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Asymptotic formulas and numerical estimations for eigenvalues of SturmLiouville problems having singular potential functions,
with Dirichlet boundary conditions, are obtained. This study gives a comparison between the eigenvalues obtained by the
asymptotic and the numerical methods.

1. Introduction

Let 𝐿(𝑞) be an operator generated in 𝐿
2
[0, 1] by the expres-

sion

𝐿 (𝑞) = −𝑦
󸀠󸀠
(𝑥) + 𝑞 (𝑥) 𝑦 (𝑥) , 0 ≤ 𝑥 ≤ 1, (1)

and by Dirichlet boundary conditions

𝑦 (0) = 𝑦 (1) = 0, (2)

where 𝑞(𝑥) is a complex-valued summable function.
In this paper, we consider the small and large eigenvalues

of the operator 𝐿(𝑞) when 𝑞(𝑥) has a finite number of
singularities. The large eigenvalues are investigated by the
asymptotic method given in [1, 2]. Note that in classical
investigations in order to obtain the asymptotic formulas of
order 𝑂(𝑛

−𝑙
) it is required that 𝑞(𝑥) be (𝑙 − 1) times differen-

tiable (see [3–10]). The method of [1] gives the possibility of
obtaining the asymptotic formulas of order 𝑂(𝑛

−𝑙
) of eigen-

values and eigenfunctions of 𝐿(𝑞) when 𝑞(𝑥) is an arbitrary
summable complex-valued function. The small eigenvalues
are investigated by numerical and asymptoticmethods.Then,
we compare the results with the ones obtained by the other
methods.

Expression of differential equations in matrix form and
the advances in the field of the computers have led to
major developments in numerical methods. Regarding the

numerical solution of the Sturm-Liouville problems, finite
difference method is amongst the popular methods (see [11,
12]). Finite differencemethod can give effective results for the
eigenvalues when it is used in connection with asymptotic
correction technique. In [13] and [14] the Sturm-Liouville
problemswithDirichlet and the general boundary conditions
were studied, respectively. Andrew and Paine [15] found the
approximate eigenvalues of regular Sturm-Liouville problem
by using the finite element method. Chen and Ho [16] used
the differential transform method to solve the eigenvalue
problems. Ghelardoni [17] named some linear multistep
methods as boundary value methods and found the approx-
imate eigenvalues of Sturm-Liouville problem. Ghelardoni
andGheri [18] used the shooting technique for the calculation
of the eigenvalues of Sturm-Liouville problem by considering
the Prüfer transformation given in [19]. Kumar [20], Kumar
and Aziz [21] gave numerical examples to linear or nonlinear
boundary value problems by using finite differences method
for singular boundary value problems. Kumar and Singh
[22] made a study which collected and classified various
calculation techniques for the solution of singular boundary
value problems.

2. Asymptotic Formulas for Eigenvalues

It is well known that (see formulas (47a), (47b) in page 65
of [7]) the eigenvalues of the operator 𝐿(𝑞), where 𝑞(𝑥) is
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a complex-valued summable function, consist of the
sequence {𝜆

𝑛
} satisfying

𝜆
𝑛
= (𝑛𝜋)

2
+ 𝑂 (1) . (3)

In [1] (see Theorem 1 of [1]), it is proved that the
eigenvalues 𝜆

𝑛
satisfy the following formula

𝜆
𝑛
= (𝑛𝜋)

2
+ 𝐶
0
+ 𝐹
𝑚

+ 𝑂((
ln |𝑛|

𝑛
)

𝑚+1

) ,

∀𝑚 = 0, 1, 2, . . . ,

(4)

where 𝐹
0
= −𝐶
2𝑛
, 𝐶
𝑛
= ∫
1

0
𝑞(𝑥) cos 𝑛𝜋𝑥 𝑑𝑥,

𝐹
1
= 𝐴
1
((𝑛𝜋)
2
) = −𝐶

2𝑛
+

∞

∑

𝑛
1
=−∞

𝑛
1
̸= −2𝑛

𝐶
𝑛
1

(𝐶
𝑛
1

− 𝐶
𝑛
1
+2𝑛

)

[(𝑛𝜋)
2
− (𝜋 (𝑛 + 𝑛

1
))
2

]

,

(5)

𝐹
𝑘
= 𝐴
𝑘
((𝑛𝜋)
2
+ 𝐹
𝑘−1

) , ∀𝑘 = 2, 3, . . . . (6)

Note that in [1], without loss of generality, it was assumed that
𝐶
0

= 0. Then using (4), the cases 𝑞(𝑥) = 𝑝(𝑥) + 𝑐/𝑥
𝛼 and

𝑞(𝑥) = 𝑎
0
/√𝑥 + 𝑎

1
/√1 − 𝑥 + 𝑏

0
√𝑥 + 𝑏

1
√1 − 𝑥 (where 𝑐, 𝑎

0
,

𝑎
1
, 𝑏
0
, 𝑏
1
are complex numbers) are investigated in detail.

In this paper, we consider the case

𝑞 (𝑥) =

]

∑

𝑘=0

𝑐
𝑘

󵄨󵄨󵄨󵄨𝑥 − 𝑡
𝑘

󵄨󵄨󵄨󵄨

𝛼
𝑘

, 0 < 𝛼
𝑘
< 1, (7)

where ] is a positive integer and 𝑐
𝑘
is a complex number. First

using (4) we prove the following.

Theorem 1. The eigenvalue 𝜆
𝑛
of the operator 𝐿(𝑞) with

potential (7) satisfies the asymptotic formula:

𝜆
𝑛
= (𝑛𝜋)

2
+ 𝐶
0

−

]

∑

𝑘=0

𝑐
𝑘

(2𝑛)
1−𝛼
𝑘

(cos 2𝑛𝜋𝑡
𝑘
(𝑑
4𝑘

+ 𝑑
4𝑘+2

)

− sin 2𝑛𝜋𝑡
𝑘
(𝑑
4𝑘+1

+ 𝑑
4𝑘+3

))

+ 𝑂(
ln |𝑛|

𝑛
) ,

(8)

where

𝑑
4𝑘

= ∫

∞

0

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠, 𝑑
4𝑘+2

= ∫

0

−∞

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠,

𝑑
4𝑘+1

= ∫

0

−∞

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠, 𝑑

4𝑘+3
= ∫

∞

0

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠.

(9)

Proof. At (4) for𝑚 = 0, let us use the formula

𝜆
𝑛
= (𝜋𝑛)

2
+ 𝐶
0
− 𝐶
2𝑛

+ 𝑂(
ln |𝑛|

𝑛
) , (10)

where

𝐶
𝑛
= ∫

1

0

𝑞 (𝑥) cos 𝑛𝜋𝑥 𝑑𝑥 =

]

∑

𝑘=0

∫

1

0

𝑐
𝑘
cos 𝑛𝜋𝑥

(𝑥 − 𝑡
𝑘
)
𝛼
𝑘

𝑑𝑥. (11)

In the last equality, using the transformations 𝑡 = 𝑥 − 𝑡
𝑘
and

𝑛𝑡 = 𝑠 we obtain

𝐶
𝑛
=

]

∑

𝑘=0

∫

1−𝑡
𝑘

−𝑡
𝑘

𝑐
𝑘
cos 𝑛𝜋 (𝑡 + 𝑡

𝑘
)

𝑡
𝛼
𝑘

𝑘

𝑑𝑡

=

]

∑

𝑘=0

∫

1−𝑡
𝑘

−𝑡
𝑘

𝑐
𝑘
cos 𝑛𝜋𝑡 cos 𝑛𝜋𝑡

𝑘

𝑡
𝛼
𝑘

𝑘

𝑑𝑡

−

]

∑

𝑘=0

∫

1−𝑡
𝑘

−𝑡
𝑘

𝑐
𝑘
sin 𝑛𝜋𝑡 sin 𝑛𝜋𝑡

𝑘

𝑡
𝛼
𝑘

𝑘

𝑑𝑡,

𝐶
𝑛
=

]

∑

𝑘=0

𝑐
𝑘

𝑛1−𝛼𝑘
(cos 𝑛𝜋𝑡

𝑘
∫

𝑛(1−𝑡
𝑘
)

−𝑛𝑡
𝑘

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠

− sin 𝑛𝜋𝑡
𝑘
∫

𝑛(1−𝑡
𝑘
)

−𝑛𝑡
𝑘

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠) .

(12)

Let 𝑛(1 − 𝑡
𝑘
) = 𝑛
𝑘
. By (9) we have

𝐶
𝑛
=

]

∑

𝑘=0

𝑐
𝑘

𝑛1−𝛼𝑘
(cos 𝑛𝜋𝑡

𝑘
(𝑑
4𝑘

− ∫

∞

𝑛
𝑘

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠

+𝑑
4𝑘+2

− ∫

−𝑛𝑡
𝑘

−∞

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠)

− sin 𝑛𝜋𝑡
𝑘
(𝑑
4𝑘+1

− ∫

−𝑛𝑡
𝑘

−∞

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠

+𝑑
4𝑘+3

− ∫

∞

𝑛
𝑘

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠)) .

(13)

Arguing as in the proof of (41) of [1] one can readily see that

∫

−𝑛𝑡
𝑘

−∞

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠 = 𝑂(
1

𝑛
𝛼
𝑘

𝑘

) , ∫

∞

𝑛
𝑘

cos𝜋𝑠
𝑠𝛼𝑘

𝑑𝑠 = 𝑂(
1

𝑛
𝛼
𝑘

𝑘

) ,

∫

−𝑛𝑡
𝑘

−∞

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠 = 𝑂(

1

𝑛
𝛼
𝑘

𝑘

) , ∫

∞

𝑛
𝑘

sin𝜋𝑠

𝑠𝛼𝑘
𝑑𝑠 = 𝑂(

1

𝑛
𝛼
𝑘

𝑘

) .

(14)
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Therefore

𝐶
𝑛
=

]

∑

𝑘=0

𝑐
𝑘

𝑛1−𝛼𝑘
(cos 𝑛𝜋𝑡

𝑘
(𝑑
4𝑘

+ 𝑑
4𝑘+2

)

− sin 𝑛𝜋𝑡
𝑘
(𝑑
4𝑘+1

+ 𝑑
4𝑘+3

))

+ 𝑂(
1

𝑛
) .

(15)

Thus (8) follows from (4) for 𝑚 = 0. The theorem is proved.

Now assuming that

𝛼
1
= 𝛼
2
= ⋅ ⋅ ⋅ = 𝛼] =

1

2
(16)

we obtain more precise asymptotic formula by using more
subtle estimations.

Theorem 2. If (16) holds, then the eigenvalue 𝜆
𝑛
of the opera-

tor 𝐿(𝑞) with potential (7) satisfies the asymptotic formula:

𝜆
𝑛
= (𝑛𝜋)

2
+ 𝐶
0
− 𝐶
2𝑛

+ 𝑂((
ln |𝑛|

𝑛
)

2

) . (17)

Proof. To prove the theorem we use (4) for 𝑚 = 1, (5) and
prove that

∞

∑

𝑛
1
=−∞

𝑛
1
̸= 0,−2𝑛

𝐶
2

𝑛
1

𝑛
1
(2𝑛 + 𝑛

1
)
= 𝑂((

ln |𝑛|

𝑛
)

2

) ,

∞

∑

𝑛
1
=−∞

𝑛
1
̸= 0,−2𝑛

𝐶
𝑛
1

𝐶
𝑛
1
+2𝑛

𝑛
1
(2𝑛 + 𝑛

1
)
= 𝑂((

ln |𝑛|

𝑛
)

2

) .

(18)

In (15), instead of 𝑛 and 𝛼
𝑘
taking 𝑛

1
and 1/2 we get

𝐶
𝑛
1

=

]

∑

𝑘=0

𝑐
𝑘

(𝑛
1
)
1/2

(cos 𝑛
1
𝜋𝑡
𝑘
(𝑑
4𝑘

+ 𝑑
4𝑘+2

)

− sin 𝑛
1
𝜋𝑡
𝑘
(𝑑
4𝑘+1

+ 𝑑
4𝑘+3

))

+ 𝑂(
1

𝑛
1

) .

(19)

From (19) one can readily see that there exists a constant 𝑟
such that

󵄨󵄨󵄨󵄨󵄨
𝐶
𝑛
1

󵄨󵄨󵄨󵄨󵄨

2

< 𝑟
1

𝑛
1

(20)

for 𝑛
1

= 1, 2, . . .. Therefore, instead of equation (56) of [1],
using (20) and repeating the proof of equation (55) of [1] we
get the proof of (18). Thus the proof of the theorem follows
from (4), (5), and (18). The theorem is proved.

3. Numerical Approximation

Now, we consider the small eigenvalues of the 𝐿(𝑞) operator
by a numerical method.

For the finite difference method [11, 19] take an equally
spaced mesh (𝑚 ⩾ 2)

0 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑚+1
= 1, (21)

where

𝑥
𝑗
= 𝑗ℎ, ℎ =

1

𝑚 + 1
. (22)

Writing 𝑦(𝑥
𝑗
) as 𝑦

𝑗
, 𝑞(𝑥
𝑗
) as 𝑞
𝑗
, and 𝑦

󸀠󸀠
(𝑥
𝑗
) as 𝑦

󸀠󸀠

𝑗
, we use

the centered difference approximation

−𝑦
󸀠󸀠

𝑗
≈

−𝑦
𝑗−1

+ 2𝑦
𝑗
− 𝑦
𝑗+1

ℎ2
. (23)

Substituting in (1) we obtain the approximating scheme

−𝑌
𝑗−1

+ 2𝑌
𝑗
− 𝑌
𝑗+1

ℎ2
+ 𝑞
𝑗
𝑌
𝑗
= Λ𝑌
𝑗
, 𝑗 = 1, 2, . . . , 𝑚. (24)

Incorporating the boundary conditions, we get

𝑌
0
= 0, 𝑌

𝑚+1
= 0. (25)

This can be written in matrix form as

𝑇𝑌 = Λ𝑌, (26)

where

𝑇 =
1

ℎ2
𝐾 + 𝑄

∗
, (27)

𝑇 is a tridiagonal matrix and

𝑌 = (

𝑌
1

⋅

⋅

⋅

𝑌
𝑚

),

𝐾 =

(
(
(

(

2 −1

−1 2 −1

⋅

⋅

⋅

−1 2 −1

−1 2

)
)
)

)

,

𝑄
∗
= (

(

𝑞
1

𝑞
2

⋅

⋅

⋅

𝑞
𝑚

)

)

.

(28)

The eigenvalues of (1), (2) are approximated by the eigenval-
ues of matrix T.
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In the previous section, the asymptotic formulas for
eigenvalues of the operator 𝐿(𝑞) (1), (2) with the potential (7)
are investigated. In this section, wewill find the eigenvalues of
the operator 𝐿(𝑞) by using the finite difference method when
𝑐
𝑘

= 1, 𝛼
𝑘

= 1/2 for 𝑘 = 0, 1, . . . , ], and 𝑡
𝑘

= 𝑘/]. Let us
introduce the notation

𝑞
𝑘
(𝑥) =

1

󵄨󵄨󵄨󵄨𝑥 − 𝑡
𝑘

󵄨󵄨󵄨󵄨

1/2 (29)

and denote the 𝑛th eigenvalue of the operator𝐿(𝑞
𝑘
) by𝜆𝑘
𝑛
.The

𝑛th eigenvalue of the operator 𝐿(𝑄]), where

𝑄] (𝑥) =

]

∑

𝑘=0

𝑞
𝑘
(𝑥) , (30)

is denoted by Λ
]
𝑛
.

In order to be able to apply the Finite Difference method,
the nodes should not coincide with the singular points. Let
𝑚] = ](𝑚 + 1) and 𝑥

𝑗
nodal points be

𝑥
𝑗
=

𝑗

𝑚]

, 𝑗 = 1, 2, . . . , 𝑚] − 1; 𝑗 ̸= 𝑘 (𝑚 + 1) . (31)

Then 𝑥
𝑗

̸= 𝑡
𝑘
.

The approximate eigenvalues of the operators 𝐿(𝑞
𝑘
) and

𝐿(𝑄]) obtained by the numerical method are denoted 𝑠
𝑘

𝑛
and

𝑆
]
𝑛
, respectively.

Example 3. In this example we find the eigenvalues of the
following boundary value problem

−𝑦
󸀠󸀠
+

5

∑

𝑘=0

1

󵄨󵄨󵄨󵄨(𝑥 − 𝑡
𝑘
)
󵄨󵄨󵄨󵄨

1/2
𝑦 = 𝜆𝑦,

𝑦 (0) = 𝑦 (1) = 0

(32)

for 𝑚] = 150, 𝑡
𝑘
= 𝑘/], and ] = 5 by using Finite Difference

method. In Table 1 an example of the computation of the
eigenvalues of the operators 𝐿(𝑞

𝑘
) and 𝐿(𝑄]) is given.

One can see from Table 1 that for 𝑛 ≥ 30 the eigenvalues
of the operators 𝐿(𝑞

𝑘
) and 𝐿(𝑄V) are close to each other. This

shows that the effect of the potential to the large eigenvalues
is small. Moreover the eigenvalues in first, second, and third
columns coincide with the eigenvalues in the sixth, fifth, and
fourth columns, respectively, since the potential 𝑞

𝑘
(𝑥) can be

reduced to 𝑞]−𝑘 (𝑥) by using the transformation 𝑥 = 1 − 𝑧.

4. Comparison of the Asymptotic and
Numerical Methods

In this section we compare the estimations obtained by
numerical and asymptotic methods of the eigenvalues Λ2

𝑛
of

the operator 𝐿(𝑄
2
), where𝑄

2
is defined by (30) and (29).The

𝑛th eigenvalue of the operator 𝐿(0) is (𝑛𝜋)2. The effect of the
potential 𝑞

𝑘
on the 𝑛th eigenvalue 𝜆

𝑘

𝑛
of the operator 𝐿(𝑞

𝑘
),

that is, the perturbation of the 𝑛th eigenvalue when 𝐿(0) is
perturbed by 𝑞

𝑘
is

𝑝
𝑘

𝑛
= 𝜆
𝑘

𝑛
− (𝑛𝜋)

2
. (33)

Similarly, the effect of𝑄
2
on the 𝑛th eigenvalueΛ2

𝑛
, that is, the

perturbation of the 𝑛th eigenvalue when 𝐿(0) is perturbed by
𝑄
2
is

𝑃
2

𝑛
= Λ
2

𝑛
− (𝑛𝜋)

2
. (34)

The perturbations 𝑃
2

𝑛
, 𝑝
𝑘

𝑛
evaluated by the numerical and

asymptotic methods are denoted by 𝑃
2

𝑛
(𝑠), 𝑝𝑘
𝑛
(𝑠), 𝑃2
𝑛
(𝑎), and

𝑝
𝑘

𝑛
(𝑎), respectively.
According to Theorem 2 we define the approximate

eigenvalues, denoted by 𝑎
𝑘

𝑛
and𝐴

2

𝑛
, of the operators 𝐿(𝑞

𝑘
) and

𝐿(𝑄
2
) obtained by the asymptotic method as follows

𝑎
𝑘

𝑛
= (𝑛𝜋)

2
+ ∫

1

0

𝑞
𝑘
(𝑥) 𝑑𝑥 − ∫

1

0

𝑞
𝑘
(𝑥) cos 2𝜋𝑛𝑥 𝑑𝑥, (35)

𝐴
2

𝑛
= (𝑛𝜋)

2
+ ∫

1

0

𝑄
2
(𝑥) 𝑑𝑥 − ∫

1

0

𝑄
2
(𝑥) cos 2𝜋𝑛𝑥 𝑑𝑥. (36)

Therefore it is natural to define 𝑃
2

𝑛
(𝑎) and 𝑝

𝑘

𝑛
(𝑎) by

𝑃
2

𝑛
(𝑎)=𝐴

2

𝑛
−(𝑛𝜋)

2
= ∫

1

0

𝑄
2
(𝑥) 𝑑𝑥−∫

1

0

𝑄
2
(𝑥) cos 2𝜋𝑛𝑥 𝑑𝑥,

𝑝
𝑘

𝑛
(𝑎) = 𝑎

𝑘

𝑛
− (𝑛𝜋)

2
= ∫

1

0

𝑞
𝑘
(𝑥) 𝑑𝑥 − ∫

1

0

𝑞
𝑘
(𝑥) cos 2𝜋𝑛𝑥 𝑑𝑥.

(37)

It readily follows from formulas (37) and (30) that

𝑃
2

𝑛
(𝑎) =

2

∑

𝑘=0

𝑝
𝑘

𝑛
(𝑎) . (38)

It means that for the large eigenvalues the effect of 𝑄
2
is

asymptotically equal to the sum of the effects of the potentials
𝑞
𝑘
.
The perturbations 𝑃2

𝑛
(𝑠) and 𝑝

𝑘

𝑛
(𝑠) evaluated via the finite

difference method are given in Table 2. In order to see the
effect of the singular points, the number of subintervals is
taken as 𝑚] = 20000.

Table 2 shows that the effect of𝑄
2
is approximately within

the value range of 5.10−5 and 2.10
−2, equal to the sum of the

effects of the potentials 𝑞
𝑘
. Thus the perturbation estimations

by the numerical methods validate the naturality of (38).
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Table 1

𝑛 𝑠
0

𝑛
𝑠
1

𝑛
𝑠
2

𝑛
𝑠
3

𝑛
𝑠
4

𝑛
𝑠
5

𝑛
𝑆
5

𝑛

1 11,3346 12,0617 13,6112 13,6112 12,0617 11,3346 24,8946
2 41,0082 42,3680 42,5655 42,5655 42,3680 41,0082 54,4909
3 90,3543 92,1439 91,4556 91,4556 92,1439 90,3543 103,912
4 159,389 161,282 161,330 161,330 161,282 159,389 174,822
5 248,089 249,774 249,278 249,278 249,774 248,089 261,654
6 356,418 357,740 357,883 357,883 357,740 356,418 369,832
7 484,332 485,347 486,023 486,023 485,347 484,332 497,594
8 631,775 632,690 632,941 632,941 632,690 631,775 643,821
9 789,683 799,727 800,334 800,334 799,727 789,683 811,972
10 984,984 986,288 986,440 986,440 986,288 984,984 998,400
20 3892,79 3864,330 3894,39 3894,39 3864,330 3892,79 3906,97
30 8599,57 8600,85 8601,04 8601,04 8600,85 8599,57 8612,95
40 14902,3 14903,5 14903,7 14903,7 14903,5 14902,3 14915,3
50 22529,2 22530,6 22530,7 22530,7 22530,6 22529,2 22542,7
60 31151,4 31152,8 31152,8 31152,8 31152,8 31151,4 31165,1
70 40396,8 40398 40398,3 40398,3 40398 40396,8 40410,1
80 49866,8 49867,9 49868,2 49868,2 49867,9 49866,8 49879,9
90 59152,9 59154,3 59154,3 59154,3 59154,3 59152,9 59166,4
100 67854,6 67856,1 67856,1 67856,1 67856,1 67854,6 67868,3

Table 2

𝑛 𝑃
2

𝑛
(𝑠) 𝑝

0

𝑛
(𝑠) 𝑝

1

𝑛
(𝑠) 𝑝

2

𝑛
(𝑠) ∑

2

𝑘=0
𝑝
𝑘

𝑛
(𝑠) |𝑝

2

𝑛
(𝑠) − ∑

2

𝑘=0
𝑝
𝑘

𝑛
(𝑠)|

1 6,853010948 1,507680075 3,819522987 1,507680075 6,834883138 0,018127810
2 5,436436039 1,649044169 2,135885787 1,649044169 5,433974124 0,002461915
3 6,833127542 1,712792234 3,412323071 1,712792234 6,837907540 0,004779998
4 5,833596917 1,750983257 2,332560213 1,750983257 5,834526726 0,000929810
5 6,821354115 1,777106646 3,269640370 1,777106646 6,823853662 0,002499546
6 6,014222685 1,796412736 2,422163800 1,796412736 6,014989272 0,000766587
7 6,817074514 1,811422205 3,195628783 1,811422205 6,818473194 0,001398680
8 6,122590551 1,823514738 2,476005854 1,823514738 6,123035330 0,000444779
9 6,814993899 1,833516325 3,148677685 1,833516325 6,815710336 0,000716437
10 6,196675434 1,841954226 2,512821873 1,841954226 6,196730326 0,000054891
20 6,378247333 1,885045278 2,601825385 1,885045278 6,371915940 0,006331392

It is well known that if we consider the Sturm-Liouville
operator

𝐿 (𝜀𝑄
2
) = −

𝑑

𝑑𝑥2
+ 𝜀𝑄
2
(𝑥) ,

𝑦 (0) = 𝑦 (1) = 0,

(39)

where 𝜀 is a small positive parameter, then the asymptotic
methods can be appliedmore successfully.The 𝑛th eigenvalue
of the operators 𝐿(𝜀𝑄]) is denoted byΛ

]
𝑛
(𝜀).The approximate

eigenvalues obtained by the asymptotic and numerical meth-
ods are denoted by 𝐴

]
𝑛
(𝜀) and 𝑆

]
𝑛
(𝜀), respectively.

It follows fromTheorem 2 and formulas (36), (30) that

Λ
2

𝑛
(𝜀) = 𝐴

2

𝑛
(𝜀) + 𝑂((

𝜀 ln |𝑛|

𝑛
)

2

) , (40)

where

𝐴
2

𝑛
(𝜀) = (𝜋𝑛)

2
+ 𝜀∫

1

0

𝑄
2
(𝑥) 𝑑𝑥 − 𝜀𝐶

2𝑛

=(𝜋𝑛)
2
+𝜀∫

1

0

(
1

√|𝑥 − 1|

+
1

√|𝑥 − 1/2|

+
1

√|𝑥|

) 𝑑𝑥

−𝜀∫

1

0

(
1

√|𝑥 − 1|

+
1

√|𝑥 − 1/2|

+
1

√|𝑥|

) cos 2𝑛𝜋𝑥𝑑𝑥.

(41)

In Tables 3, 4, and 5 the approximate eigenvalues 𝐴
2

𝑛
(𝜀)

obtained by the asymptotic method and their comparison
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Table 3

𝑛 𝜆
𝑛
(0) 𝐴

2

𝑛
(1) 𝑆

2

𝑛
(1) |𝐴

2

𝑛
(1) − 𝑆

2

𝑛
(1)| |𝐴

2

𝑛
(1) − 𝜆

𝑛
(0)| |𝑆

2

𝑛
(1) − 𝜆

𝑛
(0)|

1 9,8696 16,779308 16,7201 0,059208 6,909708 6,8505
2 39,4784 44,915438 44,9149 0,000538 5,437038 5,4365
3 88,8264 95,665322 95,6569 0,008422 6,838922 6,8305
4 157,9137 163,748052 163,7473 0,000752 5,834352 5,8336
5 246,7401 253,572371 253,5588 0,013571 6,832271 6,8187
6 355,3058 361,320361 361,3199 0,000461 6,014561 6,0141
7 483,6106 490,44101 490,4249 0,01611 6,83041 6,8143
8 631,6547 637,77751 637,7770 0,00051 6,12281 6,1223
9 799,4379 806,267576 806,2502 0,017376 6,829676 6,8123
10 986,9604 993,157379 993,1570 0,000379 6,196979 6,1966
20 3947,8418 3954,223216 3954,2175 0,005216 6,381416 6,3757
30 8882,6440 8889,107347 8889,0782 0,029347 6,463347 6,4342
40 15791,3670 15797,8793 15797,7870 0,0893 6,51236 6,42
50 24674,0110 24680,55663 24680,3312 0,22663 6,54563 6,3202
60 35530,5758 35537,1461 35536,6786 0,4661 6,5703 6,1028
70 48361,0616 48367,65097 48366,7849 0,87097 6,58937 5,7233
80 63165,4682 63172,073 63170,5955 1,473 6,6048 5,1273
90 79943,7956 79950,41327 79948,0466 2,36327 6,61767 4,251
100 98696,0440 98702,67245 98699,0652 3,60245 6,62845 3,0212

Table 4

𝑛 𝜆
𝑛
(0) 𝐴

2

𝑛
(0, 1) 𝑆

2

𝑛
(0, 1) |𝐴

2

𝑛
(0, 1) − 𝑆

2

𝑛
(0, 1)| |𝐴

2

𝑛
(0, 1) − 𝜆

𝑛
(0)| |𝑆

2

𝑛
(0, 1) − 𝜆

𝑛
(0)|

1 9,8696 10,5605748 10,5582 0,0023748 0,6909748 0,6886
2 39,4784 40,0221196 40,0221 1,96 × 10−5 0,5437196 0,5437
3 88,8264 89,5103278 89,5085 0,0018278 0,6839278 0,6821
4 157,9137 158,4971086 158,4971 8,6 × 10−6 0,5834086 0,5834
5 246,7401 247,4233362 247,4214 0,0019362 0,6832362 0,6813
6 355,3058 355,9072187 355,9072 1,87 × 10−5 0,6014187 0,6014
7 483,6106 484,2936551 484,2916 0,0020551 0,6830551 0,681
8 631,6547 632,2669645 632,2668 0,0001645 0,6122645 0,6121
9 799,4379 800,1209185 800,1187 0,0022185 0,6830185 0,6808
10 986,9604 987,580134 987,5798 0,000334 0,619734 0,6194
20 3947,8418 3948,479906 3948,4741 0,005806 0,638106 0,6323
30 8882,6440 8883,2903 8883,2611 0,0291996 0,6463 0,6171
40 15791,3670 15792,01827 15791,9259 0,0923677 0,65127 0,5589
50 24674,0110 24674,66557 24674,4401 0,225465 0,65457 0,4291
60 35530,5758 35531,23287 35530,7654 0,4674694 0,65707 0,1896
70 48361,0616 48361,72051 48360,8544 0,8661055 0,65891 0,2072
80 63165,4682 63166,12865 63164,6511 1,4775505 0,66045 0,8171
90 79943,7956 79944,45741 79942,0907 2,3667109 0,66181 1,7049
100 98696,0440 98696,70685 98693,0996 3,6072546 0,66285 2,9444

with 𝑆
2

𝑛
(𝜀) and nonperturbated eigenvalues 𝜆

𝑛
(0) = (𝑛𝜋)

2 for
𝜀 = 1, 𝜀 = 0, 1, and 𝜀 = 0, 01, respectively, are given.

Table 3 shows the eigenvalues of 𝐿(𝜀𝑄
2
) operator

obtained by asymptotic method and finite differencemethod,
respectively, for 𝜀 = 1. Here the number of subintervals is
taken as𝑚] = 15000.

Table 4 shows the eigenvalues of 𝐿(𝜀𝑄
2
) operator

obtained by asymptotic method and finite difference
method, respectively, for 𝜀 = 0, 1. Here the number of
subintervals is taken as 𝑚] = 15000.

Table 5 shows the eigenvalues of 𝐿(𝜀𝑄
2
) operator

obtained by asymptotic method and finite difference
method, respectively, for 𝜀 = 0, 01. Here the number of
subintervals is taken as 𝑚] = 15000.

5. Conclusion

It is natural and well known that for small values of the
parameter 𝜀 and for large eigenvalues the asymptotic method
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Table 5

𝑛 𝜆
𝑛
(0) 𝐴

2

𝑛
(0, 01) 𝑆

2

𝑛
(0, 01) |𝐴

2

𝑛
(0, 01) − 𝑆

2

𝑛
(0, 01)| |𝐴

2

𝑛
(0, 01) − 𝜆

𝑛
(0)| |𝑆

2

𝑛
(0, 01) − 𝜆

𝑛
(0)|

1 9,8696 9,93870144 9,9385 0,00020144 0,06910144 0,0689
2 39,4784 39,53278781 39,5328 1,219 × 10−5 0,05438781 0,0544
3 88,8264 88,89482843 88,8946 0,00022843 0,06842843 0,0682
4 157,9137 157,9720142 157,9720 1,423 × 10−5 0,0583142 0,0583
5 246,7401 246,8084326 246,8082 0,00023264 0,0683326 0,0681
6 355,3058 355,3659045 355,3659 4,46 × 10−6 0,0601045 0,0601
7 483,6106 483,6789196 483,6786 0,0003196 0,0683196 0,068
8 631,6547 631,71591 631,7158 0,00010995 0,06121 0,0611
9 799,4379 799,5062527 799,5058 0,00045269 0,0683527 0,0679
10 986,9604 987,0224095 987,0220 0,00040949 0,0620095 0,0616
20 3947,8418 3947,905575 3947,8998 0,00577499 0,063775 0,058
30 8882,6440 8882,708595 8882,6794 0,02919485 0,064595 0,0354
40 15791,3670 15791,43216 15791,3398 0,09236434 0,06516 0,0272
50 24674,0110 24674,07646 24673,8510 0,22545896 0,06546 0,16
60 35530,5758 35530,64155 35530,1740 0,46754647 0,06575 0,4018
70 48361,0616 48361,12746 48360,2614 0,86605935 0,06586 0,8002
80 63165,4682 63165,53422 63164,0567 1,47751533 0,06602 1,4115
90 79943,7956 79943,86183 79941,4951 2,36672503 0,06623 2,3005
100 98696,0440 98696,1103 98692,5031 3,60719526 0,0663 3,5409

gives us approximations with smaller errors. The numerical
method, in general, gives better results for smaller eigenval-
ues.The tables show that the results of the asymptoticmethod
also give quiet acceptable results for small eigenvalues, since
𝐴
2

𝑛
(𝜀) − 𝑆

2

𝑛
(𝜀) is small.

Therefore we can easily observe that both of two
methods give high-precision results for the calculation of
the small eigenvalues. Additionally while the perturbation
parameter tends to zero both of the methods are enhanced
for smaller eigenvalues, but while this fact is limited to
𝑛 = 10 for the numerical approximation, the enhancement
continues for the asymptotic method applied to higher
eigenvalues. Thus we can conclude that the asymptotic
method coupled with a perturbation parameter near to zero
provides us a better approximation quality in calculating
eigenvalues.

In Tables 3–5 there are two observations to be consid-
ered: the first observation is that for small eigenvalues the
perturbated results by numerical and asymptoticmethods are
close to each other for all 𝜀. The second observation is that
for the large eigenvalues the perturbated results obained by
asymptotic methods decrease linearly with respect to small 𝜀,
while the perturbated results obtained by numerical methods
are almost the same for all values of 𝜀. This shows that for
small values of the perturbation parameter 𝜀 the asymptotic
method is preferable.
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Birkhäuser, Basel, Switzerland, 1986.

[7] M. A. Naimark, Linear Differential Operators, George G. Harrap
and Company, 4th edition, 1967.

[8] B. N. Parlett,The Symmetric Eigenvalue Problem, Prentice-Hall,
Englewood Cliffs, NJ, USA, 1980.

[9] J. D. Tamarkin, “Some general problems of the theory of ordi-
nary linear differential equations and expansion of an arbitrary
function in series of fundamental functions,” Mathematische
Zeitschrift, vol. 27, no. 1, pp. 1–54, 1928.

[10] E. C. Titchmarsh, Eigenfunction Expansions, vol. I, Oxford
University Press, 1962.

[11] R. L. Burden, Numerical Analysis, Brooks Cole, Pacific Grove,
Calif, USA, 7th edition, 2001.



8 Mathematical Problems in Engineering

[12] A. L. Andrew, “Correction of finite difference eigenvalues of
periodic Sturm-Liouville problems,” Australian Mathematical
Society Journal Series B, vol. 30, no. 4, pp. 460–469, 1989.

[13] J. W. Paine, F. R. de Hoog, and R. S. Anderssen, “On the
correction of finite difference eigenvalue approximations for
Sturm-Liouville problems,” Computing, vol. 26, no. 2, pp. 123–
139, 1981.

[14] R. S. Anderssen and F. R. de Hoog, “On the correction of
finite difference eigenvalue approximations for Sturm-Liouville
problems with general boundary conditions,” BIT, vol. 24, no.
4, pp. 401–412, 1984.

[15] A. L. Andrew and J. W. Paine, “Correction of finite element
estimates for Sturm-Liouville eigenvalues,” Numerische Math-
ematik, vol. 50, no. 2, pp. 205–215, 1986.

[16] C.-K. Chen and S.-H. Ho, “Application of differential trans-
formation to eigenvalue problems,” Applied Mathematics and
Computation, vol. 79, no. 2-3, pp. 173–188, 1996.

[17] P. Ghelardoni, “Approximations of Sturm-Liouville eigenvalues
using boundary value methods,” Applied Numerical Mathemat-
ics, vol. 23, no. 3, pp. 311–325, 1997.

[18] P. Ghelardoni and G. Gheri, “Improved shooting technique
for numerical computations of eigenvalues in Sturm-Liouville
problems,” Nonlinear Analysis, vol. 47, pp. 885–896, 2001.

[19] J. D. Pryce, Numerical Solution of Sturm-Liouville Problems,
Clarendon Press, Oxford, UK, 1993.

[20] M.Kumar, “Anewfinite differencemethod for a class of singular
two-point boundary value problems,” Applied Mathematics and
Computation, vol. 143, no. 2-3, pp. 551–557, 2003.

[21] M. Kumar and T. Aziz, “A uniform mesh finite difference
method for a class of singular two-point boundary value
problems,” Applied Mathematics and Computation, vol. 180, no.
1, pp. 173–177, 2006.

[22] M. Kumar and N. Singh, “A collection of computational
techniques for solving singular boundary-value problems,”
Advances in Engineering Software, vol. 40, no. 4, pp. 288–297,
2009.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


