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Abstract: Missing data are a part of almüst all research and it must be decided how to dea! with it from time to 
time. Missing data creates several problems İn many applications which depend on good access to accurated 
data. Conventiona! methods for missing data, like listwİse deletion or regression imputation, are prone to three 
serİolis problems: Inefficİent use of the available information, leading to low power and Type II errüfS. Biased 
estimates of standard errüfS, leading to İncorrect p-values. Biased parameter estimates, due to failure to adjust 
for selectivity İn missing data. In this study, we propose a new algorithrn to predict missing values of a given 
time series using Radial Basis Fwıctions. 
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INTRODUCTION 

Time series data are used to represent many real 
world phenomenon. For various reasons, a time series 
database may have some missing data. Traditional 
interpolation or estimation methods usually become 
invalid when the observation interval of the missing data 
is not small (Hong and Chen, 2003). 

The methods of handling missing data are direetly 
related to the mechanisms that cmısed the 
incompleteness. These mechanisms fall into three classes 
(Sentas and Angelis, 2005; Little and Rubin, 2002). 

• Missing Completely at Random (MCAR): The 
missing value s in a variable are wrrelated to the 
values of any other variables, whether missing or 
valid. 

• Non-Ignorable Missingness (NIM): The probability 
of having missing values in a variable depends on 
the variable itself. 

• Missing at Random (1.1AR): This can be considered 
as an intermediate situation between MCAR and 
NIM. The probability of having missing values, does 
not depend on the variable itself but on the values of 
some other variable. 

Missing data techniques are given in Little and Rubin 
(2002). They can be listed as: Listwise deletion, mean 
imputation, regression imputation and expectation 
maximization. Details can be obtained from Little and 
Rubin (2002). 

Many recent publications appeared in literature 
related to dealing missing data. 
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Choi and Kim (2002) presented a physies-based 
approach for automaticaııy reconstructing three 
dimensional shapes in a robust and proper manner from 
partiaııy missing data. 

Tang and Hung (2006) have proposed an algoritbm 
to estimate projective shape, projective depths and 
missing data iteratively. 

Yemez and Wetherilt (2007) presented a hybrid 
surface reconstruction method that fuses geometrical 
information acquired from silhouette images and optical 
triangulation. 

Golyandina and Osipov (2007) have proposed a 
method of fiııing in the missing data and applied to time 
series of finite rank. 

Heintzmann (2007) introdueed a novel way of 
measuring the regain of out-of-band information 
during maximum likelihood deconvolution and applied 
to various situations. 

Formal representation of missing data: Original data 
matrix D � (d,,) i � 1 ,2,3 ... n, j � 1,2, ... k eontains time series 
data where d,J is the value of variable � for case 1. 

When there are missing data, the missing data 
indicator matrix M = (m,) can be defined as below: 

if m'J = 1 then d,J is missing 
if m'J = O then d,J is present 
(Sentas and Angelis, 2005). 

Radial basis funetions for time series forecasting: An 
RBF network consists of 3 layers: an input layer, a hidden 
layer and an output layer. A typical RBF network is 
shown in Fig. 1. 

Mathematically, the network output for linear output 
nodes can be expressed as below: 
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Fig. i: Typical RBF network 

h(x) � i: w k,<D, (iix - x, ii)+ w kC  
J�ı 

Where x İs the input vector with elements X, (where i İs the 
dimensİon of the input vector), 

xJ İs the vector to determine the center of the basİs 
fwıction <L>J with elements XJ!, wlg 's are the weights and 
WkC is the bias (Haıpham and Dawson. 2006). The basis 
fwıction <L>J (-) provides the nonlinearity. The most used 
basİs fimctions are Gaussİan and multiquadratic [wıctions 
(Haıpham and Dawson, 2006). 

Calculating the optimal values of weights: A very 
important property of the RBF Network İs that it İs a 
linearly weigthed network in the sense that the output İs 
a linear combination of ın radial basİs [wıctions, wrİtten 
as below: 

m 
[(x) � L: WC')<DC') (x) 

,�ı 

(Duy and Chong, 2003) 

The main problem İs to [ind the wıknown weights 
{w(I) } 1= ı,m For this purpose, the general least squares 
principle can be used to minimİze the surn squared error: 

" , SSE � L:[y") - [(xC,)) J 
1=1 

With respect to the weights of f, resulting in a set of m 
sirnultaneous linear algebraic equations in the m urıkno\VIl 
weights 

(BTB)w � BTy 
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Fig. 2: Finding the predicted value y, 

where 

<D0)(XO)) <Dc,)(xO)) 

B� 
<D0)(xC')) <Dc,)(xC')) 

<DCm)(XO)) 
<DCm) (xC')) 

In the special case where n = m the resultant system is 
just 

Bw�y (Duy and Chong, 2003) 

The output y(x) represents the next value of Y in time t 
taking input values x), Xb ..... Xı, that represent the previous 
fwıction values set of the time series with values Yı.j, 
Yı.b ..... Yı.n· So, xı, corresponds to yı.), Xı,.ı corresponds to 
Yı.2 etc. as in Fig. 2. 

Reconstruetion of data series by radial basis funetions: 

a new algorithm: The following algorithrn is proposed in 
this work to find the values of missing data. 

• Remove the 20% of the original data from the data 
set. Divide the data set into segments so that each 
segment contains some missing data: 

compıeıe_ � M;"mg_ 

.. 1 . .  \ . .  1 . .1 . . 1 . . . . ..... . .  111 ........ ........ . .  

Segment, Segment, 



J. Applied Sci .• 7 (6): 922-925. 2007 

• Use the complete data of segmen� to [ind an artificİa! 
time series equation with an RBF network that means 
[incling the weights in the RBF approximation. 

• Calculate the error İn each segment according to the 
following formula: 

Where ei İs the error value in the � point on the /' 
segment. 

• Calculate the surn squared errüfS in each segment İn 
each pass of the algoritlnn. 

SSEk � L2 )e,')' 

J=l 1=1 

where k İs the number of the pass. 

• Replace the missing data with the predicted values İn 
each segment İn the pass ın where SEEm İs the 
minimum value of SSEk. Stop the algoritlnn. 

SIMULA TION RESUL TS 

Several simulation nıns were carrİed out İn a 
computer envİrornnent to [ind the optimal values of 
parameters in radial basİs flUletiorn like width ö and 
centers (xı Ps) to obtaİn good predictions for the missing 
data İn the time series. 

Figure 3 shows the results of the first simulation nm. 

In this fULL, the first 40 data items were used to predict 
the next 8 data items that was considered missing data 
and the results were compared with the real data. Real 

so + Real O Predicted + O 

-50 +-__,_-r_--,----,--r-�-.._____,_-r__, 
O 5 10 15 20 25 30 35 40 45 50 

ı:ı=� -50 
O 5 10 l' S 40 45 50 :ı- Real 

-50 
O 5 10 1' 5 20 25 30 35 40 45 

rnne (w.y,) 

Fig. 3: Gaussian FlUlction sigma = 0.93 and 18 neurons in 
the hidden layer 
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+ + 
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Fig.4: Gaussian FlUlction sigma = 1 and 18 neurons in 
the hidden layer 
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Fig. 5: Gaussian FlUlction sigma = 1 and 18 neurons in the 
hidden layer for the las! 40 data 

data values are represented with symbol + and predicted 
values are represented with symbol o. 

In Fig. 4, similar experiment was carried out with 
Ö = 1 for a Gaussian flUlction and better results 
were obtained. 

Figure 5 shows, the results of the similar experiment 
for the last 40 data items for a Gaussian flUlction. 
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CONCLUSIONS 

In this study, i proposed a new algorithrn to predict 

missing values of a given time series using Radial Basİs 

Fwıctions. Radial Basİs FlUlCtiOllS provide a good way to 

predict the value s of missing data İn a time series. In this 

study, a münthly data log of a bank was used to carry out 

the sİmulation experiments. The data log file consİsted of 

324 data items. This file was divided to small parts with 48 

data items for the first 6 parts and 36 data items for the last 

part. The last 20% of the data for each part was removed 

and these removed data items were predicted using RBF's 

and the 80% of the data items for each part. For some 

optimal parameters of the RBF's, very good predictions 

are obtained for the missing data. 
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