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1 Introduction and preliminary facts
Let T, T, T, and T be the operators generated in L[, ] by the differential expression

l(y) = –y′′ + q(x)y ()

and the following boundary conditions:

y′
 + βy′

 = , y – y = , ()

y′
 + βy′

 = , y + y = , ()

y′
 – y′

 = , y + αy =  ()

and

y′
 + y′

 = , y + αy = , ()

respectively, where q(x) is a complex-valued summable function on [, ], β �= ± and α �=
±.
In conditions (), (), (), and () if β = , β = –, α = , and α = –, respectively, then any

λ ∈C is an eigenvalue of infinite multiplicity. In () and () if β = – and α = – then they
are periodic boundary conditions; in () and () if β =  and α =  then they are antiperiodic
boundary conditions.
These boundary conditions are regular but not strongly regular. Note that, if the bound-

ary conditions are strongly regular, then the root functions form a Riesz basis (this result
was proved independently in [, ] and []). In the case when an operator is associated
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with the regular but not strongly regular boundary conditions, the root functions gen-
erally do not form even a usual basis. However, Shkalikov [, ] proved that they can be
combined in pairs, so that the corresponding -dimensional subspaces form a Riesz basis
of subspaces.
In the regular but not strongly regular boundary conditions, periodic and antiperiodic

boundary conditions are the ones more commonly studied. Therefore, let us briefly de-
scribe some historical developments related to the Riesz basis property of the root func-
tions of the periodic and antiperiodic boundary value problems. First results were ob-
tained by Kerimov and Mamedov []. They established that, if

q ∈ C[, ], q() �= q(),

then the root functions of the operator L(q) form a Riesz basis in L[, ], where L(q) de-
notes the operator generated by () and the periodic boundary conditions.
The first result in terms of the Fourier coefficients of the potential q was obtained by

Dernek and Veliev []. They proved that if the conditions

lim
n→∞

ln |n|
nqn

= , ()

qn ∼ q–n ()

hold, then the root functions of L(q) form a Riesz basis in L[, ], where qn =: (q, eiπnx)
is the Fourier coefficient of q and everywhere, without loss of generality, it is assumed
that q = . Here (·, ·) denotes the inner product in L[, ] and an ∼ bn means that an =
O(bn) and bn =O(an) as n→ ∞. Makin [] improved this result. Using anothermethod he
proved that the assertion on the Riesz basis property remains valid if condition () holds,
but condition () is replaced by a less restrictive one: q ∈Ws

 [, ],

q(k)() = q(k)(), ∀k = , , . . . , s – 

holds and |qn| > cn–s– with some c >  for sufficiently large n, where s is a nonnegative
integer. Besides, some conditions which imply the absence of the Riesz basis property were
presented in []. Shkalilov and Veliev obtained in [] more general results, which cover all
results discussed above.
The other interesting results as regards periodic and antiperiodic boundary conditions

were obtained in [–].
The basis properties of other some operators with regular but not strongly regular

boundary conditions are studied in [–]. It was proved in [] that the system of the
root functions of the operator generated by () and the boundary conditions

y′() – (–)σ y′() + γ y() = ,

y() – (–)σ y() = 

forms an unconditional basis of the space L[, ], where q(x) is an arbitrary complex-
valued function from the class L[, ], γ is an arbitrary nonzero complex number and σ =
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, . Kerimov andKaya [, ] investigated the basis properties of fourth order differential
operators with some regular boundary conditions.
In this paper we prove that if

lim
n→∞

ln |n|
nsn

= , ()

where sk = (q, sinπkx), then the large eigenvalues of the operators T and T are simple.
Moreover, if there exists a sequence {nk} such that () holds when n is replaced by nk , then
the root functions of these operators do not form a Riesz basis.
Similarly, if

lim
n→∞

ln |n|
nsn+

= , ()

then the large eigenvalues of the operators T and T are simple and if there exists a se-
quence {nk} such that () holds when n is replaced by nk , then the root functions of these
operators do not form a Riesz basis.
Moreover, we obtain asymptotic formulas of arbitrary precision for the eigenvalues and

eigenfunctions of the operators T, T, T, and T.

2 Main results
We will focus only on the operator T. The investigations of the operators T, T, and T

are similar. It is well known that (see (a) and (b) on page  of []) the eigenvalues
of the operators T(q) consist of the sequences {λn,}, {λn,} satisfying

λn,j = (nπ ) +O
(
n/

)
()

for j = , . From this formula one can easily obtain the following inequality:∣∣λn,j – (πk)
∣∣ = ∣∣(n – k)π

∣∣∣∣(n + k)π
∣∣ +O

(
n



)
> n ()

for j = , ; k �= n; k = , , . . . , and n ≥ N , where N denotes a sufficiently large positive
integer, that is, N 
 .
Let us denote by Tj() the operator Tj when q(x) = . The eigenvalues of the operator

T() are λn = (πn) for n = , , . . . . The eigenvalue  is simple and the corresponding
eigenfunction is . The eigenvalues λn = (πn) for n = , , . . . are double and the corre-
sponding eigenfunctions and associated functions are

yn(x) = cosπnx and φn(x) =
(

β

 + β
– x

)
sinπnx
πn

, ()

respectively. Note that for any constant c, φn(x) + cyn(x) is also an associated function
corresponding to λn, since one can easily verify that it satisfies the equation and boundary
conditions for the associated functions. It can be shown that the adjoint operator T∗

 () is
associated with the boundary conditions

y + βy = , y′
 – y′

 = .

It is easy to see that  is a simple eigenvalue of T∗
 () and the corresponding eigenfunction

is y∗
(x) = x – 

+β
. The other eigenvalues λ∗

n = (πn) for n = , , . . . , are double and the
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corresponding eigenfunctions and associated functions are

y∗
n(x) = sinπnx and φ∗

n(x) =
(
x –


 + β

)
cosπnx
πn

()

respectively.
Let

ϕn(x) :=
πn(β + )

β – 
φn(x) =

(β + )
β – 

(
β

 + β
– x

)
sinπnx ()

and

ϕ∗
n(x) :=

πn(β + )
β – 

φ∗
n(x) =

(β + )
β – 

(
x –


 + β

)
cosπnx ()

(see () and ()). The system of the root functions of T∗
 () can be written as {fn : n ∈ Z},

where

f–n = sinπnx, ∀n >  and fn = ϕ∗
n(x), ∀n≥ . ()

One can easily verify that it forms a basis in L[, ] and the biorthogonal system {gn : n ∈
Z} is the system of the root functions of T(), where

g–n = ϕn, ∀n >  and gn = cosπnx, ∀n≥ , ()

since (fn, gm) = δn,m.
To obtain the asymptotic formulas for the eigenvalues λn,j and the corresponding nor-

malized eigenfunctions �n,j(x) of T(q) we use () and the well-known relations

(
λN ,j – (πn)

)
(�N ,j, sinπnx) = (q�N ,j, sinπnx) ()

and

(
λN ,j – (πn)

)(
�N ,j,ϕ∗

n
)
– γn(�N ,j, sinπnx) =

(
q�N ,j,ϕ∗

n
)
, ()

where

γ =
π (β + )

β – 
,

which can be obtained by multiplying both sides of the equality

–(�N ,j)′′ + q(x)�N ,j = λN ,j�N ,j

by sinπnx and ϕ∗
n , respectively. It follows from () and () that

(�N ,j, sinπnx) =
(q�N ,j, sinπnx)

λN ,j – (πn)
; N �= n, ()

(
�N ,j,ϕ∗

n
)
=

γn(q�N ,j, sinπnx)
(λN ,j – (πn))

+
(q�N ,j,ϕ∗

n)
λN ,j – (πn)

; N �= n. ()

http://www.boundaryvalueproblems.com/content/2014/1/57
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Moreover, we use the following relations:

(�N ,j,q sinπnx) =
∞∑

n=

[
(qϕn , sinπnx)(�N ,j, sinπnx)

+ (q cosπnx, sinπnx)
(
�N ,j,ϕ∗

n

)]
, ()

(
�N ,j,qϕ∗

n
)
=

∞∑
n=

[(
qϕn ,ϕ

∗
n
)
(�N ,j, sinπnx) +

(
q cosπnx,ϕ∗

n
)(

�N ,j,ϕ∗
n

)]
, ()

∣∣(q�N ,j, sinπnx)
∣∣ < M, ()∣∣(q�N ,j,ϕ∗

n
)∣∣ < M ()

for N 
 , whereM = sup |qn|. These relations are obvious for q ∈ L(, ), since to obtain
() and () we can use the decomposition of q sinπnx and qϕ∗

n by the basis (). For
q ∈ L(, ) see Lemma  of [].
To obtain the asymptotic formulas for the eigenvalues and eigenfunctions we iterate

() and () by using () and (). First let us prove the following obvious asymptotic
formulas, namely (), for the eigenfunctions �n,j. The expansion of �n,j by the basis ()
can be written in the form

�n,j = un,jϕn(x) + vn,j cosπnx + hn,j(x), ()

where

un,j = (�n,j, sinπnx), vn,j =
(
�n,j,ϕ∗

n
)
, ()

hn,j(x) =
∞∑
k=
k �=n

[
(�n,j, sinπkx)ϕk(x) +

(
�n,j,ϕ∗

k
)
cosπkx

]
,

and ϕn(x), ϕ∗
n(x) are defined in () and (), respectively. Using (), (), (), and ()

one can readily see that there exists a constant C such that

sup
∣∣hn,j(x)∣∣ ≤ C

(∑
k �=n

(


|λn,j – (πk)| +
n

|(λn,j – (πk))|
))

=O
(
lnn
n

)
. ()

Hence by () and () we obtain

�n,j = un,jϕn(x) + vn,j cosπnx +O
(
lnn
n

)
. ()

Since �n,j is normalized, we have

 = ‖�n,j‖ = (�n,j,�n,j)

= |un,j|‖ϕn‖ + |vn,j|‖ cosπnx‖

+ un,jvn,j(ϕn, cosπnx) + vn,jun,j(cosπnx,ϕn) +O
(
lnn
n

)
=

(



|β| –Reβ + 
|β – |

)
|un,j| + 


|vn,j| +O

(
lnn
n

)
,
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that is,

a|un,j| + 

|vn,j| =  +O

(
lnn
n

)
, ()

where

a =



|β| –Reβ + 
|β – | .

Note that a �= , since |β| +  > |β| and by () we see that at least one of un,j and vn,j is
different from zero.
Now let us iterate (). Using () in () we get

(
λn,j – (πn)

)
(�n,j, sinπnx)

=
∞∑

n=

[
(qϕn , sinπnx)(�n,j, sinπnx) + (q cosπnx, sinπnx)

(
�n,j,ϕ∗

n

)]
.

Isolating the terms in the right-hand side of this equality containing the multiplicands
(�n,j, sinπnx) and (�n,j,ϕ∗

n) (i.e., the case n = n), using () and () for the terms
(�n,j, sinπnx) and (�n,j,ϕ∗

n ), respectively (in the case n �= n), we obtain

[
λn,j – (πn) – (qϕn, sinπnx)

]
(�n,j, sinπnx) – (q cosπnx, sinπnx)

(
�n,j,ϕ∗

n
)

=
∞∑

n=
n �=n

[
(qϕn , sinπnx)(�n,j, sinπnx) + (q cosπnx, sinπnx)

(
�n,j,ϕ∗

n

)]

=
∑
n

[
a(λn,j)

(
q(x)�n,j, sinπnx

)
+ b(λn,j)

(
q(x)�n,j,ϕ∗

n

)]
,

where

a(λn,j) =
(qϕn , sinπnx)
λn,j – (πn)

+
γn(q cosπnx, sinπnx)

(λn,j – (πn))
,

b(λn,j) =
(q cosπnx, sinπnx)

λn,j – (πn)
.

Using () and () for the terms (q�n,j, sinπnx) and (q�n,j,ϕ∗
n ) of the last summation

we obtain

[
λn,j – (πn) – (qϕn, sinπnx)

]
(�n,j, sinπnx) – (q cosπnx, sinπnx)

(
�n,j,ϕ∗

n
)

=
∑
n

[
a(λn,j)(q�n,j, sinπnx) + b(λn,j)

(
q�n,j,ϕ∗

n

)]

=
∑
n

a

( ∞∑
n=

[
(qϕn , sinπnx)(�n,j, sinπnx)

+ (q cosπnx, sinπnx)
(
�n,j,ϕ∗

n

)])

http://www.boundaryvalueproblems.com/content/2014/1/57
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+
∑
n

b

( ∞∑
n=

[(
qϕn ,ϕ

∗
n

)
(�n,j, sinπnx)

+
(
q cosπnx,ϕ∗

n

)(
�n,j,ϕ∗

n

)])
.

Now isolating the terms for n = n we get

[
λn,j – (πn) – (qϕn, sinπnx)

]
(�n,j, sinπnx) – (q cosπnx, sinπnx)

(
�n,j,ϕ∗

n
)

=
∑
n

[
a(qϕn, sinπnx) + b

(
qϕn,ϕ∗

n

)]
(�n,j, sinπnx)

+
∑
n

[
a(q cosπnx, sinπnx) + b

(
q cosπnx,ϕ∗

n

)](
�n,j,ϕ∗

n(x)
)

=
∑
n,n

([
a(qϕn , sinπnx) + b

(
qϕn ,ϕ

∗
n

)]
(�n,j, sinπnx)

)
+

∑
n,n

[
a(q cosπnx, sinπnx) + b

(
q cosπnx,ϕ∗

n

)](
�n,j,ϕ∗

n

)
.

Here and below the summations are taken under the conditions ni �= n and ni = , , . . . for
i = , , . . . . Introduce the notations

C =: a, M =: b,

Ck+ =: Ckak+ +MkAk+, Mk+ =: Ckbk+ +MkBk+; k = , , . . . ,

where

ak+ = ak+(λn,j) =
(qϕnk+ , sinπnkx)
λn,j – (πnk+)

+
γnk+(q cosπnk+x, sinπnkx)

(λn,j – (πnk+))
,

bk+ = bk+(λn,j) =
(q cosπnk+x, sinπnkx)

λn,j – (πnk+)
,

Ak+ = Ak+(λn,j) =
(qϕnk+ ,ϕ

∗
nk )

λn,j – (πnk+)
+

γnk+(q cosπnk+x,ϕ∗
nk )

(λn,j – (πnk+))
,

Bk+ = Bk+(λn,j) =
(q cosπnk+x,ϕ∗

nk )
λn,j – (πnk+)

.

Using these notations and repeating this iteration k times we get

[
λn,j – (πn) – (qϕn, sinπnx) – Ãk(λn,j)

]
(�n,j, sinπnx)

=
[
(q cosπnx, sinπnx) + B̃k(λn,j)

](
�n,j,ϕ∗

n(x)
)
+ Rk , ()

where

Ãk(λn,j) =
k∑

m=

αm(λn,j), B̃k(λn,j) =
k∑

m=

βm(λn,j),

αk(λn,j) =
∑

n,...,nk

[
Ck(qϕn, sinπnkx) +Mk

(
qϕn,ϕ∗

nk

)]
,

http://www.boundaryvalueproblems.com/content/2014/1/57
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βk(λn,j) =
∑

n,...,nk

[
Ck(q cosπnx, sinπnkx) +Mk

(
q cosπnx,ϕ∗

nk

)]
,

Rk =
∑

n,...,nk+

{
Ck+(q�n,j, sinπnk+x) +Mk+

(
q�n,j,ϕ∗

nk+

)}
.

It follows from (), (), (), and () that

αk(λ) =O
((

ln |n|
n

)k)
, βk(λ) =O

((
ln |n|
n

)k)
,

Rk(λ) =O
((

ln |n|
n

)k+) ()

for λ = λn,j and for all λ ∈U(n), where U(n) = {λ : |λ – (πn)| ≤ n}.
Therefore letting k tend to infinity, we obtain

[
λn,j – (πn) –Qn –A(λn,j)

]
un,j =

[
Pn + B(λn,j)

]
vn,j,

where

Pn = (q cosπnx, sinπnx), Qn = (qϕn, sinπnx), ()

A(λ) =
∞∑
m=

αm(λ), B(λ) =
∞∑
m=

βm(λ)

and by () we have

A(λ) =O
(
ln |n|
n

)
, B(λ) =O

(
ln |n|
n

)
()

for λ = λn,j and for all λ ∈U(n).
Thus iterating () we obtain (). Now iterating () instead of (), using () and (),

and arguing as in the previous iteration, we get

[
λn,j – (πn) – P∗

n –A′
k(λn,j)

]
vn,j =

[
γn +Q∗

n + B′
k(λn,j)

]
un,j + R′

k , ()

where

P∗
n =

(
q cosπnx,ϕ∗

n
)
, Q∗

n =
(
qϕn,ϕ∗

n
)
, ()

A′
k(λn,j) =

k∑
m=

α′
m(λn,j), B′

k(λn,j) =
k∑

m=

β ′
m(λn,j),

α′
k(λn,j) =

∑
n,...,nk

[
C̃k(q cosπnx, sinπnkx) + M̃k

(
q cosπnx,ϕ∗

nk

)]
,

β ′
k(λn,j) =

∑
n,...,nk

[
C̃k(qϕn, sinπnkx) + M̃k

(
qϕn,ϕ∗

nk

)]
,

R′
k =

∑
n,...,nk+

{
C̃k+(q�n,j, sinπnk+x) + M̃k+

(
q�n,j,ϕ∗

nk+

)}
,

http://www.boundaryvalueproblems.com/content/2014/1/57
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C̃k+ = C̃kak+ + M̃kAk+, M̃k+ = C̃kbk+ + M̃kBk+; k = , , . . . ,

C̃ = A(λn,j) =
(qϕn ,ϕ∗

n)
λn,j – (πn)

+
γn(q cosπnx,ϕ∗

n)
(λn,j – (πn))

,

M̃ = B(λn,j) =
(q cosπnx,ϕ∗

n)
λn,j – (πn)

.

Similar to () one can verify that

α′
k(λ) =O

((
ln |n|
n

)k)
, β ′

k(λ) =O
((

ln |n|
n

)k)
,

R′
k(λ) =O

((
ln |n|
n

)k+) ()

for λ = λn,j and for all λ ∈U(n). Now letting k tend to infinity in (), we obtain

[
λn,j – (πn) – P∗

n –A′(λn,j)
]
vn,j =

[
γn +Q∗

n + B′(λn,j)
]
un,j,

where

A′(λn,j) =
∞∑
m=

α′
m(λn,j), B′(λn,j) =

∞∑
m=

β ′
m(λn,j)

and by () we have

A′(λ) =O
(
ln |n|
n

)
, B′(λ) =O

(
ln |n|
n

)
()

for λ = λn,j and for all λ ∈U(n).
To get the main results of this paper we use the following system of equations, obtained

above, with respect to un,j and vn,j,

[
λn,j – (πn) –Qn –A(λn,j)

]
un,j =

[
Pn + B(λn,j)

]
vn,j, ()[

λn,j – (πn) – P∗
n –A′(λn,j)

]
vn,j =

[
γn +Q∗

n + B′(λn,j)
]
un,j, ()

where

Qn = –
(β + )
β – 

∫ 


xq(x)dx +

(β + )
β – 

(
xq(x), cosπnx

)
–

β
β – 

(
q(x), cosπnx

)
()

= –
(β + )
β – 

∫ 


xq(x)dx + o(), ()

P∗
n =

(β + )
β – 

∫ 


xq(x)dx +

(β + )
β – 

(
xq(x), cosπnx

)
–


β – 

(
q(x), cosπnx

)
()

=
(β + )
β – 

∫ 


xq(x)dx + o(), ()

http://www.boundaryvalueproblems.com/content/2014/1/57
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Pn =


(q, sinπnx) = o(), ()

Q∗
n = 

(
β + 
β – 

) ∫ 


q(x)

(
β

 + β
– x

)(
x –


 + β

)
sinπnxdx = o() ()

(see () and ()). Note that (), () with (), () give[
λn,j – (πn) –Qn +O

(
ln |n|
n

)]
un,j =

[
Pn +O

(
ln |n|
n

)]
vn,j, ()[

λn,j – (πn) – P∗
n +O

(
ln |n|
n

)]
vn,j =

[
γn +Q∗

n +O
(
ln |n|
n

)]
un,j. ()

Introduce the notations

cn = (q, cosπnx), sn = (q, sinπnx),

cn, = (xq, cosπnx), sn, = (xq, sinπnx), ()

cn, =
(
xq, cosπnx

)
, sn, =

(
xq, sinπnx

)
.

Then, by ()-() and () we have

Qn = –
(β + )
β – 

∫ 


xq(x)dx +

(β + )
β – 

cn, –
β

β – 
cn, ()

P∗
n =

(β + )
β – 

∫ 


xq(x)dx +

(β + )
β – 

cn, –


β – 
cn, ()

Pn =


sn, ()

Q∗
n = –

(
β + 
β – 

)

sn, + 
(

β + 
β – 

)

sn, –
β

(β – )
sn. ()

Theorem  The following statements hold:
(a) Any eigenfunction �n,j of T corresponding to the eigenvalue λn,j defined in ()

satisfies

�n,j =
√
 cosπnx +O

(
n–/

)
. ()

Moreover, there exists N such that for all n >N the geometric multiplicity of the
eigenvalue λn,j is .

(b) A complex number λ ∈U(n), where U(n) is defined in (), is an eigenvalue of T if
and only if it is a root of the equation

[
λ – (πn) –Qn –A(λ)

][
λ – (πn) – P∗

n –A′(λ)
]

–
[
Pn + B(λ)

][
γn +Q∗

n + B′(λ)
]
= . ()

Moreover, λ ∈U(n) is a double eigenvalue of T if and only if it is a double root of ().

Proof (a) By () the left-hand side of () is O(n/), which implies that un,j = O(n–/).
Therefore from () we obtain (). Now suppose that there are two linearly independent
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eigenfunctions corresponding to λn,j. Then there exists an eigenfunction satisfying

�n,j =
√
 sinπnx + o(),

which contradicts ().
(b) First we prove that the large eigenvalues λn,j are the roots of (). It follows from (),

(), and () that vn,j �= . If un,j �=  then multiplying () and () side by side and then
canceling vn,jun,j we obtain (). If un,j =  then by () and () we have Pn + B(λn,j) = 
and λn,j – (πn) – P∗

n –A′(λn,j) = , which means that () holds. Thus in any case λn,j is a
root of ().
Now we prove that the roots of () lying in U(n) are the eigenvalues of T. Let F(λ) be

the left-hand side of (), which can be written as

F(λ) =
(
λ – (πn)

) – (
Qn +A(λ) + P∗

n +A′(λ)
)(

λ – (πn)
)

+
(
Qn +A(λ)

)(
P∗
n +A′(λ)

)
–

(
Pn + B(λ)

)(
γn +Q∗

n + B′(λ)
)

()

and

G(λ) =
(
λ – (πn)

).
Using () and (), one can easily verify that the inequality

∣∣F(λ) –G(λ)
∣∣ < ∣∣G(λ)∣∣

holds for all λ from the boundary of U(n). Since the function G(λ) has two roots in the
set U(n), by the Rouche theorem we find that F(λ) has two roots in the same set. Thus T

has two eigenvalues (counting with multiplicities) lying in U(n) that are the roots of ().
On the other hand, () has preciously two roots (counting with multiplicities) in U(n).
Therefore λ ∈ U(n) is an eigenvalue of T if and only if () holds.
If λ ∈ U(n) is a double eigenvalue of T then it has no other eigenvalues in U(n) and

hence () has no other roots. This implies that λ is a double root of (). By the same way
one can prove that if λ is a double root of () then it is a double eigenvalue of T. �

Let us consider () in detail. By () we have

F(λ) = . ()

If we substitute t =: λ – (πn) in (), then it becomes

t –
(
Qn +A(λ) + P∗

n +A′(λ)
)
t +

(
Qn +A(λ)

)(
P∗
n +A′(λ)

)
–

(
Pn + B(λ)

)(
γn +Q∗

n + B′(λ)
)
= . ()

The solutions of () are

t, =
(Qn + P∗

n +A +A′)± √
�(λ)


,

http://www.boundaryvalueproblems.com/content/2014/1/57
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where

�(λ) =
(
Qn + P∗

n +A +A′) – (Qn +A)
(
P∗
n +A′) + (Pn + B)

(
γn +Q∗

n + B′),
which can be written in the form

�(λ) =
(
Qn – P∗

n +A –A′) + (Pn + B)
(
γn +Q∗

n + B′) ()

and, as we shall see below,
√

�(λ) can be defined as analytic function on U(n). Clearly the
eigenvalue λn,j is a root either of the equation

λ = (πn) +


[(
Qn + P∗

n +A +A′) –√
�(λ)

]
()

or of the equation

λ = (πn) +


[(
Qn + P∗

n +A +A′) +√
�(λ)

]
. ()

Now let us examine �(λ) and
√

�(λ) in detail. If () holds then one can readily see from
(), (), ()-(), and () that

�(λ) = γnsn
(
 + o()

)
()

for λ ∈ U(n). By () there exists an appropriate choice of branch of
√

�(λ) (depending
on n) which is analytic on U(n). Taking into account (), (), (), (), and (), we see
that () and () have the form

λ = (πn) –
√
γ


√
nsn

(
 + o()

)
, ()

λ = (πn) +
√
γ


√
nsn

(
 + o()

)
. ()

Theorem  If () holds, then the large eigenvalues λn,j are simple and satisfy the following
asymptotic formulas:

λn,j = (πn) + (–)j
√
γ


√
nsn

(
 + o()

)
()

for j = , . Moreover, if there exists a sequence {nk} such that () holds when n is replaced
by nk , then the root functions of T do not form a Riesz basis.

Proof To prove that the large eigenvalues λn,j are simple let us show that one of the eigen-
values, say λn, satisfies () for j =  and the other λn, satisfies () for j = . Let us prove
that each of () and () has a unique root in U(n) by proving that

(πn) +


[(
Qn + P∗

n +A +A′) ± √
�(λ)

]
is a contraction mapping. For this we show that there exist positive real numbers K, K,

http://www.boundaryvalueproblems.com/content/2014/1/57
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K such that

∣∣A(λ) –A(μ)
∣∣ < K|λ –μ|, ∣∣A′(λ) –A′(μ)

∣∣ < K|λ –μ|, ()∣∣√�(λ) –
√

�(μ)
∣∣ < K|λ –μ| ()

for λ,μ ∈ U(n), where K +K +K < . The proof of () is similar to the proof of () of
the paper [].
Now let us prove (). By () and () we have

(√
�(λ)

)– = o()

for λ ∈U(n). On the other hand arguing as in the proof of () of the paper [] we get

d
dλ

�(λ) =O().

Hence for the large values of n we have

d
dλ

√
�(λ) =

d
dλ

�(λ)

√

�(λ)
= o()

for λ ∈ U(n). Thus by the fixed point theorem, each of () and () has a unique root λ

and λ in U(n) respectively. Clearly by () and (), we have λ �= λ which implies that
() has two simple roots inU(n). Therefore byTheorem(b), λ and λ are the eigenvalues
of T lying in U(n), that is, they are λn, and λn,, which proves the simplicity of the large
eigenvalues and the validity of ().
If there exists a sequence {nk} such that () holds when n is replaced by nk , then by

Theorem (a)

(�nk ,,�nk ,) =  +O
(
n–/k

)
.

Now it follows from the theorems of [, ] (see also Lemmaof []) that the root functions
of T do not form a Riesz basis. �

Now let us consider the operators T, T, and T. First we consider the operator T.
It is well known that (see (a) and (b) on page  of []) the eigenvalues of the

operatorsT(q) consist of the sequences {λn,,}, {λn,,} satisfying () when λn,j is replaced
by λn,j,. The eigenvalues, eigenfunctions and associated functions of T() are

λn, = (πn); n = , , , . . . ,

y,(x) = x –
α

 + α
, yn,(x) = sinπnx; n = , , . . . ,

φn,(x) =
(
x –

α

 + α

)
cosπnx
πn

; n = , , . . . ,

respectively. The biorthogonal systems analogous to () and () are{
cosπnx,

( + α)
 – α

(


 + α
– x

)
sinπnx

}∞

n=
, ()

http://www.boundaryvalueproblems.com/content/2014/1/57
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{
sinπnx,

( + α)
 – α

(
x –

α

 + α

)
cosπnx

}∞

n=
, ()

respectively.
Analogous formulas to () and () are

(
λN ,j, – (πn)

)
(�N ,j,, cosπnx) = (q�N ,j,, cosπnx), ()(

λN ,j, – (πn)
)(

�N ,j,,ϕ∗
n,

)
– γn(�N ,j,, cosπnx) =

(
q(x)�N ,j,,ϕ∗

n,
)
, ()

respectively, where

γ =
π ( + α)

 – α
.

Instead of ()-() using ()-() and arguing as in the proofs of Theorem  and The-
orem  we obtain the following results for T.

Theorem If () holds, then the large eigenvalues λn,j, are simple and satisfy the following
asymptotic formulas:

λn,j, = (πn) + (–)j
√
γ


√
nsn

(
 + o()

)
for j = , . The eigenfunctions �n,j, corresponding to λn,j, obey

�n,j, =
√
 sinπnx +O

(
n–/

)
.

Moreover, if there exists a sequence {nk} such that () holds when n is replaced by nk , then
the root functions of T do not form a Riesz basis.

Now let us consider the operator T. It is well known that (see (a) and (b) on page
 of []) the eigenvalues of the operators T(q) consist of the sequences {λn,,}, {λn,,}
satisfying

λn,j, = (nπ + π ) +O
(
n/

)
()

for j = , . The eigenvalues, eigenfunctions, and associated functions of T() are

(π + πn), yn,(x) = cos(n + )πx,

φn,(x) =
(

β

β – 
– x

)
sin(n + )πx
(n + )π

for n = , , , . . . , respectively. The biorthogonal systems analogous to () and () are{
sin(n + )πx,

(β – )
β + 

(
x +


β – 

)
cos(n + )πx

}∞

n=
, (){

cos(n + )πx,
(β – )
β + 

(
β

β – 
– x

)
sin(n + )πx

}∞

n=
, ()

respectively.
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Analogous formulas to () and () are

(
λN ,j, –

(
(n + )π

))(
�N ,j,, sin(n + )πx

)
=

(
q�N ,j,, sin(n + )πx

)
, ()(

λN ,j, –
(
(n + )π

))(
�N ,j,,ϕ∗

n,
)
– (n + )γ

(
�N ,j,, sin(n + )πx

)
=

(
q�N ,j,,ϕ∗

n,
)
, ()

respectively, where

γ =
π (β – )

β + 
.

Instead of ()-() using ()-() and arguing as in the proofs of Theorem  and Theo-
rem  we obtain the following results for T.

Theorem If () holds, then the large eigenvalues λn,j, are simple and satisfy the following
asymptotic formulas:

λn,j, =
(
(n + )π

) + (–)j
√
γ


√
(n + )sn+

(
 + o()

)
for j = , . The eigenfunctions �n,j, corresponding to λn,j, obey

�n,j, =
√
 cos(n + )πx +O

(
n–/

)
.

Moreover, if there exists a sequence {nk} such that () holds when n is replaced by nk , then
the root functions of T do not form a Riesz basis.

Lastly we consider the operator T. It is well known that (see (a) and (b) on page
 of []) the eigenvalues of the operators T(q) consist of the sequences {λn,,}, {λn,,}
satisfying () when λn,j, is replaced by λn,j,. The eigenvalues, eigenfunctions, and asso-
ciated functions of T() are

λn, = (π + πn), yn,(x) = sin(n + )πx,

φn,(x) =
(

α

 – α
+ x

)
cos(n + )πx
(n + )π

for n = , , , . . . , respectively. The biorthogonal systems analogous to () and () are

{
cos(n + )πx,

( – α)
 + α

(


 – α
– x

)
sin(n + )πx

}∞

n=
, (){

sin(n + )πx,
( – α)
 + α

(
α

 – α
+ x

)
cos(n + )πx

}∞

n=
, ()

respectively.
Analogous formulas to () and () are

(
λN ,j, – (π + πn)

)(
�N ,j,, cos(n + )πx

)
=

(
q(x)�N ,j,, cos(n + )πx

)
, ()
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(
λN ,j, –

(
(n + )π

))(
�N ,j,,ϕ∗

n,
)
– (n + )γ

(
�N ,j,, cos(n + )πx

)
=

(
q�N ,j,,ϕ∗

n,
)
, ()

respectively, where

γ =
π ( – α)
 + α

.

Instead of ()-() using ()-() and arguing as in the proofs of Theorem  and Theo-
rem  we obtain the following results for T.

Theorem If () holds, then the large eigenvalues λn,j, are simple and satisfy the following
asymptotic formulas:

λn,j, =
(
(n + )π

) + (–)j
√
γ


√
(n + )sn+

(
 + o()

)
for j = , . The eigenfunctions �n,j, corresponding to λn,j, obey

�n,j, =
√
 sin(n + )πx +O

(
n–/

)
.

Moreover, if there exists a sequence {nk} such that () holds when n is replaced by nk , then
the root functions of T do not form a Riesz basis.

Now suppose that

∫ 


xq(x)dx �= . ()

If



sn + B = o

(

n

)
, ()

where B is defined by (), then one can readily see from (), (), (), and ()-()
that there exists a positive constant K such that

∣∣�(λ)
∣∣ > K

for λ ∈U(n) and for the large values of n. Therefore arguing as in the proof of Theorem ,
we obtain the following.

Theorem  Suppose that () holds. If () holds, then the large eigenvalues of the oper-
ator T are simple. Moreover, if there exists a sequence {nk} such that () holds when n
is replaced by nk , then the root functions of T do not form a Riesz basis. Similar results
continue to hold for the operators T, T, and T.

Remark  Since the eigenvalues λn, and λn, are the fixed points of () and () respec-
tively, using the fixed point iteration one can determine these eigenvalues with arbitrary
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precision. Moreover, using these better approximations of the eigenvalues, one can also
determine the better approximations for the eigenfunctions of the operator T. Similar
results can be obtained for the operators T, T, and T.
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