any commercial applications devel-
oped for general maxCut problems, e.g., semiconductor design [16], quan-
tum computing [17], semi-definite programming (e.g. [18], [19]) to name a 
few, could also be used for channel allocation problem. In what follows, we 
propose spectral clustering as an approximation to the maxCut solution due 
to its simplicity and good performance for various scenarios as shown by 
simulation results in section VI.

IV.  SPectRAl cluSteRING bASed SolutIoNS FoR 
ARbItRARy L cASe

The case for L = 2 is considered in [1]. The analysis of the case L = 2 is 
presented above. In this section, we examine the same problem for arbitrary 
L. As in (14)-(15), let’s define Il  and Jl

 , l = 1,…, L as
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where set Cl consists of the indices of those MBs which are in set l, and set Cl  
represents the indices of the rest of the MBs, Nl is the length of Cl (i.e., the 
number of MBs in set Cl), and Nl

 is the length of Cl
 (and thus N N Nl l= − ). 

Allocating N MBs into L channels (i.e. determining the sets C C CL1 2, , ,{ } ), 
the volume (i.e., entrywise 1-norm) of the link gain matrix G with zero diago-
nal can be written as 

 vol I Jl l
l

( )G = +( )
=
∑ 

1

L

 (25)

where Il  and Jl
 are defined in (24). From (24) and (25) 

 vol g gij
j C

N

ij
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i C

N

i C

N

l

l

l

l

l

l

l

l

( )G = +










∈ ∈∈∈
∑ ∑∑∑   

=
∑
l 1

L

 (26)

Using the definition of vol and cut as defined above, eq.(26) can be written as 

 vol vol C cut C Cl l l
l

L

l

L

( ) ( , )G = = ( )+
==
∑∑ constant

11

 (27)

where vol C gl ij
j C

N

i C

N

l

l

l

l

( )=
∈∈
∑∑   is the sum of interference in channel l, and 

cut C C gl l ij
j C

N

i C

N

l

l

l

l

,( )=
∈∈
∑∑   represents the sum of the interference that is elimi-

nated in channel l due to the channel allocation result . Comparing (25) and (27) 

 I vol C g J cut C C gl l ij
j C

N

i C

N

l l l

l

l

l

l

= ( )= = =
∈∈
∑∑       and      ( , ) iij

j C

N

i C

N

l

l

l

l

∈∈
∑∑  (28)

where l = 1,2,…,N. From (27)

 min max ( ,
C l

l

L

C l l
l l

L
l l
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l
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=
∑








1

 (29)

From eq.(29), minimizing the total co-channel interference is equal to 
well-known weighted maxCut problem in graph theory as explained in Sec-
tion III. For the unnormalized Laplacian matrix in (8) it’s known from the 
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linear algebra theory that the maxCut problem in (29) can be formulated as 
matrix trace maximization problem for general L (see e.g. [14]) as follows 

   maxCut   C C
T

L
Tr

1 ,..., maxG H LH{ }= ( ){ }  (30)

where Tr ⋅( )  represents trace operation for a matrix, and where 

   [   
     if th MB is in 

        otherwis
H= =h

L i C
ij

j]
/ , ’

,

1

0 ee

           








= =i , ,N,           j , ,L1 1 

 (31)

Equation (30) is standard trace maximization problem, and relaxing the dis-
crete-solution constraint of (31), it is well-known from linear algebra that the 
optimum solution is given by choosing H as the matrix which contains the 
greatest k eigenvectors of matrix l as columns (see e.g.[14]). Thus, the first 
proposed algorithm, the SpecPure algorithm, for arbitrary L is given in 
TABLE 1. 

V.  N-GAIR: SPectRAl-bASed NoN-GReedy ASyNcHRoNouS 
INteRFeReNce ReductIoN AlGoRItHm

The proposed algorithm in this paper is called N-GAIR (spectral-based Non-
Greedy Asynchronous Interference Reduction algorithm) and is summarized 
in TABLE 2. 

Proposition 2: In the second phase of the N-GAIR summarized in TABLE 2, 
it converges to a (local) minimum of the total co-channel interference in the 

1. Every mobile base (MB) transmits a pilot signal.
2.  Every MS measures the received signal strength (RSS), , from all other MBs. 

The average link gains gij  
are calculated from rij  because pilot signal power is 

known. 
3. Sends the RSS information to the center MB.
4.  The center MB establishes the RSS based adjacency matrix in (7); and finds the 

greatest L eigenvectors of the Laplacian matrix lN N´  
in (8).

5. Establish a matrix yN L´  whose columns are the greatest L eigenvectors.

6.  Run k-means algorithm to the row vectors y Yi i N L

N
L{ }

= ×∈ ℜ ⋅ ⋅ ⋅ ⋅
1

of  of LN×Y  
and determine the clusters C CL1, , . .

TABLE 1
SpecPure algorıtm for Arbıtrary L.
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network Itot
ntw  in (3) for any initial condition within a finite number of itera-

tions. 

Proof: Let’s denote I ntot
ntw ( )  as the total network (co-channel) interference at 

iteration n. Thus, Itot
ntw ( )0  indicates the initial total interference corresponding 

to the initial channel allocation at iteration 0. From (3), (25) and (28) 

I I Jtot
ntw

l l
l

= +( )
=
∑ 

1

L

. Representing the channel index for MB i as s(i) such that 

s i L( ) , , ,∈{ }1 2 , we can write from (28) that I vol C gs i s i ij
j C

N

i C

N

s i

s i

s i

s i

( ) ( )

( )

( )

( )

( )

.= ( )=
∈∈
∑∑   

The N-GAIR allocates the MBs to L channels according to the following 

simple rule: If, for MB i, there exists a channel s(i) + d ∈{ }1 2, , L,  such 

that I Is i d s i( ) ( )+ < , then MB i is allocated from channel s(i) to channel s(i) + d, 

Phase 1: central rough estimate
Run a standard spectral clustering for L clusters as in Step 1 in TABLE 1 and determine the 
clusters C CL1, , .

Phase 2: Asynchronously tuned solution

Defining Ii vol Ci gij
j C

N

i C

N

i

s i

i

s i

= =( )
∈∈
∑∑  

( )( )

,   i = 1,…L,  update the channel allocation by the 

following procedure:
for i = 1:N 
  s(i) = the channel index for MB i. 

    I vol C gs i s i ij
j C

N

i C

N

s i

s i

s i

s i

( ) ( )

( )

( )

( )

( )

= =( )
∈∈
∑∑  ; %Determine the total interference in channel s(i)

         d = 1;
  while d<L (such that s i d , , L( ) ,+ ∈( ) { }1 2  )

     I gs i d ij
j C

N

i C

N

s i d

s i d

s i d

s i d

( )

( )

( )

( )

( )

+
∈∈

=
+

+

+

+

∑∑ % the total interference in channel s(i) + d  if the MB 

i were assigned to (s(i) + d).  

    if ( )( ) ( )I Is i d s i+ < 

      s i s i d( ) ( )← + ;   % update the channel because total network interference in 

(3) is reduced!
     break;    % the channel is found, and break the while loop 
    end
    d d← +1
  end
end

TABLE 2
N-GAIR: Spectral-Based Non-Greedy Asynchronous Interference Reduction Algorithm.
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and stops searching for further channels, and goes to the next step. Examin-

ing the fact that I Is i d s i( ) ( )+ <  in eq.(3) yields in 

 I n I ntot
ntw

tot
ntw( ) ( )< −1  (32)

This means that for every iteration n, at which an MB is allocated to a new 
channel, the total network interference of eq.(3) is further minimized. And 
because the number of all possible channel combinations is limited, the 
N-GAIR will converge to a local minimum of the cost function (total network 
interference in eq.(3)) within a finite number of iterations. When none of the 
MBs finds a better channel with less interference any more, a (local) mini-
mum is reached. This completes the proof. 

<
As compared to the GADIA algorithm in [6], the proposed algorithm N-GAIR 
updates the channel for the first better channel encountered, while the GADIA 
checks all possible L channels to determine the best one in a greedy manner. 
This implies that the N-GAIR would require less number of measurements in 
an epoch than the GADIA does in symmetric link gain network scenarios. 
However, the disadvantage of N-GAIR is that it needs more interference 
information: For every channel, while the basic GADIA needs only the co-
channel interference measurements, the N-GAIR needs not only co-channel 
interference from other cells but also the portion of the interference it causes 
to other cells. 

VI. SImulAtIoN ReSultS 

We compare the performances of the proposed SpecPure and N-GAIR algo-
rithms with the basic GADIA in [9] as a representative of the minimum inter-
ference algorithms like those in [6]-[8], among others. Remind that the 
GADIA is originally designed and analyzed for symmetric link gain case. In 
the ad-hoc network case examined in this paper, the link matrix is (and may 
be highly) asymmetric. Without loss of generality, direct-sequence (W)
CDMA wireless system and downlink transmission is considered in all the 
examples. For link gains modeling, attenuation factor b= 3 , the log-nor-
mally distributed sij  in (2) is generated according to the model in [20], and 
the lognormal variance is 1 dB. (W)CDMA chiprate is 3.84 MHz. All the 
transmit powers of MBs are fixed to 2 mW for all simulations. In order to give 
an insight into some of the cases where the SpecPure outperforms the GADIA 
which gets stuck into a local minimum, some illustrative sample snapshots 
with various numbers of MBs are examined in examples 1 to 3. 

In the simulations, we examine to the average interference power obtained 
from (4) which is calculated from (7), as well as the average Shannon channel 
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capacity which is calculated using the SINR in (1). The channel capacity is 
the bit rate at which data can be sent along a channel with a negligible error 
rate. For the MB i the Shannon channel capacity is 

 C  Wi i= +( )log2 1 q  (33)

where W = 3.84 MHz is the bandwidth and qi  is the Signal-to-Noise-Ratio 
in (1). Then the average Shannon capacity over the N MBs is 

 C
N

Ci
i

N

=
=
∑1

1

 (34)

A. Example 1 (relatively small N, L = 2): In this simple example, there are 
10 clusters of MBs (i.e., N = 10). The center MBs are located on a straight 
line as shown in Figure 1. a and 2.b. The channel allocation results of the 
GADIA [6] and the SpecPure in Table 1 are also indicated in Figure 1. a and 
Figure 1. b, respectively. The red and the green colors show the channel allo-
cation. Figure 1. shows the greatest eigenvector with respect to the smallest 
one of the Laplacian matrix in (8), according to which the SpecPure allocates 
the MBs to the channels. As seen from the Figure 1. a, the MBs 3 and 4, 
which are next to each other, are allocated into the same channel, which dete-
riorates the performance. On the other hand, the SpecPure gives the globally 
optimum solution for this scenario as seen in Figure 1. b and Figure 1. c. The 
greatest eigenvector with respect to the least significant eigenvector of the 
Laplacian matrix in (8) is shown in Fig.1.(c). Fig.1.c. shows that the signs of 
the dominant eigenvector indicates the globally optimum channel allocation 
solution for this particular example. 

The average interference power and the average Shannon channel capacity 
results are presented in Fig. 2 over 10000 snapshots for the wireless network 
in Fig.1. As seen from Fig.2, the SpecPure and the N-GAIR outperforms the 
GADIA: The average interference powers of the SpecPure and N-GAIR is 
about 3.34 dB lower than the GADIA case; and this translates into 377.2 kbps 
channel capacity increase on the average as compared to the GADIA case for 
this network configuration. 

B. Example 2 (relatively small N, L = 2): In example 1 above, the center MBs 
were located on a straight line (in one dimension). In this illustrative example, 
an ad-hoc network with 6 MBs in 2-dimensional center MB locations is shown 
in Figure 3. The channel allocation results are also given in Figure 3.a and 3.b 
for the GADIA and the SpecPure, respectively. As seen from the figure, the 
GADIA gets stuck at a local minima, while the SpecPure finds the globally 
optimum solution using the greatest eigenvector shown in Figure 3.c. Figure 
3.c. shows that the signs of the dominant eigenvector indicates the globally 
optimum channel allocation solution for this particular example.
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FIGURE 1
A snapshot of the network in Example 1 with N = 10. The center base locations are shown as 
stars in squares; and the circles and triangles in different colors indicate the MB locations with 
their channel allocations by (a) GADIA and (b) SpecPure.  The greatest eigenvector of the cor-
responding Laplacian matrix in the SpecPure is show in (c).

FIGURE 2
Average interference power and average Shannon channel capacity over the 10000 snapshots in 
Example 1.

The average interference power and the average Shannon channel capacity 
results are presented in Fig. 4 over 10000 snapshots for the wireless network 
in Fig.3.a. As seen from Fig.4, the SpecPure and the N-GAIR outperforms the 
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FIGURE 3
The channel allocation results in Example 2:  The circles and triangles in different colors indicate 
the MB locations with their channel allocations by  (a) GADIA and (b) SpecPure. The greatest 
eigenvector of the corresponding Laplacian matrix in the SpecPure is show in (c).

FIGURE 4
Average interference power and average Shannon capacity over the 10000 snapshots in Example 2.

GADIA for this scenario: The average interference powers of the SpecPure 
and N-GAIR is about 1.75 dB lower than the GADIA case; and this translates 
into a 155 kbps channel capacity increase as compared to the GADIA case for 
this network configuration. 
C. Example 3 (relatively large N, L=2): In this example, we present two 
illustrative examples by increasing the number of MBs to 36 and 48. In the 
36-MB case, the MBs are located on a square shape as shown in Figure 5. a. 
The channel allocations are shown by different colors in the figure. Compar-
ing Figure 5. a and Figure 5. b, where the MBs 2, 3, 8, 9, 14, 15, 28, 29, 34 
and 35 are differently allocated by the GADIA and the SpecPure, we see that 
the GADIA gets stuck at a local minima while the SpecPure finds the globally 
optimum solution for this example. The largest eigenvector (w.r.t. to the 
smallest one) of the corresponding Laplacian matrix in (8), which is used by 
the SpecPure is shown in Figure 5. c.

The average interference power and the average Shannon channel capacity 
results over 10000 snapshots for the wireless network in Fig.5.a are presented 
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in Fig. 6. As seen from Fig.6, the SpecPure and the N-GAIR outperforms the 
GADIA for this scenario: The average interference power of the SpecPure 
and N-GAIR is about 0.635 dB lower than the that of the GADIA case; and 
this translates into 87.95 kbps channel capacity increase as compared to the 
GADIA case for this network configuration.

A snapshot of the 48-MB network is shown in Figure 7. Comparing  
Figure 7. a and Figure 7. b, where the MBs 1-2, 5-13, 7-8, 9-17, 16-24 are 
differently allocated by the GADIA and the SpecPure, we see that the GADIA 
gets stuck at a local minima while the SpecPure finds the globally optimum 
solution for this example.

The average interference power and the average Shannon channel capacity 
results are presented in Fig. 8 over 10000 snapshots for the wireless network 
in Fig.7.a. As seen from Fig.8, the average interference power of the Spec-
Pure is about 0.59 dB lower, and that of N-GAIR is about 0.83 dB lower than 
that of the GADIA; and this translates into 95.29 kbps and 98.17 kbps chan-
nel capacity increase for the SpecPure and N-GAIR respectively as compared 
to the GADIA case. 

D. Example 4 (N = 4 to 14, L = 2, random locations): In all the examples 
above, the center MBs are located “symmetrically”. In this example, the loca-

FIGURE 5
A snapshot of the ad-hoc network with N = 36. The circles and diamonds indicates the MB loca-
tions with their channel allocations by (a) GADIA and (b) SpecPure. The greatest eigenvector 
(wrt to the smallest one) of the corresponding Laplacian matrix in the SpecPure is show in (c).
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FIGURE 6
Average interference power and average Shannon capacity over the 10000 snapshots in Fig.5.a. 
in Example 3.

FIGURE 7
A snapshot of the network with N = 48. The circles and diamonds indicate the MB locations 
with their channel allocations by (a) GADIA and (b) SpecPure. The greatest eigenvector (wrt to 
the smallest one) of the corresponding Laplacian matrix in the SpecPure is show in (c).

tions are fully random. First we examine moderate size ad-hoc networks 
(N = 4 to 14). Average interference powers are shown in Fig.9 for N = 4 to 
14. We observe from the figure that i) the N-GAIR clearly outperforms the 
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FIGURE 9
Average interference power and average Shannon capacity over the 10000 snapshots in Exampe 4.

FIGURE 8
Average interference power and average Shannon capacity over the 10000 snapshots in the net-
work in Fig.7.a.

GADIA, i.e., the average interference power of the N-GAIR is lower than that 
of the GADIA in all cases. ii) The performance of N-GAIR is better than that 
of the GADIA only for N = 4 to 8; but the NGAIR deteriorates as N increases 
as compared to the GADIA. 

E. Example 5: (Large N (60 to 150), arbitrary locations, arbitrary L (4, 5, 
6)): This example examines the randomly located large-size networks (i.e., 
N =  50, 100, 150) for arbitrary number of channel case (L>3). Average inter-
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FIGURE 11
Average Shannon capacity over 1000 snapshots in Exampe 5.

ference powers and average Shannon capacity results are shown in Fig.10 and 
Fig.11, respectively. In both figures, case A refers to N = 60, L = 4; case B 
refers to N = 60, L = 6; case C: N = 100, L = 4; case D: N = 100, L = 6, 
case E: N = 150, L = 4, and case F: N = 150, L = 6. Both figures suggest 
that i) the SpecPure algorithm performs poorly as compared to the GADIA 
and the proposed algorithm N-GAIR. The reason is because the performance 
of the k-means algorithm in the eigenspace is generally quite poor for large N 
and L, and therefore does not provide any good initial condition for the sec-
ond phase for large N and L. ii) The proposed method N-GAIR and the 

FIGURE 10
Average interference power over 1000 snapshots in Exampe 5.
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GADIA give comparable results in large-size networks for arbitrary number 
of channel greater than 3. 

In order to give an insight into the evolution of the total network interfer-
ence in eq.(3) with respect to step numbers (at which a channel update is 
performed) as well as with respect to epoch numbers, Figure 12 shows a 
typical example for N = 120 and L = 6. Figure 12 implies that, as explained 
in section V, the N-GAIR converges to a (local) minimum.

coNcluSIoNS 

In this paper, we examine the channel allocation problem in wireless net-
works, which is known to be NP-complete, and thus its optimum solution of 
general wireless networks for even 2-channel case is not known. In this paper, 
turning the channel/frequency allocation problem into a maxCut graph parti-
tioning problem, we 

i) propose a spectral clustering based channel allocation algorithm, named 
as SpecPure,

ii) propose and analyze a novel Non-Greedy Asynchronous Interference 
Reduction Algorithm for Wireless Networks, named as N-GAIR, 

iii) extend the results in [1] to the case where L is arbitrary, (in [1], L = 2 
case is examined), 

iv) show that the proposed N-GAIR minimizes the total network interfer-
ence, and 

v) show that the N-GAIR can be applied to any maxCut graph partitioning 
problem. 

The proposed solutions can be adopted by any cellular, cognitive, ad-hoc 
or mesh type radio networks. By simulating a (W)CDMA based ad-hoc net-

FIGURE 12
A typical plot of the evolution of the total network interference in eq.(3) for the normalized link 
gains with respect to (a) step numbers and (b) epoch numbers for N = 120 and L = 6.
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work, we examine various scenarios to compare the performances of the pro-
posed algorithms with those of reference algorithm. Simulation results 
suggest that 

i) the proposed SpecPure gives the globally optimum solution either for 
special cases like symmetrical center MB locations e.g. square-type, 
circle-type, etc scenarios, or for L = 2; 

ii) However, the SpecPure may give relatively poor solutions for random 
MB locations and relatively large N and L,

iii) The proposed algorithm N-GAIR clearly outperforms the standard min-
imum-interference algorithm (like basic GADIA) for arbitrarily large N 
and L = 2 case for symmetric MB locations,

iv) For random MB locations and for arbitrarily large N and L, the N-GAIR 
and GADIA give comparable results, which outperform the SpecPure, 

v) The N-GAIR results confirm its effectiveness for ad-hoc wireless net-
works with large number of nodes. 
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