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Abstract: In this study, several radial basis function networks are compared according to their approximation

ability in time series forecasting problems. @ptimal values for the tested parameters are obtained using computer

simulation runs. Effects of width selection in Gaussian Kernels, of the number of neurons in the hidden layer,

and of selection of kernel function are investigated.
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INTRODUCTION

There are many applications of time series in science
and engineering, like electrical load estimation, risk
prediction, river flood fore casting, stock market
prediction, etc.

For making a prediction using time series, a large
variety of approaches are available. Prediction of scalar
time-series {x(n)} refers to the task of finding an estimate
X(n+1) of the next future sample x(n+l) based on the
knowledge of the history of time-series, 1,e, the samples
x(n), x(n-1), ... (Rank.,2003).

Linear prediction, where the estimate is based on a
linear combination of N past samples can be represented

as below:
N-1

X(n+1)=> ax(n-i)

1=0
with the prediction coefficients a, 1=0,1, ... N-1.

Introducing a general nonlinear function f(.): " - R
applied to the vector x(n) = [x(n), x(n - M), ...,
x(n-(N-1)3M]" of past samples, we arrive at the nonlinear
prediction approach

X(n+1)=f(x(n))

RADIAL BASIS FUNCTION NETWORK

The RBF network consists of 3 layers: An input layer,
a hidden layer and an output layer. A typical RBF network
1s shown n Fig. 1.

Mathematically, the network output for linear output
nodes can be expressed as below:

Fig. 1. Typical RBF network
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where, x 1s the input vector with elements x, (where 1
1s the dimension of the input vector), ;: is the vector to
determine the center of the basis function; ¢; with
elements ;; W,‘s are the weights and W,, is the bias
(Harpham et al., 2006). The basis function ¢,(-) provides
the non-linearity.

BASIS FUNCTIONS

The most used basis functions are Gaussian and
multiquadratic functions. They are given below:

Gaussian
2

O(x)= exp[— ;SZJ for8>0 and

xcR
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Multiquadratic

$(x) = (x*+6% for 5>0 and
xef

p is between @ and 1. Usually p 1s taken as '%.

CALCULATING THE OPTIMAL VALUES
OF WEIGHTS

A very important property of the RBF Network 1s that
it 15 a linearly weighted network in the sense that the
output is a linear combination of m radial basis functions,
written as below:

£(x) = w0,9(x)

The main problem is to find the wilewown weights

woym_
[S 1=1-

For this purpose, the general least squares principal
can be used to minimize the sum squared error:

sSE=Y[y® £

1=1

With respect to the weights of f, resulting in a set of
m simultaneous linear algebraic equations in the m
unknown weights

(ATA)w=A"y
Where,
OO(x®) ¢ .. O™ (x0)
(D(l)(X(Z)) ¢(2)(X(2)) _____ ¢(m)(x(2))
A=
(I)(l) (;,((n)) ¢(2)(.X(n)) q)(m) (.X(n))
W:|: 0w, W(m)JT

y = [y(”,y“),...,y“) JT

In the special case where n = m, the resultant system
1s just

Aw =y (Day et al., 2003)

The output y(x) represents the next value of y in time
t taking input values x,, X,, ..., X, that represent the

Yu

Y2

n
Predicited value

Yia

Fig. 2: Finding predicted value y,

previous function values set with values v,,, V.2, ..., Yin-
So, x, corresponds to v, ;, X,

Fig. 2.

SIMULATION RESULTS

Several computer simulation runs are carried out to
find the optimal values of parameters in radial basis
functions such as width (d) and centers (;‘ ’s).

The effect of type of radial basis functions (Gaussian,
multiquadratic etc.) in function approximation is also
investigated.

The last parameter to be investigated is the number
of neurons in the hidden layer. The effect of the number
of neurons in the hidden layer on performance of neural
network for time series prediction is studied.

EFFECT OF WIDTH SELECTION

For this work, the time-series data of American
Express Bank 1s used. Monthly log data consists of 324
data items. The first 162 data items are used for wraining
and the remaining 162 data items are used for forecasting.

Figure 3 shows the results of simulation run with
0 = 0.5 and 18 neurons in the hidden layer for the last 50
data items.

In Fig. 4, similar results for d = 1.2 and 18 neurons in
the hidden layer are shown.

For & = 1.5 and 18 neurons in the hidden layer an
optimal solution is obtained withminimum error rate. This
result 1s shown 1n Fig. 5.

In Fig. 6, for the optimal solution, all the real and
predicted values are shown.
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Fig. 3:3=0.5 and 18 neurons in the hidden layer. Last
50 data items
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Fig. 4 8=1.2 and 18 neurons in the hidden layer. Last
50 data items
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Fig. 5:d=1.5and 18 neurons in the hidden layer. Last
50 data items
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Fig. 6: 8 = 1.5 and 18 neurons in the hidden layer. @ptimal
solution
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Fig. 7: 0 = 1.5and ® neurons in the hidden layer. Last
50 data items

As can be seen from simulation results presented
above, the width parameter (8) has an important effect on
optimal solution.

EFFECT OF NUMBER OF NEURONS IN
THE HIDDEN LAYER

The second important parameter is the number of
neurons that are used in the hidden layer of the RBF
network.

In Fig. 7, simulation results for 8 = 1.5 and ® neurons
in the hidden layer are shown.

If we compare these results with the results that 1s
given in Fig. 5 for & = 1.5 and 18 neurons in the hidden
layer, then we can see big differences between two
figures.

If we increase number of number of neurons in the
hidden layer while & remains fixed, then we can obtain
better results in the prediction problem.
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EFFECT OF KERNEL FUNCTIONS

The effect of the type of kemel function (Gaussian,
multivariate etc) 1s problem dependent, whichmeans it can
change from one problem to another.

CONCLUSIONS

In this study, different radial basis function networks
are compared according to their ability to predict results
in time series forecasting problem.

®ptimal values for the tested parameters are
obtained using simulation runs. @ptimal width value of
the Gaussian function is obtained as 1.5 for the data file to
be processed and the optimal number of neurons in the
hidden layer of RBF network is found as 18 for the same
problem.

In future research, the relationships between the
statistical parameters of data points (average, standard
deviation, etc.) and parameters of the RBF network will be
mvestigated for the optimal solution in time series
forecasting problems.
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